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Abstract—
Feedback-directed optimization (FDO) is effective in improving application runtime performance, but has not been widely
adopted due to the tedious dual-compilation model, the difficulties in generating representative training data sets, and the
high runtime overhead of profile collection. The use of hardware-event sampling overcomes these drawbacks by providing a
lightweight approach to collect execution profiles in the production environment, which naturally consumes representative input.
Yet, hardware event samples are typically not precise at the instruction or basic-block granularity. These inaccuracies lead to
missed performance when compared to instrumentation-based FDO. In this paper, we use Performance Monitoring Unit (PMU)
based sampling to collect the instruction frequency profiles. By collecting profiles using multiple events, and applying heuristics
to predict the accuracy, we improve the accuracy of the profile. We also show how emerging techniques can be used to further
improve the accuracy of the sample-based profile. Additionally, these emerging techniques are used to collect value profiles, as
well as to assist a lightweight inter-procedural optimizer. All these profiles are represented in a portable form, thus they can be
used across different platforms. We demonstrate that sampling-based FDO can achieve an average of 92% of the performance
gains obtained using instrumentation-based exact profiles for both SPEC CINT2000 and CINT2006 benchmarks. The overhead
of collection is only 0.93% on average, while compiler-based instrumentation incurs 2.0%–351.5% overhead (and 10x overhead
on an industrial web search application).

Index Terms—Sample Profile, Feedback Directed Optimization, Performance Counter, Last Branch Record.
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1 INTRODUCTION

Many compiler optimizations, such as procedure inlining,
instruction scheduling, and register allocation benefit from
dynamic information e.g. basic block frequency and branch
taken / not-taken ratios. This information allows a compiler
to optimize for the frequent case, rather than using proba-
bilistically estimated frequencies, or assuming that all code
is equally likely to execute. Profiling is used to provide this
feedback to a compiler.

The traditional approach to profile-guided optimization
involves three steps. First, we compile the application with
special flags to generate an instrumented version of the
program (instrumentation build). Next, we run the instru-
mented application with training data to collect the profile.
Finally, we recompile the application using the profile,
which can help the compiler make better optimization
decisions (feedback-directed optimization (FDO) build).

Unfortunately, there are four shortcomings in this ap-
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proach. First, it requires compiling the application twice.
For applications with long build times, doubling the build
time can significantly degrade programmer productivity.

Second, the instrumentation and optimization builds are
tightly coupled, this prevents flexible use of the profile
data. For example, GCC requires that both builds use the
same inline decisions and similar optimization flags to
ensure that the control-flow graph (CFG) profiled in the
instrumentation build matches the CFG annotated with the
profile data in the FDO build. During the FDO build,
profiles are used for inline decisions. However, the compiler
cannot find a callsite specific profile to annotate the inlined
callees. Instead, it can only use the scaled callee profile to
annotate the cloned instances. In addition, GCC requires
that the source files remain unchanged between two builds.
However, observations indicate that many of the code
changes between releases are in the cold paths, and this
does not affect the behavior of the hot code. The tight
coupling between the two builds prevents the previous
profiles from being reused.

Third, collecting profiles requires an appropriate execu-
tion environment and representative input. For example,
profiling a transaction processing application may require
an elaborate database setup and a representative set of
queries to exercise the application. Creating such an en-
vironment and identifying a set of representative input can
be very difficult.
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Fourth, the instrumented profile collection run typically
incurs significant overhead (reported to range from 9% to
105% [5], [6], but has been observed to be as much as
10x on an industrial web search application) due to the
additional instrumentation code executed. While scaling
down inputs may ameliorate the problem, for the profiles
to be useful, they must accurately reflect the application’s
real usage. Crafting an input that is sufficiently scaled
down to facilitate fast and easy profiling while retaining
high fidelity to the real workload is difficult. The problem
is exacerbated by constant application changes potentially
making old profiling inputs inapplicable to new versions
of the application. Furthermore, the high runtime overhead
can alter the critical path of time critical routines, e.g., OS
kernel codes, for which getting an instrumentation-based
profile is not easily possible in the first place.

These limitations often lead developers to avoid FDO
compilation and forgo its associated performance benefits.
Several workarounds exist to make instrumentation-based
FDO easier to adopt. For example, binary instrumentation
can be used to decouple the instrumentation build and the
FDO build. However, since its overhead is significantly
higher than compiler instrumentation, binary instrumenta-
tion is hard to deploy in actual production environments.
Synchronous sampling [4], [24] using instrumentation has
been proposed to reduce overhead. However, it needs to
insert extra code to switch between the normal and the
monitoring states. The inserted code still incurs overhead
that is not acceptable for production systems.

To overcome these limitations, we propose skipping
the instrumentation step altogether, and rely instead on
sampling events generated by the performance monitoring
units (PMU) of modern processors to obtain estimated
execution profiles. The sample data does not contain any
information about the intermediate representation (IR) used
by the compiler. Instead, source position information in the
debug section of unstripped binaries is used to correlate the
samples to the corresponding basic blocks during the FDO
build.

Using sampling to collect profile, together with using
source position information to correlate profile has two key
benefits.

1) Since source position information is used to corre-
late the profile to the program being compiled, this
approach eliminates the tight coupling between the
instrumentation and FDO builds. Profiles collected on
older versions of a program can be used by developers
as long as the behavior of the hot code doesn’t change
and source file haven’t been changed too much, thus
eliminating the need for dual compilation in the nor-
mal work-flow. This benefit can also apply to binary
level instrumentation-based FDO.

2) The overhead of profile collection is significantly
lower since no instrumentation code is inserted, and
is typically in the range of 2% or less.

The low overhead of profiling together with a loose
coupling between the profiling build and the FDO build

offer compelling usage scenarios. For example, in an Inter-
net company, profile collection can occur by infrequently
attaching it to standard binaries running on production
systems. The data collected can be stored in a profile
database for future FDO builds. This usage model further
eliminates any potential discrepancy between profile input
data and actual usage patterns observed in the deployed
application. Since the profile is collected in the production
environment, real-world workloads become natural input
for the profile collection runs. Thus, the collected profile
has a very high fidelity to actual behavior, and programmers
do not need to manually forge any training input.

Using hardware performance monitoring events to es-
timate execution profiles is, however, not a panacea. To
prevent performance monitoring from slowing down the
processor’s execution, many tradeoffs are made in the
design of modern PMUs; these lead to imprecise sample
attribution. Specifically, the instruction address that the
PMU associates with an event is often not the true address
where the event occurred. To complicate matters further,
the distance between the instruction that caused an event
and the instruction to which event is attributed is typically
variable. Our experiments show that even when using ad-
vanced PMU features (e.g., Precise Event-Based Sampling
(PEBS) mode on Intel Core 2 processors), events aggregate
on particular instructions and are missing on others. While
these phenomena may not be problematic for performance
debugging, they create significant challenges for using
sample profiles in FDO. For example, when profiling values
of registers, if a target instruction never receives samples,
we are unable to collect the value distribution information
for that particular instruction.

In this paper, we present a sampling-based framework for
FDO. In traditional compilers, such as GCC and Open64,
FDO uses two types of profiles: edge/basic block frequency
profiles and value profiles, which are used to drive many
feedback directed optimizations. Our framework focuses
on both these profiles, and uses several different sam-
pling techniques to collect them. Though researchers have
proposed using PMU-based sample profiles to drive other
optimizations such as data prefetching [1], these techniques
are mainly adopted in dynamic optimizers, which are not
the focus of this paper. However, our framework enables
these optimizations to be easily adopted in FDO.

We first introduce using sampling approach to collect
edge profiles. We show the artifacts observed in sample-
based profiles, and propose two approaches to improve its
accuracy. Then, we show how sampling can be used to
derive value profiles. Finally we evaluates our approach.

