
ACIC: Automatic Cloud I/O Configurator for HPC
Applications

Mingliang Liu†,‡

liuml07@mails.thu.edu.cn
Ye Jin§

yjin6@ncsu.edu
Jidong Zhai†

zhaijidong@tsinghua.edu.cn

Yan Zhai
∗

¶

yanzhai@cs.wisc.edu
Qianqian Shi†

shiqq11@mails.thu.edu.cn
Xiaosong Ma§,\

ma@ncsu.edu
Wenguang Chen†,‡

cwg@tsinghua.edu.cn
† Department of Computer Science and Technology, Tsinghua University
Tsinghua National Laboratory for Information Science and Technology

‡ Research Institute of Tsinghua University in Shenzhen
§ Department of Computer Science, North Carolina State University

¶ Department of Computer Sciences, University of Wisconsin-Madison
\ Computer Science and Mathematics Division, Oak Ridge National Laboratory

ABSTRACT
The cloud has become a promising alternative to tradi-

tional HPC centers or in-house clusters. This new environ-
ment highlights the I/O bottleneck problem, typically with
top-of-the-line compute instances but sub-par communica-
tion and I/O facilities. It has been observed that changing
cloud I/O system configurations leads to significant varia-
tion in the performance and cost efficiency of I/O intensive
HPC applications. However, storage system configuration is
tedious and error-prone to do manually, even for experts.

This paper proposes ACIC, which takes a given applica-
tion running on a given cloud platform, and automatically
searches for optimized I/O system configurations. ACIC
utilizes machine learning models to perform black-box per-
formance/cost predictions. To tackle the high-dimensional
parameter exploration space unique to cloud platforms, we
enable affordable, reusable, and incremental training guided
by Plackett and Burman Matrices. Results with four repre-
sentative applications indicate that ACIC consistently iden-
tifies near-optimal configurations among a large group of
candidate settings.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques;

D.4.2 [Operating Systems]: Storage Management—Sec-
ondary storage; D.4.2 [Operating Systems]: Perfor-
mance—Modeling and prediction, Measurements

∗Yan took part in this work at Tsinghua University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SC13 November 17-21, 2013, Denver, CO, USA
Copyright 2013 ACM 978-1-4503-2378-9/13/11...$15.00.
http://dx.doi.org/10.1145/2503210.2503216.

General Terms
Performance, Measurement, Design, Management

Keywords
Storage, Modeling, Performance, Cloud Computing

1. INTRODUCTION
More and more HPC users today are beginning to ex-

plore running their applications in the cloud [20, 3, 12,
55]. Emerging cloud resources targeting HPC usage, such
as the Amazon CCIs [3], have largely improved the outlook
for HPC in the cloud. Clouds offer many advantages over
traditional HPC platforms: elastic resource allocation, elim-
ination of queue waiting, no up-front hardware investment
or hosting/maintenance/upgrades, and convenient pay-as-
you-go pricing models. By closing on the performance gap
between cloud instances vs. in-house clusters [55], public
clouds have become a cost-effective choice to many scientific
application users and developers.

 40

 60

 80

 100

 120

 140

 160

 180

 16 36 64 81 100 121

T
o
ta

l
e
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Number of processes

nfs.D.eph
nfs.P.eph

pvfs.1.D.eph
pvfs.2.D.eph
pvfs.4.D.eph
pvfs.4.P.eph

(a) Execution time

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 16 36 64 81 100 121

C
o
s
t
($

)

Number of processes

nfs.D.eph
nfs.P.eph.

pvfs.1.D.eph
pvfs.2.D.eph
pvfs.4.D.eph
pvfs.4.P.eph

(b) Total cost

Figure 1: The execution time and monetary cost of BTIO
under selected I/O system configurations, in terms of file
system type, number of I/O servers, and placement strategy

Unfortunately, cloud platforms amplify the growing per-
formance gap between the I/O subsystem and other sys-
tem components long existing in conventional HPC environ-

ments [24]. Leading cloud platforms such as Amazon in-
terconnect the compute instances with commodity networks
instead of dedicated high-speed interconnection, such as In-
finiBand. Also, multi-tenant cloud resources deliver inferior
and sometimes highly variable performance [5].

On the flip side, clouds empower users with full, a-la-carte
configuration of the I/O subsystem, which is impossible on
traditional HPC clusters. For example, users can choose
important I/O parameters such as the file system type, the
number of I/O servers, the type and number of I/O devices
to use, etc. Previous study revealed that the in-cloud perfor-
mance of representative HPC applications is highly sensitive
to such I/O system configurations [32]. Figure 1 demon-
strates this impact on both performance and monetary cost
of running the NPB BTIO application (more information in
Section 5), shown to vary dramatically with different I/O
system configurations. It also shows that even for a single
HPC application, its performance/cost behavior across dif-
ferent I/O configurations varies with different problem/job
sizes, and no single configuration excels in all cases. The
cloud enables users to setup optimized I/O configurations for
individual application upon its execution, instead of forcing
all applications to use a pre-configured solution.

However, taking advantage of this uniquely available con-
figurability and deriving optimized per-application I/O con-
figuration are very challenging and potentially very expen-
sive. Several factors, including the lack of one-size-fits-all
parameter choices, the complexity from both the system
and the application side, and the obscureness of I/O sys-
tem hardware/software details due to virtualization, make
white-box modeling and analysis unrealistic. Meanwhile, the
high-dimensional cloud I/O configuration parameter space
makes learning-based, black-box approaches quite costly, in
terms of both time and monetary overhead. Furthermore,
as I/O configuration has been shown to be application- and
even scale-dependent, knowledge and training data obtained
from one application may not apply to another.

There are many tools that evaluate and configure storage
systems for traditional clusters [2, 4, 16, 30] (more discus-
sions in Section 7). However, some of them [16, 30] focus
on the storage devices only and hence are not able to ad-
dress the complex, high-dimensional cloud I/O configuration
problem. Some others (such as Minerva [2]) are extremely
complicated for non-expert users, requiring expertise with
advanced tools and a large number of experiments. More-
over, none of them covers the complicated cost-performance
tradeoff unique to the cloud.

To address this problem, we propose ACIC (Automatic
Cloud I/O Configurator), the first tool to optimize the I/O
system for HPC applications in the cloud. Given an appli-
cation to run on a given cloud platform, ACIC automati-
cally searches for optimized I/O system configurations from
many candidate settings. Our approach takes advantage of
a black-box model to learn the relationship between influ-
ential I/O system configurations and the optimization ob-
jective (cost or performance). After training the model on
the target cloud platform, ACIC automatically extracts the
given application’s I/O characteristics, evaluates candidate
I/O configurations, and recommends an optimized configu-
ration according to user’s selected objective.

Though learning-based performance modeling/prediction
has long been explored, including for parallel applica-
tions [44, 54], ACIC’s originality lies in the cost-saving mech-

anisms that make such approaches affordable on clouds:

1. We explore a crowdsourcing service model for au-
tomatic, per-application cloud system configuration,
where community members build and share a public
performance/cost database. The service may not rely
on, but can benefit from continuous training data con-
tributions, which improve its configuration accuracy,
as well as its adaptivity to system upgrades. We de-
scribe our proof-of-concept ACIC tool using parallel
I/O as a case study, yet the service model applies to
other configurable systems.

2. Rather than case-by-case learning/prediction, we en-
able reusable training by adopting a generic synthetic
I/O benchmark and systematically sampling the pa-
rameter space.

3. To tackle the large training space that renders the
model training prohibitively expensive, we perform di-
mension reduction by evaluating parameters’ impact
on performance using PB matrices [38].

We implemented ACIC, trained it with the synthetic yet
expressive parallel I/O benchmark IOR [42, 49] on Amazon
EC2, and evaluated it with four real-world data-intensive
parallel applications. Our results indicate that ACIC consis-
tently provides optimized configurations that improve per-
formance (total execution time) by a factor of 3.0 on average
and the cost saving of 53% on average under the baseline
configuration (see Section 5).

