
Maotai∗: View-Oriented Parallel Programming on CMT processors

Jiaqi Zhang† Zhiyi Huang‡ Wenguang Chen† Qihang Huang‡ Weimin Zheng†
†Department of Computer Science

Tsinghua University, Beijing, China
Email:zhang-jq06@mails.tsinghua.edu.cn, {cwg;zwm-dcs}@tsinghua.edu.cn

‡Department of Computer Science
University of Otago, Dunedin, New Zealand

Email:{hzy;tim}@cs.otago.ac.nz

Abstract

View-Oriented Parallel Programming (VOPP) is a novel
parallel programming model which uses views for commu-
nication between multiple processes. With the introduction
of views, mutual exclusion and shared data access are
bundled together, which offers both convenience and high
performance to parallel programming. This paper presents
the implementation of VOPP on Chip-Multithreading
processors, e.g. UltraSPARC T1. We demonstrate that
our implementation of VOPP on multi-core platforms
(namely Maotai) shows significantly better performance
than directly applying the original DSM implementation
of VOPP(namely VODCA) on our platform. Besides, we
compare the performance of VOPP with MPI and OpenMP.
The experimental results demonstrate that VOPP has bet-
ter scalability than both MPI and OpenMP on our platform.

Key Words: Chip-Multithreading, View-Oriented Parallel
Programming, OpenMP, Message Passing Interface, Dis-
tributed Shared Memory (DSM)

1. Introduction

Computer architectures and the computer industry are

being transformed by the advent of multi-core and Chip-

Multithreading (CMT) technologies [18]. These technolo-

gies offer massive increase in processing capacity on a sin-

gle computer and open new opportunities for system- and

application-level software. With conservative estimation, in

the near future there will be hundreds or even thousands

of cores in a single, economical chip [4]. Thus parallel

∗Maotai, is arguably the most famous Chinese liquor, and has a history

of about 300 years.

programmers are challenged with the task of utilizing this

computer power by writing efficient parallel programs. In

this sense, parallel programming models and related envi-

ronments become more important to the programmers.

To facilitate programmability, the underlying parallel

programming models should be friendly to programmers

and thus help increase the productivity. On the other hand,

it should be scalable in order to guarantee a fairly good

speedup on multiple processors. Traditionally, there are

two camps in parallel programming methodologies. One

is based on message passing such as MPI, and the other

is based on shared memory such as OpenMP. Parallel pro-

gramming with message passing is commonly known as

difficult and complex. Programmers are burdened with the

task of orchestrating inter-process communication through

explicit message passing. While MPI is often a de facto
standard for distributed memory systems due to its high per-

formance, it is less efficient for shared memory systems due

to the overhead of data transfer.

Using shared memory for communications between pro-

cesses is natural and straightforward for parallel program-

mers, but the problems such as data race and deadlock hin-

der parallel programming with shared memory. Recently,

OpenMP became a de facto standard for shared memory

environments. However, it suffers from performance penal-

ties due to the fork-join pattern in its compiler generated

code. Also it has difficulties to express certain patterns of

parallelism, as to be discussed in Section 2.2.

View-Oriented Parallel Programming (VOPP)[8, 10] is

a recently proposed parallel programming model which has

demonstrated its high performance on cluster computers[9].

While all previous papers show the advantages of VOPP on

DSM systems, in this paper, with the CMT technology of

UltraSPARC T1 (aka Niagara)[3], we present our imple-

mentation of VOPP on multi-core systems (namely Mao-

37th International Conference on Parallel Processing

0190-3918/08 $25.00 © 2008 IEEE

DOI 10.1109/ICPP.2008.15

636

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 23, 2009 at 11:12 from IEEE Xplore. Restrictions apply.

tai), which shows significantly better performance than di-

rectly applying the original DSM implementation of VOPP

(namely VODCA) [2, 9]. Besides, we compare the perfor-

mance of the above three models and make detailed discus-

sions in terms of both programmability and performance.

This paper has the following contributions. First, we

present the first implementation of VOPP on multi-core

processors–Maotai, which provides an alternative parallel

programming environment for shared memory systems. We

also discuss the difference in performance of Maotai and

VODCA on our CMT platform. Second, we use four ap-

plications written in VOPP, MPI, and OpenMP to compare

the performance of these three parallel programming styles

on a CMT system. Third, we give a detailed analysis on the

differences between VOPP and the other two popular par-

allel programming environments. The analysis is based on

both experimental results and programmability.

