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Abstract

Software bugs, such as concurrency, memory and seman-
tic bugs, can significantly affect system reliability. Although
much effort has been made to address this problem, there are
still many bugs that cannot be detected, especially concur-
rency bugs due to the complexity of concurrent programs.
Effective approaches for detecting these common bugs are
therefore highly desired.

This paper presents an invariant-based bug detection tool,
DefUse, which can detect not only concurrency bugs (in-
cluding the previously under-studied order violation bugs),
but also memory and semantic bugs. Based on the obser-
vation that many bugs appear as violations to program-
mers’ data flow intentions, we introduce three different
types of definition-use invariants that commonly exist in
both sequential and concurrent programs. We also design
an algorithm to automatically extract such invariants from
programs, which are then used to detect bugs. Moreover,
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DefUse uses various techniques to prune false positives and
rank error reports.

We evaluated DefUse using sixteen real-world applica-
tions with twenty real-world concurrency and sequential
bugs. Our results show that DefUse can effectively detect
19 of these bugs, including 2 new bugs that were never re-
ported before, with only a few false positives. Our training
sensitivity results show that, with the benefit of the prun-
ing and ranking algorithms, DefUse is accurate even with
insufficient training.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification—Reliability; D.2.5
[Software Engineering]: Testing and Debugging—Diagnostics

General Terms Reliability

Keywords Concurrency Bug, Sequential Bug, Atomicity
Violation, Order Violation

1. Introduction
1.1 Motivation

As software has grown in size and complexity, the difficulty
of finding and fixing bugs has increased. Inevitably, many
bugs leak into deployed software, contributing to up to 27%
of system failures [22].

Among the different types of bugs, concurrency bugs are
the most notorious, due to their non-deterministic nature.
Unlike sequential bugs, concurrency bugs depend not only
on inputs and execution environments, but also on thread-
interleaving and other timing-related events that are to be



manifested [3, 18, 27, 30, 34, 40]. This makes them hard to
be exposed and detected during in-house testing. Although
concurrency bugs may appear less frequently than sequential
bugs, they can cause more severe consequences, such as data
corruption, hanging systems, or even catastrophic disasters
(e.g., the Northeastern Electricity Blackout Incident [35]).
With the pervasiveness of multi-core machines and concur-
rent programs, this problem is becoming more and more se-
vere.

Recent research works have made significant advances in
detecting concurrency bugs, especially for data races [10, 23,
34, 39] and atomicity violations 119, 11, 19, 33, 42, 44], but
order violation bugs have been neglected. An order violation
occurs if a programming assumption on the order of certain
events is not guaranteed during the implementation [18] 2.
According to a recent real-world concurrency bug character-
istic study [18], order violations account for one third of all
non-deadlock concurrency bugs.

Figure 1(a) shows an order violation bug in HT Track. In
this example, the programmer incorrectly assumes that S2 in
Thread 1 is always executed after S3 in Thread 2 (probably
due to some misunderstanding in the thread creation process
and scheduling). Unfortunately, this order assumption is not
guaranteed in the implementation. In some cases, S2 may be
executed before S3 and results in a null-pointer parameter,
which may lead to a null-pointer dereference, crashing the
program later.

Besides concurrency bugs, semantic bugs are another
form of bugs that is hard to detect. To date, only a few tools
have been proposed to detect semantic bugs due to their ver-
satility and lack of general patterns. Figure 2(a) shows such
an example from gzip. This bug is caused by the missing
reassignment of variable ifd before S2. With certain in-
puts, ifd can incorrectly reuse the value set by 53, causing
the program to misbehave. This bug is program-specific and
cannot be detected easily.

Finally, memory corruption bugs such as buffer overflow
and dangling pointer are also important since they can be
exploited by malicious users. Many tools have been built
for detecting those bugs but they each target only a special
subtype of bugs. Figure 2(c) and 2(d) show two real-world
memory corruption bugs.

1.2 Commonality among Bug Types

Interestingly, regardless of the difference between these
bugs’ root causes, many of them share a common charac-
teristic: when triggered, they usually are followed by an in-
correct data flow, i.e., a read instruction uses the value from

' An atomicity violation bug is a software error occurring when a set of opera-
tions/accesses that is supposed to be atomic is not protected with appropriate syn-
chronizations.

2Even though order violations can be fixed in ways similar to atomicity violation
bugs (i.e., by adding locks), their root causes are different. Order is not essential in
atomicity violation, as long as there is no intervening remote access breaking the
assumed atomicity.

an unexpected definition 3. We refer to such a definition as
an incorrect definition. Figure 1 and 2 use eight real-world
bugs to demonstrate such commonality. Although these bugs
have different root causes, when they are manifested, they
invariably result in a read (highlighted in each figure) that
uses a value from an incorrect definition.

For example, in the HT Track example (Figure 1(a)), dur-
ing correct execution, S2 always uses the definition from S'3.
However, in a buggy run, S2 uses the definition from S1, re-
sulting in a null-pointer dereference later. Similarly, in the
atomicity violation bug example from Apache (Figure 1(b)),
during correct execution, S2 always uses the definition from
S1. However, in a buggy run, S3 is interleaved between S1
and S2. Thus S2 uses the definition from S3 which causes
both threads to call cleanup_cash_obj(). This will lead to a
null-pointer dereference inside this function. The other two
bugs in Figure 1(c)(d) are also similar.

Some sequential bugs also share a similar characteristic.
For example, in the semantic bug example shown in Fig-
ure 2(a), in correct runs, S2 always uses the definition from
S1. However, when the bug manifests, 52 can read the def-
inition from S3 from the last loop iteration. The other three
bugs shown in Figure 2, including one semantic bug and two
memory bugs, are similar.

The above commonality indicates that, if we can detect
such incorrect definition-use data flow, it is possible to catch
these bugs, regardless of their different root causes.

In order to detect incorrect definition-use flow, we first
need to determine what definitions a correct instruction
should use. Unfortunately, it is not easy to get such infor-
mation. Firstly, it is tedious to ask programmers to provide
such information (if they were aware of such information
consciously, they would not have introduced such bugs in
the first place). Secondly, it is also hard to extract such in-
formation by a static analysis. Though an advanced static
analysis could reveal all possible definitions that an instruc-
tion could use, it cannot differentiate the correct definitions
from incorrect ones. For example, in Figure 2(a), static anal-
ysis tools would report the definitions from both S1 and
53 can reach S2, but it cannot identify S3 as an incorrect
definition for S1.

In this paper, we use a different but complementary
technique to address this problem for both concurrent and
sequential programs written in unsafe programming lan-
guages.

1.3 Our Contributions

The technique proposed in this paper is a new class of pro-
gram invariants called definition-use invariants, which can
capture the inherent relationships between definitions and

3 When a variable, v, is on the left-hand side of an assignment statement, this statement
is a definition of v. If variable v is on the right-hand-side of a statement, v has a use
at this statement. A reaching definition for a given instruction is another instruction,
the target variable of which reaches the given instruction without an intervening
assignment [1]. For simplicity, we refer to a use’s reaching definition as its definition.
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Thread 1 Thread 2
S1: global_opt = 0; // a pointer void child () {

. S3: global_opt = create_opt();
Ko I

hts_newthread(child,..); ™
S2: hts_cancel_file_push (global_opt..);

HTTrack Htsserver.c, htsweb.c

Root cause

Programmers' assumption that S3 always
happens before S2 is not guaranteed in code.

Manifestation

S2 comes before S3 due to unexpectedly fast
execution after thread creation.

Failure Crash: null pointer dereference by global_opt.
Definition- | S2 should use the remote definition of a
use relation | global_opt by S3.