We summarize the primary contributions of this work
below:

1) We build a framework to collect portable profiles in
a lightweight manner. We also build infrastructure in
the GCC compiler to effectively use these profiles.

2) We identify hardware effects that negatively influence
sample distribution. We propose a heuristic approach,
based on sampling multiple hardware events, that miti-
gates the systematic bias introduced by these hardware
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effects.
3) We propose algorithms that use branch history in-

formation to collect an edge/basic block frequency
profile. This information is used for indirect call pro-
motion, and to guide module grouping in a lightweight
inter-procedural optimizer.

4) We use precise event based sampling to collect value
profiles; and use program slicing to extend the sam-
pling scope to allow for more effective sampling-based
value profiling.

5) Finally, we present an evaluation of the efficacy of
the proposed approach. We present results from an
implementation of sampling-based FDO in the GC-
C compiler. Overall, we show that PMU sampling-
based FDO, combined with the proposed smooth-
ing heuristics, can achieve 92% of the performance
gains obtained using instrumentation-based FDO for
SPEC2000 benchmarks. However, sampling-based F-
DO, on average, incurs only 0.9% to 1.8% profiling
overhead as compared to the 90.5% profiling overhead
(2x to 10x on an industrial web search application)
incurred by compiler-based instrumentation.

The rest of the paper is organized as follows: Section 2
describes hardware event sampling and explains how it
can be used to generate the profiles for FDO compilation.
Section 3 shows the problems in using general sampling
approaches to collect frequency profile, and the heuristics
used to improve the accuracy. Section 4 describes the algo-
rithm to use branch information to get the frequency profile,
and how branch information can be used to assist a light-
weight inter-procedural optimizer. Section 5 describes how
to use precise event based sampling to collect value profiles.
Section 6 then describes the experimental evaluation of
PMU sampling-based FDO. Section 7 describes related
work in the area. Finally, Section 8 concludes the paper.

2 USING PMU-BASED SAMPLING FOR F-
DO COMPILATION
This section describes how sampling works with most mod-
ern performance monitoring units and how PMU sampling
can be used to guide feedback directed optimizations.

2.1 Hardware Event Sampling
The performance monitoring unit on a modern micro pro-
cessor is usually organized as a collection of counters that
can be configured to increment when certain hardware
events occur. For example, counters can be configured to
increment on each clock cycle, each time an instruction
retires, for every L2 cache miss, etc. The raw contents
of these counters can be dumped at program exit to get
summary information about how the program executed.
Alternatively, the counters can be used for sampling. In
this mode, the PMU is configured to generate an interrupt
whenever a counter overflows. When the interrupt triggers,
performance monitoring software can record the system
state (e.g., the program counter (PC), register contents,
etc.). This recorded data forms the sample profile for the
application.

2.2 Using the Profile in a Compiler
In the following parts of this paper, several methods are
used to collect the sample profile. Overall, the output of
these methods is a mapping from the binary instruction
to its corresponding profile, including frequency profile
and value profile. Because this mapping is maintained at
instruction level, we refer to it as instruction-level profile.
For the sample-based profile to be usable by a compiler,
the instruction-level profile must be converted into a profile
annotated onto the compiler’s intermediate representation
(IR). To achieve this, the instruction-level samples are
first attributed to the corresponding program source line
using the source position information present in the debug
information. The execution frequency for each source line
is stored in the feedback data file.

During the FDO build, a compiler reads the frequency
profile data to annotate the CFG. Each basic block consists
of a number of IR statements. The source line information
associated with the individual IR statements is used to
determine the list of source lines corresponding to a basic
block. The basic block sample count is then determined
by the frequency of source lines corresponding to it. The-
oretically, the frequency of all source lines corresponding
to a basic block should be the same. However, as will be
discussed in Section 6.2, source correlation can be skewed.
A voting algorithm (e.g., average or max) is designed to
assign the most reliable frequency as the basic block sample
count.

For the value profiles, if a source line is found to
contain possible value profiling optimization opportunities,
compiler reads in the corresponding value profile from the
instruction profile, and uses it to rebuild the histogram
information of the value and optimize the code.

By using source line information to record profiles, the
coupling between the binary used for profile collection and
the FDO build is greatly relaxed. This allows effective
re-use of the collected profiles. For example, when there
are minor source code changes between profile collection
and the FDO build, if the source code change does not
affect too much of the frequently executed code, the list of
source code changes (change-list descriptions) can be used
to update the profile recorded to better match the source
code being compiled with FDO. One thing to note, this
approach is not limited to the sampling-based FDO. The
profiles collected using binary instrumentation tools such
as PIN can also be represented in the same format to drive
a decoupled FDO build. However, because of the excessive
overhead incurred by instrumentation, it’s not chosen to
collect profiles in this paper.

2.3 Constructing Edge Profile
Due to errors and noise in sampling, the frequency profile
obtained via sampling may not be consistent. That is to say,
for a given basic block, its sample count will not always
equal the sum of the sample counts of its successor or
predecessor edges. To make the counts consistent and to
obtain an edge profile from the basic block profile, we
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translate the problem into an instance of the minimum
cost flow (MCF) problem. In our implementation, we use
MCF twice. First, before creating the sample feedback file,
an MCF prepass is performed on instruction level profile.
During the prepass, a binary level CFG is built for each
procedure, the instruction level profile is annotated on the
CFG, and MCF is used to refine the profile (detailed in
Section 3.3). This refined profile is used to create the profile
feedback file. Second, after reading the profile feedback
file, compiler uses MCF to translate the basic block profile
into an edge profile. One thing to note is, if we use
the branch information to derive the frequency profile, as
described in Section 4, the profile itself is already accurate
enough. Thus the first step is omitted in this approach.
The details of formulating the basic block to edge profile
conversion problem as an MCF problem can be found in
the literature [17], [22]. Here, we describe a few salient
details.

An instance of the MCF problem consists of a graph
G = (V,E), where each edge has a capacity and a cost
function. The objective is to assign a flow to each edge
such that for each edge, (a) the flow is less than the edge’s
capacity, (b) for a given vertex, the sum of the flows on
incoming edges equals the sum of the flows on outgoing
edges, and (c) that over the whole graph, the sum of the
costs is minimized.

For profile smoothing, the graph used in MCF is known
as the residual graph and it is based on a function’s CFG.
Each basic block is split into two nodes, the incoming edges
to the block connect to the first node in the pair, and the
outgoing edges originate at the second node in the pair.
The two nodes are connected with a forward and reverse
edge. Sending flow through the forward edge corresponds to
increasing the basic block count, and sending flow through
the reverse edge corresponds to decreasing the basic block
count. Since a solution to MCF seeks to minimize cost,
the solution can be biased in favor of raising a particular
block’s weight by assigning its forward edge a low cost.
Similarly, one can bias in favor of lowering a block’s weight
by assigning its reverse edge a low cost. Additionally, the
solution can be biased towards altering a specific block’s
weight by giving its forward and reverse edges a lower cost.
We exploit this property of MCF in Section 3.3.

3 COLLECTING FREQUENCY PROFILE

Frequency profile is among the most important profiles
for FDO compilation because most of the backend opti-
mizations can benefit from it. In this section, we present a
general approach to collect frequency profile. Section 3.1
introduces the general approach. Though this approach can
be applied to most of the architectures, it suffers from
significant inaccuracy problems, which can be summarized
as the anomalies described in Section 3.2. Section 3.3
proposes a heuristic to improve the quality of the instruction
profile. Another approach is proposed in Section 4, which
utilizes an emerging technique, namely LBR, to collect
more accurate frequency profile.