The rest of this paper is organized as follows. Section 2

briefly describes the VOPP programming style and com-

pares it with that of MPI and OpenMP. In Section 3, we

introduce the implementation of Maotai on CMT. Section 4

presents the performance results and analysis. Finally, our

future work is suggested in Section 5.

2. View-Oriented Parallel Programming
(VOPP)

In VOPP, shared data is partitioned into views. A view

is a set of memory units (bytes or pages) in shared memory.

Each view, with a unique identifier, can be created, merged,

or destroyed at any time in a program. Before a view is

accessed (read or written), it must be acquired (e.g., with

acquire view); after the access of a view, it must be released

(e.g. with release view). The most significant property for

views is that they do not intersect with each other (refer to

[8] for details).

The focus of VOPP is shifted more towards data manage-

ment (e.g. data partitioning and sharing), instead of mutual

exclusion and data race as in traditional lock-based parallel

programming. Mutual exclusion is automatically achieved

when a view is acquired using acquire view. In this way,

mutual exclusion and data access are bundled together.

Some programming interfaces that bundle mutual exclu-

sion and data access have also been proposed [5, 12, 13].

CRL (C Region Library)[13] focuses on low-level memory

mapping, and limits a region to contiguous memory space.

In contrast, a view in VOPP is a higher level shared object

whose memory space may be non-contiguous, e.g., Auto-

matically Detected Views [8]. Entry Consistency (EC)[5]

and Scope Consistency (ScC) [12] also bundle mutual ex-

clusion and data access like in VOPP. However, their pro-

gramming interfaces are very different from VOPP (refer to

[9] for details).

Bundling mutual exclusion and data access together is a

convenient way for parallel programming. It has the follow-

ing advantages: First, programmers can be relieved from

data race issues. In VOPP, when a view is acquired, mu-

tual exclusion is automatically achieved, so it is not pos-

sible for other processes to access the same view at the

same time. If a view is accessed without being acquired,

either the programmer can be notified of the problem by

the compiler with some VOPP related support, or the run-

time system can report the problem with the support of the

underlying virtual memory system. Second, debugging is

more effective. In VOPP, views are the only shared data

between processes. Since views can be tracked down with

view primitives, they can be easily monitored by a debugger

while a program is running. Third, since the memory space

of a view can be known, view access can be made more

efficient with cache prefetching technique such as helper

threads [14, 15, 17].

2.1. Comparison with MPI

MPI is different from VOPP in that it is based on mes-

sage passing. Despite its difficulties in programming, MPI

is very suitable and effective to utilize the computing power

of distributed computers because of the user-controlled data

transfer.

From programming point of view, VOPP is more con-

venient and easier for programmers than MPI, since VOPP

is still based on the concept of shared memory (except that

view primitives are used whenever shared memory is ac-

cessed). At the same time, VOPP provides experienced pro-

grammers an opportunity to finely tune the performance of

their programs by carefully dividing the shared data into

views and thus offers the potential to make VOPP programs

perform as well as MPI programs even on clusters. A view

in VOPP can be regarded as a message with transparent lo-

cation, and therefore a VOPP program can be finely tuned

so that its behavior can match that of its MPI counterpart.

That is, a VOPP program can imitate the MPI program in

a way that wherever there is data sharing through message

passing between processors in the MPI program, the VOPP

program can allocate a view for the shared data. We have

demonstrated that the performance of VOPP is comparable

to that of MPI on cluster computers[9, 10].

The shared memory model has been attracting more

and more attention with the advent of CMT processors,

which provide physical shared memory and shared caches.

Since all processes share the same physical memory, the

high overhead of maintaining memory consistency that hin-

ders the speedup of parallel programs on DSM can be en-

tirely removed as discussed in Section 3. That means,

besides a guaranteed much better programmability, they

can even overwhelm the message passing model in terms

637

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 23, 2009 at 11:12 from IEEE Xplore. Restrictions apply.

of performance. To demonstrate the difference in pro-

gramming style, Figure1(a) and 1(b) show a typical pro-

ducer/consumer problem written in both VOPP and MPI. In

these programs, a master process produces the tasks, which

are later distributed to consumers. In VOPP, this work is

done in a straight forward manner: the master produces the

tasks, which are later acquired by consumers. In contrast,

the master in MPI has to send all the tasks one by one us-

ing send/recv primitives, which not only incur complexity

in programmability but also greatly hinder the performance.

