
MapCG: Writing Parallel Program Portable between CPU
and GPU

Chuntao Hong
Tsinghua National Laboratory
for Information Science and

Technology
Tsinghua University

Beijing China
hct05@mails.thu.edu.cn

Dehao Chen
Tsinghua National Laboratory
for Information Science and

Technology
Tsinghua University

Beijing China
chendh05@mails.thu.edu.cn

Wenguang Chen
Tsinghua National Laboratory
for Information Science and

Technology
Tsinghua University

Beijing China
cwg@thu.edu.cn

Weimin Zheng
Tsinghua National Laboratory
for Information Science and

Technology
Tsinghua University

Beijing China
zwm-dcs@thu.edu.cn

Haibo Lin
China Research Lab of IBM

Beijing, China
linhb@cn.ibm.com

ABSTRACT
Graphics Processing Units (GPU) have been playing an im-
portant role in the general purpose computing market re-
cently. The common approach to program GPU today is to
write GPU specific code with low level GPU APIs such as
CUDA. Although this approach can achieve very good per-
formance, it raises serious portability issues: programmers
are required to write a specific version of code for each po-
tential target architecture. It results in high development
and maintenance cost.

We believe it is desired to have a programming model
which provides source code portability between CPUs and
GPUs, and different GPUs: Programmers only need to write
one version of code and can be compiled and executed on
either CPUs or GPUs efficiently without modification.

In this paper, we propose MapCG, a MapReduce frame-
work to provide source code level portability between CPU
and GPU. Different from OpenCL, our framework is based
on MapReduce, which provides a high level programming
model, making programming much easier.

We describe the design of the MapReduce-based high-level
programming language and the underlying runtime system
to enable portability between CPU and GPU. A prototype
of MapCG runtime was implemented, supporting multi-core
CPU and NVIDIA GPUs. Experiments show that our im-
plementation can execute the same source code efficiently
on multi-core CPU platforms and GPUs, achieving an av-
erage of 1.6-2.5x speedup over previous implementations of
MapReduce on eight commonly used applications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’10, September 11–15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09 ...$10.00.

Categories and Subject Descriptors
D.1.3 [SOFTWARE]: PROGRAMMING TECHNIQUES—
Concurrent Programming

General Terms
Languages

Keywords
portability, parallel, GPU programming

1. INTRODUCTION
In the past few years, a wide variety of accelerators have

emerged in the traditional general purpose computing mar-
ket. Among them, graphic processing unit (GPU) has gained
the most popularity because of the evolution which makes
GPU capable of actual general purpose computations. Espe-
cially since the emergence of CUDA[16], a lot of traditional
scientific applications have been ported to GPU, bringing
huge amount of speedups.

However, there are still plenty of applications that are re-
luctant to be ported to these emerging systems, even though
they could get performance improvements. There are two
major obstacles that lead to this situation.

First, the technology is developing in extremely fast pace.
As a result, a popular architecture might become obsolete
within couple of years. The new emerging architecture,
which could be significantly faster, may also employ very
different programming interface and instruction set architec-
ture (ISA). For example, dynamic memory allocator, which
is widely used in CPU programs, is not support by cur-
rent GPUs, which makes GPU programs very much differ-
ent from its CPU counterparts. As a result, programmers
need to write target specific code for each version of the ar-
chitecture, which incurs a great amount of expenses on both
development and maintenance. And as soon as more than
one versions of architecture co-exist, all the versions of code
need to be maintained.

Second, dealing with communication and load balance in
traditional parallel computing has been difficult. The com-
plex memory hierarchy of the accelerator based computing
systems makes it even more difficult to tune the performance
of applications. Besides, programmers usually need to man-
age another level of communication between CPU and GPU,
adding more burdens to the already complex process.

Let’s take GPU as an example to show why the port-
ing could be difficult. The current mainstream approach
to make use of GPU in a commodity environment is to
write programs in GPU languages, such as CUDA[16] and
Brooks[4]. During the run time, CPU starts a thread to port
certain amount of workload to GPU and wait until it finish.
During GPU execution, CPU is idle. However, to utilize the
CPU computation power, programmers still need to write
the CPU version of code. Once the code is updated, both
versions need to be adjusted, incurring 2X of effort than nor-
mal CPU-only environment. Even worse, because GPU and
CPU share the different memory address space, program-
mers need to maintain two copies of variables and arrays on
both sides with extreme caution because this is the place
where bugs are commonly discovered.

A commonly adopted solution for better programming
such emerging parallel systems, as adopted by EXOCHI[22]
and Merge[14], is to write architecture-specific code for each
architecture, and integrate them in a unified runtime frame-
work. This approach is applicable because the runtime frame-
work will take care of the communication, which releases
some pain from programmers. Additionally, it enables ar-
chitectural specific features on each architecture which can
be employed to optimize performance. However, in this ap-
proach, writing multiple versions of code for each architec-
ture introduces much more complexity, thus this approach
is still time-consuming, expensive and error-prone.

To cure the pain of developing and maintaining multiple
copies of code, OpenCL[11] is proposed to ensure source level
portability among different architectures. It offers a low level
abstraction of several different architectures such as CPU,
CELL and GPU. In OpenCL, programmers follow the low
level abstraction to express the program semantic as well
as locality. Using OpenCL to write portable code is, how-
ever, not a panacea. First, the level of abstraction provided
by OpenCL is very low, making it difficult to program and
port applications to OpenCL. Second, although program-
mers only need to write one copy of code, it’s still mandatory
to manage the communications among different memory hi-
erarchies, and between CPU and accelerators, such as thread
scheduling and synchronization between CPU and accelera-
tors, which is usually error-prone.

