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ABSTRACT
The emergence of cloud services brings new possibilities for
constructing and using HPC platforms. However, while
cloud services provide the flexibility and convenience of cus-
tomized, pay-as-you-go parallel computing, multiple previ-
ous studies in the past three years have indicated that cloud-
based clusters need a significant performance boost to be-
come a competitive choice, especially for tightly coupled par-
allel applications.

In this work, we examine the feasibility of running HPC
applications in clouds. This study distinguishes itself from
existing investigations in several ways: 1) We carry out a
comprehensive examination of issues relevant to the HPC
community, including performance, cost, user experience,
and range of user activities. 2) We compare an Amazon
EC2-based platform built upon its newly available HPC-
oriented virtual machines with typical local cluster and su-
percomputer options, using benchmarks and applications
with scale and problem size unprecedented in previous cloud
HPC studies. 3) We perform detailed performance and
scalability analysis to locate the chief limiting factors of
the state-of-the-art cloud based clusters. 4) We present a
case study on the impact of per-application parallel I/O
system configuration uniquely enabled by cloud services.
Our results reveal that though the scalability of EC2-based
virtual clusters still lags behind traditional HPC alterna-
tives, they are rapidly gaining in overall performance and
cost-effectiveness, making them feasible candidates for per-
forming tightly coupled scientific computing. In addition,
our detailed benchmarking and profiling discloses and ana-
lyzes several problems regarding the performance and per-
formance stability on EC2.
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1. INTRODUCTION
Cloud computing platforms have gained significant popu-

larity in the past several years, especially among small busi-
nesses who view cloud services a flexible, powerful, conve-
nient, and cost-effective alternative to owning and manag-
ing their own computing infrastructure. In the HPC (High
Performance Computing) community, on the other hand,
a similar trend of paradigm shift has not yet established.
While IaaS (Infrastructure as a Service) clouds easily enable
users to acquire a set of nodes and set up a virtual cluster,
supercomputers (mainly located in large research laborato-
ries, supercomputing centers, and universities) and small- to
medium-sized “local” clusters continue to be the overwhelm-
ing mainstream platforms for parallel program developers
and users.

There have been several studies to evaluate the promise of
cloud platforms for HPC users since 2008 [10,12,14,19–21,26,
30,34,38]. The consensus reached appears to be that cloud-
based clusters need a significant (an-order-of-magnitude or
more) performance improvement to become a competitive
choice for MPI-style parallel applications. However, such
results were obtained before Amazon EC2, the leading IaaS
provider and the most evaluated cloud platform, released
cluster compute instances (CCIs) in July 2010 [2, 13]. The
CCI platform was designed to explicitly target HPC ap-
plications with dedicated physical node allocation, pow-
erful CPUs, and improved interconnection. With a test
conducted by Lawrence Berkeley National Laboratory re-
searchers, a 7040-core run placed Amazon CCIs at the 231st
on the most recent Top500 [35] list (November 2010).

Does this change the landscape of running tightly coupled
parallel applications on clouds? The answer is not obvious,
as it is well known that Linpack numbers do not translate
into application performance, which depends on the compo-
sition and pattern of computation, communication, and I/O
within each individual parallel application.

Besides performance, there are many more factors in-
volved in HPC users’ choice of platforms. Examples include
cost, performance stability, ease of management and job sub-
mission, capability of interactive job execution, instant re-
configuration of clusters, performance isolation between con-
currently running jobs, and the impact of root level access
in HPC related research and development activities. These



issues have hardly been assessed in existing cloud HPC stud-
ies.

Considering that current commercial and research clouds
offer users only a small number of instances for contruct-
ing virtual clusters, we search for the answer to a more
specific question: with the new cloud infrastructure (such
as the Amazon EC2 CCIs) specifically targeting HPC, does
cloud computing become a viable alternative to owning and
using small- or medium-scale clusters? We focus on tightly-
coupled parallel programs for two reasons. First, such work-
loads are the mainstream consumers of traditional HPC re-
sources. Second, this type of parallel computing is more
challenging for public clouds and is therefore where the
value and potential of cloud computing are mostly unde-
cided. In contrast, multiple existing efforts have demon-
strated the competitiveness and cost-effectiveness of using
public clouds for loosely-coupled bags of tasks [18] and work-
flows [9, 15,20,23,37].

To answer the above question, we conduct a comprehen-
sive examination of issues related to running tightly cou-
pled parallel applications on commercial cloud platforms.
Our qualitative discussion is accompanied by extensive per-
formance benchmarking and detailed quantitative perfor-
mance/cost analysis. This work distinguishes itself from
past cloud HPC evaluation work in the following aspects:

• We perform comprehensive benchmarking to assess
the newly available HPC-oriented Amazon EC2 CCI
platform, with experiments to assess its computation,
communication, and I/O capability. In addition, we
monitor and report performance variability during our
benchmarking. Compared to prior published results,
our measurements reveal a more positive picture on the
performance and scalability of running tightly coupled
parallel programs on public clouds.