What’s more, collective operations can hardly be used here

since the tasks are usually not stored in a contiguous space.

Note that the acquire Rview primitive in Figure1(a) is ac-

quiring a view for read-only accesses.

 /*produce the data*/

}

/*do something with the data*/

if (0==proc_id) {
 aquire_view(view_id);

 release_view(view_id);

barrier(bar_id);
acquire_Rview(view_id);

release_Rview(view_id);

(a) VOPP style program

 /*produce the data*/
if (0==rank) {

 send(data,i);
 for (i=1; i<nprocs; i++) {

 }
}
if (0!=rank) {

}
/*do something with the data*/

 recv(data,0);

(b) MPI style program

Figure 1. producer/consumer program written in
VOPP and MPI

These two simple programs are also used to test the ex-

tra overhead of data transfer in MPI on shared memory sys-

tems. Their performance results are shown in Section 4.4.2,

which suggests that VOPP is more scalable than MPI on

multi-core systems.

2.2. Comparison with OpenMP

As a popular shared memory model, OpenMP has been

appreciated due to its ease of use. For certain types of pro-

grams, a few OpenMP directives will ”magically” turn a

sequential program into a parallel one.

Although both OpenMP and VOPP are based on shared

memory, they are different in methodology. In OpenMP,

everything is shared by default, and threads that share

the whole memory are maintained dynamically. However,

VOPP emphasizes the isolation of data, and the processes

are forked initially and run in parallel through out the whole

program.

The above parallel model in OpenMP brings perfor-

mance penalties on shared memory architectures. On a

DSM system, the unnecessary shared memory incurs severe

false sharing problems that lead to heavy network traffic.

Although efforts are made to extend OpenMP for cluster

computers[7], the result is still not satisfactory. Although

this problem is not so significant on physical shared mem-

ory, it still suffers due to maintaining threads dynamically.

While this overhead can be amortized in coarse-grained par-

allelism, it becomes prominent for fine-grained parallelism

and for applications with small data size. This problem

is demonstrated in Section 4.3. In contrast, while VOPP

does use shared memory for communications between pro-

cesses, it emphasizes the use of private memory whenever

possible. By creating and acquiring views explicitly, pro-

grammers are reminded of the cost of data sharing and are

discouraged of using unnecessary shared data. This philos-

ophy helps VOPP achieve a high performance on both DSM

and CMT platforms as illustrated later.

do{
 /*calculate with data in current
node*/
 /*calculate whether perform
pruning*/
 if (!prun){
 node−>rtree=new_rnode;
 }
 node=node−>ltree;
}while(searchnotfinished);

Figure 2. Generation
of a tree with pruning

bucksort(){
 for(i=0; i<count; i++)
 key_den[key[i]]++;

 key_den[i]+=key_den[i−1];

 for(i=0;i<count;i++)
 rank[i]=−−key_den[key[i]];
}

 for(i=1; i<MAXKEY;i++)

Figure 3. A counting
sort algorithm

Despite its effort in easing the burden of parallelization,

OpenMP still has disadvantages in programmability:

Some programs cannot be parallelized in OpenMP
conveniently. A classical example in artificial intelligence

is the search of a decision tree. Pruning is used while the

tree is explored. Pruning could largely reduce the compu-

tation, but it results in an unpredictable amount of work to

do, and thus brings data dependencies in the program. A

typical code pattern for such a program is shown in Fig-

ure 2. With VOPP, however, we can parallelize the program

in Figure 2 based on a producer/consumer pattern. When an

rtree is identified, it is put into a shared task queue. And all

processes look up the queue for new tasks. Although this

problem is supposed to be solved in the upcoming OpenMP

Specification3.0, it will still affect the programmability neg-

atively since more new concepts will make it a more com-

plicated language.

Another example is a counting sort program in Figure 3.

This program aims to compute the rank of each integer in an

array key[] . At first glance, the program looks perfect for

OpenMP because it has three for loops. However, by care-

fully examining the behavior of the program, we find the

second loop cannot be parallelized directly with OpenMP

directives due to inherently sequential dependency. Further-

more, the first loop cannot be parallelized as well, because

key[i] is a random value and accessing key den[key[i]] con-

currently incurs data races when there are many repeated

keys in the problem set such as in Section 4.3. While the

third loop has the same data race problem if parallelized,

the data races in that loop only affect the rank of the inte-

638

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 23, 2009 at 11:12 from IEEE Xplore. Restrictions apply.

gers of the same value. With VOPP, we can parallelize the

program by dividing the key array into several parts. Af-

ter the first and the second loop are done by each process,

all processes work in parallel to construct a shared key den
using the values of their local key den array.