In this paper, we propose MapCG, a framework which
offers source code level portability between CPU and ac-
celerators, and a runtime system that allows programmers
to focus on the implementation of parallel algorithms in-
stead of side-burdens (communication, load balance, etc.)
incurred by accelerator based environment. Without losing
generality, we choose nVidia GPU as the accelerator. But
the methodology described in this paper can also be applied
to systems consisting of other accelerators. In MapCG, pro-
grammers only need to write a program once, and it will run
on both CPU and GPU cores efficiently. The key challenges
we address in MapCG include:

1. Parallel programming framework: We need to express
parallelism and synchronization for both CPU and GPU

cores uniformly. We believe a high level abstraction is
essential for good portability and ease of use, which are
our top two design goals of MapCG. Thus, we build
our framework based on Map-Reduce, a popular do-
main specific parallel programming model motivated
by functional languages.

2. Portability to GPU: Because current GPUs are lack
of some key features, such as dynamic memory al-
locator, it cannot support dynamic data structures
which are critical to the performance of MapCG frame-
work. Mars, the state-of-the-art MapReduce frame-
work for GPU, requires programmers to write separate
phases to count memory usage in the map phase and
use sorting to group intermediate results of the map
phase, which harms both development and execution
efficiency. In MapCG, we show that we can use atomic
instructions in GPU to implement a lightweight mem-
ory allocator which is specially optimized for MapRe-
duce on GPU and works well for thousands of threads.

In this paper, we make the following contributions:

1. Design and implementation of the MapCG frame-

work. Programmers express parallelism of the work-
load with the MapReduce model. MapCG framework
automates the scheduling of MapReduce tasks on both
CPUs and GPUs, and generates highly efficient code
which out-performs other state-of-the-art MapReduce
frameworks on either platforms.

2. A lightweight memory allocator for MapReduce.
We reveal that the MapReduce framework does not re-
quire a full featured memory allocator. A light weight
memory allocator is sufficient and efficient for MapRe-
duce framework, especially when it is accessed by mas-
sive threads. We implement the lightweight memory
allocator on both CPUs and GPUs. In addition, the
memory allocator on GPUs also helps eliminate addi-
tional counting phases used in previous GPU MapRe-
duce framework.

3. Design and implement a Hash Table on GPUs.
The hash table is used to implement a hash based
grouping mechanism to replace the original sorting based
counterpart to group the intermediate data on GPUs.

Experiments are conducted on a 24-core AMD machine
and a GTX280 GPU connected to a quad-core Intel CPU.
Results show that our implementation can execute the same
source code efficiently on multi-core CPU platforms and
GPUs, achieving an average of 1.6-2.5x speedup over pre-
vious implementations of MapReduce on eight commonly
used applications.

2. RELATED WORK

2.1 MapReduce Model and Implementations
The MapReduce programming model originated from func-

tional languages, and was proposed as a parallel program-
ming model by Google[6]. In this model, programmers ex-
press the parallelism of the program by writing Map() and
Reduce() function. The runtime environment schedules the
tasks to parallel threads. Because of its simplicity, the MapRe-
duce programming model has received great popularity since

its birth. It has been widely used in data mining[8], machine
learning[5] and many other fields[15][17].

There are many different implementations of MapReduce
on various platforms. It is implemented on clusters inside
Google. There are also open-source implementations on
clusters, such as Hadoop[1].

In the meanwhile, efforts are devoted to extending the
original MapReduce model to achieve better performance.
Ostrich[24] proposes Tiled MapReduce, an extension to Map-
Reduce that applies tiling to MapReduce programs, in order
to optimize the use of memory, cache and CPU resources.

As multi-core CPU has become mainstream, researcher
also seek to use MapReduce as programming models on
multi-core CPU platforms. Phoenix[19] is an implementa-
tion of the MapReduce framework for multi-core CPU plat-
forms. Phoenix-2[23] is the latest version of Phoenix, which
provides improved scalability over Phoenix. For simplicity,
we use Phoenix in place of Phoenix-2 in later text.

Although Phoenix provides an efficient MapReduce im-
plementation on multi-core CPUs, it has several drawbacks.

One major issue is that programmers are responsible for
managing the memory in Phoenix. In Phoenix, the keys and
values are passed by reference. Although this might improve
the performance by eliminating unnecessary memory copies,
it significantly harms the programmability because program-
mers need to manage the memory manually. Moreover, it’s
impossible to support platforms that have different address
spaces, such as systems comprised of CPU and GPU.

There are also attempts to implement MapReduce on ac-
celerators, such as GPU[12], FPGA[20] and CELL[18].
Mars[12] is an efficient MapReduce framework based on
NVIDIA CUDA[16].

Mars has several differences from the original MapReduce
model, due to the limitations of GPU.

First, Mars has two counting phases, namely MapCount
and ReduceCount. During the Map and Reduce phases, the
emitted data must be stored in GPU memory. However,
GPU code is currently unable to allocate memory dynam-
ically. The video memory space is allocatable only from
CPU. The MapCount and ReduceCount phases are designed
to work around this problem. MapCount is a stage per-
formed before the Map phase. It counts the size of interme-
diate data each thread will generate, so that after the Map-
Count stage, GPU memory can be allocated for each thread.
The MapCount phase basically executes the same code as
the Map phase. But when the intermediate data is emit-
ted, the framework keeps only the size of the intermediate
data. The actual data is dropped. In this way, the amount
of intermediate data each thread will generate in the Map
phase can be known. After the MapCount phase, the frame-
work allocates video memory for each GPU thread, where
the emitted data is stored in the Map phase. The same
process applies to the ReduceCount phase. This design is
tricky, but inefficient. Mars proposes using different code in
the MapCount and ReduceCount phases, so as to reduce the
overhead caused by MapCount and ReduceCount functions.
Thus it is necessary to write two additional functions, which
is error-prone.

Another problem with Mars is that, instead of hashing, it
uses sorting to group the intermediate pairs. This is gen-
erally because it is hard to implement hash table on GPU.
In the hash table, intermediate pairs that are hashed to the
same bucket should be organized using data structures such

as a list. But since memory allocation is not available in
GPU, it is impossible to allocate the list nodes dynamically.
Moreover, even if the list nodes can be dynamically allo-
cated, ensuring the correctness of concurrent insertion is not
straightforward. As a result, Mars uses bitonic sort[10] to
sort the intermediate pairs after the Map phase, which is
less efficient than hashing.