(a) Local/Remote (LR) invariant (always uses remote definition)

in HT Track (order violation)

Thread 1 Thread 2
S3: atomic_decrease (&refcount);
/if (refcount == 0)
S1: atomic_decrease (&refcount);> X cleanup_cache_obj();
S2: if (refcount == 0) 4*/4.)
cleanup_cache_obj( );

Apache mod_mem_cache.c

Root cause

S1 and S2 are not protected within an atomic
section.

Manifestation

S2 uses the remote definition by S3 due to a
wrong thread interleaving.

Crash: both threads try to free the same cache

Failure object (either dangling pointer or double free).
Definition- | S2 should use the local definition of refcount
use relation | By S1.

(b) Local/Remote (LR) invariant (always uses local definition) in Apache (atomicity violation)

Thread 1 Thread 2
S3: buf_index += len;
S1:If (buf_index + len < BUFFSIZE) o *

S2: memcopy (buffbuf_index], log, len); *

Apache mod_log_config.c

Root cause

S1 and S2 are not protected within an atomic
section.

Manifestation

S2 uses updated buf_index by S3 after the
array bound checking in S1.

Failure Wrong results (corrupted log file) or crash.
Definition- | S2 should consume the same definition of
use relation | buf_index as S1 used.

(c) Follower invariant in Apache

(atomicity violation)

Thread 1
S1:h=calloc (..); -
S2: h-> bandwidth = -~

tr_bandwidthNew(h.. );
// this function creates Thread 2
// and initializes h

Thread 2

-~

S3: if (h->bandwidth->
band.isLimited) {..}

Transmission session.c peer-mgr.c

Programmers' assumption that S2 always
happens before S3 is not guaranteed in code.
S3 comes before S2 sets h->bandwidth
properly and uses the definition from S1.

Root cause

Manifestation

Failure Crash: null-pointer dereference by h->bandwidth.
Definition- | S3 should use the definition only from S2, not
use relation | from S1.

(d) Definition Set (DSet) invariant in Transmission (order violation)

Figure 1. Real-world concurrency bug examples, definition-use (DefUse) invariants and violations.

uses for concurrent and sequential programs. A definition-
use invariant reflects the programmers’ assumptions about
which definition(s) a read should use. Specifically, we have
observed the following three types of definition-use invari-
ants. We combine all the three types into DefUse Invariants.

¢ Local/Remote(LR) invariants. A read only uses defini-
tions from either the local thread (e.g., Figure 1(b)); or a
remote thread (e.g., Figure 1(a)). LR invariants are useful
in detecting order violations and read-after-write atomic-
ity violations in multi-threaded programs.

Follower invariants. When there are two consecutive
reads upon the same variable from the same thread, the
second always uses the same definition as the first. For
example, in Figure 1(c), S2 should use the same defini-
tion of buf _index as S1. Follower invariants are useful
for detecting read-after-read atomicity violations and cer-
tain memory bugs.

¢ Definition Set(DSet) invariants. A read should always
use definition(s) from a certain set of writes. For example,
in Figure 2(a), S1 is the only correct definition for S2
to use. It can be useful for detecting both concurrency
and sequential bugs but this would introduce more false
positives.

We have designed a tool, called DefUse that automati-
cally extracts definition-use invariants from programs writ-
ten in C/C++ and uses them to detect software bugs of var-
ious types. To the best of our knowledge, this is one of the
first techniques that can be used to detect a large variety of
software bugs, including concurrency bugs (both order vio-
lations and atomicity violations) as well as sequential bugs.

Similar as many previous invariant-based bug detection
studies [8, 13, 19, 37, 44, 45], DefUse leverages in-house
testing as training runs to extract the definition-use invari-
ants, which are then used to detect concurrency and sequen-
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Sequential Applications

S1:intifd = 0;/*

while (...) {
iname = argv[optind++];
if (strcmp(iname, "-") == 0) // “-?for stdi

S2:  get_method(ifd); // process stdi

file descriptor, O for stdin */

eIseé/Tprocess a normal file E
S3:  ifd = open_inPut_ﬂIe (iname, ...);—"
get_method(ifd);
} gzip gzip.c

Root cause

Missing a reassignment to ifd before S2.

Manifestation

The program processes a normal file before
stdin. S3 sets ifd first and S2 in the next iteration
will incorrectly use this definiton.

Use the wrong file descriptor for stdin

Failure processing. The program fails to read from stdin.
Definition- | Variable ifd in S2 should use only the definition
use relation | from S1.

(a) Definition Set (DSet) invariant in gzip (semantic bug)

S1: memcpy(fmt, ..., length);
S2: fmt[length] = "\0’;
>‘«’<//* check the character after "%" in fmt. Any one in “efgaEFGA” is
% Vvalid. But the programmer did not consider that \0’ is invalid. */
S3: if (! strchr ("efgaEF GA", fmt[i]))

return NULL,
--- /I convert fmt to Idfmt here

S4: asprintf(..., ldfmt, ...)

seq seq.c

Root cause

Programmer did not consider the string ending
character "\0' as valid.

Manifestation

When i is equal to length, fmtfi] at S3 is \0'. But
strehr() still returns non-NULL value because \0
is the terminator of “efgaEFGA”. Then asprintf()
gets the wrong format string.

’

Failure Wrong format for asprintf().
Definition- | fmtfi] at S3 should use the definition from S1. S2
use relation | is the wrong definition for fmt [i] at S3.

(b) Definition Set (DSet) invariant in

GNU coreutil seq (semantic bug)

int char_to_clump (char c) {
char *s = clump_buff;
if (c=="\t) { // width should be less than size of clump_buff
width = chars_per_c - input_position % chars_per_c;

S1: for (i = 0; i<width; #++) *s++="";

else if (c == "\b') width = -1;

input_position += width; /l input_position should be positive

} pr pr.c

Root cause

The value of width should be less than the
length of clump_buff.

Manifestation

\b’ keys are entered until input_position
becomes negative. It makes width much larger
than the size of clump_buff.

Crash: corrupt a function pointer adjacent to

Failure
clump_buff.
Definition- | S1 should define data only for the uses of
use relation | clump_buff (Definition Set (DS) invariant).

(c) Definition Set (DSet) invariant in

GNU coreutil pr (buffer overflow)

/* If field_1_buffer is NULL, getndelim2 will allocate memory for the
pointer. Otherwise, it accesses the memory area leaded by
field_1_buffer directly. */
while (1) {
len = getndelim2(&field_1_buffer, ...); // return -1 if failure
If len < 0)
free(field_1_buffer); // field_1_buffer is dangling pointer

cut cut.c

Root cause

After free, field_1_buffer is not cleared and is
used again in getndelim().

Manifestation

After first failure of getndelim2, field_1_buffer is
freed. In next iteration, getndelim2 will access
invalid memory and fail again. Finally,
field_1_buffer is double freed.

Failure Invalid memory access and double free.
Definition- | Memory accesses in getndelim2 and the second
use relation | time of free are out of the lifetime.

(d) Definition Set (DSet) invariant in GNU coreutil cut (dangling pointer)

Figure 2. Real-world sequential bug examples, definition-use (DefUse) invariants and violations.

tial bugs. To tolerate insufficient training, DefUse automati-
cally prunes out unlikely invariants and violations, and ranks
remaining violations based on confidence. Our invariant ex-
traction algorithm also takes possible training noises (which
may be incorrectly labeled training runs) into consideration.

We envision our tool being used in two scenarios: (1)
General bug detection during testing: Once the invariants
are extracted, DefUse can be used to monitor testing runs
for possible violations. (2) Post-mortem diagnosis: When a
programmer tries to diagnose a bug, he can use DefUse to
see if any DefUse invariant is violated, and which “incor-
rect” definition-use data flow is detected. Such information
provides useful clues for narrowing down the root cause. For
such usage, we assume a deterministic replay support like

the Flight Data Recorder [41] or others [27] to reproduce the
failure occurrence.