The uncontrolled shared data may lead to severe cor-
rectness problems. From the example above, we can re-

alize that novice OpenMP programmers may easily get

such programs parallelized incorrectly by directly applying

OpenMP directives. The implicitly shared data may prevent

programmers from realizing that they are accessing shared

data concurrently, which is the very source of data races.

And the seemingly easy OpenMP interfaces have incurred a

lot of traps that may result in correctness problems for new

parallel programmers, as listed in [19].

Of course, the program in Figure 2 can be parallelized by

hardcoding the parallel code with parallel sections. How-

ever, in this way, it falls back to the traditional lock-based

model, which exposes the problems such as data race con-

ditions to the programmers and is not what OpenMP is sup-

posed to advocate. NPB[1] has efficiently implemented In-

teger Sort based on counting sort using OpenMP. However,

the algorithm NPB adopts is far from being straight forward

to novice parallel programmers.

3. Implementation of Maotai

In Maotai, we have implemented VOPP primitives [8]

in Linux kernel 2.6.20 running on UltraSPARC T1. They

are implemented as a kernel module supporting a shared

memory device. This device provides both shared memory

and synchronization mechanisms for VOPP. UltraSPARC

T1 has eight cores, each of which can support four hard-

ware threads. In total, it can support up to 32 simulta-

neous threads. There is a 12-way 3MB L2 cache on the

chip, shared by all cores. Each core has a 16KB instruction

cache and a 8KB data cache (L1 caches) and is clocked at

1.0GHz [3].

Maotai is implemented with multi-processing support.

Multiple processes are created when a program is started

with the primitive Vdc startup. We prefer multi-processing

to multi-threading, because we believe independence and

isolation are better than sharing in parallel computing. In

the same line, we encourage more independence and isola-

tion than sharing in VOPP. With multi-processing, we can

keep the sharing of data among processes to the minimal,

since the sharing of data in VOPP programs can only be

achieved through views. In contrast, threads have lots of

unnecessary sharing which expose programs to potential

problems like data race condition. Besides, the overhead of

multi-processing has been much reduced with Light-Weight

Process (LWP) and Copy-On-Write (COW) techniques.

On cluster computers, minimizing data sharing helps

VOPP reduce large amount of data transfer and false shar-

ing effect. This principle also benefits from the shared cache

(L2 cache) on multi-core platforms. Since minimizing the

shared data can reduce the footprint of the data in memory,

the shared data can be more often kept in the cache instead

of the RAM for fast accesses.

Physical shared memory architectures such as CMT pro-

vide more suitable platforms for shared memory models and

benefit VOPP in several ways:

• On CMT platforms, no data transfer is needed by a

shared memory programming model,and processes di-

rectly access memory instead of transferring view data

off-chip via TCP/IP stacks or even network cards.

• For mutual exclusion access of shared data, the con-

sistency of shared memory is achieved atomically

on physical shared memory and thus the consistency

maintenance can be totally removed from the imple-

mentation.

• Logical shared memory on DSM requires each process

has its own duplicate of the shared memory. This re-

quirement is removed on physical shared memory.

• The initialization of VOPP can be much faster due to

fork approach instead of starting via SSH remotely.

The performance gain brought by these features and the de-

tailed analysis of the implementation are presented in Sec-

tion 4.2 along with the experimental results.

4. Performance evaluation

The performance evaluation is divided into three parts.

First, we use a micro-benchmark and four scientific appli-

cations to show how the two implementations of VOPP–

Maotai and VODCA [2, 9]-differ in performance on CMT.

Second, we use the four applications to compare the general

performance of VOPP (i.e. Maotai) with MPI and OpenMP.

In the third part, we perform experiments using micro-

benchmarks to further compare VOPP against OpenMP and

MPI in details.

