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Abstract—Multi-core Digital Signal Processors (DSP) are
widely used in wireless telecommunication, core network
transcoding, industrial control, and audio/video processing etc.
Comparing with general purpose multi-processors, the multi-
core DSPs normally have more complex memory hierarchy,
such as on-chip core-local memory and non-cache-coherent
shared memory. As a result, it is very challenging to write
efficient multi-core DSP applications.

The current approach to program multi-core DSPs is based
on proprietary vendor SDKs, which only provides low-level,
non-portable primitives. While it is acceptable to write coarse-
grained task level parallel code with these SDKs, it is very
tedious and error prone to write fine-grained data parallel
code with them.

We believe it is desired to have a high-level and portable
parallel programming model for multi-core DSPs. In this paper,
we propose OpenMDSP, an extension of OpenMP designed
for multi-core DSPs. The goal of OpenMDSP is to fill the gap
between OpenMP memory model and the memory hierarchy
of multi-core DSPs.

We propose three class of directives in OpenMDSP:(1)
data placement directives allow programmers to control the
placement of global variables conveniently; (2) distributed
array directives divide whole array into sections and promote
them into core-local memory to improve performance, and
(3) stream access directives promote big array into core-local
memory section by section during a parallel loop’s processing.

We implement the compiler and runtime system for Open-
MDSP on FreeScale MSC8156. Benchmarking result shows
that seven out of nine benchmarks achieve a speedup of more
than 5 with 6 threads.
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I. INTRODUCTION

A. Expressing data parallelism is important for future multi-
core DSP systems

Multi-core Digital Signal Processors (DSP) are widely
used in wireless telecommunication, core network transcod-
ing, industrial control, audio and video processing, etc.
Comparing with general purpose multi-processors, the multi-
core DSPs usually have more complex memory hierarchy,
such as on-chip core-local memory and non-cache-coherent
shared memory [1]. The on-chip core-local memory are
usually addressable with different address spaces and can
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Figure 1. Partial task graph of a LTE base station physical layer uplink.

not be accessed by other cores directly. The non-cache-
coherent shared memory also makes memory management
much more complex for shared data since programmers are
required to maintain the coherence of data manually. As a
result, it is very challenging to write efficient multi-core DSP
applications.

The state-of-the-art approach to program multi-core DSPs
is based on proprietary vendor SDKs, which only provides
low-level, non-portable primitives. It is a common practice
to use these SDKs to provide coarse-grained task-level par-
allelism for applications. For example, the next generation of
wireless telecommunication protocol, Long Term Evolution
(LTE) [2], is a very important application of multi-core
DSPs. Currently, developers parallelize LTE base station
applications in task level. Fig. 1 is a partial task graph of LTE
base station physical layer uplink. Input of each Fast Fourier
Transform (FFT) task is the carrier waveform received from
each antenna port. Waveforms of different carriers are fed
into FFT tasks one after another. Developers map tasks
for waveform from different antennas to different cores to
exploit task parallelism, or map tasks of different stages
to different cores to exploit pipeline parallelism between
adjacent carriers, or both.

Although task parallelism and pipeline parallelism seem
to work well, they are not sufficient. The emergence of
low-power multi-core DSPs demands programmers to ex-
ploit data parallelism as well. For example, the PicoChip
PC205 [1] has 248 cores and works at frequency of
280MHz. While the low frequency gives the chip a big
power efficiency boost over traditional multi-core DSPs,



1 __attribute__((section(".m3_shared"))) int a[1024];
2 __attribute__((section(".m3_shared"))) int sum = 0;
3 __attribute__((section(".m3_shared"))) spinlock l1;
4 void barrier(int count) { ... }
5 void sum_a() {
6 int thread_id = get_core_id() - 2;
7 int num_threads = 4;
8 int local_sum = 0;
9 int lower = 1024 * thread_id / num_threads;

10 int upper = 1024 * (thread_id + 1) / num_threads;
11 if (thread_id == 0) sum = 0;
12 barrier(num_threads);
13 for (i = lower; i < upper; i++)
14 local_sum += a[i];
15 acquire_spinlock(&l1);
16 sum += local_sum;
17 release_spinlock(&l1);
18 barrier(num_threads);
19 }

Figure 2. Data parallelized code for array sum, by SDK of FreeScale
MSC8156. sum a() is intended to run on core #2 – core #5. Contents of
barrier() is omitted.

it also imposes more challenges to programmers. Without
employing data parallelism in applications, it is very difficult
for this chip to meet the latency requirement of LTE signal
processing. Thus, we believe it is critical to support data
parallelism as well as task parallelism for future multi-core
DSP platforms.