We have evaluated DefUse with twenty representative
real-world concurrency and sequential bugs #, including or-
der violation, atomicity violation, memory corruption, and
semantic bugs, from sixteen server and desktop applications
such as Apache, MySQL, Mozilla, HTTrack, GNU Linux
coreutils, and so on. DefUse successfully detects 19 of them

4 Like other dynamic tools such as AVIO [19] or Purify [15], our bug detection tool
requires the bug to be manifested during execution (either a monitored run for post-
mortem diagnosis or a production run). Hence, evaluation for a dynamic tool is usually
done with mostly known bugs—whether it can detect these bugs or not. This does not
mean that it can only detect known bugs. When such a tool (e.g., the commonly-used
Purify [15] or our tool) is used in field, it can also help programmers to detect unknown
bugs. Furthermore, during our evaluation process, we discovered two new bugs that
were never reported before.



including 2 new bugs that were never reported before. Fur-
thermore, DefUse reports only a few (0-3) false positives for
our evaluated applications, benefiting from DefUse’s prun-
ing algorithm that can reduce the number of false posi-
tives by up to 87%. Our training sensitivity results show
that DefUse is reasonably tolerant of insufficient training
and achieves acceptable false positive rates after only a few
(around 20) training runs.

2. Definition-Use Invariants
2.1 Overview

Classification of Program Invariants. Invariants are pro-
gram properties that are preserved during correct executions.
They reflect programmer intentions. Invariants are tradition-
ally used for compiler optimization (e.g., loop invariants).
Recent works automatically infer likely invariants of certain
types from training runs and use them to detect software
bugs. Previously proposed invariants include value-range in-
variants [8, 13], access-set invariants [45], access interleav-
ing invariants [19] and others [6, 17].

Since few previous studies have classified program invari-
ants, we summarize them into three categories as below:

® Characteristic-based Invariants: Sometimes, a program
element’s state may change, but all states share a com-
mon characteristic. Examples include “variable x’s value
should be less than 57, “function f’s return value should
be positive”, “basic block b should be atomic”, and so on.

® Relation-based Invariants: Some invariants are about
the relationship among multiple program elements. An
example is the multi-variable invariant discussed in
MUVI [17]. It captures the relations between multiple
variables that are always accessed together.

® Value-based Invariants: In some cases, certain program
elements always have a fixed set of values. In this case,
we use value in a broad sense. The value can be a variable
value, or an access set, and so on. We call such invariants
as value-based. The access set invariants discovered in
AccMon [45] is such an example. It captures the set
of instructions (program counters) that access a target
memory location.

Definition-Use Invariants. As discussed in Section 1.2,
definition-use invariants widely exist in both sequential and
concurrent programs, but have not been studied before. They
reflect programmers’ intention on data flows and are closely
related to many software bugs, such as those shown in Fig-
ure 1 and Figure 2.

From many real-world programs, we have observed that
common data flow intention can be captured by the follow-
ing three types of definition-use invariants, with each be-
longing to a category discussed above.

® Local/Remote (LR) is a type of characteristic-based in-
variants for concurrent programs. An LR invariant re-

flects programmers’ intention on an important property
of a read instruction: should it use only definitions from a
local (respectively remote) thread? It is useful for detect-
ing order violation bugs, and read-after-write atomicity
violation bugs in concurrent programs.

® Follower is a type of relation-based invariant that is espe-
cially useful for concurrent programs. It reflects the rela-
tion between two consecutive reads to the same mem-
ory location from the same thread: should the second
read use the same definition as the first one? It captures
the atomicity assumption between two consecutive reads,
and can be used to detect read-after-read atomicity viola-
tion bugs.

Definition Set (DSet) is a value-based invariant and cap-
tures the set of definitions (i.e., write instructions) that
a read instruction should use. Unlike LR and Follower,
DSet is applicable to both concurrent and sequential pro-
grams. It is useful for detecting concurrency bugs (atom-
icity violations, especially read-after-write atomicity vi-
olations, and order violations), as well as memory bugs
(dangling pointers, buffer overflow, and so on) and cer-
tain semantic bugs which are introduced by incorrect data
flow.

The above types of definition-use invariants capture dif-
ferent data flow intentions and complement each other well.
When used for detecting bugs, each has different trade-offs
between detection power and the false positive rate. There-
fore, we combine these three types into a single definition-
use framework, called DefUse.

In the rest of this section, we first discuss each one with
real-world examples, followed by the rationale for combin-
ing all three of them in DefUse.

2.2 Local/Remote (LR) Invariants

In concurrent programs, certain reads may use only local
definitions (maybe due to atomicity) or only remote defini-
tions (maybe for the purpose of communication or synchro-
nization). LR invariants can capture these properties.

Formally speaking, an LR invariant, LR(r), at a read, r,
equals to “LOCAL” (respectively “REMOTE”) if r uses only
definitions from the local (respectively remote) thread. We
denote them as LR-Local and LR-Remote, respectively. If
r can read from either a local or a remote definition, r has
no LR invariant. Figure 3(a) illustrates the basic idea of LR
invariants.

Figure 1(a) and (b) demonstrate two different real-world
examples of LR invariants from HTTrack and Apache and
their corresponding violations. As we explained before in
the introduction, in the example shown in Figure 1(a), the
global _opt pointer at S2 in thread 1 should always use a
definition from a remote thread, i.e., a child thread of thread
1, not from the local thread. Otherwise, it can lead to a null-
pointer dereference. In other words, it has an LR-Remote



Thread 1
Wi 2
R1
R1 should read a value

defined by a local writer W1.
(a) Local/Remote (LR)

Thread 1

/ Wi
R1

R1 should read a value defined
by a remote writer W1.

Thread 2

R2 (a follower) should read the
same value as what R1 reads

Thread 1 Thread 2 Thread 1 Thread 2
oW1 Wi
Rio 4 Rid &
2 definition
R2 set= {W1}

R1 should read the value defined
by a write in its definition set

(b) Follower (c) Definition Set (DSet)

Figure 3. Examples of real-world definition-use invariants and their violations.

invariant but unfortunately it is not guaranteed by the im-
plementation (probably due to the programmer’s wrong as-
sumption about the execution order after thread creation).
Conversely, in the Apache example shown on Figure 1(b),
52 always needs to read the refcount value decremented
by the local thread, i.e., S2 holds a LR-Local invariant. Fur-
thermore, due to the incorrect implementation, the above as-
sumption is not guaranteed. Therefore, S2 and S1 can be in-
terleaved by S3, which causes S2 to read the definition from
a remote write S3. This violates S2’s LR-Local invariant.

2.3 Follower Invariants

In concurrent programs, programmers frequently make as-
sumptions about the atomicity of certain code regions. The
LR invariants already captures the case of read-after-write
data flow relation in an assumed atomic region, but not the
read-after-read case, which can be captured by using a Fol-
lower invariant.

Specifically, for two consecutive reads, r; and rs, to the
same location from the same thread, if 7o always uses the
same definition as r;, we say r has a Follower invariant.
Follower is different from LR because as long as ro uses
the same definition as 7y, the definition can come from
either local or remote. Figure 3(b) demonstrates Follower
invariants.

Figure 1(c) shows a real-world example of Follower in-
variants from Apache. As long as S2 reads the same defini-
tion as S'1, wherever buf _index is updated, the execution is
correct, i.e., S2 holds a Follower invariant. However, when
such an assumption is not guaranteed, the sequence of S1
and S2 may be interrupted by the interleaved remote access
53, making S2 read a different value from S1. Therefore,
S52’s Follower invariant is violated. This is an atomicity vio-
lation bug.