• We perform detailed performance analysis through
communication profiling to locate the sources of scal-
ability problems on EC2 and use a local InfiniBand-
connected cluster with similar compute hardware as a
reference system. Our investigation brings several in-
teresting observations regarding parallel program exe-
cution on the EC2 clouds, such as that communication
may induce computation load imbalance and that la-
tency, rather than bandwidth, is the major limiting
factor contributing to the inferior communication per-
formance on EC2.

• To our knowledge, this is the first study that evalu-
ates parallel I/O with different file system setup for
MPI programs on cloud platforms. Our experiments
demonstrate that the unique configurability offered by
cloud systems can produce significant performance im-
pact on I/O-intensive applications.

• Based on our performance benchmarking results and
the acquisition/maintenance cost for our reference
cluster, we conduct a quantitative analysis to compare
the cost of relying on public clouds vs. owning and
using in-house clusters.

The rest of the paper is organized as follows. Section 2
gives an overview and qualitative discussion on issues related
to running tightly coupled parallel applications on clouds
and local clusters. Section 3 presents performance bench-
marking results obtained from Amazon EC2 CCIs and our

reference cluster, as well as detailed performance and scala-
bility analysis. Section 4 gives a quantitative cost analysis,
based on the relative performance between EC2 and the ref-
erence cluster. Section 5 discusses related work and finally,
Section 6 concludes the paper.

2. OVERVIEW OF CLOUD HPC ISSUES
In assessing the suitability of cloud platforms for paral-

lel computing, one fact seldom brought to attention in past
cloud evaluation is that HPC users do not have a single mode
in using parallel computing resources. The same users typi-
cally go back and forth among several stages of the scientific
computing cycle, including development/testing, production
executions, and pre- or post-job scientific data analysis. In
addition, users have different objectives and requirement
when they use parallel platforms to conduct computing re-
search. For each of these usage modes, people have different
computing behavior, priorities, and constraints. Therefore,
in this work we need to consider the unique challenges and
opportunities offered by public clouds for common HPC ac-
tivities on small- or medium-scale clusters. In the following,
we give brief overview discussion on related issues, which is
to be complemented by quantitative analysis in Section 3
and Section 4.
Performance: Performance is the ultimate motivation and
goal driving parallel computing, and is a key parameter to
consider in the cost comparison regarding clouds’ competi-
tiveness. Public clouds such as Amazon EC2 provide pow-
erful computing hardware. It has been shown in multiple
prior studies that single-node performance on the cloud in
executing HPC workloads is on par with traditional clusters
and virtualization brings negligible overhead [12, 26, 38, 40].
The interconnection network, on the other hand, is consid-
ered the major reason for the performance degradation and
lack of scalability as observed in prior research [12,14,19,38].

The new Amazon CCIs are intended for HPC and these
nodes are interconnected with 10 Gigabit Ethernet, rather
than Gigabit Ethernet for the traditional classes of in-
stances. However, it is hard for EC2 to match the commu-
nication performance of clusters using InfiniBand, the over-
whelmingly popular selection for HPC today. Section 3 re-
ports our measurement results from EC2 CCIs and compares
them with those from local InfiniBand connected clusters.

Performance stability is a closely related issue. While it
is less important for code development and correctness test-
ing, performance stability or predictability is crucial for long
production runs, where the performance directly translates
into costs to the users. High performance variability also in-
creases the difficulty in performance benchmarking, tuning,
and optimization.

Another related metric is the end-to-end turn-around time
of parallel jobs. Clouds offer a unique advantage of near-
interactive execution, where it generally takes no more than
tens of seconds to acquire the requested instances and min-
utes to finish the environment configuration. Once setup,
jobs can be run in an interactive manner. The elimination
of queue waiting time can greatly improve user experience
and in particular, the productivity of program development,
testing, and debugging.
Cost and pricing: The cost of public clouds is straight-
forward and quite similar to how supercomputers charge
users: the money (or service units) charged for a job is
proportional to the product of the total run time and the



number of instances (nodes) allocated. The cost of owning
and managing a local cluster, on the other hand, is quite
complicated and concerns expenses for management, main-
tenance, space rental and energy. In Section 4, we carry out
a rather simplified quantitative cost analysis using hardware
cost, which under-estimates the local cluster’s overall cost of
ownership.