We have recently released the ACIC tool, plus all our
training data collected from EC2 [26]. Currently, users
can download the shared training data, build the prediction
model, use our provided tool to obtain I/O characteristics
from their applications, run the prediction, and configure
EC2 to deploy the recommended I/O configuration with our
provided scripts. In the future, we plan to also provide full
web-based services to enable online configuration queries.

2. APPROACH OVERVIEW
Figure 2 illustrates the ACIC architecture. Its central

component is a black-box prediction model, which can be
bootstrapped with a certain amount of initial training data.
ACIC takes both the cloud system I/O configuration param-
eters (such as file system type, storage device type, number
of I/O servers, etc., to be described in Section 3.1) and ap-
plication I/O characteristics (such as major operation type,
read/write block size, read/write count, etc., to be described
in Section 3.2). Concatenated together, these parameters
constitute a 15-D exploration space for ACIC’s training and
prediction. To reduce the time overhead and monetary cost
associated with training, ACIC employs a dimension reducer
using Plackett-Burman (PB) matrices [38], with more details
discussed in Section 4.1.

Generally, there are several ways to collect the training
data, such as application case studies, benchmarks, and
trace replays. ACIC chooses the IOR [42] synthetic bench-
mark as it is generic, highly configurable, and open-source.
It carries out the initial training by running the synthetic
IOR benchmarks on the target cloud system, systematically
sampling the concatenated parameter space across the di-
mensions selected through PB matrices. For each training
run, ACIC collects the performance (cost) metric with the
candidate cloud I/O configurations. With the sampled data

15-Dimension
Exploration Space

Dimension
Reducer

(with PB Matrices)

ACIC Learning
Model

(with CART Tree)

Reduced
Configuration

Sets

Application’s IO
Characteristics

Query Result

Cloud System
I/O Configuration

Space

Application I/O
Characteristic

Space

Target HPC
Application

Recommended I/O
Configuration

IO Profiler

User-specified
Optimization Goal
(Performance/Cost)

ACIC

Target Cloud

Application I/O
Characteristic

Cloud I/O
Configuration

Run

Configure

Training
Database

Input

Train

Insert Training
Data Points

Query Conditions

IOR

Figure 2: ACIC architecture

points fed into a training database, ACIC can use different
machine learning algorithms to train its black-box prediction
model. In our implementation, we use the popular classifi-
cation and regression trees (CART) [35].

Given a target HPC application, users can either directly
provide values of relevant I/O characteristics, or use a sim-
ple profiling tool (included as part of ACIC) to extract such
application-specific parameters. Both approaches are feasi-
ble, as HPC applications, especially parallel simulations, are
known to have periodic, relatively well-defined I/O behav-
ior. Based on the user-specified optimization goal, currently
either the performance (application execution time) or the
monetary cost of execution, ACIC outputs the predicted op-
timal I/O configuration. Note that the monetary cost of a
certain application execution is not proportional to the ex-
ecution time here, as I/O servers can be placed at didicated
instances or part-time ones.

One major advantage of ACIC is its reusability. It is worth
pointing out that even with its dimension reducer, the initial
training of ACIC may cost dozens to hundreds of hours (and
dollars). However, we argue that such expense is reasonable
considering that the application-independent IOR training
results can be reused. Therefore, the training cost is to
be amortized over many different applications and different
executions of the same applications.

Another chief advantage of ACIC is its expandability.
First, it benefits from continuous, incremental training.
With more user-contributed IOR training data points, ACIC
achieves higher prediction accuracy. This allows it to boot-
strap with sparse sampling in its initial training. The ad-
ditional training may even come at no extra monetary cost,
as public clouds like Amazon EC2 typically charge users at
a hourly billing granularity. Users can fit one or more short
IOR training runs into the ”residual” time allocation, after
completing their application runs. Second, with continuous,
incremental training, the ACIC training database can ef-
fortlessly deal with cloud hardware/software upgrades with
common data aging methods. Third, ACIC can easily han-
dle new I/O configurations or characteristic parameters by
adding more dimensions into its prediction model, though
the open-source IOR benchmark may need to be expanded
if an application has I/O features that it does not test.

Finally, although the training and prediction are cloud-
dependent, ACIC makes no assumptions on the cloud I/O
configurations or application I/O characteristics and can be
applied to any platform-application combinations.

3. EXPLORATION SPACE

3.1 I/O Configuration Options
Figure 3 depicts the configurable I/O system stack in

the cloud, using Amazon EC2 terms. At the lowest level
is the storage hardware, where users can choose between
two forms of virtual disk devices: Elastic Block Store (EBS)
and local ephemeral disks (standard or SSD). Multiple de-
vice instances can further be aggregated with configurable
software RAID. Above the storage layer are the shared file
systems, such as PVFS2 [9] and widely used NFS [8]. For
each selected file system, there are also configurable param-
eters such as the number and placement of I/O servers, plus
internal settings like stripe size and buffer sizes. Finally, be-
tween the file system and the applications, scientific codes
often perform I/O through parallel I/O or middleware such
as the MPI-IO and HDF5 [14] library, though some codes
may directly utilize the universal POSIX interfaces. In this
paper, we choose to leave the EBS QoS level and file sys-
tem internal buffer sizes with default configurations, as the
IOPS (Input/Output Operations Per Second) metric used
by the former is not that relevant to HPC applications, and
our empirical study did not find the latter with significant
impact on performance or cost.

Figure 3: Configurable I/O system stack in the cloud

Figure 3 shows all configurable layers in the cloud I/O
stack, from I/O library all the way to storage device hard-
ware. In contrast, on traditional shared parallel platforms
users typically can only configure the top layer. Therefore,
in this paper we focus on the layers opened up by cloud
platforms. Below we briefly describe the I/O configurations
found relevant to parallel applications’ performance/cost in
the cloud [32].

Storage device and organization Cloud platforms typ-
ically provide multiple storage choices, with different lev-
els of abstraction and access interfaces. E.g., with EC2
CCIs, applications have access to: 1) the local block storage
(”ephemeral”) with 4×840GB capacity, where user data does

not persist across instance reservations, 2) off-instance, per-
sistent Elastic Block Store (EBS), and 3) SSD disks. Apart
from data persistence, the ephemeral and EBS devices pos-
sess different performance characteristics, usage constraints,
and pricing policies. Finally, a cloud HPC user can easily
scale up the aggregate I/O capacity and bandwidth, e.g., by
aggregating multiple disks into a software RAID 0 partition.

File system selection and configuration Typically,
supercomputers or large clusters have parallel file systems
such as Lustre [41], GPFS [1], and PVFS [9], while smaller
clusters tend to choose shared file systems such as NFS [8].
Cloud users can choose between the two categories based on
individual applications’ demands, and switch between selec-
tions quite easily and quickly, unlike with traditional HPC
resources. Once selected, a parallel/shared file system it-
self has many internal knobs and is non-trivial to configure.
Most conventional parallel platforms adopt fixed default set-
tings as it is impossible to cater to individual applications.

In this proof-of-concept work, we focus on two important
and highly application-dependent parameters, which config-
ure the file system servers. Parallel file systems can use dif-
ferent numbers of I/O servers. In addition, one can choose
to have dedicated vs. part-time I/O servers. With the for-
mer, I/O servers run on separate cloud instances, while with
the latter, they share physical instances with a subset of the
compute nodes. Due to the obvious impact of I/O server
provisioning in both performance and cost, it is important
to optimize such server placement for better resource uti-
lization and cost-effectiveness.

3.2 Application I/O Characteristics
I/O workload characterization has remained an active

problem [13, 39, 24]. Meanwhile, though applications have
varying concrete I/O patterns, they also share high-level I/O
behaviors common to most HPC scientific codes, especially
the periodic checkpoint/restart output activities.