Fixed Sample Random Sample
Period Period PEBS
Abs. Norm. Abs. Norm. Abs. Norm. Loop
267 0.52 577 1.13 1554 3.01 00: add $0x1,%rdx
142 0.28 95 0.19 0 0.00 04: or $0x2,%rdx
1212 2.35 237 0.46 0 0.00 08: add $0x3,%rdx
272 0.53 532 1.04 447 0.87 0c: or $0x4,%rdx
0 0.00 523 1.02 1438 2.79 10: add $0x5,%rdx
1252 2.43 475 0.93 66 0.13 14: or $0x6,%rdx
269 0.52 502 0.98 1 0.00 18: add $0x7,%rdx
149 0.29 454 0.89 46 0.09 1c: or $0x8,%rdx
1197 2.32 512 1.00 504 0.98 20: add $0x9,%rdx
9 0.02 498 0.98 1402 2.72 24: or $0xa,%rdx
327 0.63 487 0.95 3 0.01 28: add $0xb,%rdx
48 0.09 724 1.42 116 0.22 2c: or $0xc,%rdx
1504 2.92 633 1.24 1833 3.55 30: add $0xd,%rdx
266 0.52 565 1.11 19 0.04 34: or $0xe,%rdx
141 0.27 762 1.49 260 0.50 38: add $0xf,%rdx
1219 2.36 999 1.96 1675 3.25 3c: or $0x10,%rdx
268 0.52 532 1.04 35 0.07 40: add $0x1,%esi
0 0.00 0 0.00 0 0.00 43: cmp %rcx,%rdx
1255 2.43 591 1.16 398 0.77 46: jbe 0
515.63 510.42 515.63 Average
541.21 222.45 677.56 StdDev

Fig. 1. The sample counts measured on an Intel Core
2 for a loop consisting of one basic block.

3.1 General Approach

Sampling a counter that increments each time an instruction
retires (e.g., INST_RETIRED on x86 processors) provides
a natural way to estimate the instruction profile. Each
time the counter overflows, the PC is recorded. In the
literature, this approach has been called frequency-based
sampling [28]. An alternative to this approach is time-
based sampling [28], where processor cycles, rather than in-
structions, are counted. Unfortunately, time-based sampling
biases the sample towards basic blocks that take longer to
run than others. Thus in this section, PMU-based sampling
is adopted to collect the frequency profile.

3.2 Problems Observed

Sampling is a statistical approach and therefore its results
are not exact. However, we observe hardware induced prob-
lems that go well beyond plain statistical inaccuracies. For
example, consider the loop shown in Figure 1. The loop is
comprised of one basic block that iterates 104166667 times.
If the loop is sampled using a sampling period of 202001,
then one would expect each instruction in the loop’s body
to receive approximately 104166667

202001 = 515.67 samples. The
two columns of numbers labeled Fixed Sample Period in
the figure show the actual samples collected on an Intel
Core 2 machine. The first column shows the raw count for
each instruction and the second shows the count normalized
by the expected count (i.e., 1.0 is the correct count, < 1.0
means the instruction was undersampled, and > 1.0 means
the instruction was oversampled). We can see from this data
that the sample counts vary by a factor of 2–3 from what
they ought to be. In this section, we describe these artifacts,
and posit causes for these anomalies. Section 3.3 will then
introduce an approach to achieve more accurate profiles.
We observed similar effects on a variety of architectures
from Intel and AMD.
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3.2.1 Synchronization
If one selects a period that is synchronized with a piece
of the application, a few instructions will receive all of the
samples. For example, if a loop contains k dynamic instruc-
tions per iteration, and the sampling period is selected as
a multiple k, then only one instruction in the loop will be
sampled.

Randomization can avoid synchronization. Instead of
using a constant sampling period, the PMU is configured so
the number of events between samples is the user provided
sampling period plus a randomly chosen delta. After each
sample, a new random delta is selected. Since the number
of events between each sample is not constant, periodic
properties in the program being measured do not skew the
sample.

Additionally, our empirical results show that random
sampling improves the uniformity of samples even in the
absence of synchronization. In the example in Figure 1,
there are 19 instructions in the loop and the sampling
period used was 202001 which is not a multiple of 19.
Consequently, the unexpected results should not be due to
synchronization. However, when random sampling is used,
one obtains the results shown in the two columns labeled
Random Sample Period in the figure. With randomization,
the samples are more uniformly distributed. The average
number of samples per instruction changed because the av-
erage sampling period was 204080 (rather than 202001) due
to randomization. However, notice that random sampling
reduced the standard deviation by a factor of almost 2.5.

Further experiments reveal that non-random sampling
leads to a form of pseudo-synchronization. Although a par-
ticular sampling period is requested, due to skid (described
in the next section) that is variable, yet systematic, the
actual sampling period is ultimately partially synchronized
with the loop. While this can be mitigated through careful
non-random adjustment of the sampling period for the par-
ticular code in the example, random sampling proves more
effective when dealing with code with complex control flow
and with varying amounts instruction-level parallelism.

3.2.2 Sample Skid
Ideally the PC reported when a counter overflows would
be the PC associated with the instruction that triggered the
overflow. Unfortunately, the reported PC is often for an in-
struction that executes many cycles later. This phenomenon
is referred to as skid. For example, previous work shows
that on an Alpha 21064, the recorded PC corresponds to
the instruction that is at the head of the instruction queue 6-
cycles after the one that triggered the overflow [12]. On an
Intel Core 2 machine, we observed a similar phenomenon.
The reported PC corresponds to the instruction that is at the
head of the instruction queue some number of cycles (often
approximately 30-cycles) after the one that overflows the
counter.

When sampling the CPU_CLK_UNHALTED event, which
is distributed evenly among every cycle, the skid merely
shifts the profile by a certain amount of cycles. The sample
count attributed to each instruction is still proportional to

CPU CLK
INST RETIRED UNHALTED DTLB MISS Source
1957 5801 0 m = m + i;
1958 5965 0 m = m + i;
1942 5764 0 m = m + i;
3947 11634 0 x = rand() % size;
68551 340252 1047 m = m + test v[x];
38 2042 0 m = m + i;
105 5835 0 m = m + i;
13 5846 0 m = m + i;
7 5813 0 m = m + i;
3 5901 0 m = m + i;
3040 5912 0 m = m + i;
2027 5875 0 m = m + i;
2057 5883 0 m = m + i;

Fig. 2. Aggregation Effect due to long latency instruc-
tions measured on an Intel Core 2.

the total amount of cycles it consumes. As a result, this
phenomenon does not affect the precision of the collected
profile [3]. However, for INST_RETIRED event sampling,
the effects of skid are important. Figure 2 shows how this
effect interacts with a long latency instruction. Because long
latency instructions sit at the head of the instruction queue
for long periods of time, they are sampled disproportionate-
ly more than other instructions. Consequently, instructions
that trigger long stalls such as cache or TLB misses will
have abnormally higher sample counts compared to other
instructions in the same basic block. We refer to this as the
aggregation effect. These additional samples should have
been attributed to instructions after the stalled instruction,
however since they accumulate on the stalled instruction,
instructions in the shadow of the stalled instruction fre-
quently have unusually low sample counts. We refer to this
as the shadow effect.

Previous work suggests accounting for this phenomenon
by approximating the amount of time that an instruction
spends at the head of the instruction queue [3]. Unfor-
tunately, estimating this quantity on a modern out-of-
order, superscalar processor with a deep cache hierarchy
is difficult. In the next section, we show how measuring
other performance counters can be used to help correct for
this bias.