The relationship between cost and performance is more
sophisticated than indicated by the pricing policy. When
resource is limited, a physical cluster tends to be shared by
more people within the same organization. Increased clus-
ter utilization lowers actual cost, but produces longer queue
waiting time as well as higher performance variability. Espe-
cially, bursty workloads often occur when members sharing
the cluster have similar work patterns, caused by their com-
mon affiliation and deadlines (such as for software release
or research paper submission). The elasticity of on-demand
public clouds will likely mitigate this problem, where a much
larger amount of computing resources is aggregated and the
workload will be amortized over a larger and more diverse
user community.
Configurability: Clouds provide individual users with the
capability to customize their cluster instances, a possibil-
ity not afforded by traditional clusters. This is particularly
meaningful for settings such as parallel file system configu-
ration, where users can choose different parallel file systems,
deploy a different numbers I/O servers, and use different disk
configurations according to the needs of each individual ap-
plication they run. Our results in Section 3 demonstrate the
advantage of this capability. Also, the configurabity offered
by clouds brings unique opportunities to parallel comput-
ing researchers, who would not have the access privilege to
deploy their new or modified system software or tools.

3. PERFORMANCE EVALUATION AND
EXPERIENCE

We conducted extensive performance benchmarking and
comparison using the Amazon EC2 CCIs and local
InfiniBand-connected cluster. The programs used in our
evaluation include the NAS NPB benchmarks [27] (including
the BTIO parallel I/O benchmark) and three real-world ap-
plications with different computation, communication, and
I/O patterns. In addition, we ran micro-benchmarks such as
the Intel MPI Benchmark [17] and IOR [33] to help us un-
derstand the performance behaviors observed in the macro-
benchmark and applications. Finally, we report the perfor-
mance variance collected in our experiments.

3.1 Platform Setup

3.1.1 Amazon EC2 CCI
In our cloud experiments, we used the HPC-oriented Ama-

zon EC2 Cluster Compute Instances (CCIs), which became
available in July 2010. Each CCI has 2 quad-core Intel Xeon
X5570 ”Nehalem” processors, with 23GB of memory. Each
instance will be allocated to users in a dedicated manner,
unlike those in most other EC2 instance classes (where two
users may be allocated virtual machines sharing the same
underlying physical node). The instances are interconnected
with 10 Gigabit Ethernet.

Each instance can access three forms of storage: (1) the
local block storage (“ephemeral”) of 1690GB capacity, where

user data are not saved once the instances are released, (2)
off-instance Elastic Block Store (EBS), where volumes can
be attached to an EC2 instance as block storage devices,
whose content persist across computation sessions, and (3)
Simple Storage Service (S3), Amazon’s key-value based ob-
ject storage, accessed through a web services interface, which
is designed more for Internet or database applications and
lacks general file system interfaces needed in HPC programs.
As HPC users is accustomed to viewing the shared or par-
allel file system available on clusters and supercomputers
as a “scratch file system” not intended for long term data
storage, in our application and I/O experiments we evaluate
only the ephemeral disks, which provide higher performance
than EBS devices. This is also due to that we have experi-
enced several service interrupts when using EBS.

In our tests, we use the cluster instances Amazon Linux
AMI 2011.02.1, the Intel compiler 11.1.072, and Intel MPI
4.0.1. The default compiler optimization level is -O3.

3.1.2 Local Clusters with IB Interconnection
For comparison, we also ran experiments on a newly pur-

chased local Linux cluster. This cluster (also referred to
as IB-Cluster interchangeably later) has compute hardware
comparable to the EC2 CCIs, with 2 Intel Xeon X5670 6-core
processors on each compute node. The nodes have 32GB
memory each and are interconnected via QDR InfiniBand
network. NFS is used as the shared file system. The Oper-
ating system installed is Red Hat Enterprise Linux 5.4 and
the same compiler and MPI library as on the cloud platform
are used. Note that although the cluster has different inter-
connection from the EC2, our comparison between the two is
meaningful as it helps to gauge the performance/cost trade-
off for HPC users contemplating switching to using clouds -
if they acquire an in-house cluster today, it will very likely
have IB connection.

3.2 The Intel MPI Benchmark Results
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Figure 1: The performance for MPI_Allreduce and
MPI_Alltoall on EC2 platform.

For tightly coupled parallel applications, communication
performance is crucial to their overall performance. We
use The Intel MPI Benchmark(IMB) to evaluate the com-
munication performance of Amazon EC2 CCIs and local



InfiniBand-connected cluster.
In Figure 1(a), the Ping-Pong results show significant per-

formance gap on the message latency between Amazon EC2
CCIs and IB-Cluster,especially when the message size is
small. For example, when the message size is 1 byte, the
message latency is 50us in Amazon EC2 CCIs while only
1.42us in IB-Cluster. When the message size is larger, the
performance gap becomes smaller, but still significant.