To enable reusable training, ACIC chooses to measure
cloud I/O performance with sampled system configurations
using synthetic benchmarks created via IOR [42]. IOR is
a flexible and expressive parallel I/O benchmark that can
be configured to mimic different applications’ I/O behavior.
Also, its open-source nature allows easy extension to test
additional I/O features when the need arises.

Currently ACIC considers the following I/O characteris-
tics parameters in creating IOR test cases. Note that these
do not include access spatiality (random vs. sequential),
as most modern HPC applications perform sequential I/O,
dominated by append-only writes [42]. The range of param-
eters is selected based on the real-world applications used in
our evaluation, and can be expanded with additional train-
ing, without invalidating the collected data.

• Number of processes: total number of processes
running the application in parallel
• Number of I/O processes: number of processes

performing the I/O operations simultaneously
• I/O interface: POSIX, MPI-IO [31], or high-level

libraries such as HDF5 [14] and netCDF [40]
• I/O iteration count: number of I/O iterations

within the application execution
• Data size: amount of data each I/O process reads

and writes within each I/O iteration (e.g., the size of
the 3-D array partition assigned to each process)

• Request size: amount of data transferred in each I/O
function call (I/O request size)
• Read and/or write: I/O operation type
• Collective on: whether I/O processes adopt collec-

tive I/O [47] to cooperatively read/write shared files
• File sharing on: whether the I/O processes access a

single shared file, or per-process private files

Although IOR covers most important aspects of HPC I/O
parameters, it does make certain simplifications. For exam-
ple, the request sizes for different variables a parallel simula-
tion writes out may not be uniform. In our future work, we
plan to assess the impact of such simplification on our model
prediction accuracy and investigate ways to allow more de-
tailed characteristics specification if necessary.

To extract parameters representing application’s I/O
characteristics, one can use existing profiling/tracing
tools [22, 7, 45] to instrument I/O primitives of the ap-
plication, followed by trace collection/analysis. We include
a simple tool for collecting ACIC-relevant application I/O
characteristics encompassing a tracing library and scripts for
parsing and statistically summarizing I/O traces [26].

3.3 Defining Exploration Space

Name Value Rank

Disk device {EBS, ephemeral} 10
File system {NFS, PVFS2} 5
Instance type {cc1.4xlarge, cc2.8xlarge} 12
I/O server number {1, 2, 4} 3
Placement {part-time, dedicated} 7
Stripe size {64KB, 4MB} 6

Num. of all processes {32, 64, 128, 256} 14
Num. of I/O processes {32, 64, 128, 256} 4
I/O interface {POSIX, MPI-IO} 9
I/O iteration count {1, 10, 100} 13
Data size {1, 4, 16, 32, 128, 512 (MB)} 1
Request size {256KB, 4MB, 16MB, 128MB} 8
Read and/or write {read, write} 2
Collective {yes, no} 11
File sharing {share, individual} 15

Table 1: The variables affecting performance and cost. The
top 6 variables are I/O system options in cloud, while the
other ones are workload characteristics.

Table 1 summarizes the system I/O configurations and
application I/O characteristics considered in this ACIC pro-
totype. We set the range of the values according to our real-
world application test cases with different job scales (32 to
256). For each parameter, we sample its value range in our
training. For example, the compute-node-to-I/O-server ra-
tio typically varies between 4 : 1 and 64 : 1 on a HPC cluster,
which differs a lot from distributed file systems like GFS [15]
and HDFS [43]. Since there are at most 16 instances in our
testbed, we select 1, 2 and 4 as sampled values of the “I/O
server number” parameter. For continuous (numerical) do-
main parameters, such as data size and request size, we se-
lect samples from their value ranges that form evenly spaced
vectors in log space. Such training is used in our study to
bootstrap ACIC’s auto-configuration. Again, this design al-
lows users to constantly contribute training data points to
the ACIC training database.

In Table 1, the “rank” column gives their relative impor-
tance determined by the PB matrices, as to be discussed in
Section 4.1. Though we have left out a number of parameters

and sampled the numerical parameter space rather sparsely,
the concatenated exploration space combining system con-
figurations and application characteristics is still daunting.
Even considering that not all sample parameter value com-
binations are valid (e.g., NFS does not have Strip size; re-
quest size cannot be greater than data size), the 15 param-
eter dimensions create roughly a million valid training data
points.1 The next section presents how ACIC tackles this
high-dimensional training space challenge.

4. PERFORMANCE/COST PREDICTION

4.1 Exploration Space Reduction

Row
PBM

Perf.
A B C D E

1 +1 +1 +1 -1 +1 19
2 -1 +1 +1 +1 -1 21
3 -1 -1 +1 +1 +1 2
4 +1 -1 -1 +1 +1 11
5 -1 +1 -1 -1 +1 72
6 +1 -1 +1 -1 -1 100
7 +1 +1 -1 +1 -1 8
8 -1 -1 -1 -1 -1 3

Effect 40 4 48 152 28
Rank 3 5 2 1 4

Table 2: Sample PB design working with N = 5 and N ′ = 8

To tackle the aforementioned high-dimensional parameter
space, ACIC employs a statistical technique called Plack-
ett and Burman (PB) design [38]. It helps ACIC identify
the relative importance of the parameters, each constructing
one dimension of the concatenated system configuration +
application characteristics space.

Proposed originally for purposes such as agricultural crops
experiment design and quality control in manufacturing, PB
design screens combinations of N parameters (factors) with
N ′ runs, where N ′ is the smallest multiple of 4 above or
equal to N . For each run, the value for each parameter is
set according to one row of the PB Matrix, whose elements
are assigned with binary values (either “+1” or “-1”) based
on pre-specified PB design rules. More specifically, given a
PB Matrix A, Ai,j determines the value of the jth parameter
in the ith run. This parameter will use a “high” value if Ai,j

is “+1”, and a “low” one if otherwise. The “high” and “low”
values are selected to be at the two ends of the parameter
value range. After the runs are completed, the importance
(“effect”) of the jth parameter is calculated as the dot prod-
uct of the jth column in A (the “+1” and “-1” setting across
the runs for this parameter) and the result column (e.g., per-
formance measurement from the N ′ runs). The sign of the
result is meaningless when ranking the parameters in order
of their perceived impact.

Table 2 illustrates the construction of a small PB Matrix,
where there are 5 parameters (N = 5) and 8 runs (N ′ = 8).
Compared to other statistical tools, PB design has the ad-
vantage of requiring only a small set of experiments (around
N , the total number of parameters/dimensions) [53]. Specif-
ically for our cloud performance training purpose, it allows
us to find out parameters that are most influential to our
optimization goal(s) with relatively small cost. It also ranks

1
2 * 2 * 2 * 3 * 2 * 2 * 4 * 4 * 2 * 3 * 6 * 4 * 2 * 2 * 2 = 1,769,472.

the parameters, enabling a fast (though less accurate) train-
ing to bootstrap the ACIC prediction. This way, ACIC
populates its training database by sampling the top-ranked
parameters first (adopting default settings for the other pa-
rameters), then gradually expands training data collection
to the lower-ranked dimensions.

Like in the prior work by Yi et al. [53], we adopted in
ACIC the improved variation called foldover PB design [33].
Foldover PB design further examines the effects of interac-
tions between parameters, at the cost of doubling the num-
ber of runs. In this proof-of-concept study, we built the
ACIC foldover PB Matrix (PBM) for the 15-dimensional ex-
ploration space given in Table 1, with N = 15 and N ′ = 16,
requring only N ′× 2 = 32 runs. For non-binary (numerical)
parameter value ranges, we selected the high and low values
for all surveyed applications. We carried out the 32 test runs
with IOR on the cloud storage system configured according
to the PBM rows. The rightmost column in Table 1 gives
the importance ranking. The results show that the most im-
portant three parameters are“I/O data size”, “I/O operation
type”, and “number of I/O servers”, while the least impor-
tant ones are “whether file sharing is on”, “number of all
processes”, and “I/O iteration count”. Such ranking enables
ACIC to explore the most influential parameters first. Our
evaluation results in the next section will discuss the trade-
off between prediction accuracy and training data collection
cost, as guided by the PB design results.