2.2 Programming Models for GPU and Other
Accelerators

Graphics Processing Unit (GPU) is playing more and more
important role in computing. They have received such pop-
ularity mainly because they have much higher peak perfor-
mance than CPU, usually by an order of magnitude. How-
ever, the differences in threading model and instruction set
architecture (ISA) between CPU and GPU make it hard to
execute current multi-thread CPU code directly on GPU.

As a result, new programming models have been proposed
to program GPU, such as CUDA[16], CTM[2] and Brook[4].
These models are GPU-specific. Applications written in
these models cannot be executed on CPU or other platforms
except GPU.

To minimize the programming effort, other programming
models are proposed to bridge the gap between CPU and
GPU.

OpenCL[11] tries to provide unified view of ISA between
CPU, GPU and other accelerators. It enables the program-
mer to write the same kernel code to execute on different
processors including CPU and GPU. However, programmers
are still responsible for handling the communication between
the processors.

EXOCHI[22] and Merge[14], on the other hand, try to
provide a uniform framework to take advantage of different
types of processors by hiding the communication. They re-
quire the programmer to write different versions of the same
function for different architectures.

There are also other efforts that enable the automatic
translation between multi-threaded CPU code and CUDA
code. MCUDA[21] translates CUDA code into multi-thread
CPU code automatically, and [13] proposes a framework to
translate OpenMP code into CUDA code. These two works
saves the porting effort between CPU and GPU. But multi-
thread programs are still needed to take advantage of these
frameworks.

3. DESIGN AND IMPLEMENTATION
In this section, we present the design and implementa-

tion of the MapCG framework. We first describe the overall
design of the framework, specification of the high-level pro-
gramming language, and then present the implementation
of MapCG runtime on both CPU and GPU.

3.1 Overall Design
Figure 1 shows an overview of the MapCG framework.

The MapReduce framework is composed of two major parts:
the MapReduce-based high-level programming language, and
the MapCG runtime for specific architectures. The high-
level programming language provides the programmers with
a unified, high-level parallel programming environment. The
MapCG runtime bridges the gaps of different hardware, and
executes MapReduce programs efficiently on different plat-
forms.

MapCG API

Multi
-core
CPUs

MapCG
Runtime

MapCG
Runtime

OpenMP CUDA

Application
Written in MapReduce

GPU

Figure 1: Overview of the MapCG framework.

Programmers developing applications deal with the MapCG
programming API only. The programming API provides a
MapReduce parallel model, and a unified view of instruc-
tion set architecture (ISA). Programmers write the Map
and Reduce functions in C-like language, and express the
parallelism of the application in MapReduce model. In our
current implementation, we use the language specifications
in CUDA[16], as the language for writing Map and Reduce
functions. Code in Map and Reduce functions are restricted
as in CUDA. However, to keep the code portable, we don’t
support the extensions in CUDA, such as global and

device .
The framework generates the CPU and GPU versions of

the Map and Reduce functions by source code translation,
and then uses the MapCG runtime library to execute them
on CPU and GPU respectively.

The MapCG runtime is responsible for executing MapRe-
duce code efficiently on different architectures. It also fills
the gaps between architecture capabilities. For example, it
provides string library on GPU, which enables the program-
mer to call string library in the Map and Reduce functions.

3.2 MapReduce Based API
The API we provide for the MapReduce programming

model is shown in Table 1.
In the execution of a MapReduce application, input data is

split by the Splitter() function into pieces, and the pieces are
passed to the Map function. The Map function process the
data and emits intermediate pairs using MapCG emit inter-
mediate(). The intermediate pairs are then grouped and
passed to the Reduce function, which emits data using the
MapCG emit() function. The data emitted by Reduce can
then be obtained by invoking the MapCG get output() func-
tion.

Unlike Phoenix, we follow strict pass-by-value semantics
for the MapCG emit intermdiate() and MapCG emit() func-
tions. The key/value pairs are always copied by definition,
although the implementation may optimize away some copy-
ing operations as long as it does not break this semantic.
This pass-by-value strategy has several benefits.

First, it relieves the burden of memory management from
programmers. If the pairs are passed by reference, the pro-
grammer should make sure that the memory content does
not get destroyed before they are used. They should also
remember to manually free the memory when the pairs are
no longer needed.

Second, passing the pairs by value makes sure that the
pairs emitted are accessible from both CPU and GPU, which

Functions defined by programmer:

void Splitter(void * in, unsigned in size, unsigned in idx, void
*& out, unsigned & out size)

splits a piece of the input data

void Map(void * in, unsigned in size)
map function, process one piece of data

void Reduce(Key t key, Val list t vlist)
reduce function, reduction on values associated with the same

key

unsigned Hash(void * key, unsigned keysize)
hash function

bool Key Equal(void * key1, unsigned size1, void * key2, un-
signed size2)

compares two keys, return true if they are equal

Functions defined by the framework:

void MapCG init(const MapCG Spec t & spec)
initialize the framework, specify input, number threads, etc.

void MapCG map reduce()
start the MapReduce process

MapCG output t MapCG get output()
get the output data

void MapCG emit intermediate(void * key, unsigned keysize,
void * val, unsigned valsize)

emit an intermediate pair

void MapCG emit(void * val, unsigned valsize)
emit a final result

Table 1: MapReduce-based API provided by

MapCG.

makes it possible to distribute tasks simultaneous on both
CPU and GPU. Currently, we have implemented the MapCG
framework so that we can use multiple CPUs and GPUs to
execute the MapReduce tasks at the same time. However,
due to separate memory address and the low bandwidth be-
tween CPU and GPU, using CPU and GPU at the same
time does not offer much performance improvement, some-
times it even degrades performance. We will discuss this
problem in more detail in section 5.