2.4 Definition Set (DSet) Invariants

While concurrent programs have special inter-thread data
flows, definition-use is not specific to only concurrent pro-
grams. Our third type of invariants, Definition Set (DSet),
is suitable for both sequential and concurrent programs. A
DSet invariant at a read is defined as the set of all writes
whose definitions this read may use. Figure 3(c) shows a
DSet invariant at R1. Every read instruction has such a DSet.

When it consumes a value defined by an instruction outside
its DSet, a DSet invariant is violated, indicating a likely bug.

Figure 1(d) shows a real-world example of a DSet invari-
ant in a concurrent program, Transmission. S3 is supposed
to use h->bandwidth’s value defined only by S2. If the
thread creation and initialization in S2 takes a longer time
than the programmer’s assumption, S3 may use the defini-
tion from S1, violating the DSet invariant of S1. It is of note
that there is no Follower invariant here. Even though there
is an LR-Remote invariant, the bug’s manifestation condi-
tion does not violate LR-Remote at S3 because the wrong
definition S1 also comes from a remote thread (Thread 1).
Therefore, LR or Follower invariants are not effective in de-
tecting this bug, while DSet is.

Apart from concurrent programs, DSet is also applicable
to sequential programs, as shown in Figure 2. The DSet
invariant at S2 in Figure 2 (a) captures the set of valid
definitions for S2 to use: {S1}. When the semantic bug is
triggered, S2 would use a definition from 53, violating S2’s
DSet invariant. Hence, this bug can be detected. The other
three sequential bug examples are similar.

2.5 DefUse: Combining All Three Invariants

The above three types of invariants capture different aspects
of definition-use properties. Although DSet invariants ap-
pear more general than LR and Follower, they do not nec-
essarily subsume LR and Follower since they do not capture
inter-thread information. In a definition set, we do not ex-
press whether this definition is local or remote. As a result,
in some concurrency bug cases, DSet may not be violated,
but LR or Follower invariants are, as shown in the examples
below.

Figure 1(b) shows such an example from Apache Httpd.
The variable ref count definition used at S2 is always from
atomic_decrease() at S1. However, when the bug is trig-
gered, S2 can use a definition from a remote thread also ex-
ecuting atomic_decrease (). Therefore, the DSet invariant
at 52 is not violated during such abnormal execution. How-
ever, the LR invariant is violated.

Similarly, DSet invariants do not completely cover Fol-
lower invariants either. For example, in Figure 1(c), there
are two definition-use chains, S3-51 and S3-52, which can
be recorded in two DSets. However, the dependence relation
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Figure 4. Overview of DefUse system.

between the two reads’ definitions are not captured by DSet.
In an incorrect run, if another instance of S3 is interleaved
between S1 and S2, no DSet invariant is violated, although
the Follower invariant at 52 is.

In addition, since LR and Follower invariants capture
general properties instead of concrete values, they provide
fewer false positives in bug detection. It follows that their
generality may also lead to failure to detect the actual bugs.
In particular, LR and Follower invariants are not suitable for
capturing sequential data flow, whereas DSet is. Therefore,
DSet can be used for detecting memory and semantic bugs.

Due to the above reasons, our work combines all three
invariants into a single framework, called DefUse.

3. Invariant Extraction

DefUse has two phases: (1) an extraction phase for inferring
definition-use invariants; and (2) a detection phase for de-
tecting invariant violations and reporting potential bugs af-
ter pruning and ranking. DefUse uses four components for
these two phases: Extractor, Detector, Invariant Database,
and Pruning/Ranking Engine, which are shown in Figure 4.

This section discusses how to automatically infer pro-
grams’ definition-use invariants. It first describes the gen-
eral idea and then provides the extraction algorithms for LR,
Follower and DSet invariants. The next section will discuss
violation detection, pruning and ranking.

3.1 The Main Idea

Definition-use invariant are hard to extract using static code
analysis, especially from concurrent programs. It is also too
tedious to require programmers to write down all invariants.
In addition, programmers may not be consciously aware of
many such invariants. Otherwise, they probably would have
implemented the code correctly without introducing such
bugs.

Similar to the previous works on extracting program in-
variants, such as Daikon [8], DIDUCE [13], AVIO [19], Ac-
cMon [45], and so on, we also rely on correct runs from in-
house testing to statistically infer definition-use invariants.
Although it is possible to combine this with static analysis, it
is difficult to use such information especially for concurrent
programs written in C/C++, for which it is hard to statically
determine which code can be executed in parallel. Similar to
the previous works, we also assume that the target program

Symbol Description

1 a static instruction

Iy a read instruction (i.e., a use)

Ip a write instruction (i.e., a definition)
i the latest dynamic instance of 1

Ty the latest dynamic instance of Iy

id the latest dynamic instance of Ip

T(iq) or T'(4w) | 4’s oriy’s thread identifier

Table 1. Symbols used in this paper. All instruction symbols
are for the memory address m by default.

is reasonably mature and thereby feasible for extracting in-
variants statistically.

As pointed out by the previous works [19, 44], concurrent
programs provide a unique challenge for generating different
training runs. Different runs, even with the same input, can
have different interleavings. A systematic concurrency test-
ing framework such as CHESS [25, 26] or CTrigger [30] can
be used to systematically explore different interleavings for
each input.

Insufficient training problem and training sensitivity. It
is conceivable that training runs may not cover all execution
paths. Therefore, the extracted invariants may suffer from
the problem of insufficient training. To address this, both
our invariant extraction and bug detection algorithms explore
various techniques to filter unlikely invariants or violations,
and devalue unconfident invariants and bug reports (see Sec-
tion 4.2). Moreover, the extracted invariants can be refined
after each detection run based on the programmer’s feed-
back on bug reports. Finally, in our experiments, we studied
the training sensitivity by testing with the inputs that are very
different from that used in the training (see Section 5.5).

3.2 Extraction Algorithms

In this section, we describe in detail the algorithms to extract
definition-use invariants. Due to page limitations, we present
only the algorithms for concurrent programs. The extraction
for DSet invariants works for sequential programs as well.
For simplicity, we use the symbols explained in Table 1.

DSet invariant extraction. Our DefUse extraction algo-
rithm obtains DSet by collecting all definitions that are used
by Iy during training runs. In our implementation, DefUse
uses the Pin [21] binary instrumentation framework to in-
strument accesses to every monitored memory location. For
each memory location, DefUse stores its most recent write
instruction in a global hash-table, called Definition-Table. At
a read 7,,, DefUse gets its definition ¢4 from the Definition-
Table and uses i4’s corresponding static instruction Ip to
update I;’s DSet:

DSet(Iy) « DSet(Iy) U{Ip} (1)

After the training phase, information for every instruc-
tions’ DSet is stored into the invariant database along with



some statistical information such as the number of times I,
and Ip are executed, and so on, for the purpose of pruning
and ranking.