B. Problems of Current Programming Models for Multi-core
DSPs

Today’s common practice to program multi-core DSPs in
industry is to use the low-level, proprietary vendor SDKs.
While they provide reasonable abstraction for task paral-
lelism and pipeline parallelism, they are usually too low-
level when used to express data parallelism. An example
of data parallel code written with the SDK of FreeScale
MSC8156 is shown in Fig. 2.

From the example, we can see that programmers need
to write code for barrier, loop dividing and scheduling, data
reduction, data sharing and synchronization manually, which
makes programming very tedious and error prone. The other
issue is portability. The language extension defined in these
proprietary SDKs are not portable to DSPs of other vendors.

Researchers have proposed some programming models
to solve these problems. SoC-C [3] is one programming
model for heterogeneous multi-core systems. It has well
support for task parallelism and pipeline parallelism, but
lacks support for data parallelism. StreamIt [4] is another
influential programming model for stream applications. It
defines an elegant dataflow programming model to exploit
data parallelism, task parallelism and pipeline parallelism.
The problems with StreamIt are two folds: 1) It is not
easy to incrementally change the existing code to StreamIt.
Significant part of legacy code may need to be re-written.
2) StreamIt is based on the static data-flow model. While in

DSP applications, there are scenarios which require dynamic
level of parallelism and task binding.

C. Extend OpenMP to support multi-core DSP program-
ming

The purpose of this research is to provide a parallel
programming model for multi-core DSPs which features:
1) Allow incrementally change to support data parallelism
on existing task/pipeline parallel code written with SDKs.
2) High level abstractions to avoid tedious loop bound
calculation and synchronization for data parallel code. 3)
Portable among different DSP platforms.

We propose to extend OpenMP to support multi-core DSP
programming. OpenMP [5] is a widely adopted industrial
standard. Extension based on OpenMP provides a good
chance for portability. OpenMP is powerful to express data
parallelism. It provides high level abstractions to prevent
programmers from tedious work such as calculating parallel
loop bounds for each thread. With OpenMP, programmers
can add a few annotations on sequential code to parallelize
it incrementally, which matches our goal of incrementally
parallelization very well.

Standard OpenMP only supports cache coherent shared
memory systems. In multi-core DSPs, there are core-local
memory and non-cache coherent shared memory which
imposes two key challenges to OpenMP on multi-core DSP:

Core-local memory: On general purpose multi-core
CPU systems, shared auto variables residing in the stack of
master thread can be easily accessed by other worker threads
because of a unified address space, but on most multi-core
DSPs, the core-local memory has different memory spaces
with other memory hierarchy. Stack resides on core-local
memory and cannot be accessed from other cores. If we
need to put shared auto variables in the stack, we need a
way to make it accessible to other threads.

Non-cache coherent shared memory: On general
purpose multi-core CPU systems, the shared memory are
cache coherent which could boost the speed of shared data
accessing when the data are not really shared during a period
of time, the accesses will be cache hit without accessing the
main memory. However, the shared memory of multi-core
DSPs is not cache coherent, so every access to the variables
in shared memory should be a slow shared memory access
if there’s no hint to put some data into the fast core-local
memory. We need to address this issue in our extension
design.

In this paper, we present OpenMDSP, an extension of
OpenMP 2.5 for multi-core DSP. We have also implemented
an OpenMDSP compiler and runtime system for FreeScale
MSC8156, a DSP processor with six cores. Our paper makes
three main contributions:

• We make standard OpenMP 2.5 programs run correctly
on multi-core DSPs without modification. We design
and implement compiler transformation and runtime



systems so that all standard OpenMP 2.5 directives and
APIs remain the same semantics on multi-core DSPs.
This work allow us to annotate current sequential code
of tasks to support data parallelism.

• To improve the performance of OpenMP code, we
propose OpenMDSP, which is an extension of OpenMP
2.5, to allow optimized usage of the complex memory
hierarchy of multi-core DSP systems. Especially, we
support core-local memory and non-cache coherent
shared memory with three new class of directives of
OpenMDSP:
(1) Data placement directives allow programmers to
control the placement of global variables conveniently;
(2) Distributed array directives divide whole array
into sections and promote them into core-local memory
to improve performance, and
(3) Stream access directives promote big array into
core-local memory section by section during a parallel
loop’s processing.