Passing pairs by value do have a drawback, though. It
requires the copying of intermediate data, which may incur
some overhead. But we consider this overhead justifiable. In
most cases, the keys and values are just simple types such as
integer. Copying the value of these types around is no more
expensive than copying their pointers. Even if the keys and
values are large in size, we copy them at most twice – first
for inserting into the hash table, and then dump them to the
output. The keys and values are stored in linked list when
they are inserted into hash table, thus no data movement
occurs when new keys and values are inserted.

Another difference between Phoenix and MapCG is that,
MapCG never sorts the key/value pairs. For one thing, the
ordering of the pairs may not be desired. For example, in
the WordCount program, as described in section 4.1, we
may want to sort the result by the frequencies each word
appears, instead of by the word. For another, we can design
the hash table so that the key/value pairs are ordered as we
want. This technique can be used in applications such as
MatrixMultiplication. Nevertheless, for other applications
that do require the ordering of the results, we provide an
optional post-processing sorting phase.

This design has two benefits. First, for complex keys, it
is usually much easier to determine if they are equal than to
determine their order. For example, we can assert that two
strings are not equal if they don’t have the same size, but we
can only determine they order by comparing each character

memory

buffer block

thread thread

malloc()

free_space_ptr

Figure 2: Demonstration of the specialized memory

allocator on CPU.

in the strings. Moreover, if the results do need to be sorted,
sorting them after the Reduce phase is preferable to sorting
after the Map phase, because the amount of intermediate
pairs are usually much larger than the pairs after reduction.

3.3 Lightweight Memory Allocator for
MapReduce Framework

One of the major bottlenecks of the Phoenix MapReduce
framework is the allocation of memory, as observed by [23].
This bottleneck is caused by the massive requests for mal-
loc() when the keys and values are generated. Our frame-
work also has such problem when the keys and values are
copied into the hash table.

One way to improve the performance of memory alloca-
tion is to replace the default memory allocator by some high-
performance parallel allocators such as Hoard[3] and LFMal-
loc[7]. However, in the context of MapReduce framework,
we can achieve even better performance by using lightweight
specialized memory allocator.

In the MapReduce framework, memory blocks are allo-
cated to store the data emitted in the Map and Reduce
functions. These memory blocks are massive, small blocks.
Their life cycle lasts from the creation to the end of the
MapReduce execution. They can be safely freed as the end
of the MapReduce execution. Hence we can design the mem-
ory allocator so that it is optimized for large amount of
small block allocations, and allows free() only at some given
points. Such design greatly simplifies the memory allocator.

3.3.1 Memory Allocator on CPU
Figure 2 demonstrates the structure of our memory allo-

cator on CPU.
As designed in many multi-thread memory allocators, in

our memory allocator, each thread holds a local“buffer block”,
a large block of memory allocated directly using the mal-
loc() call. When a memory allocation request is issued, the
requesting thread first tries to allocate the block from its
own buffer block. If the current buffer block does not have
enough free space to satisfy the request, then the thread
malloc() a new buffer block directly from the system, and
add it to the buffer block list. We double the size of the
buffer block each time a new buffer block is allocated, so as
to further reduce the number of request to malloc(). Be-
cause the memory allocated is freed together, we don’t keep
track of the individual allocated blocks. Instead, we record
only the buffer blocks. At the end of the MapReduce execu-

buffer block

warp warp

free_space_ptr

0 1 31
threads

atomicAdd()

global buffer

free_space_ptr

atomicAdd()

Figure 3: Demonstration of the specialized memory

allocator on GPU.

tion, we can simply free these buffer blocks, which is much
faster than freeing the small blocks one by one.

In most of the cases, an allocation with our memory al-
locator involves only an addition to the “free space pointer”
of the local buffer block. This provides extremely fast mem-
ory allocation, especially for the MapReduce applications,
in which large amounts of small blocks are allocated.

3.3.2 Memory Allocator on GPU
Currently, dynamic memory allocation in GPU code is

not supported by CUDA, which prevents the MapReduce
framework from allocating the memory space for interme-
diate data dynamically. Mars uses two counting phases to
work around this problem, as stated in section 2.1. We solve
this problem by implementing a specialized memory alloca-
tor on GPU.

Figure 3 shows the design of the memory allocator for
GPU. Similar to the memory allocator for CPU, threads in
the GPU also hold local buffer blocks. However, there are
also differences.

First, GPU threads cannot use malloc() to allocate buffer
blocks, because there is no such functionality on GPU. In
our design, we allocate a large block of video memory, called
“global buffer”, before the GPU threads are created. The
global buffer serves as a global memory pool for all the
GPU threads. The maximum size of the global buffer can
be determined because memory usage pattern are fixed in
MapReduce applications. When GPU threads need a new
buffer block, it simply increases the “free space pointer” of
the global buffer. The increase of the offset is implemented
using the atomicAdd() operation provided by GPU, to en-
sure the correctness of concurrent operations.

Aside from the difference in fetching buffer blocks, the
memory allocator on GPU has another major difference from
that on CPU. In order to fully leverage the power of GPUs,
GPU programs typically spawns tens of thousands of threads
simultaneously. If each one of the threads allocates a buffer
block of several kilo-bytes, the total amount would be hun-
dreds of mega-bytes, which is a significant amount, consider-
ing that mainstream GPUs have only 1 4GB video memory.
Also, if the GPU threads use only a fraction of the buffer
block, there will be a lot of inner fragments, wasting a lot of
space. In our design, we keep a buffer block for each warp.
A warp in CUDA stands for a bunch of threads, usually 32,
that are always scheduled together and execute the same in-

struction at the same time. Because the 32 threads use the
same buffer block, we use atomic operations to fetch a new
block from the buffer block.

Keeping a buffer block for each warp has another poten-
tial benefit: it improves memory access bandwidth by caus-
ing more coalesced memory access. Memory accesses from
the threads in the same half-warp (the first or second part
of a warp) are coalesced into 64-byte, 128-byte and 256-
byte memory transactions that cover the memory addresses.
When the memory addresses accessed by the threads are
close together, the access will result in fewer transactions,
thus improving memory bandwidth efficiency. Our mem-
ory allocator tend to provide neighboring memory blocks to
the threads in the same warp, giving more opportunity for
memory coalescing.