We show results of MPI_Allreduce for both small mes-
sages (4 Byte) and large messages (1 MB) in Figure 1(b)
and (c) respectively. For both sizes, the IB-Cluster outper-
forms Amazon EC2 CCIs significantly and the gap widens
rapidly when the number of processes increases. In Fig-
ure 1(d), we also show MPI_Alltoall results for a moderate
message size (64KB),1 which demonstrate an up to 10× per-
formance difference. Other collective communications show
similar behaviors and we omit related results due to the
space limit.

From the IMB testing, we have the following observations:
1. Compared with previous EC2 instances which are con-

nected with GbE, the 10GbE improves the bandwidth
between cloud instances significantly. But for the per-
formance of Amazon EC2 CCIs with 10GbE intercon-
nects still fall 10 times slower than the state of art
InfiniBand network.

2. The latency of Amazon EC2 CCIs for small messages
are far worse, about 30 times more than InfiniBand,
which indicates that applications with small messages
may not be expected to have good performance in the
current Amazon EC2 CCIs yet.

3.3 NPB Results
The NASA Parallel Benchmark(NPB) includes 8 bench-

mark programs derived from computational fluid dynamics
(CFD) applications.We run both class C and class D for each
of the NPB programs, both up to 128 processes. Due to the
space limit, here we only include the class D results, which
are more representative of application runs enabled by the
larger capacity of today’s parallel machines (class C results
and analysis can be found in our technique report [36]).

B T C G E P F T I S L U M G S P
0

2 0 0

4 0 0

6 0 0

8 0 0

Ex
ec

uti
on

 Ti
me

 (s
)

N P B  t o t a l  r u n  t i m e  r e s u l t  f o r  c l a s s  D

 6 4 P  E C 2  C C I
 6 4 P  I B  c l u s t e r
 1 2 8 P  E C 2  C C I
 1 2 8 P  I B  c l u s t e r

Figure 2: NPB performance (class D)

The class C results show that the cloud significantly
lags behind: all benchmarks but EP run at least twice as
slow on EC2 as on the local cluster. FT and LU behave
the worst, with a 4-5 times slowdown, caused by intensive

1
64KB is also the message size used by NPB-FT in its MPI_Alltoall

operations, for class C runs with 128 processess.

MPI_Alltoall uses in FT and a large amount of small mes-
sages in LU. This result, combined with the fact that the em-
barrassingly parallel EP program obtains almost equal per-
formance on EC2 CCIs and the local cluster, suggests that
the overall inferior performance on EC2 is mainly caused by
its slow communication.

As expected, higher computation to communication ratios
in NPB class D runs result in better relative performance for
these benchmarks on EC2. Figure 2 portraits the overall ex-
ecution times of the NPB class D benchmarks, comparing
the performance on EC2 and the local cluster at two exe-
cution scales: 64 and 128 processes. On average, the local
cluster’s performance leads that of EC2 by 23.1% at 64 pro-
cesses and by 32.0% at 128 processes. For several programs,
such as EP and MG, SP, and CG at 64 processes, EC2’s
performance matches or closely follows the local cluster per-
formance. Even LU, which showed severe problems on EC2
in class C runs, has no more than 50% slowdown compared
with the local cluster. On the other hand, FT and IS fall far
behind, where again slow MPI_Alltoall and MPI_Alltoallv

operations take most of the time.
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Figure 3: The percentage of communication time for
NPB (class D)

To further confirm that communication is the main bot-
tleneck on EC2, we measured the percentage of execution
time spent on communication calls for each benchmark (Fig-
ure 3). We see clearly that the applications’ communication
intensity is correlated with the performance gap between the
EC2 and local cluster executions. This percentage is taken
by instrumenting the MPI library, so it does not account for
the communication time hidden by computation.

In summary, CPU- and memory-intensive applications
run well on cloud, while those with heavily message pass-
ing might fail to achieve good performance on the current
CCI platform though it provides better interconnection than
non-HPC-oriented instance classes. Our application results
also support this observation.

Also, while running NPB, we find an interesting issue
of load imbalance with benchmarks that heavily use non-
blocking communication operations, such as BT and SP.
From figure 4, we can see the curve EC2-CCI expresses regu-
lar fluctuation in computation time, which does not happen
on the local IB cluster (the tail of IB cluster is due to process
distribution, where the last four processes occupy a 12 core
node and have less cache conflict).

We investigated the cause for the imbalance and found
it was caused by TCP/IP protocol processing. Because the
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Figure 4: Load balance in SP between local cluster
and EC2 platform (OPT means the computation time
after optimizing the schedule strategy).

10GbE network interfaces used on EC2 CCIs do not support
TCP/IP offloading, TCP/IP protocol processing has to be
performed on CPU cores instead of network interfaces. The
default configuration of Linux would always deliver the in-
terrupts to the same pre-configured core, which will slow
down the computation assigned to that core and result in
load imbalance.