LR invariant extraction. In order to infer LR invariants,
DefUse firstly needs to know which thread provides the
definition for a read. This can be easily obtained through the
Definition-Table. Specifically, when ¢, is executed, DefUse
finds its definition ¢4 from the Definition-Table. DefUse then
compares T'(i,,) and T'(iq) to determine whether they are
from the same thread or not. Finally, it compares the answer
with the LR(Iyy) associated with Iy. If they are different,
LR(Iy) is set to NO_INV to indicate that there is no LR
invariant at Iy and this read is no longer monitored for
LR invariant extraction. LR(Iy;) is initialized based on the
definition source (either REMOTE or LOCAL) on the first time
Iy is executed. This process can be formalized as follows:

LOCAL if LR(IU) LOCAL
T(iq) = T'(iu)
LR(Iy) — < REMOTE if LR(IU) REMOTE
AT (iq) <> T (i)
NO_INV Otherwise
2

Follower invariant extraction. In order to infer Follower
invariants, DefUse needs to store its recent access history
to determine whether an instruction and its predecessor use
the same definition. To achieve this, DefUse maintains a bit-
vector for every memory location m, called has_read(m).
A Dbit in the vector has_read(m,t) indicates whether the
current definition to memory location m has already been
used by thread ¢. By checking this bit-vector before every
read instruction ,,, DefUse can easily determine whether 7,,
and its predecessor use the same definition.

Specifically, bit-vector has_read(m) is initialized as
zero. Every write to m sets all bits of has_read(m) to
zero. After any read from m in thread ¢, has_read(m, t)
is set to one. In order to know whether an instruction 7., uses
the same definition as its predecessor, before executing i,,,
DefUse checks if the corresponding bit (i.e., has_read (m,
t)) is one. If it is, it means that there is no new definition
since thread T'(4,,)’s last use to m. In other words, i,, shares
the same definition with its predecessor.

To maintain and update the Follower invariant informa-
tion for Iy;, DefUse associates Follower(Iy) with it. This
flag is set to TRUE if I;;’s dynamic instances always share
definition with their predecessors. Whenever a dynamic in-
stance of Iy uses a different definition from its predecessor,
the flag is set to FALSE and I;; is no longer monitored for
Follower invariant extraction.

Follower(Iyy) « Follower(Iy) A has_read(m, T (iy))
3)

3.3 Design and Implementation Issues

Our implementation is based on Pin [21], a dynamic binary
instrumentation framework. In the following paragraphs, we
discuss several detailed implementation issues.

Monitored memory locations. The invariant extraction
algorithms can be applied to any memory unit (byte, word,
and so on) and any memory region (stack, heap, global data
region, and so on). We use byte granularity in our imple-
mentation for the greatest accuracy. Currently, our DefUse
prototype monitors heap and global data region. Stack is ig-
nored because variables stored on stack seldom involve in
concurrency bugs [18]. Nevertheless, some sequential bugs
may not be detected because of this choice. We will extend
DefUse in the future to cover these stack related sequential
bugs.

External definitions. Programs may use external libraries
and system calls. We term the definitions from those external
codes as external definitions. The absence of these external
definitions could result in some definition-use invariants not
being detected.

We use two approaches to solve this problem. Firstly, we
annotate some system calls and widely used library func-
tions, such as memset and memcpy which can create defi-
nitions. We regard these functions as black boxes and their
call-sites as definitions.

Of course, it is impractical to annotate all external func-
tions and system calls. Therefore, our second approach is
to introduce §& = (I¢,T¢) to represent unannotated exter-
nal definitions. When DefUse meets a use and does not find
any preceding definition to the same memory location, the
symbol I is introduced to represent the virtual external def-
inition.

It is of note that since we instrument the code at binary
level, we can always detect every user-level definition and
use, regardless of whether or not it is from libraries. How-
ever, annotation may improve context-sensitivity compared
to directly processing the definitions within them.

Virtual address recycle. We also need to consider vir-
tual address recycling caused by memory allocation and de-
allocation. In other words, some instructions may access
the same memory location simply due to memory recycling
rather than for some inherent data flow relation. To address
this problem, we intercept every de-allocation function, and
delete all the previous information for accesses to the future-
deallocated memory region.

Context-sensitivity. Small un-inlined functions may have
many call-sites. As a result, a use in such a function may
have many definitions from different call-sites, which can
lead to inaccurate invariants. This issue can be addressed in
two ways. The first is to inline this small function, and treat
each call-site’s use as different reads. In other words, we can
make it context-sensitive. A simpler approach is to just prune



such use from the invariant database since it has too many
definitions.

Training noise. Although existing in-house testing oracles
are relatively accurate in labeling incorrect runs from cor-
rect ones in most cases, we also suffer from the problem of
training noise (i.e., a buggy run is incorrectly labeled as cor-
rect), as experienced with all previous works in invariant-
based bug detection [8, 13, 19, 45]. To handle this prob-
lem, our extraction algorithm can be extended by relaxing
the 100% support constraint. For example, if an invariant
is supported by 95% of the training runs, this invariant is
not pruned and is still kept to detect potential violations dur-
ing monitored runs. Intuitively, violations to such invariants
should be ranked lower than those for invariants with 100%
support from training runs.

4. Bug detection
4.1 Detection Algorithms

DefUse detects bugs by checking violations against the ex-
tracted DSet, LR, and Follower invariants. At every read
instruction, if the monitored properties do not match the
associated invariants, DefUse reports such violation to its
Rank/Pruning Engine for further analysis.

The detection algorithms are similar to the extraction
algorithms discussed in Section 3. In the below section, we
briefly describe the basic detection algorithms against each
type of definition-use invariant violations. We will discuss
how to prune and rank bug reports in Section 4.2.

To detect DSet invariant violation, DefUse maintains a
Definition-Table at runtime so that it knows which instruc-
tion provides a definition for each use. If the definition for a
use is not in this use’s DSet, a violation is issued. Formally
speaking, the violation condition is:

Ip ¢ DSet(Iy) “4)

Detecting violations against LR invariants is also straight-
forward. At a monitored read, DefUse first checks whether
this read has an LR invariant or not. If it does, DefUse ex-
amines whether the monitored read and its definition come
from the same thread and matches the monitored condition
with the type of LR invariant (LOCAL and REMOTE) extracted
at this read. If there is a violation, it will be reported to the
Pruning/Ranking Engine:

{LR(Iy) = LOCAL A T(ig) <> T(i)}V
{LR(Iy) = REMOTE A T(ig) = T(i)}

The basic idea of detecting violations to Follower invari-
ants is to check whether an instruction with a Follower in-
variant shares the same definition with its predecessor (by
leveraging the has_read(m) vector similar to that used in
extraction). If not, a violation will be reported for pruning
and ranking:

Follower(Iy) A has-read(m, T (iy,)) (6)
4.2 Pruning and Ranking

For training-based approaches, it is usually hard to know
whether the training is sufficient. Without ranking and prun-
ing, bug detection using such approaches may generate a sig-
nificant number of false positives due to insufficient training.

Pruning. DefUse automatically prunes the following cases
in bug reports:

® Barely exercised uses: For reads that are never covered
during training, we do not report any violations since
we do not extract any invariants associated with them. It
is also useful to extend this strategy to those uses that
we have only seen once or twice during training runs
and therefore have little confidence of in the extracted
invariants.

® Barely exercised definitions: Similarly, for definitions
that are never exercised during training runs, if we en-
counter them during detection, we are not confident
whether they are violations. In this case, we also prune
them from the bug reports.

® Popular uses: Some uses, such as those in a small func-
tion called from multiple call-sites, are very popular and
have a large definition set. In this case, we also prune it
as it might be perfectly acceptable to have yet another
definition for this use during detection runs.

Ranking. After pruning the above cases, DefUse ranks ev-
ery unpruned violations based on its confidence. In this way,
users can start with the top-ranked bug reports and gradu-
ally move down the list. In addition, DefUse also provides
an optional pruning phase, called confidence-based pruning,
which prunes the violations whose confidence is lower than
a certain threshold. By default, we do not use such an option
for our experiments unless explicitly mentioned.

Intuitively, the following conditions increase the confi-
dence of a true bug:

® many dynamic instances of the definition (#/p) and the
use (#1y7) during training;

¢ no significant difference between the number of instances
of the definition and instances of the use (|#1p — #1v|)
during training;

e small definition set (| DSet(Iy)));

e few instances of this violation pair (#violation pset(Ip, Iy))

during detection.