• We implement the compiler and runtime system for
OpenMDSP on FreeScale MSC8156. Nine benchmarks
are used to evaluate the performance of OpenMDSP.
Seven out of nine benchmarks achieve a speedup of
more than 5 with 6 threads.

The rest of the paper is organized as follows. Section II
introduces the architecture of multi-core DSP in more detail.
Section III defines the features of OpenMDSP. Section IV
states the design and implementation of OMDPFS. We
evaluates the implementation in Section V, and discusses
the limitations and alternative solutions in Section VI. Sec-
tion VII reviews related works, and Section VIII concludes
the paper.

II. OVERVIEW OF MULTI-CORE DSP ARCHITECTURE

Multi-core DSP is the target hardware platform for Open-
MDSP. FreeScale MSC8156 is one typical high performance
DSP with six cores. As shown in Fig. 3 [6], a chip of
FreeScale MSC8156 consists of six SC3850 DSP cores. The
memory hierarchy consists of four levels:

L1 ICache and L1 DCache: the first level instruction
cache and data cache private to each core. They are trans-
parent to software. Each has a size of 32KB.

L2 Cache and M2 Memory: the second level memory
with a total size of 512KB private to each core. It can be
configured to divide into L2 cache and M2 memory. L2 is
transparent to software while M2 is addressable core-local
memory.

M3 Memory: on-chip shared memory memory with a
size of 1056KB. The latency is larger than L1, L2 and M2.

Main Memory: off-chip shared memory accessed by
two DDR controller, always with the largest latency. Six
cores, M3 memory, DDR controllers, DMA, I/O controller
and other blocks are connected with the Chip-Level Arbi-
tration and Switching System (CLASS).
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Figure 3. Architecture blocks inside a FreeScale MSC8156 chip.

Programmers can decide whether cache is enabled or
disabled for particular linking sections. FreeScale MSC8156
does not provide hardware managed cache coherence among
different cores, that means either cache should be disabled
for shared sections, or cache coherence should be maintained
by software.

Although OMDPFS is designed for FreeScale MSC8156,
OpenMDSP is intended to work for general multi-core
DSPs. The memory hierarchy of most multi-core DSP
contains core-local memory, on-chip shared memory and off-
chip shared memory [1], that is the fundamental assumption
of OpenMDSP for underlying hardware platform.

III. OPENMDSP LANGUAGE EXTENSIONS

OpenMDSP is designed based on OpenMP 2.5, and inher-
its the execution model, memory model, directives and API
functions defined in OpenMP 2.5 specification. As stated in
Section I, to expose the memory hierarchy for programmers,
we have extended OpenMP by a few new directives as shown
in Fig. 4.

A. Extension for Data Placement

With OpenMP directives, programmers cannot specify
mapping between variables and memory levels. In Open-
MDSP, by default, shared variables with static storage dura-
tion are placed in on-chip shared memory, and threadprivate
variables are placed in core-local memory. However, some-
times programmers needs to change the default placement,
for example, core-local memory may not have enough
space to carry all threadprivate variables, hence some of



alloc-directive ::=
#pragma domp alloc(place,var-list) new-line

place ::= corelocal | chipshare | offshare
var-list ::= variable | variable, var-list
defaultalloc-directive ::=

#pragma domp defaultalloc defalloc-placedef + new-line
defalloc-placedef ::= normal(place) | threadprivate(place)
distribute-directive ::=

#pragma domp distribute(var-list) dist-clause* new-line
statement

dist-clause ::= size(expression) | peek(expression,expression)
| copyin | copyout | bulk(expression) | nowait

for-respect-directive ::=
#pragma domp for respect(variable) forres-clause* new-line

for-statement
forres-clause ::= private(var-list) | firstprivate(var-list)

| lastprivate(var-list) | reduction(operator:var-list)
| nowait

omp-parallel-for-directive [REDEFINE]=
#pragma omp parallel for omp-parallel-for-clause* new-line
stream-directive*

for-statement
omp-for-directive [REDEFINE]=

#pragma omp for omp-for-clause* new-line
stream-directive*

for-statement
stream-directive ::=

#pragma domp stream(var-list) stream-clause* new-line
stream-clause ::= size(expression) | rate(expression)

| peek(expression,expression) | copyin | copyout
| nowait

Figure 4. OpenMDSP syntax extensions. omp-parallel-for-directive and
omp-for-directive are redefinitions for omp for directive defined in OpenMP
specification, while others are definitions for new directives.

the threadprivate variables need to reside in on-chip shared
memory or off-chip shared memory.