To verify this, we tried to modify the interrupt affinity
file to deliver the interrupt to another core. However, the
attempts always fail on EC2. This may be caused by certain
protection mechanisms in either the virtual machine or the
OS. We did not conduct further investigation as we found
another way to do this: scheduling the processes round robin
to a certain core. As seen in figure 4, the computation time
is more balanced if we schedule different processes to the in-
terrupt handling core every 5 seconds (the “EC2 CCI-OPT”
curve). According to figure 4, the computation is now more
balanced. Therefore, cloud developers should be more aware
of the overlapping strategy, as long as Amazon does not up-
grade the hardware to support communication offloading.

3.4 Parallel I/O Performance
HPC applications usually require a shared storage sys-

tem to hold application executables, input data and output
data. In practice, NFS [29] remains the dominantly popu-
lar choice for small and some medium-scale clusters, which
was chosen in most previous cloud HPC evaluation work.
On larger clusters and supercomputers, in contrast, there is
typically a parallel file system, such as such as GPFS [32],
PVFS [4], or Lustre [7], which are optimized for high parallel
I/O bandwidth, high concurrency in metadata and file data
accesses, and larger storage capacity. However, for clusters
and supercomputers alike, users usually have to stay with
the file system choice set at the equipment acquisition time
and will not be able to configure the shared or parallel file
system according to the needs of their specific applications.

To this end, clouds provide a unique opportunity for users
to perform customized parallel I/O at an application-by-
application, or even run-by-run basis. In our work, we build
both the PVFS parallel file system and NFS on the EC2
CCI platform to compare their performance. For the PVFS
file system, we use 1, 2, and 4 dedicated I/O servers, with
one of them doubling as the metadata server. For NFS, we
dedicate one instance as the file server and use the asyn-

chronous mode. The setup and configuration turn out to
be quite easy for both PVFS and NFS, each with a 2̃00-
line script. The file system setting (such as the number and
placement of PVFS servers) can be modified with a one-line
script modification, and such changes can be made during a
single execution session.
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Figure 5: Read and write bandwidth for NFS server
and PVFS server on EC2 CCIs platform.

We perform two classes of experiments. First, we use the
IOR micro-benchmark [33] to test the aggregate read and
write bandwidth of PVFS (using different number of I/O
servers) and NFS. In our experiments, each of the instances
run 8 parallel processes, reading and writing a 16GB single
file collectively with MPI-IO. The results are shown in Fig-
ure 5. In general, PVFS provides much higher read/write
bandwidths than NFS, even with the case of using only one
I/O server. As the number of I/O servers increases, the
PVFS aggregate bandwidth grows as expected, but saturate
with a rather small number of client (compute) processes,
such as 8 or 32. The unproportionally high write bandwidth
of PVFS with 4 servers is likely due to the increased com-
bined buffer capacity when more servers are used. We are
currently investigating the I/O performance to explain the
performance anomalies, such as the oscillation in the PVFS
4 server write performance.

Second, we analyze the performance for an I/O-intensive
parallel program, BT-IO, on both file systems. The problem
size we use is CLASS C and the I/O size is full SUBTYPE.
With this setting, all of processes append to a single file
through MPI-IO in 40 collective write operations, generating
a total output volume of about 6.4 GB. Figure 6(a) shows the
total execution time of BT-IO for both file systems, which is
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Figure 6: Execution time and Data rate for BT-IO
with PVFS server and NFS server.

consistent with the IOR results. In most cases, PVFS out-
performs the NFS server and generates a meaningful overall
program performance improvement. For example, with 121
processes, the total execution time is improved by 37% from
NFS by using PVFS with only one server. Note that this
configuration change does not bring additional cost to users.
Similarly, at 196 processes, using 2 PVFS servers will lower
the total execution time far enough to offset the cost of one
extra instance, which does not apply when we increase the
number of PVFS servers to 4. This shows that parallel file
system selection and configuration can generate significant
impact in optimizing I/O-intensive parallel applications, for
both performance and cost.

Figure 6(b) shows the data rate recorded inside the BT-
IO. In the BT-IO, the computation and I/O operations are
executed in the interleaved mode, so the I/O requests can
be buffered at the I/O server side. As a result, the data rate
recorded in BT-IO is larger than the one tested with IOR
benchmark, which is continuous I/O operations.

3.5 Application Results
We also performed testing on both cloud and local clusters

on three real-world applications: (1) POP [22], an ocean cir-
culation model simulation, which solves the three-dimension
primitive equations for fluid motions on the sphere and forms
the ocean component of the larger Community Climate Sys-
tem Model (CCSM), (2) Grapes (Global/Regional Assim-
ilation and PrEdiction System) [6], a numerical weather
prediction system developed by the Chinese Meteorological
Administration, and (3) mpiBLAST [8, 24], a parallel im-
plementation of the widely used NCBI BLAST (Basic Lo-

cal Alignment Search Tool) [28], which searches sequence
databases for similarities between a protein or DNA query
and known sequences. These applications have been evalu-
ated at a 10,000-core or larger scale on Tianhe-1A (Grapes),
Jaguar (POP), and Intrepid (mpiBLAST), the No. 1, No.
2, and No. 13 supercomputers on the current Top500 list.