Modern Intel x86 processors provide precise event based
sampling (PEBS) which guarantees that the address re-
ported for a counter overflow corresponds to a dynamic
instruction that caused the counter to increment. Provided
sufficient delay between two back-to-back events, the ad-
dress reported corresponds to the instruction immediately
after the one that overflowed the counter [11]. Unfortu-
nately, when measuring instruction retirement, as the two
columns labeled PEBS in Figure 1 show, sampling with
PEBS actually yields lower accuracy than sampling without
PEBS. This occurs due to bursts of instruction retirement
events near the counter overflow. These instructions will
not be sampled, once again leading to asymmetric sampling.
Since PEBS does not support randomized sampling periods,
non-PEBS sampling with randomized sampling periods
appears to be a more promising approach.

AMD processors, on the other hand, provide instruction-
based sampling (IBS) which is similar to the ProfileMe
approach [12]. Unfortunately, this facility only allows sam-
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pling instructions fetched (which include instructions on
mispredicted paths) or µops retired (which are at a finer
granularity than ISA instructions). Since the number of
µops per instruction is unknown, using IBS also proves
problematic [13].

3.2.3 Multi-Instruction Retirement
On most modern superscalar processors, more than one in-
struction can retire in a given cycle. For example, on Intel’s
Core 2 processor, up to four instructions can retire each
cycle. Unfortunately, the interrupt signaling the overflow of
a performance counter happens immediately before or after
a group of committed instructions, and the performance
monitoring software records only one PC associated with
the group. Consequently, if a set of instructions always
retire together, only one instruction in the group will have
samples attributed to it, and these samples will be the
aggregation of all the samples for the instructions it retired
with. For example, in Figure 1, observe that the cmp
instruction receives no samples. While the precise cause
cannot be known, it is likely because it commits with the
instruction immediately following it (due to fused compare
and branch in the processor backend). Further, since the
other instructions are data-dependent, the instruction with
address 0x30 will execute approximately 30-cycles later,
and the data shows that it has accumulated additional
samples. We find similar effects on other x86 architectures
such as AMD.

Fortunately, as Figure 1 shows, this aggregation is fre-
quently contained within a single basic block due to the
serialization caused by branches. Consequently, while the
sample counts for individual instructions may show signif-
icant variation due to this effect, the basic block profiles
derived by averaging these samples across each block’s
instructions exhibit significantly less variability.

3.3 Improving Profile Precision

From the previous section, it may seem that profiles derived
from PMU sampling will be fraught with inaccuracies.
However, as Levin et al. show [17], MCF is an effective
algorithm to derive completely consistent basic block and
edge profiles from potentially inaccurate basic block pro-
files. However, as they also demonstrate, the quality of
the derived profiles heavily depend on the specific cost
functions used in MCF. In general, if the sample counts
for a particular basic block are accurate, the corresponding
edges in the residual graph used during MCF should be
assigned a high cost. Conversely, if the sample count is
inaccurate, depending on whether the sample count is too
high or too low, the corresponding forward or reverse edge
in the residual graph should have a lower cost. Based on
the observation that basic blocks are often missed during
profiling (and therefore have a profile that is too small),
prior work uses a fixed cost for all edges, with forward
edges having a significantly lower cost than reverse edges.
This section details an alternate approach for assigning edge
costs. By sampling multiple performance counters, one can

compute a confidence in the accuracy of the profile for a
basic block, and estimate if the sample count is too high or
too low. As our results indicate, adjusting the cost functions
used in MCF according to these predictions significantly
improves the quality of the derived profiles.

In our approach, we use heuristics to predict the confi-
dence level of the instruction retired profile for a specific
basic block. High confidence means that the basic block
sample count is predicted to be close to the real execution
count. Basic blocks with low confidence are further divided
into two categories, blocks where the sample count is
predicted to be larger(smaller) than the true execution
count. The basic block classification information is used
by the edge cost functions in the MCF algorithm to help
make better smoothing decisions.

As was described earlier, there are two principal bi-
asing effects in the INST RETIRED based profile: the
aggregation effect and the shadow effect. Recall that the
aggregation effect leads to larger sample counts, and the
shadow effect leads to smaller sample counts. However,
both these effects usually coexist for a single basic block.
Consequently, the goal of the heuristic is to determine
which effect, if any, is dominant for a particular basic block.

Recall that aggregation occurs for long-latency instruc-
tions. For a fixed skid, D, a unit-latency instruction will
be sampled if the instruction that retired D cycles earlier
overflowed the performance counter. However, since an
instruction with latency L remains at the head of the
instruction window between times t and t+ L− 1, it will
be sampled if the counter overflowed anywhere between
D and max(D − L − 1, 1) cycles before the instruction
issued. Consequently, an instruction’s chance of getting
sampled increases proportionally to its latency. To model
this aggregation, a compiler must estimate the latency of
each instruction. However, it is hard to measure latency
since stall events are not attributed to the correct instruction
due to skid. However, our observations show that most ag-
gregation is caused by instructions that stall for significant
amounts of time (e.g., stalling due to a DTLB miss). Events
measuring these long stalls are generally unaffected by skid
and therefore are attributed to the instruction that caused
the overflow of the performance counter. Consequently,
the heuristic to model aggregation is restricted to events
that lead to significant stalls. The set of such events is
selected once when a compiler is being tuned for a specific
architecture.

For each such event e, the average stall duration (ob-
tained from processor manuals), stall duratione, multi-
plied by the sample count for the event, counte,i, gives
the total number of cycles that a particular instruction i
stalled due to event e. Summing over all such stall events
for all instructions in a basic block gives us an aggregation
factor, A.

A =
∑
e

stall duratione ×

(∑
i∈BB

counte,i

)
The shadow effect can be modeled by comparing the

total number of cycles spent in a basic block (as measured
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by sampling CPU CLK UNHALTED) to the number of
instruction retired events attributed to the block. The d-
ifference between these two sample counts is the shadow
factor, S. Recall, that in the CPU CLK UNHALTED event
based profile, sample count should have proper attribution.
Consequently, if S is large, two possibilities exist. First, the
basic block could legitimately have experienced high CPI.
Alternatively, its instruction retirement samples could have
been shadowed. In the first case, A should also be large.
Consequently if S ≫ A then it is likely that the block’s
samples have been shadowed. In our implementation, if
S −A is greater than twice the raw basic block count, the
block is classified as under-sampled. Conversely, if A > S
and A is a significant fraction of the total number of cycles
spent in the block, then it is likely that the block has
aggregated too many instruction retirement samples1. In
our implementation, if A > S and A accounts for more
than 50% of the cycles spent in the block, it is classified
as over-sampled.

Based on this classification, an MCF prepass is per-
formed on the profile at the instruction level, with adjusted
cost function for basic blocks that are predicted to be over-
/under-sampled. For over-sampled block, its corresponding
forward edge in the residual graph is set as the maximum
cost in the CFG, while its reverse edge is set to 0 (and
vice-versa for under-sampled basic blocks).

4 SAMPLING THE LAST BRANCH RECORD

In recent Intel micro-processors, a series of registers are
designated to record the last few branches taken, namely
Last Branch Record (LBR). This is an extension of the
Branch Trace Buffer (BTB), which exists on almost all
modern processors. In the Intel Core 2 processor, these
registers record the last 4 taken branches, while in the Intel
Core i7 (code named Nehalem), the last 16 taken branches
are recorded.

In PMU-based sampling, these registers can also be
recorded in the interrupt handler. To prevent branches inside
the interrupt handler from being recorded, the hardware
freezes LBR registers whenever overflow is triggered. In
this section, we describe how LBR samples can help derive
more accurate instruction frequency profile. We also show
how this approach can be used to assist a lightweight inter-
procedural optimizer and indirect call promotion.