We introduce alloc directive for data placement. place
can be corelocal, chipshare or offshare to indicate core-local
memory, on-chip shared memory or off-chip shared memory,
respectively.

We introduce another directive defaultalloc to specify the
default data placement location. defaultalloc directive takes
effect for all variables with static storage duration defined
after that till the next defaultalloc directive which overrides
the setting.

B. Extension for Distributed Array

Shared data is stored in on-chip shared memory or off-
chip shared memory, which has a considerable latency. It
is hard to optimize access for shared array by OpenMP
features. We have observed that in a class of parallel
algorithms, such as matrix operations, each thread only need
to access a portion of an array. We have defined distribute
directive for such situation.

distribute directive is used to create distributed duplica-
tions for shared array in core-local memory during execution
of its following statement. Any access to such array in

the following statement is done by the private duplication,
which improves the performance. The whole array is divided
into n contiguous sections, one for each thread, where n
is the number of threads. For each thread, we call the
corresponding section as the main section for this thread.
In the statement followed by distribute directive each thread
is only allowed to access its main section of an array unless
a peek clause is present.

Variables placed in distribute clause is the name of the
shared array or a pointer to the first element of the array. If
a pointer is placed here, size clause is required to specify
the size of the array it pointed to. size clause is not needed
for static array.

peek clause allows one thread to read some elements be-
fore and after the main section. The two expressions should
specify number of elements allowed to read before and
after. This clause is designed for algorithms in which access
ranges for an array in adjacent iterations have intersection.

copyin clause makes data in shared data copied into pri-
vate memory before execution of statement. Without copyin,
the initial value of the private duplication is undefined.
copyout clause makes data copied back to shared memory,
and the original values in shared memory do not change
when copyout is not specified. copyout only takes effect
for the main section, while copyin also takes effect for the
amount of elements as specified in peek clause.

bulk clause is used to specify the minimal grain for array
range division. The size of each main section is guaranteed
to be a multiple of the value of specified expression except
the last section. The default minimal grain is 1.

Like parallel, for and single directives defined in OpenMP,
nowait is used to remove the implicit barrier after execution
of statement.

OpenMDSP provides another directive, for respect, which
allows programmers to write code to iterate through the main
section of a distributed array conveniently. Effect of domp
for respect directive is much like omp for directive, which
parallelize the following for-statement. Like omp for direc-
tive, private, firstprivate, lastprivate, reduction and nowait
clauses are applicable. The distinct feature of domp for is
that it divides loop range consistent with the distribution of
the array specified inside the braces after “respect”. More
precisely, the loop range in each thread is guaranteed to be
the intersection of the main section of this thread for the
specified array and the whole loop range. Fig. 5 presents an
example for distribute and for respect directives.

C. Extension for Stream Access

Although distributed array is helpful to reduce access
latency for shared array, it cannot work if the main section is
too large to reside in core-local memory. For access patterns
applicable to distribute and for respect, shared arrays can
also be fetched in core-local memory or written back part
by part as needed. That is the purpose of stream directive.



1 double a[M][N];
2 double b[N][P];
3 double c[M][P];
4 void compute_c() {
5 int i, j, k;
6 double s;
7 #pragma omp parallel firstprivate(b)
8 #pragma domp distribute(a) copyin
9 #pragma domp distribute(c) copyout

10 #pragma domp for respect(a)
11 for (i = 0; i < M; i++) {
12 for (j = 0; j < P; j++) {
13 s = 0;
14 for (k = 0; k < N; k++)
15 s += a[i][k] * b[k][j];
16 c[i][j] = s;
17 }
18 }
19 }

Figure 5. Matrix multiplication, an example of distribute and for respect.
“M”, “N” and “P” are macros defined as integer constants. Note that in C
language, a two dimensional array is an array of one dimensional array. so
each element of array “a” and “c” is a row of the matrix. The two distribute
directives divide the matrices by rows, and the for respect directive takes
effect for the following loop on the row number of matrix “a”. Besides,
OpenMDSP guarantees distributions of two distributed arrays with the same
(array-size/bulk-size) values to be identical, so it is also safe to access array
“c” by “i”.