4.1. Experimental Methodology

All performance tests are carried out on Sun Microsys-

tems’ T2000 server. The server has UltraSPARC T1 as its

processor and 16GB RAM. Its operating system is Linux

2.6.20 for sparc64. We use a gcc version 4.2.1, which sup-

ports -fopenmp option to compile OpenMP programs. To

compile and run MPI programs, we use MPICH2, which is

configured with ”ch3:shm” to avoid the overhead of TCP

sockets on shared memory platforms. All the applications

in this section are compiled with -O2 optimization switch.

639

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 23, 2009 at 11:12 from IEEE Xplore. Restrictions apply.

The four scientific applications we used are Integer Sort

(IS), Gauss Elimination (GE), Successive Over-Relaxation

(SOR), and Neural Network (NN). Since UltraSPARC T1

has only one floating point unit, we replaced floating point

calculations with integer calculations without affecting the

amount of computation of these programs, in order to avoid

the bottleneck problem of the floating point unit. The details

of these applications can as well be found on [10].

IS ranks an unsorted sequence of N keys using a bucket

sort algorithm shown in Figure 3. For the OpenMP version,

we used NPB IS. In our test, the problem size is 226 integers

with a Bmax of 215, and 40 iterations are performed.

GE implements the Gauss Elimination algorithm in par-

allel. In our test, the matrix size is 4000∗4000.

SOR uses a simple iterative relaxation algorithm with a

two-dimensional grid as input. Every element is updated to

a function of its neighbors’ values in each iteration. In our

test, a matrix with a size of 8000 ∗ 4000 is processed in 40

iterations.

NN trains a back-propagation neural network in parallel

using a training data set. In our test, the size of the neural

network is 9∗40∗1 and the maximum number of epochs is

200.

4.2. Maotai vs. VODCA

To analyze how Maotai is different from VODCA, we

run both implementations on our T2000 server.

Table 1. Execution Time of Producer/Consumer
Total Startup Acquire Release Barrier Compute

V D 17506859 5437667 10064528 1805 1752658 249223

MT 322014 5966 329 318 90981 223688

Table 1 shows the execution time (in milliseconds) of

each part in producer/consumer program presented in Fig-

ure 1 using 10 processes. In the table, V D and MT stand

for VODCA and Maotai respectively. From the table we

can see that VODCA spends large amount of time on the

Startup process. This is because despite the other processes

being also on localhost, it has to start them via SSH. The

extra time cost on Acquire in VODCA is two fold: data

transfer via off-chip TCP/IP stack and consistency mainte-

nance. In VODCA, consistency is maintained efficiently by

transferring only diffs [11], which is calculated and merged

every time when changes are made to views. The diffs are

transferred when a process acquires a view, and then is de-

coded and applied to the local memory by acquiring pro-

cess, which works very well for DSM. However, the above

overhead of transferring and coding/decoding diffs can be

eliminated in Maotai as suggested in Section 3, and thus

a significant performance gain is achieved. Similarly, the

overhead of Barrier is also reduced in Maotai since barriers

are implemented with shared variables instead of message

passing as in VODCA.

More interestingly, Maotai outperforms VODCA in the

computing process. This seems to be counter-intuitive be-

cause the amount of computation should be always the

same. However, when looking into the implementation of

VODCA, we shall see that diffs are created by means of

page fault handling. During the computing process, when-

ever a process is trying to modify or read a protected page,

a page fault handler is invoked. This overhead has been

removed from Maotai, which contributes to the faster com-

puting process of Maotai.

In the following discussion, we ignore the time differ-

ence caused by the procedure of Startup because, although

it occupies a lot of time, the overhead is constant when the

number of processes is fixed.

�

���

���

���

���

���

	

	�	

	
 � 	� �
 ��
��������

��
��
��
��
��
���
�
�

�

�

	�

	�

��

��

�
����

������ � ���� ���
����
 � �
����

Figure 4. Execution time of IS
Figure 4 demonstrates the execution time and speedup

of IS on Maotai and VODCA. The execution time is nor-

malized according to V Dtime, which is the execution time

of VODCA. It is obvious that more performance gain can

be achieved when we have more processes. This is con-

sistent with the discussion above, as more processes in-

cur more data transfers and more work to manipulate con-

sistency in VODCA. The speedup curve also shows that

the unnecessary overhead severely affects the scalability of

VODCA. In contrast, more processes can still help Maotai

while VODCA shows a decreased speedup on 32 processes.