4.1 Using LBR to Collect Edge Profiles
In our approach, each time an overflow triggers an in-
terrupt, we record all the branches in the LBR buffer.
Ideally, each taken branch would be sampled in propor-
tion to its frequency. On Intel Core 2 processors, there
is an event called BR_INST_RETIREDtaken that can
serve this purpose. Unfortunately, on the Intel Nehalem

1. The aggregation factor A may over-estimate the number of cycles
spent in a basic block due to stalls if some of the stalls are overlapped.
In such cases, our heuristic may assert that a block has aggregated too
many samples when in fact it has not. Our experience has shown that this
mischaracterization occurs rarely.

processors, this event is not available. However, there is
an alternative event called BR_INST_EXECtaken, which
counts in all taken branches including those mis-predicted
branches. By subtracting the profile derived from the event
BR_MISP_EXECtaken, which takes effect when a non-
taken branch is mis-predicted, we can approximate the
original branch retired taken event.

4.2 Using Edge Profiles to Calculate Instruction
Profiles
Each taken branch recorded by the LBR corresponds to an
edge in the control flow graph (CFG) of the program, and
consequently an edge profile can be derived from the LBR
samples. However, this profile will only contain frequency
information for taken branch edges. We use Algorithm 1 to
derive the unknown frequency information for fall through
edges. We use the same algorithm to calculate the frequency
of each basic block, which is then used to derive the
instruction frequency profile.

Algorithm 1 Deriving the basic block frequency from the
taken branch frequency
Require: Basic block are labeled according to their topological order
1. for i = 1 to BB Count do
2. BBi.F req = 0
3. for all edge in BBi.preds do
4. BBi.F req += edge.Freq
5. end for
6. BBi.succs(fall through).F req = BBi.F req
7. for all edge in BBi.succs do
8. BBi.succs(fall through).F req -= edge.Freq
9. end for

10. end for

In this algorithm, the basic blocks are initially labeled
by their topological order. The frequencies of the in-
coming edges are summed to derive the frequency of the
basic block. Then the frequency of the basic block, after
subtracting the frequencies of all taken out-going edges,
is used to find the frequency of the fall-through edge. This
algorithm propagates samples of each basic block along the
topological order, and finally derives the frequencies of all
basic blocks and edges.

The proof of correctness of this algorithm is as follows:
note that for each basic block, there should be at most
one incoming fall-through edge and at most one out-going
fall-through edge, which have unknown frequency in the
original profile. First, the basic blocks are labeled in the
order they appear in the binary. Assume that for BBi, all
the incoming edges have known frequency. The frequency
of BBi can be easily calculated by summing up frequencies
of all its incoming edges. Once the frequency of BBi is
known, the frequency of its only out-going fall-through
edge can be calculated because the frequencies of all out-
going taken edges can be derived from the LBR profile.
So far we can infer that all the incoming edges of BBi+1

should have known frequency because the only possible
unknown incoming edge is the fall-through edge from
BBi to BBi+1, for which the frequency has already been
calculated. In addition, the frequencies of all incoming
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edges of the first basic block (entry block) should be known
in the LBR data because they’re all function calls. As a
result, Algorithm 1 gives the frequency of all edges and
basic blocks in one pass of the control flow graph. The
time complexity can be represented as O(N + E), where
N represents the total number of basic blocks, and E is
the total number of edges.

4.3 Using the LBR Profile to Directly Collect an
Instruction Profile

In the LBR profile, whenever the counter triggers an
overflow, N back-to-back taken branches are recorded.
Algorithm 2 can be used to derive an instruction profile
directly (without first constructing an edge profile). The
idea here is to increment the sample count for instructions
between the destination of one taken branch and the source
of the subsequent taken branch.

Algorithm 2 Using back-to-back taken branch pair to
derive the instruction profile
1. for all entry in Sample file do
2. for i = 1 to Total record per entry − 1 do
3. for all inst between entry.record[i].target and

entry.record[i+ 1].source do
4. inst.count++
5. end for
6. end for
7. end for

In this algorithm, all consecutive taken branch pairs in
the LBR are examined. The frequency of all instructions
between the destination of the first branch and the source
of the second branch are incremented. In the end, the total
count of each instruction represents the frequency of the
instruction.

To prove the correctness of this algorithm, we first
label the basic blocks in the binary according to their
topological order. We define a path from instruction Ii to
Ij as maximum non-taken path Pij , if and only if Ii is the
target of a taken branch, and no branch is taken along this
path except Ij . Since all the branches in Pij are fall-through
branches, we can easily describe Pij as Ii, Ii+1, . . . , Ij . In
the LBR profile, all instructions between each back to back
taken branch pair can be considered a maximum non-taken
path.

The total execution count of an instruction is equal
to the sum of all maximum non-taken paths that spans
it. Following the algorithm, the total sample count of an
instruction is equal to the total number of sampled back-
to-back edges that span the instruction. Since each taken
branch will have an equal opportunity to trigger the counter
overflow, each maximum non-taken path will have an equal
probability of being sampled. Thus the sample count of a
maximum non-taken path (the instructions between a back-
to-back branch pair) is proportional to the actual invocation
count of that maximum non-taken path. This proves that
algorithm 2 can derive the correct instruction profile.

4.4 Accuracy of the LBR-based Instruction Pro-
files

The LBR profile is also collected using PMU-based sam-
pling, which could potentially suffer from the problems
described in Section 3.2. We use random sampling to
mitigate the synchronization problem. Current processors
can only retire at most 1 branch instruction each cycle,
therefore, an LBR-based profile won’t have the multi-
retirement issue. For the sample skid problem, the LBR-
based profile is affected much less than the traditional
method because of the following reasons:

1) The skid for LBR sampling is only 10 cycles, which
is one third that of the traditional sampling approach.

2) BR_INST_RETIREDtaken events are far less frequent
than INST_RETIRED events. Also, most often the
intervals between two events are greater than the skid
itself.

3) Since the LBR contains multiple entries, the sampling
naturally occurs in a burst. This produces more accu-
rate profiles.

As a result, LBR-based sampling can derive much more
accurate profiles than the traditional sampling-based ap-
proach. This is further verified by the accuracy evaluations
in Section 6.1.

The approaches described in Section 4.2 and Section 4.3
are two orthogonal techniques to collect instruction profiles.
The accuracy of these two approaches is similar. Thus for
later evaluations, we’ll only use the approach described
in Section 4.3 to demonstrate the quality of LBR-based
approaches.

4.5 Sampling-based LIPO

When writing a program, programmers usually divide it in-
to several modules. In C/C++, each .c/.cc file is considered
to be one module. Generally, the compiler compiles the
program module by module, and the linker links the com-
piled modules to produce an executable file. In traditional
inter-procedural optimization (IPO), a compiler reads in all
the modules to carry out a whole-program analysis, which
is usually extremely expensive and not scalable.

LIPO [18] is a technique aimed at using a lightweight
approach to perform IPO. The basic idea is to identify
modules that have large degree of affinity. When compiling
inter-procedurally, instead of compiling the whole program,
LIPO still compiles the original modules one by one.
During compilation of each module, a compiler only reads
in the relevant modules as auxiliary modules to assist in
compilation of the main module. This method is lightweight
in the sense that the compilation model is the same as
the traditional intra-module compilation, and it uses the
traditional linker, which does not require significant linking
time. In addition, whenever a file is modified, only the
relevant modules need to be rebuilt. Unfortunately, this
lightweight approach is built on top of heavy-weighted
instrumentation. Thus a significant amount of overhead is
incurred in collecting the profile.
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The most important task for LIPO is to build the module
grouping policy, i.e. identifying auxiliary modules for each
compilation module. This is done by instrumenting each
call instruction to get the frequency of the call-edge. If
function A frequently calls B, and they’re in different mod-
ules, LIPO adds the module of B as the auxiliary module
of A. This auxiliary module relationship is transitive. As a
result, modules along a hot call path will all be included to
form an auxiliary module set. In our approach, instead of
using instrumentation to collect the edge frequency, we use
the LBR profile collected in the previous steps to derive
the call-edge frequency. Then we apply the same heuristics
that LIPO used to derive the module grouping policy.