For a DSet invariant violation, if the invariant is supported
by many instances of definitions and uses during training,
any violation to it has a high probability of being a bug.
Meanwhile, if the size of DSet(Iy) is large, or the same
violation is detected many times, the violation is unlikely to
be a bug. As such, the confidence is computed as follows.



confpset =
#IDX#IU (7)
(|#Ip—#Iu|+1)x|DSet(Iy)|x #violation pset (Ip,Iu)

For LR and Follower violations, the confidence is com-
puted based only on the number of dynamic instances of a
use during training and the number of violations occurring
during detection, as follows:

confrr = #Iy /#violation r(Iyy) )
confrp = #1y /#violationp (1) 9)

Violations to multiple invariants. In some cases, a bug
may violate multiple invariants (e.g., both the DSet and LR
invariants). In these case, DefUse uses a geometric mean of
the confidence of all violations as DefUse’s confidence. As
an alternative approach, we can also weigh each invariant
differently. For example, violations to LR and Follower in-
variants may have higher confidence values, since they are
coarse-grained invariants and hence can gain more statisti-
cal support from training runs.

5. Experimental Evaluation
5.1 Test Platform, Applications and Bugs

We implemented DefUse using Intel’s dynamic instrumenta-
tion tool, Pin [21], for invariant extraction and bug detection.
All experiments are conducted on an §-core Intel Xeon ma-
chine (2.33GHz, 4GB of memory) running Linux 2.6.9.

We used a total of sixteen representative real-world ap-
plications (shown in Table 2), including 8 multi-threaded
applications and 8 sequential applications. Concurrent ap-
plications include 2 widely used servers (Apache Httpd and
MySQL), 6 desktop/client applications (Mozilla JavaScript
engine, HTTrack, Transmission, PBZip2, and so on). We
used the original applications from their official websites and
did not modify any of them for our evaluation.

We evaluated DefUse with 20 real-world software bugs
(including 11 concurrency bugs and 9 sequential bugs) of
various root causes, including atomicity violations, order
violations, memory bugs and semantic bugs.

5.2 Training Process

In our experiments, we tried our best to emulate how pro-
grammers would use DefUse in practice, especially for in-
variant extraction from training runs. The following is our
training setup. Like all previous invariant-based works, we
leverage the common available testing oracle from in-house
regression testing to label correct testing runs for training.
Invariants are extracted systematically. Specifically, we
used multiple different inputs for training, which are cru-
cial for sequential applications. All inputs used for training
are from standard test cases released together with the cor-
responding software. In other words, training inputs are se-
lected in a way that is oblivious to the tested bug. In some

[ Type [Applications [LOC [Descriptions

Server | Apache 345K | Web server
Con- App. MySQL 1.9M |Database server
current Mozilla 3.4M | Web browser suite
App. HTTrack 54.8K | Website copier
Desktop | Transmission | 86.4K | BitTorrent client
App. PBZip2 2.0K [Parallel file compressor
x264 29.7K |H.264 codec
ZSNES 37.3K | Nintendo game emulator
Utility | gzip 14.6K | Compression tool
tar 41.2K | File archiving tool
seq 1.7K | Print number sequence
paste 1.4K [Merge lines of files
Sequen- | GNU sort 4.3K |Sort lines in files
tial Linux |ptx 5.7K |Index of file contents
App. coreutils | cut 3.3K [Remove sections from files
pr 6.3K |Convert files for printing

Table 2. Evaluated applications.

[Bug Type [ID
Apache#1 [Random crash in cache management

[Bug description

Atomicity Apache#2 [Non-deterministic Log-file corruption
Violation Apache#3 [Random crash in worker-queue accesses
Bugs Mozilla  [Wrong results of JavaScript execution

MySQL#1 [Non-deterministic DB log disorder
MySQL#2 [Read after free object

HTTrack [Read before object creation

Order Transmi  |A shared variable is read before
Violation -ssion it is properly assigned by a child thread
Bugs PBZip2 |Random crash in file decompression
x264 Read after file closed

ZSNES  |Inquiry lock before initialization
Semantics gzip Use wrong file descriptor
seq Read wrong string terminator
Unbounded tar#1 Read out of buffer
memory paste Read out of buffer
read sort Read unopened file
Dangling Pointer | cut Dangling pointer
Memory ptx Buffer overflow
corruption pr Buffer overflow
tar#2 Overwrite wrong buffer fields

Table 3. Evaluated real-world bugs.

experiments (for studying training sensitivity), we even man-
ually examined the training inputs to ensure that they are dif-
ferent from the input used for detection (as explained in the
next subsection).

For concurrent applications, in each input, training also
needs to cover various interleavings [25, 26, 36]. There-
fore, we executed the tested program with each input for 10
times > on our 8-core machine. It is conceivable to use more
advanced interleaving testing tools [25, 26, 30, 36] to im-
prove DefUse training process to cover more interleavings.

5In the case of Apache server, we define one run as the duration to service for 100
different client requests, and for HTTrack, web crawling time for one run is set to five
minutes.



5.3 Two Sets of Experiments

DefUse is designed for two different usage scenarios (post-
mortem diagnosis and general bug detection during testing)
as mentioned in the introduction. During post-mortem diag-
nosis, developers usually know which input triggers the bug
so that they can easily design a good training input set for
DefUse. For general bug detection, programmers can rely
only on in-house testing suites, and so it is possible that
some monitored runs may have a very different input. In
such cases, it would be desirable for a bug detector to not
report many false positives.

Considering the above two different usage scenarios,
we design two sets of experiments to thoroughly evaluate
DefUse.

1. DefUse bug detection with sufficient training inputs. In
this set of experiments, DefUse’s training input set in-
cludes all suitable inputs provided by the software devel-
opers or those generated by representative tools(e.g., for
MySQL, we used the mysql_test suite; for Apache, we
used Surge [2] and httperf [24]). For some applications
(e.g., tar, sort), we generated many different inputs. The
results with this setting are shown in Table 4 and Table 5.

2. DefUse bug detection with insufficient training inputs.
We use two experiments to show how DefUse would
perform with insufficient trainings: how the number of
false positives changes with inputs different from those
used in training (Figure 5); and the amount of training
runs/inputs needed to achieve a good detection accuracy
(Figure 6).

In all our experiments, confidence is only used for rank-
ing, but not for pruning, unless specifically mentioned (Fig-
ure 5(b) and Figure 6(b)).

5.4 Overall Results

Table 4 shows DefUse’s detection capability and the number
of false positives, as well as the bug rankings in DefUse’s
violation report.

Bug detection. As shown on Table 4, DefUse can detect
19 of the 20 tested bugs in the 16 applications. It is of
note that these bugs are of various types including atomicity
violations, order violations, semantic bugs, buffer overflows,
dangling pointers, unbound reads, and so on. Section 5.6
explains why DefUse misses the bug of tar#2.

The results also show that the three types of definition-use
invariants (LR, Follower and DSet) are very complementary.
DSet can detect 7 of the 11 concurrency bugs and all the
tested sequential bugs, but misses 4 concurrency bugs which
can be detected by LR or Follower. For example, Apache#1
and Mozilla are detected only by using LR invariants, and
Apache#2 is detected only by using Follower. This justifies
the benefit of combining all three invariants in DefUse.