�

���

���

���

���

���

	

	�	

!" #$ "%& ''�

���������

��
��
��
��
��
���
�
�

�� �

Figure 5. Execution time of 4 applications
Figure 5 is the normalized execution time of the four ap-

plications introduced in Section 4.1 with 32 processes on

Maotai and VODCA. The results show significant perfor-

mance gains of Maotai from 22% to 25% for IS, GE, and

SOR. However, the improvement of NN is not so promi-

nent (only about 2%). This is due to the small amount of

640

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 23, 2009 at 11:12 from IEEE Xplore. Restrictions apply.

shared memory used in NN. As discussed above, since it is

the consistency maintenance of shared memory that incurs

the overhead of data transfer in VODCA, the benefit of re-

moving the overhead is not so significant when there is little

shared memory.

4.3. VOPP performance against MPI and
OpenMP

In this part, we compare the performance of VOPP (i.e.

Maotai) against MPI and OpenMP on CMT with the four

applications described above. All speedups are calculated

with respect to the sequential code of the application. The

speedup of IS, GE, SOR, and NN are shown in Figure 6,

Figure 7, Figure 8, and Figure 9 respectively.

�

�

�

�

�

�

��

��

��

��

��

��

� � � � �� �� 	�

�
��

�
�

�����

�

����

���

������

Figure 6. Speedup of IS

�

�

�

��

��

��

��

� � � � �� �� 	�

�
��

�
�

�����

�

����

���

������

Figure 7. Speedup of GE

�

�

�

�

�

�

��

��

��

��

��

��

� � � � �� �� 	�

�
��

�
�

�����

�

����

���

������

Figure 8. Speedup of SOR

The performance results of these applications show that

VOPP outperforms both MPI and OpenMP, especially when

�

�

�

�

�

�

��

��

��

��

��

��

� � � � �� �� 	�

�
��

�
�

�����

�

����

���

������

Figure 9. Speedup of NN
the number of processes is large. The results are consistent

with the prior discussions in Section 2. For example, when

running on 32 processes, VOPP performs up to 20% better

than both MPI and OpenMP in GE. The program pattern

in GE is similar to the producer-consumer pattern in Sec-

tion 2.1. In each iteration of the computation, a process first

calculate the pivot row, which is then transferred to all the

other processes to compute their own rows. And the trans-

fer of data in MPI, although via memcpy on shared memory

platforms, severely affects its performance. OpenMP also

performs worse than VOPP in GE due to the overhead of dy-

namically maintaining threads with fork-join patterns. Al-

though we have optimized the OpenMP program by merg-

ing different loops into one parallel section, there are still

many fork-joins because of the large number of iterations

in the outer loop. From the figures, we can also notice that

while maintaining a good scalability, even with a simple

implementation, VOPP incurs rare overhead when running

on single process. The overhead discussed above can also

be applied to other applications, whose overheads differ in

effects due to their different data sharing patterns. These

overheads are amortized in the programs when the granu-

larity of parallelism is large. They are more prominent for

fine-grained parallelism.

4.4. Detailed Performance Analysis

To identify how VOPP, MPI, and OpenMP differ in per-

formance more clearly, we demonstrate their performance

on some micro-benchmarks and specific data sizes in the

following sections.

4.4.1. Comparison with OpenMP for fine-grained par-
allelism

To illustrate the performance difference of OpenMP and

VOPP with fine-grained parallelism, we show the running

time of the GE application with various number of pro-

cesses working on a matrix of size 200∗200 in Figure 10(a).

Also we show the running time of GE with various matrix

sizes ranging between 100 ∗ 100 and 1000 ∗ 1000 using 16

processes in Figure10(b).

641

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 23, 2009 at 11:12 from IEEE Xplore. Restrictions apply.

�

�

����

����

����

����

���

����

����

� � � � � �� ��

��
�
��

�
��
�

�

�����

�

����

������

(a) different process number, 200*200

�

����

������������

����

������������

����

������������

���������������� ������������ ������������ ������������ 	��	��	��	�� ������������
��
��
��
�� ������������ ������������ ������������
size

ti
m
e
(s
e
c
o
n
d
s
)

����

����

����

����

����

				

T
im
e
D
if
f

������������������������ ���������������� �	
��	���	
��	���	
��	���	
��	��

(b) different data size

Figure 10. Performance Comparisons

We can see from Figure 10(a) that not only VOPP in-

curs little overhead on a single process, but it also reaches

its peak of speedup much later than OpenMP when dealing

with small data sizes. From Figure 10(b), we can also find

that when we decrease the problem size, the time cost by

OpenMP is decreasing more slowly than VOPP, and the per-

formance difference between VOPP and OpenMP becomes

larger. The performance difference presented by the curve

is calculated using the time of OpenMP divided by the time

of VOPP. When we perform this test on a 100*100 matrix,

OpenMP is 4.5 times slower than VOPP. Therefore, VOPP

is more scalable than OpenMP for finer-grained parallelism.