4.6 Using LBR-based Sampling to Collect Indirect
Call Profiles
LBR can record the frequency of each taken branch in-
cluding function calls. We use this information to guide
an indirect call promotion optimization. First, the binary is
disassembled to find all indirect call instructions. For each
indirect call instruction, all possible targets are recorded by
reading the LBR entries. By looking up the target address
in the symbol table, one can easily find the potential targets
of an indirect call. A histogram is constructed to identify
the most frequent targets of an indirect call, and these are
stored as the indirect call profile.

5 SAMPLING-BASED VALUE PROFILING

Value profile-based optimizations attempt to compute the
distributions of the values for some specific computations.
If some values dominate the whole distribution, a compiler
will generate multiple versions of the code to handle the
special values.

5.1 Value Profiling in GCC
In GCC, there are 3 different types of value profiles:

1) Indirect Call Promotion If GCC finds that the in-
direct call is directing to some functions most of
the time, the callsites are cloned, and the expected
callees are promoted to direct calls. In this way, these
functions have an opportunity to be inlined into the
caller. As was mentioned in Section 4.6, by sampling
LBR registers, one can collect indirect call profiles.

2) Stringop Optimization If the size of the string op-
erations (e.g. memcpy, memset) is constant most of
the time, GCC tries to generate multiple versions of
the call according to the frequently occurring values.
In this way, later compiler optimizations can choose
the most efficient way to expand these stringops. For
example, if the size is small most of the time, GCC
may use inlined assembly code to reduce the call
overhead.

3) Div/Mod Optimizations The divide and mod opera-
tions are expensive. If the dividend is frequently found
to be some constant, GCC can use shift operations to
reduce the complexity of the computation.

One thing to note is that the current implementation of
value profiling in GCC only records the one most frequent
value, and may cause the wrong information to be recorded.
This is designed to reduce the overhead. One can choose
to use more sophisticated algorithms to get more accurate
profiles, but this approach could incur significant overhead.

5.2 Using PEBS to Collect Value Profiles
In recent Intel processors, a Precise Event Based Sampling
(PEBS) mode is provided. In this mode, when an event
triggers an overflow, the system enters a special state; the
next time the event occurs, the system captures the current
state immediately, and records it in the memory buffer. This
buffer is flushed to the disk once it is full or when the
program terminates. PEBS guarantees that the state record-
ed is strictly concurrent with the instruction that triggers
the event. In AMD micro-processors, a technique called
Instruction Based Sampling (IBS) can perform similar tasks
as PEBS sampling.

In PEBS mode, all values within one sample are strictly
correlated to the instruction pointer recorded in it. This is
important for value profiling since the values need to be
mapped back to the source code through the debug infor-
mation of the recorded instruction address. For non-PEBS-
based sampling, only the instruction pointer is recorded by
hardware, and thus other register values might be modified
by instructions inside the interrupt handler. Using PEBS,
we can record the value profiles for stringop optimization
and div/mod optimization.

During the sample collection phase, the
INST_RETIRED event is used to sample the PEBS
profile, and thus each instruction should have an equal
opportunity to be sampled. We record all register values
for each sample. When the collection finishes, the offline
analysis tool is used to collect the value profiles. This
happens in two steps:

First, the tool disassembles the binary to find potential
target instructions and registers. For the stringop operations,
we check if it is a call instruction to a stringop functions.
Following the x86 64 calling convention, we record the
register that saves the actual parameter to represent the
size of the stringop. For div/mod operations, we record the
dividend register.

Next, the tool clusters all samples by the value of the
PC register. A histogram is constructed to compute the few
most frequent few values for each instruction found in the
previous step. The ratios of the most frequent values are
recorded as the value profile of the instruction.

Since the sampling period is controllable, and is usually
kept below a threshold, the overhead of recording the
system state is negligible.

5.3 Program Slicing to Extend the Value Profiles
Unfortunately, in PEBS sampling, some target instructions
are not sampled, even though they are in a hot path.
This can be explained by the shadowing and multi-retiring
effects as discussed in Section 3.2.
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To overcome this problem, we propose the use of
program slicing to extend the value profiles beyond the
target instruction itself. After looking at the instructions
that dominate or post-dominate the target instruction, we
can utilize extra samples to assist the target instruction.
Since instructions after the target instruction could be the
destination of other branches, slicing is only performed
in the backward direction. The slicing algorithm traverses
backwards from the target instruction until the value of the
target register is killed. The samples associated with these
instructions are used to derive the value profiles of the target
instruction.

6 EVALUATION

To evaluate the sample profile, we need to compare it to a
correct profile. As was described in Section 1, instrumen-
tation incurs a large overhead which may affect program
behavior. However, when the program has deterministic
behavior, one can use instrumentation to derive correct
edge/basic block frequency profiles and value profiles. For
this section, we chose to use the deterministic SPECCPU
benchmarks for evaluation. The sample profile is compared
to the instrumented profile, which is deemed correct for all
SPECCPU benchmarks.

We first evaluate the precision of the sample profiles by
comparing the overlap measures, and then show how im-
proved source correlation can be used to improve precision.
Additionally, we evaluated the effectiveness of sampling-
based FDO by comparing the runtime performance of
sample-FDO builds with instrumented-FDO builds. Finally
we evaluate the overheads of different profiling mechanism-
s, and discuss the pros and cons of our approach.

In this section, all binaries were produced using GCC
version 4.4.3 targeting x86 64. Our sampling-based FDO
framework was also built on top of this compiler. The
sample profiles were collected using perfmon2 on an Intel
Core2 i7 920 2.67GHz machine with a sampling period of 1
million. Random sampling, with a randomization mask of
0xFFF, was used to improve the quality of the samples.
With these parameters, a sample was taken after every
1,000,000 + (rand() & 0xFFF) instructions retired. All
runtime performance measurements were performed on the
same machine that was used to collect profiles.

6.1 Precision of the profile

We used the degree of overlap metric [17] to evaluate
the quality of the profiles independent of the FDO op-
timizations with which they will be used. The degree
of overlap metric compares the similarity of two edge
profiles annotated onto a common CFG. The definition is
as follows:

PW(e,W ) =
W (e)∑

e′∈E W (e′)

overlap (W1,W2) =
∑
e∈E

min (PW (e,W1) ,PW(e,W2))

where W is a map from edges to weights, E is the set of
edges in the CFG, and PW computes the normalized weight
of an edge. If two profiles agree exactly, the overlap is equal
to 1 (or 100%), the sum of the normalized edge weights
over the CFG. Conversely, if the profile weights differ for
some edge, since the minimum of the two is selected the
overlap will decrease. Consequently, the overlap can vary
between 0% and 100%.