1 void complex_mul(int n, float* r, const float* a,
2 const float* b) {
3 int i;
4 #pragma omp parallel for
5 #pragma domp stream(a, b) rate(2) copyin
6 #pragma domp stream(r) rate(2) copyout
7 for (i = 0; i < n; i++) {
8 r[i*2] = a[i*2]*b[i*2] - a[i*2+1]*b[i*2+1];
9 r[i*2+1] = a[i*2]*b[i*2+1] + a[i*2+1]*b[i*2];

10 }
11 }

Figure 6. Complex vector multiplication, an example of stream directive.
“M” is a macro defined as integer constant.

We extend omp parallel for and omp for directives defined
in OpenMP specification by stream directives as their suffix.
The semantics of these directives without suffix stream
directive do not change.

Syntax of stream directive is much like distribute direc-
tive. Variables specified after stream should be arrays or
pointers to array elements. stream is used to indicate that
these arrays are accessed in a stream pattern. Programmers
can use rate clause to specify number of elements accessed
in an iteration.

Like distribute directive, stream directive also maps
shared data to core-local memory. Instead of dividing the
whole array, stream directive maps the shared array by
windows, one window for one chunk of the parallel loop.
If copyin is present, data in the next window will be
copied into core-local memory before each chunk, and if
copyout is present, data in the previous window will be
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Figure 7. Compilation process of OpenMDSP application in OMDPFS.

written back after each chunk. stream directives change the
default chunk size of parallel loop. If the chunk size is not
specified in schedule clause, the default chunk size is defined
by implementation. Implementation of OpenMDSP should
guarantee core-local memory is able to carry each window.
Fig. 6 gives an example of stream clause.

Although distribute and stream act in a similar way, their
design goals differ. stream is good at boosting performance
for arrays too big to distribute into core-local memory. If
an array is accessed in several parallel loops, distribute is a
better choice.

IV. DESIGN AND IMPLEMENTATION

A. Overview of Compilation Process

Fig. 7 shows the compilation process of an OpenMDSP
application in OMDPFS. For a OpenMDSP source file
named a.c, the driver of our OpenMDSP compiler first
feeds it into C preprocessor (CPP). The output of CPP
is the input of OMDPC, the source-to-source OpenMDSP
compiler of OMDPFS. OMDPC transforms OpenMDSP
directives into bare C code, which is fed into Starcore C
Compiler (SCC) and the assembler (AS). SCC and AS are
tools in FreeScale MSC8156 SDK. The output of AS is the
relocatable object file a.o.

Besides, OMDPC generates another file, a.p, which con-
tains summary information of a.c. OMDPLD synthesizes
these summary files and generates _global.c, the global
data file. We will discuss content of the global data file in
Section IV-C.

The driver calls the linker to link all object files together
with LIBOMDP and UniDSP library, finally generate the
executable image. LIBOMDP is the runtime library of
OMDPFS. It is based on UniDSP, a DSP operating system



developed and internally used by Huawei Technologies Co.
Ltd. At runtime, each core load the same executable image
for execution, this is due to the SPMD nature of OpenMP.

OMDPC and LIBOMDP are primary parts of OMDPFS,
while the header file omp.h, OMDPLD and the link control
file are also provided by OMDPFS.

B. Overall Design

1) Fulfill the Execution Model: In UniDSP, task is the
basic scheduling unit. A UniDSP task can only run on the
core which creates it, and never migrate to other cores. In
OMDPFS, we map OpenMDSP threads to tasks on different
cores.

For each core which loads the OpenMDSP image, we
create one task to perform the job of one OpenMDSP thread.
Entry of this task is a function in LIBOMDP. Because all
cores execute the same image, LIBOMDP decides what
to do by ID of current core. Task running on core with
the least ID is treated as the master thread. In this task,
the transformed entry function of application is executed at
startup. Tasks running on other cores pend on a semaphore
until the master thread encounters a parallel region and post
the semaphore to notify them.

2) Fulfill the Memory Model: As stated before, Open-
MDSP inherits the memory model of OpenMP, which is
a relaxed-consistency, shared memory model [5]. In multi-
core CPU and SMP, since cache coherence protocols guar-
antees sequential consistency for memory operations, which
is stricter than relaxed-consistency, it is trivial to fulfill
OpenMP memory model.