4.2 CART-based Prediction Model

REQUEST_SIZE<34MB
STD=0.147

Avg=1.9
FILE SYSTEM

PVFS2
STD=0.069

Avg=2.2
DATA_SIZE

NFS
STD=0.202

Avg=1.3
DATA_SIZE

<=24576 KB
STD=0.021

Avg=2.1
DEVICE

>24576 KB
STD=0.066

Avg=2.4

<=24576 KB
STD=0.130

Avg=1.6

>24576 KB
STD=0.054

Avg=0.8

EBS
STD=0.000

Avg=2.0

ephemeral
STD=0.006

Avg=2.2

metric predicted

standard deviation
predicted value

predictor

...

...

Figure 4: Sample tree built by ACIC using CART

Given the data points collected from IOR training runs
guided by PB design, ACIC can then employ different
black-box prediction tools. Many machine learning algo-
rithms can help ACIC learn the mapping between I/O sys-
tem/application parameters and the optimization goal. This
problem falls under the general scope of supervised learning,
and further under regression, as the prediction results are
continuous numeric values. As supervised learning itself is
a quite mature field and is beyond the scope of this paper,
we adopt a well known technique to assess the feasibility of
ACIC’s reusable training. Meanwhile, ACIC is implemented
in the way that different learning algorithms can be easily
plugged in.

The current ACIC prototype uses CART (Classification
and Regression Trees) [35] for its simplicity, flexibility, and
interpretability. It is a decision tree based approach, requir-

ing no knowledge about the prediction target, with trees
built top-down recursively. At each stop in the recursion,
the CART algorithm determines which predictor parame-
ter in the training data best splits the current node into
leaf nodes, then continues recursively within each subtree.
The optimal split minimizes the difference (e.g., root mean
square) among the samples in the leaf nodes. The error for
each sample is the difference between it and the average of
all samples in the leaf node. Therefore, each internal node
contains a “best” predictor, while each leaf node gives a pre-
dicted target result. Eventually, the optimal decision tree
is pruned to avoid over-fitting. To make a prediction, the
tree takes a set of parameter values as input, and outputs
the predicted target value dictated by the destination leaf
node as it follows the path dictated by a sequence of internal
nodes.

With ACIC, we face the problem of performance report-
ing mismatch between IOR and the target application re-
questing I/O configuration optimization. It is unrealistic to
assume that the applications can be modified to report I/O
performance in a way consistent with IOR. We solve this
problem by adopting performance/cost improvement (over
a baseline configuration) as the predicted target rather than
using absolute values. The idea is similar to the “relative”
notion in storage performance modeling [30]. In our im-
plementation and experiments, we set the baseline configu-
ration as “single dedicated NFS server, mounting two EBS
disks with a software RAID-0”, which is indeed the cloud
version of a highly common shared storage setup with small-
to medium-scale clusters [20, 12, 55].

Figure 4 shows a portion of the tree that models the I/O
operation cost built by ACIC. The light-shaded nodes are
internal nodes while the darker ones are leaves. Each level
of the tree (composed by nodes with the same depth) exam-
ines the value of one dimension in the parameter space. For
internal nodes, the first field contains the current-level pa-
rameter value range (such as “<=24576KB”), automatically
calculated by CART to guide the decision making given the
input parameter. The second field contains the standard de-
viation of the target value of all of its children and the third
field contains the average value. The last field indicates the
next-level parameter for branching its children into two sub-
trees. The leaf nodes report the predicted target value (both
average and standard deviation).

Note that CART also arranges the ordering of parame-
ters, by placing the ones it considers more “important” to
decision making higher up (closer to the root). However,
this is not redundant with the PB design generated rank-
ing, as the former can only create such ranking based on
collected training data, while the latter gives direction to
training data collection itself.

In our cloud storage configuration context, given the tar-
get application, ACIC joins the application’s I/O character-
istics with all candidate I/O system configurations consid-
ered, as the input to the CART model. As the prediction
overhead is negligible compared to the training data collec-
tion cost, a full exploration of system configuration space
is affordable here. The candidate configurations are then
sorted by their relative improvement over the baseline con-
figuration, based on the CART prediction. ACIC can be
configured to report the top k predicted optimized candi-
dates. When k > 1, the application user has a better op-
portunity to identify an optimal or near-optimal solution,

at the cost of more benchmarking runs trying out the top k
configurations.

4.3 PB-guided Space Walking
Although PB design is able to help ACIC to reduce the

parameter space to a rather practical level, we’ll see in Sec-
tion 5.3 that to bootstrap the CART based prediction model
we still need to collect a substantial number of training data
points. This could happen when ACIC starts collecting
data on a new cloud platform or there is a major hard-
ware overhaul rendering most of the collected data points
obsolete. It’s desirable to avoid the time and monetary cost
of such bootstrapping, or the relatively inaccurate predic-
tion by ACIC before having a properly populated training
database. Therefore, we designed an alternative PB-guided
space walking approach that can quickly return prediction
results to application users. This alternative approach also
allows us to further examine the trade-off between training
cost and prediction accuracy in evaluating ACIC.

PB-guided space walking reuses the parameter ranking
results generated by PB design experiments. The basic idea
is to “walk” the I/O configuration space, given application
I/O characteristics parameters, by selecting an optimized
configuration one dimension at a time. More formally, the
PB-guided space walking process can be expressed as a triple
〈S, s0, δ〉, as defined in state space exploration, one of the
key techniques for computer-aided verification [23].
S, the “space”, comprises the set of all possible points

(configuration candidates in our scenario) the walk might
reach. Note that here this space only contains the I/O
system configuration parameters. Just like in the case of
CART, certain parameter combinations are invalid, such as
NFS with multiple I/O servers. s0, the walking start point,
is the baseline I/O configuration (see Section 4.1 for details).
It is also used as a reference configuration in assessing the
performance/cost improvement achieved by ACIC. Finally,
δ, the heuristic walking strategy, determines how we advance
from one parameter dimension to the next (the “walking di-
rection”). ACIC adopts a greedy search algorithm, walking
through the I/O configuration dimensions according to the
PB design generated parameter ranking by iteratively se-
lecting the current dimension parameter value. In each step,
ACIC will run IOR tests that sample the current parame-
ter dimension. Based on the results, it fixes the parameter
value at the one that delivers the best target result (exe-
cution time or cost). The walk then continues to the next
I/O configuration dimension, eventually reaching a heuristic
solution as indicated by the selected walking path.

Obviously, the PB-guided space walking explores a much-
trimmed parameter space, delivering prediction to appli-
cation users with low training requirement. The walking-
based prediction itself is application-specific: one applica-
tion’s training data collected through the walking may not
be of much use to another application if they diverge early
in their walking process. However, the IOR training data
points collected are of generic interest to the ACIC database,
and can be used later in either the CART-based or walking-
based prediction. This way, the PB-guided space walking
approach nicely complements the CART-based prediction.

5. EVALUATION

5.1 Experiment Setup

Platform All our experiments are performed on Ama-
zon EC2 Cluster Computing Instances (CCIs), with node
type cc2.8xlarge [3]. Each such instance has two 8-core In-
tel Xeon processors and 60.5GB of memory. The CCIs are
inter-connected with 10-Gigabit Ethernet. Regarding OS
and system software, we use the Amazon Linux OS 201202,
Intel compiler 11.1.072 and Intel MPI 4.0.1. The compiler
optimization level is O3.