Figure 3 shows the overlap between the sample profiles
and the instrumented profiles for the SPEC CINT2000. The
overlap is measured at the binary level, derived by compar-
ing sampled profiles to edge profiles that are derived using
Pin [19]. We evaluate binary level overlap to isolate the
PMU sampling precision problem from source correlation
problems (see Section 6.2), and show how refinements can
improve the precision incrementally. The first bar shows
the quality of the raw profiles (converted to an edge profile
using static profile heuristics [27]). On comparing the
first and second bars, we see that, on average, the MCF
algorithm (as presented in the literature [17]) improves the
overlap by 8.46% compared to static estimation. Comparing
the second and third bars, we see that by classifying
basic blocks as over-/under-sampled using multiple PMU
profiles, precision can be further improved by 7.67%. The
fourth bar shows the potential of our refinement approach
of classifying blocks as over-/under-sampled using perfect
profiles (obtained from Pin) rather than using additional
hardware events. Comparing the third and fourth bars shows
that our approach performs only 1.21% worse (82.3% vs
83.5%) than using perfect profiles for basic block classifi-
cation. The LBR-based profile, as shown in the last bar,
achieves much better accuracy, achieving an average of
96.95% overlap.

To estimate the potential for further improvement of
the non-LBR based approach, we computed the function-
level overlap of the sampled profile and the true func-
tion profiles obtained using Pin. Function-level overlap
is defined identically to edge overlap except that W is
a mapping from a procedure to its weight. Since the
heuristics used to infer edge profiles from the sample
profiles are intra-procedural, the function-level overlap is
an upper bound to the edge overlap. The function-level
overlap was measured to be 88.03%, thus the smoothed
edge profile obtained using our algorithms is within 10%
of optimal. The imprecision in the function-level profile
can be explained by aggregation/shadow effects crossing
procedure boundaries. The overlap when using a more
aggressive compiler inline heuristic (which reduces the
chances of aggregation/shadowing across procedure bound-
aries) increases the function-level overlap to 92.37%.

6.2 Issues with Source Position Information
In addition to the challenges imposed by issues inherent
to hardware-event sampling, there are other challenges that
arise due to inaccuracies in the source position information
used to correlate samples to the GCC IR. These challenges,
along with our enhancements to the GCC source informa-
tion, are outlined in this section.
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Fig. 3. Edge overlap measures for SPEC CINT2000 benchmarks.
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Fig. 4. Edge overlap measures of LBR-based profile at both source and binary level for SPEC CINT2000
benchmarks.

6.2.1 Insufficient Source Position Information
One line of source code can embody multiple basic blocks
(e.g., consider any use of the ternary ?: operator). In our
current implementation, a patch in GCC and the GNU binu-
tils is applied to distinguish different basic blocks that are
mapped to the same line of code. If instructions in different
basic blocks are mapped to the same source line, the source
information of an instruction is represented by a triplet
(filename, lineno, discriminator). The discriminator
is a distinct number used to denote the residing basic block
of an instruction.

6.2.2 Over/Under Sampling Due to Optimization
Optimizations such as loop unrolling etc., cause some
statements to be duplicated in different basic blocks in
the optimized binary used for profile collection. Because
multiple basic blocks in the binary correspond to one basic
block in the GCC IR, the profile normalization strategy
will cause the profile for these basic blocks to be too
low. Conversely, optimizations like if-conversion promote
conditionally executed code to unconditionally executed
code. This increases the likelihood that it will be sampled
thus causing its profile count to be too high. In our imple-
mentation, we have special bookkeeping for optimizations
that duplicate code. Additionally, when optimizations move
an instruction out of its original basic block, we abandon
the profile of that instruction to ensure the correctness of
the recorded profiles.

6.2.3 Quantitative Comparison
Figure 4 shows a quantitative comparison between the
source level profile and binary level profile. The profiles
were all collected using LBR-based sampling. The source

level overlap decreased to 84.13%, whereas the same profile
shows an overlap of 96.95% at binary level. However, with
our enhancements to the source position information, the
overlap measure improves to 92.93%, which is only 4.72%
worse than the binary level profile.

6.3 Effectiveness of the framework
Figure 5 shows the speedup obtained by using FDO over a
baseline binary compiled without FDO. The baseline and
FDO binaries were all compiled using GCC with the -O2
flag. In this figure, the instrumented FDO has incorporated
both value profile and LIPO, and thus represents the peak
performance that GCC can achieve.

On average, using profiles collected on an Intel Core2
i7 processor, sampling-based FDO with our refinements
provides an absolute speedup of 14.24%. This speedup is
due to a series of components in the framework. Initially,
using traditional PMU-based sampling to collect frequency
profile, as described in [9], approximately 4.35% speedup
can be achieved. If we use LBR to collect the profile, the
speedup increases to 7.38%. After enabling the lightweight
inter-procedural optimizer, the speedup reaches 11.85%.
And finally, enabling the value profile-based optimizations
boosts the speedup to 14.24%, which is 91.8% of the peak
speedup of GCC using instrumentation-based FDO.

Detailed investigation into several benchmarks revealed
that most of the performance gap between sampling-based
FDO and instrumentation-based FDO can be attributed to
the following major causes:

1) Source correlation issues.
For the 252.eon, the gap between the sample FDO and
the instrumented FDO lies in the missing inline in-
formation for some frequently invoked call-sites. This
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Fig. 5. Speedup of SPEC CINT2000. SampleFDO achieves an average speedup of 14.24%, which is 91.8% of
the speedup of instrumented FDO.

is because in the current GCC implementation, only
filename and lineno information is embeded in
each level of the inline stack. The discriminator
is only available at the top of the stack, but not at other
levels. As a result, it cannot distinguish between two
inlined callsites that reside in the same source line.
The performance would no doubt improve once the
discriminator is better supported in GCC.

2) Statistical sampling issues.
Sample FDO is a statistical approach, which means
that sample count for each instruction is scaled down
proportionally to avoid the overhead. This will some-
times cause problems when the frequency is too low
to get any samples. For example, in 254.gap, a callsite
is only invoked for around 1, 000 times. Though not
very frequent, it is still beneficial to inline it because
the callee is hot, and inlining this callsite can enable
other backend optimizations to further optimize the
callee. GCC has a heuristic to inline these infrequent
but beneficial callsites. However, this heuristic is only
effective when the callsite is executed at least once.
For the sample FDO, using a sampling period of
1 million, this callsite is too infrequent to get any
samples, and thus it is deemed “not executed”. As a
result, the heuristic fails to inline this callsite, causing
performance loss of the 254.gap benchmark.

3) Errors in the profile.
As shown in Section 6.1, the LBR-based approach
can already obtain very accurate profiles, but this
approach still has an error ratio of less than 5%. This
could cause problems when accurate information is
vital for compiler optimizations. Further study of an
industrial application shows that loop unrolling is one
such optimization. The instrumentation-based profile
can derive exact loop trip counts, while the trip counts
derived using the sample-based profile are sometimes
off by a small amount. As a result, with instrumented
FDO, a loop may be fully-unrolled for most frequent
situations, while in sampled FDO it may have some
“left-over” iterations that degrade the performance.
Tuning the compiler’s unrolling heuristics for the
sample-based behavior could potentially ameliorate
this problem.

One thing to note is that the above evaluations are

TABLE 1
Overhead of profile collection using different
approaches, with sampling rate at 1 million.