To further reduce the cost of memory allocation, we make
use of the shared memory provided in GPU. Shared memory
is a fast on-chip storage shared in a thread block. Operations
to the shared memory have much lower latency than those
to the global memory. By keeping the information of buffer
blocks in shared memory, we can greatly reduce the cost of
memory allocation.

3.4 Hash Table on GPU
To group the key/value pairs on GPU, we need to imple-

ment a hash table. However, implementing a hash table on
GPU is not trivial. There are two major challenges. First,
the data nodes must be dynamically allocated, which is im-
possible without a memory allocator. Second, the hash table
should provide efficient concurrent insertion.

Fortunately, we already have a memory allocator, which
solve the first problem. We implement a closed addressing
hash table, in which data in the same hash bucket are kept
in a list. The dynamic allocation of the list nodes are carried
out using the memory allocator presented in section 3.3.2.

The efficiency and correctness of concurrent insertion is
ensured by using a lock-free algorithm. The lock-free algo-
rithm ensures that the insertion never gets blocked by any
specific thread. Especially, it precludes the possibility of
deadlocks among threads in the same warp.

Lock-free linked-list implementations are hard to get right.
There are many articles discussing this[9]. However, we can
simplify the list to allow only concurrent insertion. The dele-
tion can be done automatically when the memory allocator
is destroyed.

Figure 4 demonstrates the insertion operation.
The CASPTR (Compare And Swap PoinTeR) function

takes three arguments, the address of the original pointer,
the expected value of the pointer, and the new value of
the pointer. If the value stored in the address equals to
the expected value, then it replaces the content by the new
value. The compare-and-swap operation is executed atomi-
cally. The CASPTR is implemented in atomicCAS() func-
tion provided by GPU.

In the above code, we should have freed the memory space
allocated for SMA Free in line 14. But since the memory al-
locator does not support dynamic freeing of memory blocks,
the SMA Free function is actually empty. This could re-
sult in memory leaks, but since memory is managed by our
memory allocator, we can be sure that this piece of mem-
ory will be released at the end of the MapReduce execution.
Similarly, all the allocated list nodes can be freed when the
memory allocator is destroyed.

1 void InsertPair(list, key, value){

2 key_list_node_t * curr=list->head;

3 key_list_node_t * new_node=NULL;

4 if(curr==NULL){

5 new_node=NewKeyListNode(key);

6 if(CASPTR(&head,NULL,new_node)){

7 InsertValue(new_node->value_list, value);

8 return;

9 }

10 }

11 curr=head;

12 while(1){

13 if(KeyEqual(curr->key, key)){

14 SMA_Free(new_node);

15 InsertValue(curr->value_list, value);

16 return;

17 }

17 if(curr->next==NULL){

19 if(new_node==NULL)

20 new_node=newKeyListNode(key,keysize);

21 if(CASPTR(&(curr->next),NULL,new_node)){

22 InsertValue(new_node->value_list, value);

23 return;

24 }

25 }

26 curr=curr->next;

27 }

28}

Figure 4: Code snippet of the lock-free algorithm in

hash table implementation.

4. EXPERIMENT RESULTS
We evaluated MapCG framework on both CPU and GPU

platforms. In this section, we first briefly introduce the ex-
periment platform and the benchmarks we use. Then we
show how effective MapCG performs by comparing it with
previous implementations and hand-tuned code.

4.1 Experiment Setup
Our experiments are conducted on two different platforms:

1. A 24-core AMD machine, which is composed of 4 six-
core Opteron CPUs, equipped with 32GB main mem-
ory. Each CPU has 6 cores working at 2.4GHz, and
6MB shared L3 cache. Each core has 128KB L1 cache
and 512KB L2 cache. The 64 bit Linux is used as the
operating system.

2. A GTX280 GPU, which is equipped with 30 multi-
processors and 1GB of video memory. Each multi-
processor has 8 processors working at 1.3GHz. In
other words, GTX280 has 240 streaming processors
onboard. It is connected to a 2.4GHz quad-core Intel
CPU through PCI-Express bus.

We choose eight applications from different fields to test
the performance of our implementation. These applications
cover the fields of enterprize computing (WordCount and
StringMatch), web log analysis (PageViewCount) and web
document searching and clustering (InvertedIndex and K-
means), web document processing (SimilarityScore) and sci-
entific computing (MatrixMultiplication and N-Body simu-
lation). Table 2 shows the detailed information on these
applications, including the dataset size used and number of
lines of code used to implement them on MapCG, Phoenix
and Mars.

Application Data Size Code Size
MapCG Phoenix Mars

StringMatch (SM) S: 32MB, M: 128MB, L: 256MB 194 189 285
Search file for given string

WordCount (WC) S: 10MB, M: 50MB, L: 100MB 204 208 345
Determine frequency of words in a file

PageViewCount (PVC) S: 32MB, M: 64MB, L: 128MB 239 258 340
Determine frequency of pages viewed in a web log

InvertedIndex (II) S: 32MB, M: 64MB, L: 128MB 259 271 527
Build reversed index from HTML files

SimilarityScore (SS) S: 1024, M: 2048, L: 4096 188 212 265
Compute the cosine similarity between given dense vectors

MatrixMultiplication (MM) S: 512, M: 1024, L: 2048 198 192 254
Dense integer matrix multiplication

Kmeans (Kmeans) S: 10K points, M: 50K, L: 100K 299 274 421
Iterative clustering algorithm to classify data points into groups

N-body (Nbody) S: 4096, M: 16384, L: 65536 283 265 324
All-pair N-body simulation

Table 2: Applications used in our experiments.