Name Field CPU Comm. R/W API

BTIO Physics H H W MPI-IO
FLASHIO Astro L L W MPI-IO
mpiBLAST Biology M M R POSIX
MADbench2 Cosmology L M RW MPI-IO

Table 3: Test applications’ resource usage and I/O type
(H=High, M=Medium, L=Low, R=Read, W=Write)

Applications It is highly time and money consuming
to run I/O-intensive parallel applications to evaluate ACIC.
This is not due to ACIC’s own overhead, but the fact that we
perform exhaustive evaluation of all candidate configuration
settings to evaluate its optimization effectiveness. In addi-
tion, we run each experiment several times, with cache con-
tent cleared in between. Given such time/cost constraints,
we select four representative applications with different I/O
characteristics, from different scientific computing domains.
Table 3 shows their major I/O characteristics and computa-
tion/communication intensity levels.

BTIO is an I/O-enabled version of the BT benchmark in
the NAS NPB suite [50], solving 3-D Navier-Stokes equa-
tions. The BT problem size used in our experiment is class
C for all tests, with collective I/O turned on. With its de-
fault step size (200 steps) and I/O frequency (every 5 steps),
each test run generates a shared output file of about 6.4GB.

FLASHIO is an I/O kernel derived from the full parallel
FLASH simulation, a modular adaptive mesh astrophysics
code [56]. It uses the parallel HDF5 I/O library to a single
checkpoint file around 15GB into disk periodically.

mpiBLAST [11] is a parallel implementation of the widely
used NCBI BLAST tool [34], for protein or DNA sequence
search. In our tests, the 84GB wgs database is partitioned
into 32 segments and there are around 1K query sequences
sampled from itself. Unlike parallel simulations (most com-
mon scientific applications), mpiBLAST has a rather read-
intensive I/O pattern [25]. We use the use-virtual-frags

and replica-group-size settings to tune the number of
processes reading the database (called I/O processes).

MADBench2 is a“stripped-down”version of the MADspec
code, used in analyzing the Cosmic Microwave Background
(CMB) radiation datasets [10]. A matrix is written to disk
once after each computation step and read back when it is
required in a demand-driven fashion, creating both read and
write workloads. In our experiments, the output file is up
to 32GB, accessed four times throughout the execution.

5.2 Optimal I/O Configurations
To evaluate ACIC, we need to actually measure the above

applications’ performance (depicted with total run time) and
monetary cost running on EC2, using each of the candidate
I/O configurations. Table 4 shows the optimal I/O configu-
rations we found, with performance (overall execution time)
as the optimization goal. The results showcase the lack of
one-size-fits-all I/O configurations, with 7 unique optimal

Application NP Device P/D FS IOS SS

BTIO
64 EBS P NFS 1 NA
256 eph. P PVFS2 4 4MB

FLASHIO
64 eph. D NFS 1 NA
256 eph. P NFS 1 NA

mpiBLAST
32 eph. P PVFS2 4 64KB
64 eph. D PVFS2 4 4MB
128 eph. D PVFS2 4 4MB

MADbench2
64 eph. D PVFS2 4 4MB
256 EBS D PVFS2 4 4MB

Table 4: Optimal performance configurations for different
applications with different scales. Column names: NP -
Number of I/O processes; Device - Disk device; P/D - I/O
server placement, part-time (P) or dedicated (D); FS - File
system; IOS - Number of I/O servers; SS - Stripe size for
PVFS2; eph. - ephemeral disk

I/O configurations for 9 application runs. This means that
even for the same application, different job sizes (numbers
of processes) will call for different I/O system settings. Tak-
ing mpiBLAST as an example, the optimal configuration for
32-process runs adopts part-time I/O servers, while the one
for 128-process runs adopts dedicated. One possible reason
is that with a smaller number of processes, the locality effect
brought by the part-time I/O servers outweighs other I/O
system options. This is less likely to happen on today’s in-
house clusters, whose interconnect often use dedicated high
performance network like InfiniBand. Even with a moder-
ate 5-D configuration space, it is hard for users to manually
explore the impact of parameter values and their interplay,
as demonstrated in our user study (Section 6). Due to space
limit, we omit the best configurations for cost optimization,
where the results show similar behavior and in many cases
the best configuration for performance does not agree with
that for cost optimization.

5.3 ACIC Auto-Configuration Effectiveness
Figure 5 and Figure 6 show the execution time and cost

distribution, respectively, for the evaluated 9 application ex-
ecutions. The monetary cost for each cloud execution is:

cost = execution time× num instances× unit price (1)

As mentioned earlier, we exhaustively tested all candidate
configurations, each indicated by a gray dot, whose vertical
span depicts the range of performance/cost measurement for
the entire configuration space. The lowest dot in each fig-
ure is the measured optimal configuration. The black data
points highlight the target measurement achieved under the
ACIC recommended I/O configuration. The first 10 param-
eters are used in the training, according to the PB design
experiment results. When the CART model gives several
configurations as co-champions, we report the median re-
sults using these configurations. For each application set-
ting, the solid (red) line indicates the median performing
I/O configuration’s position among the gray dots and the
dashed (black) line marks the performance of the baseline
I/O configuration. As described Section 3.3, the baseline we
used is “dedicated NFS server mounting two EBS disks with
a software RAID-0”, a configuration similar to the baseline
setup of many small- to medium-sized in-house clusters.

First, these figures clearly demonstrate the potentially
large difference, caused by different I/O system configura-
tions, in overall execution time (not total I/O time) and
monetary cost of running data-intensive applications in the

 0

 50

 100

 150

 200

 250

 300

 350

 64 256

T
o

ta
l
e

x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Number of processes

M:

B:

1.1 1.2

1.4 2.3

(b) BTIO

 0

 100

 200

 300

 400

 500

 64 256
T

o
ta

l
e

x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Number of processes

M:

B:

2.1 1.2

0.7 2.5

(c) FLASHIO

 0

 200

 400

 600

 800

 1000

 1200

 1400

 32 64 128

T
o
ta

l
e
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Number of I/O processes

M:

B:

2.1 2.4 2.2

2.8 2.4 2.1

(d) mpiBLAST

 0

 50

 100

 150

 200

 250

 300

 350

 400

 64 256

T
o

ta
l
e

x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Number of processes

M:

B:

1.9 3.2

2.2 10.5

(e) MADbench2

Figure 5: Total execution time of test applications. In each set of application run, the black dot indicates the ACIC predicted
best configuration’s performance and the gray dots indicate performance of all candidate configurations. The solid (red) line
marks the median (M) performance among all configuration candidates, while the dashed (black) line marks the performance
of the baseline (B) I/O configuration. Speedup ratios achieved by ACIC over the median and baseline performance are shown
at the top of each figure.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 64 256

T
o
ta

l
c
o
s
t
($

)

Number of processes

M:

B:

27% 23%

45% 57%

(a) BTIO

 0

 1

 2

 3

 4

 5

 6

 64 256

T
o

ta
l
c
o

s
t

($
)

Number of processes

M:

B:

50% 37%

-40% 66%

(b) FLASHIO

 0

 1

 2

 3

 4

 5

 6

 7

 32 64 128

T
o
ta

l
c
o
s
t
($

)

Number of I/O processes

M:

B:

67% 65% 56%

76% 66% 53%

(c) mpiBALST

 0

 1

 2

 3

 4

 5

 64 256

T
o

ta
l
c
o

s
t

($
)

Number of processes

M:

B:

56% 64%

64% 89%

(d) MADbench2

Figure 6: Total monetary cost of running the test applications. Costa saving percentages are listed at the top of each figure.

cloud. More specifically, we see the performance difference
ranging between 1.4x and 10.5x, and cost difference between
2.2x and 10.5x. Second, at a glimpse, ACIC is able to
identify near-optimal I/O configurations in almost all sit-
uations, as the black points are located near the bottom
of the gray “spectrum”. At the top of each chart, we note
the improvement achieved by the ACIC-recommended con-
figuration over the median (“M”/solid line) and the baseline
configuration (“B”/dashed line). For performance, we used
speedup, calculated as:

speed up =
timebaseline/median

timeACIC
. (2)

For cost, we report

cost saving =
costbaseline/median − costACIC

costbaseline/median

× 100% (3)

In all cases, the ACIC-recommended configuration out-
performs the median configuration, by a factor of 1.1-3.2 in
execution time, while delivering a cost saving of 23%-67%.