Benchmark Our Approach GCC -fprofile-generate PIN
164.gzip 1.7% 40.1% 51x
175.vpr 0.9% 15.6% 44x
176.gcc 1.1% 66.2% 87x
181.mcf 0.6% 2.0% 14x
186.crafty 1.8% 103.9% 95x
197.parser 0.8% 52.2% 62x
252.eon 1.0% 240.6% 71x
253.perlbmk -0.5% 165.6% 128x
254.gap 1.0% 351.5% 101x
255.vortex 1.6% 208.8% 150x
256.bzip2 0.6% 41.3% 45x
300.twolf 1.4% 50.7% 31x
Geomean 0.9% 90.5% 62x

not cross-validated. However, they are good indicators
of the effectiveness of our approach because FDO (both
instrumented and sample-based) performs best when the
input data used for profile collection is also used for
performance evaluation. To make the evaluation complete,
we cross-validated the performance improvements on SPEC
CINT2006 benchmarks. “Train” data sets are used to collect
both sampled and instrumented profiles. These profiles are
used in the FDO builds and performance is measured
using the “Ref” data sets. As a comparison, the non-cross-
validated setup is also performed on SPEC CINT2006
benchmarks, in which “Ref” data sets are used to collect
both sampled and instrumented profiles, and the perfor-
mance is measured using “Ref” data sets. As shown in
Figure 6, for the non-cross-validated version, sampling-
based FDO can achieve 91.9% speedup of instrumentation-
based FDO. In the cross-validation, sampling-based FDO
can achieve 85.2% speedup of instrumentation-based FDO,
which is less than the non-cross-validated version because
“Train” data sets run for a much shorter period of time than
“ref” data sets; this introduces more statistical errors for
less sampled instructions. However, as soon as the program
is sampled for enough time, the sampling-based approach
can always derive representative profile for FDO.

6.4 Profiling Overhead
We also evaluated the overhead incurred by profile col-
lection. As shown in Table 1, on the SPEC benchmark-
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Fig. 6. Cross-validation of the speedup for SPEC CINT2006 benchmarks. The sample profile collected using
“Ref” input data can obtain an average speedup of 6.42%, which is 91.9% of the instrumentation-based
approach. The sample profile collected using “Train” input data can obtain an average speedup of 4.69%, which
is 85.2% of the instrumentation-based approach.

s, using a sampling rate of 1 million, the overhead of
PMU-based sampling never exceeds 1.8% and averages
0.9%. Compiler-based instrumentation incurs an overhead
between 2.0% and 351.5%, and dynamic instrumentation
tools, such as Pin [19], incur an overhead between 14x
and 150x. On an industrial web search application, the
compiler-based instrumentation suffered a 10x overhead,
compared to just over 2% overhead when profiled using
hardware PMU sampling.

6.5 Discussion
As was demonstrated in the performance evaluation, sam-
ple FDO shows speedup that is competitive with the
instrumentation-based approach. However, these two ap-
proaches of collecting profiles are not equivalent. First,
instrumentation may insert extra code to collect flexible
profiles that is hard to archive by the sampling-based ap-
proach. For example, path profiling can be collected using
instrumentation. Though LBR can also be used to collect a
partial path profile, because of the limited branch entries,
it cannot collect the full path profile. Second, sampling the
PMU can provide some information that instrumentation
cannot get. For example, by sampling cache miss events,
sample FDO can derive the locality information and per-
form aggressive locality optimizations. In this paper, we
focus on traditional profiles that have been adopted by in-
strumented FDO. The evaluation is also intentionally biased
in favor of instrumented FDO by choosing deterministic
benchmarks. We leave the study of profiles that sample
FDO can use to out-perform instrumented FDO for future
work.

7 RELATED WORK

In a recent paper, Levin, Newman, and Haber [17] use
sampled profiles of the instruction retirement hardware
event to construct edge profiles for feedback-directed op-
timization in IBM’s FDPR-Pro, post-link time optimizer.
The samples can be directly correlated to the corresponding
basic blocks without using source position information, as

this is done post-link time. As is done in this paper, the
problem of constructing a full edge profile from basic block
sample counts is formalized as a Minimum Cost Circulation
problem. In this paper, we extend their work by apply-
ing sampling to higher level compilation (as opposed to
post-link optimization) and show how sampling additional
performance counters can improve the quality of sample
profiles.

Others have proposed sampling approaches without re-
lying on performance counters. For example, the Morph
system [28] collects profiles via statistical sampling of the
program counter on clock interrupts. Alternatively, Conte et
al. proposed sampling the contents of the branch-prediction
hardware using kernel-mode instructions to infer an edge
profile [10]. In particular, the tags and target addresses
stored in the branch target buffer (BTB) serve to identify
an arc in an application, and the branch history stored by
the branch predictor can be used to estimate each edge’s
weight. Both of these works require additional informa-
tion to be encoded in the binary to correlate instruction-
level samples back to a compiler’s IR rather than using
source position information present in unstripped binaries.
Additionally, neither work investigates the intrinsic bias of
the sampling approach nor attempts to correct the collected
profiles heuristically.

Other profiling methods build on ideas from both pro-
gram instrumentation and statistical sampling. For example,
Traub, Schechter, and Smith propose periodically inserting
instrumentation code to capture a small and fixed number
of the branch’s executions [25]. A post-processing step is
used to derive traditional edge profiles from the sampled
branch biases collected. Their experiments show that the
derived profiles show competitive performance gains when
compared with using complete edge profiles to drive a su-
perblock scheduler. Rather than dynamically modifying the
binary, others have proposed a similar framework that per-
forms code duplication and uses compiler-inserted counter-
based sampling to switch between instrumented and non-
instrumented code in a controlled, fine-grained manner [16].
Finally, stack sampling has been used, without the use of
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any instrumentation, to implement a low-overhead call path
profiler [14].

Similarly, there have been proposals that combine instru-
mentation and hardware performance counters. Ammons,
Ball, and Larus proposed instrumenting programs to read
hardware performance counters [2]. By selecting where to
reset and sample the counters, the authors are able to extract
flow and context sensitive profiles. These profiles are not
limited to simple frequency profiles. The authors show, for
example, how to collect flow sensitive cache miss profiles
from an application.

Besides the frequency profiling, instrumentation based
value profiling has been proven to be useful [8], [15],
and has been adopted in some compilers such as GCC.
However, the instrumentation based approach suffers from
excessive overhead and potential inaccuracy introduced
by replacement policy. Sampling based value profiling is
proposed to pursue better efficiency and flexibility [7].
However, it still incurs an average overhead of around 10%.

Not surprisingly, performance counter sampling has also
been used in the context of just-in-time (JIT) compilation.
For example, Schneider, Payer, and Gross sample cache
miss performance counters to optimize locality in a garbage
collected environment [23]. Like our work, the addresses
collected during sampling have to be mapped back to
the source code (in their case, Java bytecode). However,
since their optimizations were implemented in a JIT, they
simply augmented the information stored during dynamic
compilation to perform the mapping.

Specialized hardware has also been proposed to facilitate
PMU-based profiling. ProfileMe was proposed hardware
support to allow accurate instruction-level sampling [12]
for Alpha processors. AMD adopts the ProfileMe approach
in the Opteron processors. As discussed in Section 3.2, it
cannot produce profiles accurate enough for compiler use.
Merten et al. also propose specialized hardware support for
identifying program hot spots [20]. Unfortunately, the hard-
ware they propose is not available in today’s commercial
processors.

Orthogonal to collecting profiles, recent work has studied
the stability and accuracy of hardware performance coun-
ters [21], [26]. In that work, the authors measured the total
number of instructions retired across a range of benchmarks
on various x86 machines running identical binaries. Their
results show that subtle changes to the heap layout, the
number of context switches and page faults, and differences
in the definition of one instruction can lead to substantial
variability in even the total number of instructions retired
as reported by the performance counters. Unfortunately,
the authors do not study the artifacts in sampling the
performance counters, and the results on the aggregate data
do not explain the anomalous behavior observed in our
experiments.

8 CONCLUSION

We designed and implemented a framework to use hard-
ware event sampling and source position information to

drive feedback-directed optimizations. Both frequency pro-
file and value profile are implemented, making sampling-
based FDO achieving good overlap with the true execution
frequencies and competitive speedups when compared with
the instrumentation-based approach. Moreover, sampling-
based FDO provides better portability and usability while
incurring negligible overhead. Our experiments show that
the proposed techniques are feasible for production use on
out-of-order platforms.
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