DefUse can also detect bugs that would be missed by pre-
vious tools. One is an order violation bug in HT Track and the

other two are semantic bugs in gzip and seq. Specifically, the
recently proposed invariant-based bug detector, PSet [44],
cannot detect the HT Track bug, since their detection is not
strictly based on definition-use relations. Figure 8 in Sec-
tion 6 shows the simplified codes of HTTrack, and compares
DefUse with PSet’s behavior. It can be noted that DefUse
can detect the bug with both DSet and LR invariants. A more
detailed comparison with PSet with a bug example is in Sec-
tion 6.

The evaluated two semantic bugs are caused only by a se-
mantically wrong definition-use pair and not by accessing an
invalid memory location. Hence, they would not be detected
by previous memory checkers such as Valgrind [28].

False positives. In Table 4, for all the applications, the
number of false positives is fewer than four. Moreover, al-
most all bugs ranked top in the violation report, which helps
programmers easily identify bugs.

The low false positive numbers are a result of our pruning
scheme described in Section 4.2 as well as sufficient train-
ing (the results of insufficient training are shown later). Ta-
ble 5 demonstrates the effectiveness of our basic pruning
algorithm (please note that no confidence-based pruning is
used here). Overall, the number of false positives is reduced
by up to 87% by pruning.

Comparing LR and Follower with DSet, the first two have
much fewer false positives because they are coarse-grained
(i.e., they look at only high-level definition-use properties
instead of concrete definitions) and have more statistical
supports from training runs.

5.5 Training Sensitivity

As discussed in Section 5.3, in some scenarios and especially
if used for general bug detection instead of post-mortem
analysis, it is possible that training is not sufficient. That
is, the training does not have a good coverage of execution
paths or inputs. Our second set of experiments aim to answer
the following related questions:

What if detection runs are dramatically different from
training runs? To show DefUse’s training sensitivity, we
first analyze the effect of training inputs as shown in Fig-
ure 5. For detection, we use various inputs that are different
from training inputs. To quantitatively measure their differ-
ences, we use the number of basic blocks newly explored in
a detection run (but not in any training run).

Without any confidence-based pruning, as shown on Fig-
ure 5(a)(c), when a detection run is very different from train-
ing runs (e.g., for MySQL, with 835 number of untrained ba-
sic blocks), DefUse can introduce a few (e.g., 58 in MySQL)
false positives. Fortunately, this problem can be addressed by
applying confidence-based pruning, i.e., pruning out those
with low confidence. In Figure 5(b)(d), after confidence-
based pruning, even with 700 untrained basic blocks in a
detection run, the number of false positives is always below
30. However, confidence-based pruning may also increase



Bug Type Applications LR Follower DSet | DefUse
Bug False Bug False Bug False Bug False
Detected? | Positives | Detected? | Positives | Detected | Positives Detected? | Positives
Concurrent Applications
Apachet#1 Yes(1) 0 no 0 no 1 Yes (2) 1
Atomicity Apache#2 no 2 Yes(1) 0 no 3 Yes(1) 3
Violation Apache#3 Yes(1) 0 Yes(1) 0 no 0 Yes(1) 0
Bugs Mozilla Yes (1) 0 no 0 no 3 Yes (1) 3
MySQL#1 no 0 no 1 Yes(1) 0 Yes(2) 1
MySQL#2 no 0 no 1 Yes(1) 2 Yes(1) 3
HTTrack * Yes(1) 0 no 0 Yes(1) 0 Yes(1) 0
Order Transmission * no 0 no 0 Yes(1) 0 Yes(1) 0
Violation PBZip2 no 0 Yes(1) 0 Yes(1) 0 Yes(1) 0
Bugs x264 no 0 no 0 Yes(1) 0 Yes(1) 0
ZSNES Yes(1) 0 no 0 Yes(1) 0 Yes(1) 0
Sequential Applications

Semantics gzip - - - - Yes(1) 0 Yes(1) 0
seq - - - - Yes(1) 0 Yes(1) 0
Unbounded tar#1 - - - - Yes(1) 0 Yes(1) 0
memory paste - - - - Yes(1) 0 Yes(1) 0
read sort - - - - Yes(2) 1 Yes(2) 1
Dangling Pointer cut - - - - Yes(1) 1 Yes(1) 1
Memory ptx - - - - Yes(1) 0 Yes(1) 0
corruption pr - - - - Yes(1) 0 Yes(1) 0
tar#2 - - - - no 0 no 0

Table 4. Overall results from DefUse with invariants extracted from sufficient training runs described in Section 5.3. The number
inside each parenthesis is the bug’s ranking in the violation report of DefUse. The bugs marked * are new bugs that were never

reported before.

tives
.

ES

Threshold = 5

=

.
false positives

I3

53

num. of

-
P e e .

% o

&% ¢ . .

. . -

Threshold = 5

S

z g
.
.

=

I

3

num. of flase positives

s o~ .

.
¢ ees
.
0

0 200 400 600

num. of new basic blocks

800

200 400

num. of new basic

600

blocks

800

100 150 200

num. of new basic blocks

0 50 250 0 50 100 150 200

num. of new basic blocks

250

(a) MySQL
before confidence-based pruning

(b) MySQL
after confidence-based pruning

(c) HTTrack
before confidence-based pruning

(d) HTTrack
after confidence-based pruning

Figure 5. Training sensitivity in terms of input difference. Each dot is one detection run. The detection runs use various inputs that
differ from those used in training runs by various degrees. For each detection, its difference from the training runs is reflected by
the number of basic blocks that are not covered by the training runs. The x-axis is the number of such basic blocks. The y-axis is the

number of false positives occurred in each detection run.

the chance of pruning out some true bugs, even though this
was not demonstrated in our experiments.

How many training runs/inputs are sufficient? Figure 6
shows how the number of training inputs/runs affects the
number of false positives. Without confidence-based prun-
ing (shown on Figure 6(a)), after DefUse training with 13
inputs, the number of false positives is gradually reduced,
and finally reaches to 1. Confidence-based pruning (shown
on Figure 6(b)) makes the false positive curves drop faster.

In comparison, LR and Follower’s false positives are al-
ways fewer than DSet. DefUse has fewer false positives than
DSet with confidence pruning, because its confidence is cal-
culated using a geometric mean of the confidences from all
three types of invariants.

5.6 Bug Missed by DefUse

Even though DefUse can detect various types of concur-
rency and sequential bugs, it still misses one tested bug
(tar#2), which is described in Figure 7. If a file name (i.e.,
read_s_name) is longer than posix_header.name, S1 cor-
rupts the following fields, e.g., header.mode, and dumps
the wrong data to £d. Note that the wrong write S1 and its
use S3 do not violate the DSet invariant held by S3, since
this definition-use relation has already been captured from
header.name during training. Interestingly, other existing
memory checkers (i.e., Valgrind [28]) cannot detect it as
well, since S1 always writes to valid location, even when
this bug is manifested.



Application LR Follower DSet | DefUse
BP [ AP | BP | AP | BP [ AP [ BP [ AP

Apache#1 0 0 0 0 2 1 2 1
Apache#2 2 2 0 0 3 3 3 3
Apache#3 0 0 0 0 0 0 0 0
Mozilla 0 0 1 0 4 3 5 3
MySQL#1 0 0 1 1 4 0 5 1
MySQL#2 0 0 1 1 22 2 23 3
HTTrack 0 0 0 0 1 0 1 0
Transmission 0 0 0 0 0 0 0 0
PBZip2 0 0 0 0 0 0 0 0
x264 0 0 0 0 1 0 1 0
ZSNES 0 0 0 0 0 0 0 0

Table 5. Comparison on the number of false positives before
pruning (BP) and after pruning (AP). AP prunes barely exer-
cised uses and definitions, and popular uses, as described in
Section 4.2. The results show the worst case from five detection
runs. The evaluation setup is the same as Table 4.
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Figure 6. False positives with increasing number of training
runs. The plain-line curve shows the numbers of untrained
basic blocks in the detection runs.