It also beats the baseline configuration most of the time.
There is an exception of FLASHIO using 64 processes, where
the baseline configuration happens to be near-optimal itself.
Moreover, the absolute values of execution time (and hence
cost) are relatively small, leading to a substantial negative
cost saving in this case.

Next, we examine the potential difference made by veri-
fying a larger ACIC recommendation set, an optional effort
users can make by running their applications with not one,
but the top-k recommendations. As mentioned earlier, users
may have “residual resource” left from their hourly cloud in-
stance rentals and can piggy-back verification runs at no
extra cost. Figure 7 shows the execution time and cost im-
provement achieved by the best configuration among the top
1, 3, and 5 recommendations and eventually all I/O config-
urations (the true optimal). The results reveal that actually
the top recommendation (median if there are co-champions)
works fairly well, though considering more top candidates
does help with several cases (eg. 256-process FLASHIO).

(a) Execution time (over baseline) (b) Total cost (under baseline)

Figure 7: Accuracy enhancement from examining top-k ACIC recommendations

 0

 20

 40

 60

 80

 100

 7 8 9 10 11 12 13 14 15

 0.1

 1

 10

 100

 1000

C
o

s
t

s
a

v
in

g
 u

n
d

e
r

b
a

s
e

lin
e

 (
%

)

T
ra

in
in

g
 c

o
s
t

(K
$

)

Number of model papameters

Training cost
BTIO-64

FLASHIO-256
mpiBLAST-128

MADbench2-256

Figure 8: Impact on prediction performance using different
numbers of top ranking model parameters

In particular, in almost all cases, little further gain can be
achieved by checking beyond the top 3 recommendations.

5.4 Training Cost Analysis
The ACIC overhead includes three types of cost, caused

by its profiling, training data collection, the actual predic-
tion. Among them, the most significant item is definitely
the training data collection through IOR runs on the cloud,
which incurs time overhead larger than the other two by
orders of magnitude, and could be expensive money wise.
More training data points, however, typically lead to higher
prediction accuracy. To investigate this tradeoff, we exper-
imented with CART-based prediction using different num-
bers of configuration parameters (dimensions), as guided by
PB design results.

Figure 8 presents the results of this sensitivity study using
four sample runs, one for each application. The x axis indi-
cates the number of top ranking parameters used in model
training as ordered by PB matrix. For each parameter count,
the y axis on the left measures the performance of the ACIC
top recommendation in terms of cost saving under the base-
line, while the y axis on the right measures the cost of train-
ing data collection. Note that the left axis is linear scale and
the right is log scale. When using 10 parameters, the total
training data collection cost is around $1K.

The results here show that we can still achieve consider-
able cloud application execution cost saving, with only the
top 7 parameters (which requires a training data collection

cost of only $108). Meanwhile, we do observe higher op-
timization effectiveness when considering more parameters
(by collecting more training data points), though the gain
appears to be heavily application-dependent. As expected,
the estimated training data collection cost continues to grow
exponentially beyond 10 parameters, reaching $100K when
exploring the full 15-D space. Due to time/funding con-
straints, we did not perform more training than the top 10
dimensions, and do not expect such additional exploration
will bring significant gain, as shown in Figure 7.

5.5 Comparison with PB Space Walking

0%
20%
40%
60%
80%

100%

64 256 64 256 64 128 64 256

BTIO FLASHIO mpiBLAST MADBench2

Co
st
	 sa

vi
ng
	 u
nd

er
	

ba
se
lin
e(
%
)

Applica7on	 and	 processes

Random	 Walk	 Predic7on	 PB	 Walk	 Predic7on	 Cart	 Tree	 Predic7on	

Figure 9: Comparing alternative prediction approaches

Finally, we compare the auto-configuration capability of
the CART-based and the PB-guided space walking predic-
tion, again in terms of cost saving over the baseline config-
uration. Here we compare three prediction methodologies.
The first is random walk, which randomly selects the order-
ing of the I/O configuration parameters in its dimension-by-
dimension training and prediction. For this approach, we
report the average results from 10 predictions with different
random parameter orderings, with the y error bars depict-
ing the range of cost saving distribution. The second is the
PB-guided walk, as proposed in Section 4.3. The third in
black is the CART-based prediction.

Figure 9 shows the CART-based prediction delivers the
best optimization results consistently. The PB-guided space
walking closely follows in most cases, benefiting from the
guidance of PB designs and application-specific training.
The random walking approach, on the other hand, generates
significantly inferior as well as less predictable optimization
performance in half of the cases. The results confirm that
PB-guided walking is an appealing approach when the ACIC
training database has not been sufficiently populated.

5.6 Observations From Training Experience
In addition to releasing our ACIC tool, here we share the

major observations based on our extensive initial training
with roughly 10K data points from EC2:

1. It is more cost-effective to use part-time than ded-
icated I/O servers for applications with I/O aggre-
gators, where each communication group has a root
process that collects data and writes them locally. In
particular, data locality can be much enhanced when
placing the part-time I/O servers on the same physical
instances as the aggregators.

2. For parallel file system like PVFS2, having more I/O
servers improves performance of both cost and time
perspective. Across all four applications, we found few
cases where one PVFS2 I/O server performs better
than four ones.

3. Ephemeral disks usually perform better than EBS
when there is more than one I/O server deployed.

4. NFS often works better for applications performing
small amounts of I/O using POSIX API.

5. It is important to tolerate server connection failures on
a cloud platform for production runs. We experienced
lost connections to the I/O server, causing data cor-
ruption, in around 1h of experiments during training.

6. USER STUDY

-20

 0

 20

 40

 60

 80

 100

32 64 128 32 64 128

Im
p

ro
v
e

m
e

n
t

o
v
e

r
b

a
s
e

lin
e

 (
%

)

User User3 Dev Dev3 ACIC

CostTime

Figure 10: Comparing manual configurations with ACIC

To further verify ACIC’s benefit of automated I/O con-
figuration optimization, we performed a small-scale subject
study. We used one of our test applications, mpiBLAST,
as we obtained consent from one of its core developers [25]
(“Dev”), plus one of its skilled users [51] (“User”), to partici-
pate in our evaluation. It is challenging to do a larger study
due to the difficulty in finding (expert) users/developers
of I/O-intensive parallel applications, simultaneously with
cloud execution experience and time to participate. We pro-
vided the participants with sufficient information regarding
the executions (such as input and job scale) and the plat-
form (such as pricing policy and device performance). Based
on their knowledge and experience, the participants each
gave the optimal configurations manually selected. E.g., the
user gave a configuration of “Eph.-P-NFS-1-4MB” for cost
minimization of 32-process runs, while the developer gave
a configuration of “Eph.-D-PVFS2-2-4MB” for performance
optimization of 64-process runs.

Figure 10 shows the improvement of ACIC’s predicted
configuration and the manually selected ones. Across all

execution scales and both optimization goals, ACIC consis-
tently provides better suggestion than the experienced hu-
man participants, beating the user by an average of 37.43%
and the developer by 17.8%. In addition, both developer and
user agree with each other in three out of the six test groups,
confirming the impact of common knowledge. However, in
two of the rest three test groups, their selections generate
highly contrasting results, indicating the limitation and un-
reliability of manual configurations. We also invited them
to give 3 configurations for each test group provided with
the insights in Section 5.6, and then compared the ACIC
with the top-3 manual configurations (denoted as ”Dev3”
and ”User3”). While the execution time of the top-3 manual
configurations by the developer can match the ACIC perfor-
mance, the manual top-3 configurations visibly lag behind
ACIC (36% for user and 17% for developer on average).