In our experiments, we have found that the I/O-
intensive mpiBLAST scales well on EC2 CCIs, POP scales
poorly (mainly because of the large amount of 1 element
MPI_Allreduce), and Grapes, whose communication pattern
is similar to POP but with fewer messages and larger mes-
sage sizes, has scalability placed in between. The causes for
their scalability (or lack thereof) are similar to those as dis-
cussed in the NPB result analysis. Again, due to space limi-
tation, detailed application results and analysis are omitted
here, but included in the full report [36].

3.6 Performance Variability
With Amazon EC2 CCIs, each instance is used by one

user exclusively, which is different from the majority of other
instance classes. For this new cloud platform, the main dif-
ference with traditional HPC clusters comes from the in-
terconnection, shared off-instance storage, and the layer of
virtualization. In this work, we monitor the computation,
communication, and I/O performance for EC2 CCI platform
on different times of the day, for several days. In this set
of experiments, we first took measurements at fixed morn-
ing, afternoon, and evening points in two days, then ran-
domly repeated the tests before carrying out the other ex-
periments. The results are shown as the standard deviation
over the mean values of different measurements to measure
the performance variance. The larger this value is, the more
unstable of the system looks.
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Figure 7: The performance variance on EC2 CCI
platform.

Although the overall NPB performance results shown
previously had quite tolerable variances (see error bars in
the NPB figures), Figure 7 indicates that the communi-
cation performance still carries significant variability. For
MPI_Bcast, the performance is not stable only for large mes-
sages. For MPI_Allreduce, when the number of processes is



greater than 32, the performance represents large variance
for both small messages and large messages. Such large vari-
ance in communication may potentially bring higher syn-
chronization overhead and makes operations such as parallel
I/O harder to optimize.

We test the disk performance variance of read bandwidth
using the hdparm tool under Linux. In this set of exper-
iments, we care about variance in two dimensions: across
virtual devices created and attached to different instances,
and on the same device across multiple experiments (run at
six time points, one hour apart from each other). The results
are shown in Figure 7(d). There are 8 cluster instances, each
of which mounted one EBS disk and one ephemeral disk for
speed test once an hour. We found that each given instance
performs rather stably across a series of tests. On the other
hand, the virtual storage devices created and mounted si-
multaneously yield very different performance (across the
x axis). In particular, the “local” ephemeral disks show
surprisingly high variability. This indicates that it might
be challenging to build efficient cloud parallel file systems,
which typically stripe data across the virtual storage devices.

3.7 Reliability
During our intensive benchmarking on EC2 in a period

of four weeks in March and April 2011, we encountered no
availability issue with its instance computing resources or
the network communication infrastructure. On the other
hand, there was one time that the EBS volumes could not be
mounted at all. In addition, for several times we encountered
extremely poor EBS read/write bandwidths for hours. The
ephemeral devices, in contrast, are found to be much more
reliable.

4. COST ANALYSIS
Based on the performance results given in the previous

section, we conduct a rough cost analysis to compare the
cost of relying on cloud computing and that of owning an in-
house cluster. As our IB-interconnected cluster has similar
processor configuration and single-node performance with
the CCIs (see EP performance in Section 3), we use its ac-
quisition and operational expense in estimating the local
clusters’ cost. In our cost calculation we use the NAS NPB
benchmark performance, which was presented and discussed
in detail in the previous section.

As discussed in Section 2, the actual cost of local clus-
ters is related to its utilization level. For an in-house cluster
acquired as one unit and maintained for several years, the
higher the actual utilization level, the lower the effective
cost rate ($/hour). Therefore, we estimate target utilization
level, the utilization level a local cluster needs to operate at
to beat the cost of using EC2. More specifically, for each
benchmark Bi, we compute the minimum local cluster uti-
lization level UBi (assuming that Bi is the major workload
type on the local cluster), which results in a lower cost com-
pared to running Bi on the cloud.

Suppose the hourly rates of each instance/node on the
cloud and the local cluster are Rcloud and Rlocal, respec-
tively. Similarly the average execution times benchmarked
for Bi in the two environments are T cloud

Bi
and T local

Bi
. The

CCIs are charged at $1.6 per hour and the ephemeral disks

are free. Therefore Rcloud = 1.6. For the local cluster,

Rlocal
Bi

=
Clocal

365 · 24 · Y · UBi

, (1)

where Clocal is the total cost of purchasing and managing
the local cluster, assuming it is used for Y years.