2

4

8

16

32

64

sp
e
e
d
u
p

2 cores

4 cores

8 cores

16 cores

1

2

4

8

16

32

64

sp
e
e
d
u
p

2 cores

4 cores

8 cores

16 cores

24 cores

Figure 5: Speedup with MapCG for the large

datasets as we scale the number of processors cores

on the multi-core AMD machine.

4.2 Performance

4.2.1 Performance on Multi-core CPU Platform
Figure 5 shows the speedup achieved as we scale the num-

ber of processor cores on the AMD machine. We can see
that MapCG has achieved very good scalability. 7 out of 8
applications can achieve more than 16X speedup in a 24-core
environment. Among them, super-linear speedup is achieved
in 4 applications. A further study of L2 cache miss rate, as
shown in Figure 6, indicates that the super-linear speedup
is mainly due to the increased cache size as the number of
processor core increases. Also note that in in Nbody, the L2
cache misses rate remains the same as the number of cores
increase. This is because the working-set of the Nbody is
approximately 4MB, which can never fit into L2 cache re-
gardless of the number of cores used. However, the working-
set can always fit in L3 cache. As a result, this application
has a perfect linear scale curve.

Figure 7 shows the performance comparison between Map-
CG and Phoenix-2. In this test, all 24 cores are enabled to
deliver full throughput. And the speedup against Phoenix
is shown for MapCG across different datasets. We can see
that MapCG is constantly faster than Phoenix-2. On av-
erage, MapCG achieves 2-3x speedup over Phoenix-2. The
performance gain of MapCG is mainly caused by different
strategies in managing the key/value pairs. Phoenix-2 al-

30

40

50

60

70

80

L2
 c

a
ch

e
 m

is
s/

K
 i

n
st

ru
ct

io
n

1 core

8 cores

24 cores

0

10

20

30

40

50

60

70

80

SM WC PVC II SS MM Kmeans Nbody

L2
 c

a
ch

e
 m

is
s/

K
 i

n
st

ru
ct

io
n

1 core

8 cores

24 cores

Figure 6: Number of L2 cache misses per 1000 in-

structions with different number of processor cores.

2

3

4

5

6

7

sp
e
e
d
u
p

S

M

L

0

1

2

3

4

5

6

7

sp
e
e
d
u
p

S

M

L

Figure 7: Speedup of MapCG over Phoenix-2 on

the AMD machine, using Small, Medium and Large

datasets.

10

20

30

40

50

60

70

sp
e
e
d
u
p

pthread

mapCG

0

10

20

30

40

50

60

70

sp
e
e
d
u
p

pthread

mapCG

Figure 8: Speedup of pthread version and MapCG

version of the benchmarks on 24-core AMD ma-

chine.

ways sorts the key/value pairs, while MapCG never sorts
them. Another contributor is the use of customized mem-
ory allocator, which greatly reduces the number of system
calls when many key/value pairs are emitted. Hence the
speedup varies with different application and input size.

For StringMatch, WordCount, PageViewCount, and In-
vertedIndex, MapCG can achieve high speedup over Phoenix-
2. This is because these five applications emit large amounts
of key/value pairs. Phoenix spends much time on sorting
them.

The other four applications are compute-intensive. They
spend most of the execution time in arithmetic operations.
The amount of key/value pairs is small, considering the com-
putation complexity of the programs. As a result, MapCG
show almost identical performance on these applications,
compared with Phoenix.

For the first four applications, we observe higher speedup
with larger input datasets. As the characteristics of the
applications are similar with different input sizes, we will
use only the largest dataset to analysis the performance of
MapCG.

To analyze the efficiency of the MapCG model against
hand-coded multi-thread programs, we also implement the
p-thread version of the eight applications. The p-thread
code of WordCount, StringMatch, InvertedIndex, Matrix-
Multiplication and Kmeans come from the Phoenix. We
wrote the other three applications. For all of the p-thread
code, we tune them to be as fast as possible. Figure 8 shows
the speedup of the p-thread version and the MapCG ver-
sion over sequential code. We can see that the MapCG code
shows some slowdown compared with p-thread. But the dif-
ference is tolerable. This difference is mainly caused by the
additional copying of the key/value pairs. While MapCG
always copies the key-value pairs into hash table and then
extracts them out, the p-thread version can directly assign
them to pre-allocated memory space.

4.2.2 Performance on GPU
In this section, we present the performance of MapCG on

GPU. We compare the performance with Mars, a previous
implementation of MapReduce on GPU.

Figure 9 demonstrates the speedup of MapCG against
Mars. As shown in the figure, MapCG is constantly bet-
ter than Mars. On average, it achieves 2.4x speedup over
Mars on large datasets, and 1.6x speedup on small datasets.

2

3

4

5

6

7

sp
e
e
d
u
p

S

M

L

0

1

2

3

4

5

6

7

sp
e
e
d
u
p

S

M

L

Figure 9: Speedup of MapCG over Mars on GTX280

GPU, using Small, Medium, and Large datasets.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n
o

r
m

a
li

z
e

d
 t

im
e

group

reduce

map

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
a
rs
_
so
rt

M
a
rs
_
h
a
sh

M
a
p
C
G

M
a
rs
_
so
rt

M
a
rs
_
h
a
sh

M
a
p
C
G

M
a
rs
_
so
rt

M
a
rs
_
h
a
sh

M
a
p
C
G

M
a
rs
_
so
rt

M
a
rs
_
h
a
sh

M
a
p
C
G

M
a
rs
_
so
rt

M
a
rs
_
h
a
sh

M
a
p
C
G

M
a
rs
_
so
rt

M
a
rs
_
h
a
sh

M
a
p
C
G

M
a
rs
_
so
rt

M
a
rs
_
h
a
sh

M
a
p
C
G

M
a
rs
_
so
rt

M
a
rs
_
h
a
sh

M
a
p
C
G

SM WC PVC II SS MM Kmeans Nbody

n
o

r
m

a
li

z
e

d
 t

im
e

group

reduce

map

Figure 10: Time breakup of the three phases in

Mars sort, Mars hash and MapCG. Results col-

lected using the Large datasets.