7. RELATED WORK
In this section, we briefly discuss several lines of prior work

related to the ACIC approach.
Parameter space reduction PB design has been ap-

plied to computer systems. For example, Yi et al. [53] em-
ploy it to identify key processor parameters for massive sim-
ulations. Actually, CART models have also been used as
attribute filters to prune the similarity search space [48].
The novelty in this work, however, lies in the combination
of PB-based space reduction with multiple machine learn-
ing approaches (including CART) to enable cost-effective,
reusable model training for black-box performance/cost pre-
diction.

Cloud system configuration Recently several ap-
proaches have been developed to optimize cloud platform
configurations. Gideon et al. [20] study the impact of differ-
ent data sharing options for scientific work-flows on Ama-
zon EC2. Elastisizer [17] selects the proper cluster size
and instance types for MapReduce workloads running in
the cloud. DOT [18] is a model analyzing large data an-
alytic software and offering optimization guidelines. Most
of these existing efforts assume certain knowledge on the
application/middleware internals, while ACIC is based on
black-box prediction and can assist many applications with
diverse I/O behaviors. Also, ACIC offers the flexibility
and expandability that allow it to work across cloud plat-
forms and across hardware updates. The recently proposed
Scalia [37] is a cloud storage brokerage solution that contin-
uously adapts data placement based on the access pattern
and optimization objectives (e.g. storage costs). It focuses
on cross-cloud placement and estimates cost using longer-
term access statistics. In contrast, ACIC, while capable of
multi-cloud optimization, is designed specifically to address
the high-dimensional space optimization problem for indi-
vidual application.

Storage provisioning tools There are tools aiming at
reducing the human effects involved in storage system pro-
visioning and management. For instance, Hippodrome [4]
and Minerva [2] perform automatic block-level cluster stor-
age tuning. scc [28] automates cluster storage configura-
tion based on formal specifications of application behavior
and hardware properties. Our work complements such prior
work by addressing the unique storage system configuration
space opened up by cloud and the training cost challenge
brought by the high-dimensional configuration space.

Prediction model Many studies exist on performance

modeling for HPC applications and/or I/O systems [19, 46,
52, 54]. Some models were proposed for multi-platform per-
formance prediction [29, 21, 6, 27]. Nikolaus [19] et al.
demonstrated that the Palladio Component Model can pre-
dict the performance of industry workload with system using
virtual storage. One of the most closely related projects is
by Osogami et al. [36], who optimized web system perfor-
mance by heuristically searching the configuration space to
automatically predict the performance based on the model
measured similar configurations [36]. In addition, there is
Pesto [16], a unified storage performance management sys-
tem that automatically constructs approximate black-box
performance models of storage devices. Compared to these
studies, our work focuses on the unique high-dimensional
black-box modeling of cloud performance and the associated
training cost challenge.

8. CONCLUSION AND FUTURE WORK
In this paper, we demonstrate that cloud I/O system con-

figurations have considerable impacts on both the perfor-
mance and cost efficiency of I/O intensive parallel applica-
tions. We further propose ACIC, an automatic cloud I/O
system configuration tool for HPC applications. ACIC com-
bines several statistical and machine learning techniques to
enable application-dependent, incremental model training
and black-box performance/cost prediction. In particular,
we have found that the PB design approach, which effec-
tively trims the parameter exploration space and reduces
the high-dimensional model training to a feasible task, works
well in conjunction with regression tree and space walking.
Our evaluation results demonstrate that accurate I/O con-
figuration can be predicted with a significantly reduced ex-
ploration dimension, without requesting users to perform
application-specific manual tuning or benchmarking.

In the future, we plan to explore web-based ACIC query
service. We also hope to assess the extensibility of ACIC
to support incrementally new I/O configurations or applica-
tion characteristics parameters, as well as additional cloud
platforms.

Acknowledgments
We sincerely thank the anonymous reviewers for their

valuable comments and suggestions. We also thank Frans
Kaashoek and Xianhe Sun for their useful early feedback
on our work. Special thanks goes to Heshan Lin and Ruini
Xue for taking the time and effort to participate in our user
study on mpiBLAST. In China, this work has been par-
tially supported by the National High-Tech Research and
Development Plan (863 project) 2012AA01A302, as well as
NSFC project 61133006 and 61103021. In the US, the work
has been partially sponsored by multiple NSF awards (CNS-
0546301, CNS-0915861, and CCF-0937908), an IBM Fac-
ulty Award, and Xiaosong Ma’s joint appointment between
ORNL and NCSU.

9. REFERENCES
[1] GPFS: A shared-disk file system for large computing

clusters.

[2] G. Alvarez, E. Borowsky, and S. e. a. Go. Minerva:
An Automated Resource Provisioning Tool for
Large-scale Storage Systems. ACM Transactions on
Computer Systems (TOCS), 19(4):483–518, 2001.

[3] Amazon Inc. High Performance Computing (HPC).
http://aws.amazon.com/ec2/hpc-applications/, 2011.

[4] E. Anderson, M. Hobbs, K. Keeton, S. Spence,
M. Uysal, and A. Veitch. Hippodrome: Running
Circles Around Storage Administration. In FAST,
2002.

[5] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin,
I. Stoica, et al. A View of Cloud Computing.
Communications of the ACM, 53(4):50–58, 2010.

[6] S. Browne, J. Dongarra, N. Garner, K. London, and
P. Mucci. A Scalable Cross-platform Infrastructure for
Application Performance Tuning Using Hardware
Counters. In SC. IEEE, 2000.

[7] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and
W. Gropp. Parallel I/O Prefetching Using MPI File
Caching and I/O Signatures. In SC. IEEE, 2008.

[8] B. Callaghan. NFS Illustrated. Addison-Wesley
Longman Ltd., Essex, UK, 2000.

[9] P. Carns, W. L. III, R. Ross, and R. Thakur. PVFS:
A Parallel File System For Linux Clusters. In
Proceedings of the 4th Annual Linux Showcase and
Conference, 2000.

[10] Computational Research Division. Madbench2.
http://crd-legacy.lbl.gov/~borrill/MADbench2/.

[11] A. Darling, L. Carey, and W. Feng. The Design,
Implementation, and Evaluation of mpiBLAST. In
Proceedings of the ClusterWorld Conference and Expo,
2003.

[12] C. Evangelinos and C. Hill. Cloud Computing for
parallel Scientific HPC Applications: Feasibility of
running Coupled Atmosphere-Ocean Climate Models
on Amazon’s EC2. ratio, 2(2.40):2–34, 2008.

[13] M. Fahey, J. Larkin, and J. Adams. I/O performance
on a massively parallel Cray XT3/XT4. In IPDPS.
IEEE, 2008.

[14] M. Folk, A. Cheng, and K. Yates. HDF5: A File
Format and I/O Library for High Performance
Computing Applications. In SC, volume 99, 1999.

[15] S. Ghemawat, H. Gobioff, and S. Leung. The Google
File System. In SOSP. ACM, 2003.

[16] A. Gulati, G. Shanmuganathan, I. Ahmad,
C. Waldspurger, and M. Uysal. Pesto: Online Storage
Performance Management in Virtualized Datacenters.
In SOCC, page 19. ACM, 2011.

[17] H. Herodotou, F. Dong, and S. Babu. No One
(cluster) Size Fits All: Automatic Cluster Sizing for
Data-intensive Analytics. In SOCC. ACM, 2011.