Then to have

Rcloud · T cloud
Bi

≥ Rlocal
Bi

· T local
Bi

, (2)

We substitute Rlocal
Bi

with the right hand side in (1) and get

UBi ≥
Clocal · T local

Bi

365 · 24 · Y · 1.6 · T cloud
Bi

(3)

Expense item Amount

Dell 5670 Server (service included) $6508/node
InfiniBand NIC $612/node
InfiniBand switch $6891
SAN with NFS server and RAID 5 $36753
Hosting (energy included) $15251/rack/year

Table 1: Expense items used in calculating the cost
of local cluster

To estimate Clocal, we factor in the expense items based
on the market price and hosting charges for our local IB clus-
ter (acquired in March 2011), as listed in Table 1. Finally,
we consider the case where the local cluster is in service for
4 years, so Y is set to 4.
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Figure 8: Target local cluster utilization levels based
on NPB performance

Figure 8 gives the calculated target utilization level (UBi)
for each NAS NPB class D benchmark, based on the per-
formance results reported in Section 3.3. As the relative
performance between the cloud and the local cluster is dif-
ferent at various job sizes, we calculate UBi using the per-
formance numbers obtained at 64-process and 128-process
runs respectively.

Due to the weaker scalability of EC2 runs, the target lo-
cal cluster utilization levels derived from 128-process runs
are lower, ranging from 8.5% (IS) to 31.1% (EP), with an
average of 21.6%. 64-process runs generate a higher target
utilization level, ranging from 9.8% (IS) and 31.6% (EP),
with an average of 25.1%.



Based on our experience and observation, such utilization
levels may fall between the typical actual utilization rate
of research/development clusters and production- or semi-
production clusters. In addition, the above calculation is
biased against the cloud in several ways. First, in comput-
ing Ccloud, the local cluster cost, we did not include labor
cost in management and maintenance, which could be signif-
icant. Second, our calculation assumes a fixed performance
ratio between the cloud and local, while it is unlikely that
the cloud instance hardware configuration remains fixed for
4 years. Cloud hardware upgrades are usually free to users.
In contrast, a local cluster can only be upgraded with ad-
ditional investment. Third, the utilization percentage we
calculated is based on continuous usage (365 days, 24 hours
per day), without removing weekends or holidays. Finally,
a local cluster requires a substantial up-front investment for
equipment acquisition in the first place, while cloud usage
can be initiated and sustained with arbitrary amounts.

Considering the factors discussed above, we argue that
public clouds with HPC-oriented hardware has become cost-
effective to tightly coupled parallel program developers and
users, compared to owning and sharing in-house clusters.
At least, we see that even for the worst scaling applica-
tions (such as LU and FT), EC2 does not need an “order-
of-magnitude performance improvement” to become a viable
option for HPC users or organizations, as indicated by mul-
tiple previous studies. In addition, cloud-based clusters are
particularly competitive cost wise, if users’ major workloads
consist of development, testing, or debugging with a small
number of instances.

5. RELATED WORK
In the past three years there have been a wave of research

efforts to examine the feasibility of using public clouds for
high-performance or scientific computing. The great ma-
jority of these studies evaluated Amazon EC2, the leading
public IaaS platform, but with different focuses. Quite sev-
eral studies evaluated tightly coupled, MPI-style applica-
tions running on cloud platforms [10,12,14,19,26,30,34,38].
However, most of these efforts (especially earlier evalua-
tions) were very limited in several ways. First, most ex-
isting studies only tested microbenchmarks such as NAS
NPB [10, 14, 30, 38] and LINPACK [26]. Second, the ex-
periments were of very small scale, typically testing with
NPB problem size class A or B, and using fewer than 64
processes. Third, there lacks in-depth performance analy-
sis to help locate the reasons of the unsatisfactory parallel
program performance or scalability on clouds. Fourth, exist-
ing studies in this area seldom examined I/O performance.
With the only exception [10], the authors reported IOR and
BTIO results, but they seem to be obtained from sequential
runs and used a basic NFS setting. Last but not least, pre-
vious evaluations were carried out before Amazon provided
HPC-oriented cluster compute instances (CCIs).

Two more recent studies evaluated cloud performance
with real-world applications. Jackson et al. measured the
performance of seven applications from a parallel simulation
workload composition, used in NERSC to benchmark pro-
duction supercomputers, plus the HPCC benchmark suite.
The authors also carried out profiling to measure the per-
centage of run time spent on communication. However, it
is not clear how much of the cloud communication perfor-
mance problem is caused by the use of EC2 ml instances,

where physical nodes are not allocated in a dedicated man-
ner and heterogeneity is introduced by node sharing and dif-
ferent node types (three different CPUs were detected by the
authors). Also, there lacks scalability observation for the ap-
plications on either EC2 and the other local clusters/clouds
examined. He et al. carried out a case study with a NASA
climate prediction application [12], which confirms that in-
terconnection is the chief factor contributing to unscalable
cloud performance. The authors tested three public clouds
but did not give detailed analysis on the difference of per-
formance or scaling behavior on these platforms.