To address this problem, DefUse needs to be extended
to consider other types of definition-use invariants such
as whether a definition is used at least once before it
is re-defined. In Figure 7, when the bug is manifested,
header.typeflag is re-defined by S2 without any uses
after S1, which can be detected by the extension.

Like previous invariant-based approaches, DefUse would
miss bugs where there is no statistical support to extract any
invariants, and bugs that do not violate any invariants.

5.7 Overhead of DefUse

In Table 6, the slowdown of DefUse is less than 5X in most
cases and up to 20X for memory intensive concurrent appli-
cations such as application “x264”. Compared to some other

[* type of header */
struct posix_header({
char name[100];

void flush_write (void) {
S1: strcpy (header.name, real_s_name);

char mode(8]; S2: header.typeflag = GNUTYPE_MULTIVOL;
char typeflag; ... S3: write (fd, header, sizeof(header));

k pefad tarh |} buffer.c
‘ real_s_name ‘
‘ name | mode | ‘ typeflag ‘ ‘

header _—

Figure 7. A memory corruption bug in GNU far that cannot
be detected by DefUse.

Mozilla | MySQL | Transmission | PBZip2 X264 gzip
3.26X 5.53X 1.03X 3.39X 20.26X | 4.12X
seq tar paste sort cut ptx

1.87X 2.18X 271X 245X 239X | 241X

Table 6. Overhead of DefUse.

software only concurrency bug detection tools such as Val-
grind (which includes a lockset data race detector and incurs
10X-100X overhead) [28], and the AVIO software imple-
mentation (which has 15X-40X slowdowns) [19], DefUse is
much faster. Even though DefUse overhead may be high for
some applications, it is not critically important because we
expect Defuse to be used during post-mortem diagnosis and
in-house testing/debugging, similar to Valgrind.

6. Related work

Program invariants. Our work was inspired by many pre-
vious works on program invariants including Daikon [8],
DIDUCE [13], AccMon [45], AVIO [19], DITTO [37],
MUVI [17], and so on. Similar to these studies, we also
extract invariants from training runs, and dynamically detect
violations to report potential bugs. Unlike these works, our
invariants focus on data flow. More specifically, the focus is
on definition-use invariants, which can be used to detect both
concurrency and sequential bugs. Few previous methods can
detect both types. Furthermore, our tool is also one of the
first that can detect order violations in concurrent programs.

Definition-use and data flow. A recent study [4] used data
flow to detect security vulnerabilities, i.e., buffer overflow
attacks. It was based on the insight that if an intended data
flow is subverted with a unexpected use, there may lead
to an attack. Our work differs from this as we determine
whether a use reads from a wrong definition by extracting
definition-use invariants from both concurrent and sequen-
tial programs, and report potential concurrency (including
atomicity and order violations) and sequential bugs.

Definition-use relations have also been used for software
testing. Many works [14, 16, 43] have focused on testing
definition-use relations to increase test coverage.

Data flow has many other usages. For example, EIO [12]
uses data flow analysis to see whether low-level error codes
(e.g., ’I/O error”) are correctly propagated to file systems so



thread 1 thread 2 thread 1 thread 2 thread 1 thread 2
10: write 10: write 10: write
C:write | 12: read I2: read
%%/ 11: write d
13: read ‘wb 12: read
12: read 12: read

Correct run 1 Correct run 2 Incorrect run
PSetfl0]={ }; PSet[i2] = {I1} DSetfl2] = {0, I1}

PSetfI1]={10,12}; PSet[I3] = {11} DSet]I3] = {I1}

Figure 8. Simplified code of HTTrack showing the difference
between PSet and DSet. In the incorrect run (the execution
order of /1 and /3 does not match with the assumption), 73
obtains the definition from 70, violating DSet(13).

that recovery mechanisms can handle them. In [5], data flow
analysis is used to detect memory leak and double free.

Concurrency bug detection and avoidance. There have
been a lot of works on detecting data races [10, 23, 39].
The happens-before [31], lockset algorithms [7, 34, 38],
and many of the extensions [29, 32] have been proposed
for data races detection. However, there are two problems
for data race detectors: (1) many data races in real-world
applications are benign such that race detectors may have
too many false alarms; and (2) some wrong interleavings and
orders are not related to data races. Therefore, concurrency
bugs caused by atomicity violations and order violations
are introduced [18]. Atomicity violations have been well
studied [9, 11, 19, 33, 42, 44], but order violations are, so
far, rarely studied.

Much research has been conducted on detecting or avoid-
ing concurrency bugs. Recently, [44] proposed an innovative
method to avoid concurrency bugs by using data dependency
information collected during correct runs. Their approach
encodes the set of tested correct interleavings in a program’s
binary executable, and enforces only those interleavings at
runtime. They use Predecessor Set(PSet) constraints to cap-
ture the tested interleavings between two dependent memory
instructions. Specifically, for each shared memory instruc-
tion, PSet specifies the set of all valid remote memory in-
structions that it can be immediately dependent upon ©.

Their work is quite different from DefUse in the follow-
ing aspects. (1) Their work focuses on runtime fault toler-
ance and recovery, while DefUse is tailored to bug detec-
tion and post-mortem failure diagnosis. (2) PSet does not di-
rectly target definition-use relations even though it reflects
some aspect of them. Specifically PSet does not capture
such definition-use relations as it cares about only remote,
preceding instructions. Figure 8 shows the simplified code
from HTTrack, where PSet does not capture the definition-
use relation on /3 and I1, and misses the order violation
bug. DefUse (with DSet or LR invariants) can detect it.

6 The PSet of a static memory instruction M includes another instruction P only if
(i) P and M are in two different threads; (ii) M is immediately dependent on P; (iii)
neither of the two threads executes a read or a write (to the same memory location)
that interleaved between P and M [44].

(3) Our work also includes LR and Follower invariants and
thereby can check other properties of concurrent execution.
(4) DefUse can also detect sequential bugs and work for se-
quential programs.

Bugaboo [20] uses context-aware communication graphs
for concurrency bug detection. However, it is limited by the
context size due to the exponential cost. If the granularity
of the bug manifestation is larger than the context size, 5
by default, the detection may be inaccurate. For example, in
Figure 1(a), if the interval between S1 and S3 in execution
is larger than the context size, it may miss the bug or may
report the false positive. In addition, Bugaboo needs the spe-
cial hardware extension because of the expensive software
implementation even for the default context size.

Our tool, DefUse, can detect not only atomicity viola-
tions, but also order violations that have been seldom stud-
ied in previous research. Using the same framework, we can
also detect memory bugs and semantic bugs.

7. Conclusion

This paper proposed definition-use invariants which can be
used to detect a wide spectrum of software bugs, including
both concurrency bugs (atomicity and order violations) and
sequential bugs (memory corruptions and certain semantic
bugs). Our experimental results with 16 real-world applica-
tions and 20 real-world bugs of different types have shown
that DefUse was effective in detecting 19 of them, including
2 new bugs that were never reported before, while introduc-
ing only 0-3 false positives. Our training sensitivity exper-
iments showed that DefUse can reasonably tolerate insuffi-
cient training, especially with confidence-based pruning.

There are several possible directions for the future work.
Firstly, as shown in our experiments, DefUse still fails to
detect one tested bug (Section 5.6). To handle such bugs, we
need to extend DefUse invariants to include constraints. Sec-
ondly, it is interesting to consider other types of definition-
use invariants. Thirdly, DefUse is currently implemented en-
tirely in software, but it is conceivable that some simple
hardware extensions can significantly reduce DefUse’s run-
time overhead and make it possible to use DefUse to monitor
production runs.
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