[18] Y. Huai, R. Lee, S. Zhang, C. H. Xia, and X. Zhang.
DOT: A Matrix Model for Analyzing, Optimizing And
Deploying Software for Big Data Analytics in
Distributed Systems. In SOCC. ACM, 2011.

[19] N. Huber, S. Becker, C. Rathfelder, J. Schweflinghaus,
and R. H. Reussner. Performance Modeling in
Industry: A Case Study on Storage Virtualization. In
ICSE. ACM, 2010.

[20] G. Juve, E. Deelman, K. Vahi, G. Mehta,
B. Berriman, B. P. Berman, and P. Maechling. Data
Sharing Options for Scientific Workflows on Amazon
EC2. In SC, 2010.

[21] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini,

http://crd-legacy.lbl.gov/~borrill/MADbench2/

H. J. Wasserman, and M. Gittings. Predictive
Performance And Scalability Modeling of A
Large-scale Application. In SC. ACM, 2001.

[22] A. Konwinski, J. Bent, J. Nunez, and M. Quist.
Towards An I/O Tracing Framework Taxonomy. In
PDSW. ACM, 2007.

[23] L. M. Kristensen and L. Petrucci. An Approach to
Distributed State Space Exploration for Coloured
Petri Nets. In ICATPN. Springer, 2004.

[24] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms,
and W. Allcock. I/O Performance Challenges at
Leadership Scale. In SC. ACM, 2009.

[25] H. Lin, X. Ma, W. Feng, and N. Samatova.
Coordinating Computation and I/O in Massively
Parallel Sequence Search. IEEE Transactions on
Parallel and Distributed Systems, 22(4):529–543, 2011.

[26] M. Liu, Y. Jin, J. Zhai, Y. Z. Q. Shi, X. Ma, and
W. Chen. ACIC Homepage.
http://hpc.cs.tsinghua.edu.cn/ACIC, 2013.

[27] X. Ma, M. Winslett, J. Lee, and S. Yu. Improving
MPI-IO Output Performance with Active Buffering
Plus Threads. In IPDPS. IEEE, 2003.

[28] H. Madhyastha, J. McCullough, G. Porter, R. Kapoor,
S. Savage, A. Snoeren, and A. Vahdat. scc: Cluster
Storage Provisioning Informed by Application
Characteristics and SLAs. In FAST. USENIX, 2012.

[29] G. Marin and J. Mellor-Crummey. Cross-architecture
Performance Predictions for Scientific Applications
Using Parameterized Models. In SIGMETRICS.
ACM, 2004.

[30] M. Mesnier, M. Wachs, R. Sambasivan, A. Zheng, and
G. Ganger. Modeling the Relative Fitness of Storage.
In SIGMETRICS. ACM, 2007.

[31] Message Passing Interface Forum. The Message
Passing Interface (MPI) standard. http://www.mpi-
forum.org/docs/mpi-2.2/mpi22-report.pdf.

[32] Mingliang Liu and Jidong Zhai and Yan Zhai and
Xiaosong Ma and Wenguang Chen. One Optimized
I/O Configuration per HPC Application: Leveraging
The Configurability of Cloud. In APSys. ACM, 2011.

[33] D. Montgomery. Design and analysis of experiments.
John Wiley & Sons Inc, 1991.

[34] National Center for Biotechnology Information. NCBI
BLAST. http://www.ncbi.nlm.nih.gov/BLAST/.

[35] L. Olshen and C. Stone. Classification and Regression
Trees. Wadsworth International Group, 1984.

[36] T. Osogami and S. Kato. Optimizing System
Configurations Quickly by Guessing at The
Performance. In SIGMETRICS, 2007.

[37] T. Papaioannou, N. Bonvin, and K. Aberer. Scalia:
An Adaptive Scheme for Efficient Multi-Cloud
Storage. In SC, 2012.

[38] R. Plackett and J. Burman. The Design of Optimum
Multifactorial Experiments. Biometrika,
33(4):305–325, 1946.

[39] A. Purakayastha, C. Ellis, D. Kotz, N. Nieuwejaar,
and M. Best. Characterizing Parallel File-access
Patterns on a Large-scale Multiprocessor. In IPDPS.
IEEE, 1995.

[40] R. Rew and G. Davis. NetCDF: An Interface for
Scientific Data Access. Computer Graphics and

Applications, IEEE, 10(4):76–82, 1990.

[41] P. Schwan. Lustre: Building A File System for
1000-node Clusters. In Proceedings of the 2003 Linux
Symposium, volume 2003, 2003.

[42] H. Shan, K. Antypas, and J. Shalf. Characterizing and
Predicting the I/O Performance of HPC Applications
Using a Parameterized Synthetic Benchmark. In SC.
IEEE, 2008.

[43] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The Hadoop Distributed File System. In Mass Storage
Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on, pages 1–10. IEEE, 2010.

[44] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc. A
Performance Analysis Framework for Identifying
Potential Benefits in GPGPU Applications. In
PPoPP. ACM, 2012.

[45] N. R. Tallent, J. M. Mellor-Crummey, and M. W.
Fagan. Binary Analysis for Measurement and
Attribution of Program Performance. In PLDI. ACM,
2009.

[46] V. Taylor, X. Wu, and R. Stevens. Prophesy: An
Infrastructure for Performance Analysis And Modeling
of Parallel And Grid Applications. In SIGMETRICS.
ACM, 2003.

[47] R. Thakur, W. Gropp, and E. Lusk. Data Sieving and
Collective I/O in ROMIO. In FRONTIERS, 1999.

[48] E. Thereska, B. Doebel, A. Zheng, and P. Nobel.
Practical Performance Models for Complex, Popular
Applications. In SIGMETRICS. ACM, 2010.

[49] L. William, M. Tyce, and M. Christopher. IOR HPC
Benchmark.
https://asc.llnl.gov/sequoia/benchmarks, 2003.

[50] P. Wong and R. der Wijngaart. NAS Parallel
Benchmarks I/O Version 2.4. NASA Ames Research
Center Tech. Rep. NAS-03-002, 2003.

[51] R. Xue, W. Chen, and W. Zheng. CprFS: A User-level
File System to Support Consistent File States for
Checkpoint and Restart. In ICS. ACM, 2008.

[52] L. T. Yang, X. Ma, and F. Mueller. Cross-Platform
Performance Prediction of Parallel Applications Using
Partial Execution. In SC. IEEE, 2005.

[53] J. Yi, D. Lilja, and D. Hawkins. A Statistically
Rigorous Approach for Improving Simulation
Methodology. In HPCA. IEEE, 2003.

[54] J. Zhai, W. Chen, and W. Zheng. Phantom:
Predicting Performance of Parallel Applications on
Large-scale Parallel Machines Using a Single Node. In
PPoPP. ACM, 2010.

[55] Y. Zhai, M. Liu, J. Zhai, X. Ma, and W. Chen. Cloud
Versus In-house Cluster: Evaluating Amazon Cluster
Compute Instances for Running MPI Applications. In
SC. ACM, 2011.

[56] M. Zingale. FLASH I/O Benchmark Routine Parallel
HDF5. http://www.ucolick.org/~zingale, 2001.

http://hpc.cs.tsinghua.edu.cn/ACIC
https://asc.llnl.gov/sequoia/benchmarks
http://www.ucolick.org/~zingale

	Introduction
	Approach Overview
	Exploration Space
	I/O Configuration Options
	Application I/O Characteristics
	Defining Exploration Space

	Performance/Cost Prediction
	Exploration Space Reduction
	CART-based Prediction Model
	PB-guided Space Walking

	Evaluation
	Experiment Setup
	Optimal I/O Configurations
	ACIC Auto-Configuration Effectiveness
	Training Cost Analysis
	Comparison with PB Space Walking
	Observations From Training Experience

	User Study
	Related Work
	Conclusion and Future Work
	References