FreeScale MSC8156 does not keep cache coherence
among L1 and L2 cache of different cores. It provides
instructions to invalidate specified data in cache. One in-
tuitional method to fulfill the relaxed-consistency model is
invalidating data at each flush operation. However, compiler
cannot always analyze what needs to invalidate accurately.
Using conservative analysis result may usually cause to
invalidate all shared data, which is a time consuming op-
eration.

Because of the considerations stated above, we disable
cache for shared sections to fulfill the memory model of
OpenMP. Certainly this causes a decrement of performance.
Extensions of distributed array and stream access can reduce
the usage of shared memory, which makes the performance
is acceptable under most situations. In Section V we have a
measurement for performance affected by cache.

C. Transformation Strategy

OpenMP implementation method is well developed for
CPU [7], [8]. Our transformation strategy inherits from
implementation for CPU in many aspects, like parallel region
outlining, transformation of work-sharing constructs and
synchronization constructs, etc. In this chapter, we only
focus on the differences and tricky points.

Example code
1 void foo() {
2 int a, b, c;
3 ...
4 #pragma omp parallel private(a) firstprivate(b)
5 {
6 ...
7 }
8 }

......
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variables:

a, b

private 

variables:

a, b

......

......

temporary 

shared 
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Figure 8. Illustration of shared data transformation.

1) Transformation of Shared Data: As stated in Section I,
one critical problem is how to deal with shared auto vari-
ables. By default auto variables is placed on stack, which
resides in core-local memory. To solve the problem, we
create a shared stack on M3. OMDPFS puts two kinds of
auto variables on shared stack:

• Auto variables shared by at least one parallel region:
OMDPFS puts these variables on shared stack in its full
life cycle. We call these variables as permanent shared
variables.

• Auto variables which is not shared by any parallel
region, but read or written by worker threads, for
example, variables listed in firstprivate and reduction
clauses. OMDPFS puts these variables on stack in core-
local memory initially, and copies its value to shared
stack before entering parallel region (for firstprivate and
reduction) or copies the value back to private stack after
exiting parallel region (for reduction). We call these
variables as temporary shared variables.

Fig. 8 shows an example code and illustrates the layout
of private stacks and shared stack. a is a private variable
and only resides on private stacks. b appears in firstprivate
clause, so it is a temporary shared variable, which resides
in private stack of master thread initially, and OMDPFS
copies its value to temporary shared frame before the parallel
region. Worker threads use its value to initialize its private
version. c is a permanent shared variable and only resides on
shared stack. In master thread, shared variables are accessed
by the pointer to current frame in shared stack. The frame
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Figure 9. Illustration of transformation for distributed array.

pointer of shared stack is passed to worker threads during
execution of a parallel region, so worker threads can access
shared variables by that pointer.

2) Transformation of distribute and stream Directives:
For each array or pointer specified in distribute directive,
a corresponding local pointer is created and initialized by
a LIBOMDP function, __omdp_distribute(). All ref-
erences of the original array or pointer inside the statement
followed by the distribute directive are replaced by the local
pointer.
__omdp_distribute() allocates M2 memory for lo-

cal duplication of given array. The value assigned to the
local pointer is not the first address of the local duplication,
but the address which pretends to be the first element of the
whole array in M2. As illustrated in Fig. 9, arr[] is an
array with 12 elements, and the main section for one thread
of arr[] consists of arr[6] and arr[7]. The replacing
pointer local_s is assigned by the 6th elements before the
allocated main section, so elements in the main section can
be accessed by its original index.

Arrays and pointers specified in stream directives are
handled in the same way as distribute before each chunk
of the parallel loop.

3) Transformation of Data Placement Directives:
FreeScale MSC8156 SDK provides “section” attribute, a
kind of C extension, to map variables to specified section.
In OMDPFS, we predefine three sections in our link control
file, which is placed in M2, M3 and DDR respectively.
OMDPC deals with shared variables on M3 or DDR and
threadprivate variables on M2 by inserting corresponding
attributes. For threadprivate variables on M3 or DDR,
OMDPC replaces them with pointers on M2 which point
to their original type. These pointers will be initialized by
the global data file.

4) Content of Global Data File: Global data file contains
a function __omdp_global_initialize(), which
will be called by LIBOMDP during initialization.

LIBOMDP provides a function to allocates memory
on M3 and DDR for threadprivate variables and ini-
tializes these pointers. OMDPLD generates code in the
__omdp_global_initializes() to call this function
to initialize these threadprivate variables.