4.4.2. Overhead of data transfer in MPI

The major reason of performance difference between

MPI and VOPP is that MPI requires memory copy opera-

tions to complete send/recv, which increase in number with

the number of processes and data sizes. Figure 11(a) and

11(b) show the time cost of the producer/consumer program

mentioned in Section 2.1. They depict the running time for

varied number of processes and varied data sizes, respec-

tively. Note that we only demonstrate the time cost of data

sharing between the producer and the consumers, which ex-

cludes the computation time.

We use 1000 integers as the shared data in Figure 11(a),

where the increasing time cost of both programs is ex-

pected because synchronization overhead increases when

the number of processes increases. The overhead of VOPP

is attributed to the barriers synchronizing the processes. It

�

�

���

���

	��

���

���

���

���

���

� � � � �� �� �� �� �� �� �� �� �� �� 	� 	�

���
��
�
��
��

�
��
�

�

�����

�

����

���

(a) different process number

�

�

����

����

	���

����

����

����

���� ���� ���� ���� ����� 	����

��
�
��
�
��
��

�
��
�

�

 � �
�!�

����

���

(b) different data size

Figure 11. Performance Comparisons

makes VOPP slightly slower than MPI when there are less

than 8 processes. However, VOPP shows better scalability

when there are more processes due to the large number of

send/recv operations in MPI.

Figure 11(b) shows the time cost with varied data sizes

with 16 processes. The time cost of MPI increases signif-

icantly because it has to do more data transfers. However,

there is no extra overhead for VOPP because there is no

data transfer and the overhead of acquire Rview is trivial

and constant.

5. Conclusions and future work

We present an implementation of VOPP, called Maotai,

on a latest CMT processor, UltraSPARC T1, and demon-

strate the advantages brought by multi-core platforms to

VOPP by showing that Maotai achieves much better perfor-

mance than directly porting VODCA on CMT. We have also

illustrated the differences and advantages of VOPP com-

pared to two popular parallel programming models–MPI

and OpenMP. Our experimental results show that VOPP

is more scalable than MPI and OpenMP on CMT pro-

cessors. VOPP outperforms OpenMP especially for fine-

grained parallelism, and also outperforms MPI especially

when there is large data sharing between processes such as

in our producer/consumer problem.

In the near future, we would like to test these program-

ming models on other multi-core architectures such as Intel

642

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 23, 2009 at 11:12 from IEEE Xplore. Restrictions apply.

Core 2 and AMD multi-core processors.

With the view information of VOPP and the shared

caches in CMT, there is a good chance that we can adopt

the helper threaded prefetching [14, 16, 17], which could

utilize otherwise idle cores for applications that cannot be

massively parallelized. The basic idea is to load the view

into cache when it is acquired. The features of CMT proces-

sor give us the opportunity to implement the helper in both

loosely-coupled and tightly-coupled way [14]. Figure 12

shows the execution time of a sum program utilizing our

current implementation of loosely-coupled helper(MTlc)

and tightly-coupled helper(MTtc), along with VOPP with-

out helper(MTnon) and OpenMP. Although there are still a

lot of work to do to improve the helper in our future work,

the preliminary results demonstrate the exciting potential to

further improving the performance of VOPP programs.

�

�

���

����

����

����

����

	���

� � 	 � � � � �

���
��
�
��
��

�
��
�

�

�����

�

�"#�
�"��
�"���
������

Figure 12. performance of helper threaded
prefetching for VOPP

Since VOPP has demonstrated its promising perfor-

mance on both CMT processors and cluster computers [9], a

scalable parallel programming environment based on VOPP

for multi-core clusters is desirable. This VOPP environment

on multi-core clusters is promising to replace the current so-

lution of combining OpenMP and MPI, which is both hard

to program and error prone due to the two completely dif-

ferent models, as suggested in [6].