The speedup mainly comes from two optimizations: re-
placing sorting by using hash functions and removing count-
ing phases.

Mars uses sorting to group the intermediate key/value
pairs after Map phase. On the contrary, we use hashing
to group the pairs, which is more efficient. To demonstrate
the benefit of replacing sorting with hashing, we modify the
Mars framework, so that the Group phase of Mars uses hash-
ing. We name this version of Mars as Mars hash, and the
original Mars as Mars sort. Figure 10 presents the time
break down of different phases in Mars sort, Mars hash and
MapCG when running with large datasets.

As we can see, the group phase is very important for per-
formance. For WordCount, PageViewCount and InvertedIn-
dex, the most important part of the program is to identify
the right entry corresponding to a key. In Mars, the Group
phase is responsible for searching for the right entry for the
keys. Thus, in these three applications, the Group phase
takes up most of the time. For SimilarityScore and Matrix-
Multiplication, most of the time should have been spent on
arithmetic operations, (i.e. the Map phase), but we can see
that the Group phase also takes significant time. This is one
of the drawbacks of the MapReduce programming model.
Though using hashing to group the intermediate data re-

0.4

0.6

0.8

1

1.2

n
o

r
m

a
li

z
e

d
 t

im
e

CUDA

MapCG

0

0.2

0.4

0.6

0.8

1

1.2

SS MM Kmeans Nbody

n
o

r
m

a
li

z
e

d
 t

im
e

CUDA

MapCG

Figure 11: Normalized execution time of MapCG

over CUDA on four applications.

duces most of the grouping time, it still takes considerable
amount of time.

We can see that Mars hash spends much less time in the
Group phase than Mars sort. MapCG don’t need the Group
phase at all. The pairs are grouped when they are inserted
into the hash table in the MapCG emit intermediate() func-
tion called by Map function.

In addition to using hashing instead of sorting, the MapCG
framework gains advantage over Mars by using the memory
allocator. The memory allocator makes the counting phases
unnecessary. Moreover, the memory allocator also improves
memory access pattern by increasing coalesced access. The
memory allocator tends to allocate memory blocks close to
each other for threads in the same warp. So there is more
opportunity for coalescing the memory access when these
memory blocks are accessed, improving memory bandwidth
efficiency. These two optimizations are supposed to reduce
the time in Map phase. However, the key/value pairs are
grouped together when they are emitted in MapCG. This
increases the time in the Map phase. Overall, MapCG has
longer Map phase in WordCount, PageViewCount and In-
vertedIndex, compared with Mars.

MapCG also has longer Reduce in StringMatch, Similar-
ityScore and MatrixMultiplication, because it has to copy
the emitted results from the hash table into an array.

Figure 11 shows the normalized execution time of MapCG
over CUDA on four of the applications. The other four ap-
plications, StringMatch, WordCount, PageViewCount and
InvertedIndex are extremely awkward to write in CUDA.
Programmer would be required to write the hash table from
scratch. As a result, we show only the performance on Simi-
larityScore, MatrixMultiplication, Nbody and Kmeans. The
CUDA code has been tuned to be as fast as possible. How-
ever, we do not make use of shared memory in the CUDA
code. Our implementation of MapCG is not capable of us-
ing shared memory now. Future work may improve this by
employing compiler optimization.

We can see in the figure that the MapCG version of these
four applications achieves performance close to hand-coded
CUDA code, though there are still inherent overheads intro-
duced by the MapReduce framework.

5. LIMITATIONS, DISCUSSIONS AND
FUTURE WORK

5.1 Employing the memory hierarchy in GPUs
with MapCG

MapCG uses a subset of C language to describe the sin-
gle thread behavior of Map or Reduce. While this approach
favors portability between CPUs and GPUs, it loses a few
low level hardware features which are useful for performance
optimization. Especially,our current MapCG implementa-
tion can not take advantage of the shared memory and con-
stant memory in GPUs[16]. This problem can be addressed
partially with the compiler support which recognize shared
global variables or read only variables and promote them
to corresponding memory hierarchies automatically which
is our future work.

5.2 Running MapCG applications on both
CPUs and GPUs at the same time

We provide three runtime modes in MapCG implementa-
tion: CPU+GPU co-processing, CPU-only and GPU-only
computation. The CPU+GPU co-processing mode enables
user to run one MapCG application on both CPU cores and
GPUs at the same time. However, we observe that it does
not yield significant better performance in this mode. For
the 8 benchmarks we tested, the speedup of using CPU+GPU
over the faster of CPU-only and GPU-only is always below
1.1. 2 of them even slows down when executed in CPU+GPU
mode.

The results can be explained in two aspects: Firstly, CPUs
and GPUs are good at different applications with big mar-
gin. For example, on the GPU machine, GPU is 86 times
faster than CPU in MatrixMultiplication. In such cases,
tt does not make much benefit to let the slower architec-
ture join the computation. Secondly, using CPU-GPU co-
processing introduces overhead. One of the major overhead
comes from serialization and de-serialization, which are re-
quired to transfer non-array data between CPUs and GPUs.

5.3 CUDA 3.0 and MapCG
Future improvement in GPU architecture will have various

impact on the MapCG framework. For example, the CUDA
3.0 is claimed to provide dynamic memory allocators, C++
support, cache and unified memory space between CPUs and
GPUs.

The general trend of CUDA 3.0 is to make GPUs more
similar to CPUs on the programming interface, which is
aligned with philosophy of MapCG. The full-featured mem-
ory allocator and C++ support in CUDA 3.0 will enable
MapCG to use larger subset of C and C++ to specify single
thread behavior. C++ support also allows MapCG to use
function overloading to provide more elegant programming
interface. Unified memory address of CPUs and GPUs can
be used to reduce the overhead of transferring data between
them. Introduction of the L1 and L2 cache can also improve
the performance of MapCG programs without the need to
employ memory hierarchy specific optimizations.