OMDPC assigns one critical handle for each name of
critical region and generates code to call LIBOMDP func-
tions for critical directive with its critical handle. All
critical handles are defined in the global data file, and
__omdp_global_initialize() contains code to ini-
tialize these critical handles.

D. Source-to-source Compiler

We adopt Cetus [9], a source-to-source compilation frame-
work written in Java as our infrastructure. OMDPC is
built based on the C parser and intermediate representation
(IR) provided by Cetus. The C parser in Cetus is based
on ANTLR [10], a LL(k) parser generator. We add new
kinds of IR nodes to represent OpenMDSP directives and
clauses, extend the parser and write phases for OpenMDSP
transformation based on strategies discussed in Section IV-C.

E. Runtime Library

We write LIBOMDP by C language with extension pro-
vided by FreeScale MSC8156 SDK. LIBOMDP depends on
UniDSP for low level operations.

LIBOMDP is responsible to manage the shared stack.
The shared stack is implemented as a linked list of memory
blocks. Memory blocks are allocated from the heap on M3.
When pushing a new frame into the stack, LIBOMDP tries
to allocate space in the last node. If the available space is not
enough, a new memory block is created and appended in the
linked list. When a frame popping operation makes a block
empty, the memory block is not freed at once. LIBOMDP
merges several empty blocks to a bigger block when any
empty block is to be used again. After a few operations, the
linked list tends to be stable and with little fragment, and
pushing and popping operations become very efficient.

V. EXPERIMENTAL RESULTS

Nine benchmarks, as shown in Table I, are chosen to eval-
uate OMDPFS. Among them, FFT, CE, MED and DQAM
are kernels in the critical stages of the LTE base station
uplink, as stated in Section I-A. Normal LTE data size is
chosen for the input and output dataset, both of which can
be fitted into the M3 memory.

CVDP, MP and FIR are other kernels widely used in DSP.
The input is designed to fit into the M3 memory. MPL and
FIRL is similar with MP and FIR, but require memories
beyond the M3, thus DDR is used to hold most of the data.

All benchmarks are parallelized based on legacy sequen-
tial code. For each benchmark, no more than 10 OpenMDSP
directives have been used. FIR and MP utilize the extended
distribute and for respect directives. For benchmarks with
large data sets, FIRL and MPL utilize stream directive to
improve the performance.

All benchmarks are compiled by OMDPFS, and optimized
at O2 level using SCC. Speedups, as shown in Fig. 10, are



Table I
BENCHMARKS

ID Application Name Data Size
FFT Fast Fourier Transform signal length: 1024
CE Channel Estimation signal length: 1024

MED MIMO Equalizer & Decoder signal length: 1024
DQAM Demodulation of 64 Quadrature signal length: 1024

Amplitude Modulation
CVDP Complex Vector Dot Production vector size: 4096

MP Matrix Production 64× 64× 64
FIR Finite Impulse Response Filter signal length: 2048

response order: 256
MPL Matrix Production (Large data set) 512× 512× 512
FIRL Finite Impulse Response Filter signal length: 1048576

(Large data set) response order: 256
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Figure 10. Speedups of each benchmark, normalized to performance of
serial version with cache enabled.

derived using 1 to 6 parallel threads, normalized with the
run time of the serial versions with cache enabled.

With one thread, the average speedup is 0.9, with the
worse case speedup of 0.874. With six threads, 7 out of
9 benchmarks have achieved a speedup of 5+. The other
two, FFT and CE, have achieved 4.34 and 3.89 speedup
respectively.

The poor speedup of FFT is due to the irregular memory
access pattern, which prevents it from utilizing the dis-
tributed array. CE is constituted with several small loops,
each of which consumes a small portion of the total run
time. The overhead of management becomes dominant when
more threads are used, leading to its relatively flat speedup
curve.

Additionally, we manually parallelized all these bench-
marks and carefully tuned the performance to explore the
potential of the parallelized code. The performance com-
parison between two versions is shown in Fig. 11. Using
OMDPFS to compile, CE and CVDP suffer from significant
overhead incurred by the runtime library, resulting in a
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Figure 11. Comparison OpenMDSP performance with manually paral-
lelized and optimized program running with 6 threads. Running time is
normalized to running time of manually parallelized programs of each
benchmark.