Up to now, most successful stories on using public clouds
for high performance computing come from the execution
of scientific workflows, or a large set of mutual-independent
tasks [9, 15, 18, 20, 23, 37]. This is to be expected as such
applications fall into the high-throughput computing cate-
gory. They use the cloud more like a distributed computing
platform, which is the primary use mode that public IaaS
clouds such as EC2 have been designed for.

Some of the cloud HPC performance studies mentioned
above conducted cost analysis (e.g., [20, 26, 30]), but were
more focused on comparing the cost of different modes in
setting up and running parallel applications or workflows.
Deelman et al. performed detailed study on the end-to-
end cost of executing the Montage astronomy workflow on
EC2 [9] and again focused on evaluating workload compo-
sition and configuration. Wang et al. investigated cloud
pricing schemes with traditional (commercial) cloud work-
loads [39], while in this work we discusses cloud pricing and
cost issues unique to running tightly-coupled parallel appli-
cations. Finally, very recently Carlyle et al. reported results
from an interesting comparison [3], which found that more
Purdue HPC users will find using EC2 more costly than us-
ing the local “community clusters”, where PIs pay lump sum
for access contracts. However, such community facilities are
subsidized by the university and are not available to the ma-
jority of users. As a side remark, this is currently the only
publication known to us to report performance results using
the Amazon EC2 CCIs since mid 2010 for HPC.

The concept of“virtual clusters”has been established prior
to the existence of commercial, public clouds. For example,
the use of virtual machines has been studied by researchers
for high performance computing [5,11,16], which explored or
designed concepts and mechanisms useful in current cloud
HPC practice. These earlier virtual clusters were typically
managed similarly as traditional batch systems. Recently,
projects such as the Nimbus Cloud at the University of
Chicago has examined the use of public cloud resources to
extend the capacity of local clusters [25]. In this paper, we
focus on the feasibility of HPC developers or users replacing
their physical cluster (or even supercomputer) usage with
pure cloud-based, pay-as-you-go computing.

Several prior efforts have investigated I/O and storage is-
sues in virtualized or cloud environments. Some of them
focused on long-term storage or inter-job or inter-task data
flow. For example, Juve et al. studied the performance and
cost of different storage options for scientific workflows run-
ning on Amazon EC2 [20]. Palankar et al. assessed the
feasibility of using Amazon S3 for scientific grid comput-
ing [31]. Abe et al. constructed pWalrus, which provides
S3-like storage access on top of the PVFS parallel file sys-
tem on an open-source cloud [1]. Yu and Vetter studied
parallel I/O in Xen-based HPC, but the environment used



only have virtualized compute nodes and the authors only
tested at most 16 processes [41]. To our best knowledge,
our work is the first to evaluate different parallel/shared file
system settings for parallel I/O on public clouds.

6. CONCLUSION
In this work, we conducted a comprehensive evaluation

of the recently released Amazon EC2 Cluster Compute In-
stances, which are intended for high-performance comput-
ing. We assessed the feasibility of replacing in-house cluster
ownership with public cloud usage for running tightly cou-
pled MPI programs, and report our evaluation results as well
as experience regarding a variety of relevant issues, such as
performance, scalability, performance variability, the impact
of customized per-job file system configuration, system reli-
ability, and cost.

Overall, our study reveals a picture considerably more
positive for running MPI applications on public clouds, com-
pared to previously published evaluation results. For many
typical HPC workloads, the cloud performance relative to
that using in-house InfiniBand-connected clusters justifies
the option of going for clouds as cost-effective, unless the in-
house cluster achieves a rather high utilization level, which
is often not the case. This, in addition to the well known
elasticity and flexibility in using cloud computing, can make
“HPC in the cloud” a viable solution for many individual
users and organizations.

Meanwhile, our investigation also confirms that the 10-
Gigabit Ethernet interconnection (provided by the EC2
Cluster Compute Instances as improved communication in-
frastructure) remains the chief problem in scaling MPI pro-
grams. Particularly, the high latency poses a more severe
obstacle and dramatically hurts applications come with a lot
of small messages. 10-Gigabit Ethernet interrupt handling
may also incur computation load imbalance when all the
cores are occupied by MPI processes. In addition, although
the overall performance variance observed in our benchmark
and application executions appear tolerable, the communi-
cation and virtual storage devices can suffer from significant
performance turbulence, which increases the challenges in
performance tuning and designing efficient parallel I/O so-
lutions.
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