6. CONCLUSION
In this paper, we present the MapCG, a high level frame-

work that offers source code portability between CPU and
GPU. We propose a few techniques to fill the gap between

GPU hardware features and requirement of MapCG , such
as memory allocator and dynamic data structures.

Experiments show that our implementation offers higher
performance than Phoenix and Mars, the state-of-the-art
MapReduce implementations on CPU and GPU, respectively.
The comparison with hand-coded multi-thread programs shows
that we can achieve comparable performance with hand-
tuned code.

We view this piece of work as a instantiation of the con-
cept “write once, run anywhere” in the accelerators context,
which is the very basic rule of programming language design
and implementation. We hope the work will motivate more
interactions between the programming language community
and hardware community.

7. REFERENCES
[1] Apache hadoop, http://hadoop.apache.org/.

[2] ATI. Ati ctm guide.

[3] Emery D. Berger, Kathryn S. McKinley, Robert D.
Blumofe, and Paul R. Wilson. Hoard: a scalable
memory allocator for multithreaded applications.
SIGPLAN Not., 35(11):117–128, 2000.

[4] Ian Buck, Tim Foley, Daniel Reiter Horn, Jeremy
Sugerman, Kayvon Fatahalian, Mike Houston, and
Pat Hanrahan. Brook for gpus: stream computing on
graphics hardware. ACM Trans. Graph.,
23(3):777–786, 2004.

[5] Cheng T. Chu, Sang K. Kim, Yi A. Lin, Yuanyuan
Yu, Gary R. Bradski, Andrew Y. Ng, and Kunle
Olukotun. Map-reduce for machine learning on
multicore. In Bernhard Schölkopf, John C. Platt, and
Thomas Hoffman, editors, NIPS, pages 281–288. MIT
Press, 2006.

[6] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
Simplified data processing on large clusters. In OSDI,
pages 137–150, 2004.

[7] Dave Dice and Alex Garthwaite. Mostly lock-free
malloc. In ISMM ’02: Proceedings of the 3rd
international symposium on Memory management,
pages 163–174, New York, NY, USA, 2002. ACM.

[8] Jaliya Ekanayake, Shrideep Pallickara, and Geoffrey
Fox. Mapreduce for data intensive scientific analyses.
eScience, IEEE International Conference on,
0:277–284, 2008.

[9] Mikhail Fomitchev and Eric Ruppert. Lock-free linked
lists and skip lists. In PODC ’04: Proceedings of the
twenty-third annual ACM symposium on Principles of
distributed computing, pages 50–59, New York, NY,
USA, 2004. ACM.

[10] Naga Govindaraju, Jim Gray, Ritesh Kumar, and
Dinesh Manocha. Gputerasort: high performance
graphics co-processor sorting for large database
management. In SIGMOD ’06: Proceedings of the
2006 ACM SIGMOD international conference on
Management of data, pages 325–336, New York, NY,
USA, 2006. ACM.

[11] Khronos Group. Opencl specification.

[12] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K.
Govindaraju, and Tuyong Wang. Mars: a mapreduce
framework on graphics processors. In PACT, pages
260–269, 2008.

[13] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann.
Openmp to gpgpu: a compiler framework for
automatic translation and optimization. In PPoPP
’09: Proceedings of the 14th ACM SIGPLAN
symposium on Principles and practice of parallel
programming, pages 101–110, New York, NY, USA,
2009. ACM.

[14] Michael D. Linderman, Jamison D. Collins,
Hong Wang 0003, and Teresa H. Y. Meng. Merge: a
programming model for heterogeneous multi-core
systems. In ASPLOS, pages 287–296, 2008.

[15] Suzanne Matthews and Tiffani Williams. Mrsrf: an
efficient mapreduce algorithm for analyzing large
collections of evolutionary trees. BMC Bioinformatics,
11(Suppl 1):S15+, 2010.

[16] NVIDIA. Cuda programming guide.

[17] Biswanath Panda, Joshua S. Herbach, Sugato Basu,
and Roberto J. Bayardo. Planet: massively parallel
learning of tree ensembles with mapreduce. Proc.
VLDB Endow., 2(2):1426–1437, 2009.

[18] M. Mustafa Rafique, Benjamin Rose, Ali Raza Butt,
and Dimitrios S. Nikolopoulos. Cellmr: A framework
for supporting mapreduce on asymmetric cell-based
clusters. In IPDPS, pages 1–12, 2009.

[19] Colby Ranger, Ramanan Raghuraman, Arun
Penmetsa, Gary R. Bradski, and Christos Kozyrakis.
Evaluating mapreduce for multi-core and
multiprocessor systems. In HPCA, pages 13–24, 2007.

[20] Yi Shan, Bo Wang, Jing Yan, Yu Wang, Ningyi Xu,
and Huazhong Yang. Fpmr: Mapreduce framework on
fpga. In FPGA ’10: Proceedings of the 18th annual
ACM/SIGDA international symposium on Field
programmable gate arrays, pages 93–102, New York,
NY, USA, 2010. ACM.

[21] John A. Stratton, Sam S. Stone, and Wen-Mei W.
Hwu. Mcuda: An efficient implementation of cuda
kernels for multi-core cpus. pages 16–30, 2008.

[22] Perry H. Wang, Jamison D. Collins, Gautham N.
Chinya, Hong Jiang, Xinmin Tian, Milind Girkar,
Nick Y. Yang, Guei-Yuan Lueh, and Hong Wang 0003.
Exochi: architecture and programming environment
for a heterogeneous multi-core multithreaded system.
In PLDI, pages 156–166, 2007.

[23] Richard M. Yoo, Anthony Romano, and Christos
Kozyrakis. Phoenix rebirth: Scalable mapreduce on a
large-scale shared-memory system. In IEEE
International Symposium on Workload
Characterization (IISWC), 2009.

[24] Rong Chen, Haibo Chen, and Binyu Zang.
Tiled-MapReduce: Optimizing Resource Usage of
Data-parallel Applications on Multicore with Tiling.
In Parallel Architectures and Compilation Techniques
(PACT), 2010.