20% performance gap with the manual version. FFT also
loses by 10% because it has a parallel inner loop, which
produces noticeable loop management overhead. For some
benchmarks (FIR, FIRL and MP), OMDPFS even wins the
performance against its manual counterparts. This is caused
by some subtle fluctuations caused by the compiler and
the underlying hardware. For example, OMDPFS outlines
parallel regions, which can affect register allocation.

In our benchmarks, several can use distribute, for respect
and stream directives when writing parallel code. Fig. 12
compares the performance with and without these directives.
Among all benchmarks, FIR and MP benefit the most
from the distributed array because they can have excessive
reuses of the array elements. In MED, each element of
the distributed array is only used twice, thus it benefits
less from distribute and for respect directives. In CVDP,
distributed array even harms the performance because there’s
no reuse for each element. stream directive brings significant
performance improvements for FIRL and MPL, which can
also be credited to the array element reuses.

Overall, the extended distribute, for respect and stream
directives are beneficial for applications with reusable array.
But with little or no data reuse, they could also carry
opposite effects.

VI. LIMITATION AND DISCUSSION

In this paper, we use extended OpenMP to express data
parallelism and use vendor SDK to support task/pipeline
parallelism. While this combination is a deliberate design
decision whose advantage is to be able to reuse current
protocol code and incremental adoption, the disadvantage
of this design is that it hurts portability. It is obvious that
porting the code from one vendor’s DSP to another’s would
not be easy since the task/pipeline parallelism is written with
vendor SDK’s. But using OpenMP still helps portability
between different generation products of the same vendor
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Figure 12. Comparison of running time by varying usage of distributed array or stream. Running time is normalized to one thread without using any
extension.

where most vendor SDK remains unchanged and only the
number of cores or size of memory hierarchy changed.

An interesting follow-up question is: Can OpenMP alone
be extended to program multi-core DSPs? What are the
missing features of the OpenMP programming model? Our
opinion is that a complete programming model for multi-
core DSP must support all three kind of parallelism: task,
pipeline and data parallelism efficiently. Although OpenMP
3.0 supports task parallelism, but it still does not support
pipeline parallelism well. Thus we think it is not for
OpenMP to serve as a complete programming model for
multi-core DSP yet.

VII. RELATED WORK

OpenMP [5] is an industry standard parallel programming
model. During the last ten years, it has been implemented
in most mainstream compilers for CPU like GCC [7],
Intel C Compiler [11], Open64 [8], Microsoft Visual C++.
Researchers also investigated techniques for optimization
OpenMP implementation on multi-core CPU and SMP [11]–
[14]. OpenMP implementation technology is well developed
for CPU.

OpenMP has also been implemented on some architec-
tures other than general purpose CPUs. There are several
OpenMP implementations for Cell [15], [16], GPGPUs [17],
[18] and Software Scalable System on Chip(3SoC) [19],
[20]. OpenMP is extended in these works to support both
complex memory hierarchy and heterogeneous system is-
sues. Regarding the memory hierarchy directives, the data
placement directive in OpenMDSP share some common
ideas with the data mapping clause in [18], but distributed

array and stream access directives are unique comparing
these works.

Many other programming models have also been investi-
gated for DSP and other Multi-Processor Systems-On-Chip
(MPSoCs) architecture, such as StreamIt [4], SoC-C [3],
OSCAR [21], [22] and MPSoC Application Programming
Studio (MAPS) [23]. We have discussed the strengths and
weaknesses of StreamIt in Section I-B so we skip the
discussion of it here. SoC-C [3], OSCAR and MAPS [23] are
all good at task/pipeline parallelism support but lacks high
level abstractions for data parallelism. We think OpenMDSP
is complementary with these works to express the data
parallelism inside a task.

Regarding the portability of programming model, re-
searchers also proposed a retargetable parallel programming
framework for MPSoC [24]. They designed common inter-
mediate code (CIC) and developed a framework to map task
codes to CIC. They used XML file to describe relations
between tasks, and Message Passing Interface (MPI) and
OpenMP can be used in a task. Currently, the framework
translate OpenMP to MPI code.

VIII. CONCLUSIONS

Programming multi-core DSP systems is important yet
challenging. The key problem we address in this paper is
to deal with core-local memory and non-cache coherent
shared memory with high-level directives. Our design and
implementation show that these memory hierarchies can
be managed effectively with just a few extensions to the
OpenMP 2.5 standard. We expect that this work can motivate
more investigations on programming these memory hierar-



chies which is critical to the success of future multi/many-
core systems.
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