Acknowledgement

This work was supported by the Chinese National 973

Basic Research Program, 2007CB310900 and by the Nature

and Science Fundation of China: NSFC 90718040.

References

[1] NAS Parallel Benchmarks. http://www.nas.nasa.gov.

[2] View Oriented Distributed Cluster-based Approach to paral-

lel programming. http://vodca.org.

[3] UltraSPARC Architecture 2005 Specification.

http://opensparc-t1.sunsource.net/, 2005.

[4] K. Asanovic et al. The Landscape of Parallel Comput-

ing Research: A View from Berkeley. Technical Report

UCB/EECS-2006-183, University of California at Berkeley,

December 2006.

[5] Bershad, B. N., Zekauskas, and M. J. Midway: Shared mem-

ory parallel programming with Entry Consitency for dis-

tributed memory multiprocessors. Technical Report CMU-

CS-91-170, Carnegie-Mellon University, 1991.

[6] Lei Chai, Qi Gao, and Dhabaleswar K. Panda. Understand-

ing the impact of multi-core architecture in cluster comput-

ing: A case study with intel dual-core system. In CCGRID,

pages 471–478. IEEE Computer Society, 2007.

[7] Jay P. Hoeflinger. Extending OpenMP to Clusters. White

Paper, http://www.intel.com/, 2006.

[8] Z. Huang and W. Chen. Revisit of View-Oriented Parallel

Programming. In Proc. of the Seventh IEEE Inter. Symp. on
Cluster Computing and the Grid, pages 801–810, 2007.

[9] Z. Huang, W. Chen, M. Purvis, and W. Zheng. VODCA:

View-Oriented, Distributed, Cluster-based Approach to par-

allel computing. In Proc. of the IEEE/ACM Symp. on Cluster
Computing and Grid 2006, page 15, 2006.

[10] Z. Huang, M. Purvis, and P. Werstein. Performance Evalua-

tion of View-Oriented Parallel Programming. In Proc. of the
2005 Inter. Conf. on Parallel Proceessing (ICPP05), pages

251–258, June 2005.

[11] Z. Huang, M. Purvis, and P. Werstein. View Oriented Update

Protocol with Integrated Diff for View-based Consistency. In

Proc. of the IEEE/ACM Symposium on Cluster Computing
and Grid 2005 (CCGrid05), pages 873–880, May 2005.

[12] L. Iftode, J.P. Singh, and K. Li. Scope Consistency: A Bridge

between Release Consistency and Entry Conssitency. In

Proc. of the 8th Annual ACM Symp. on Parallel Algorithms
and Architectures, 1996.

[13] Kirk L. Johnson, M. Frans Kaashoek, and Deborah A. Wal-

lach. CRL: High-Performance All-Software Distributed

Shared Memory. In Proc. of the 15th ACM Symp. on Operat-
ing Systems Principles (SOSP), volume 29, pages 213–226,

1995.

[14] C. Jung, D. Lim, L. Lee, and Y. Solinhin. Helper Thread

Prefetching for Loosely-Coupled Multiprocessor Systems.

In Proc. of 20th IEEE Inter. Parallel & Distributed Process-
ing Symp., 2006.

[15] D. Kim et al. Physical Experimentation with Prefetching

Helper Threads on Intel’s Hyper-Threaded Processors. In

Proc. of the 2004 Inter. Symp. on Code Generation and Op-
timization, pages 27–38, 2004.

[16] D. Kim and D. Yeung. Design and Evaluation of Compiler

Algorithms for Pre-Execution. In the 10th Inter. Conf. on
Architectural Support for Programming Languages and Op-
eration Systems, pages 159–170, 2002.

[17] J. Lu et al. Dynamic Helper Threaded Prefetching on the

Sun UltraSPARC CMP Processor. In Proc. of the 38th An-
nual IEEE/ACM Inter. Symp. on Microarchitecture, pages

93–104, 2004.

[18] L. Spracklen and S. G. Abraham. Chip Multithreading: Op-

portunities and Challenges. In Proc. of Inter. Symp. on High-
Performance Computer Architecture, pages 248–252, 2005.

[19] M. Süß and C. Leopold. Common Mistakes in OpenMP and

How To Avoid Them: A Collection of Best Practices. In

Inter. Workshop on OpenMP(IWOMP2006), 2006.

643

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 23, 2009 at 11:12 from IEEE Xplore. Restrictions apply.

