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Abstract-Image resizing is increasingly important for picture 
sharing and exchanging between various personal electronic 
equipments. Seam Carving is a state-of-the-art approach for 
effective image resizing because of its content-aware characteris­
tic. However, complex computation and memory access patterns 
make it time-consuming and prevent its wide usage in real-time 
image processing. To address these problems, we propose a novel 
algorithm, called Non-Cumulative Seam Carving (NCSC), which 
removes main computation bottleneck. Furthermore, we also 
propose an adaptive multi-seam algorithm for better parallelism 
on GPU platforms. Finally, we implement our algorithm on a 
multi-GPU platform. Results show that our approach achieves 
a maximum 140x speedup on a two-GPU system over the 
sequential version. It only takes 0.11 second to resize a 1024 x 640 
image by half in width compared to 15.5 seconds with the 
traditional seam carving. 

I. INTRODU CTION 

Image resIZIng is increasingly important for exchanging 
and sharing pictures with different resolutions between various 
electronic equipments, such as smart phones, pads and smart 
TVs. 

A large number of on-line image resizing softwares have 
been provided on the website, and they mainly fall into two 
categories, scaling and cropping [1]. Scaling is a popular 
image-resizing method through resizing a whole image without 
considering its contents, resulting in the main contents of the 
image are distorted (See Figure l(b)). Cropping is another 
famous approach to resize an image, but the resized image 
may not include the important information of the image (See 
Figure l(c)). 

Recently, an important category of methods, called content­
aware image resizing algorithms are proposed for effective 
image scaling [2], [3]. The purpose of these methods is 
to resize images without distortion on various media (cell 
phones, pads) through preserving main objects of the image 
and discarding unimportant parts (See Figure led)). Because 
of few of image distortions, the content-aware image resizing 
method has been attracting more and more people's attention. 
Among these methods, seam carving [4] is a state-of-the-art 
algorithm for effective image resizing, which focuses on the 
energy value of each pixel and removes a number of seams 
that have the lowest energy value until satisfying the desired 
size of an image. 

* Jidong Zhai is the corresponding author of this paper. 

Fig. 1. Comparison of various image resizing methods. (a) Original image. 
(b) Scaling. (c) Cropping (d) Seam carving. 

However, the main limitation of seam carving is its com­
plex computation model. In order to find an optimal seam, 
a dynamic programming process is needed during the image 
resizing. Typically, these methods need to take a long time 
to resize a moderate size of image. For example, resizing a 
1024 x 640 image by half in horizontal direction takes more 
than 15 seconds on a personal computer with 2GHz Intel 
Xeon processor. As a result, it is not proper for the real-time 
application on current user devices such as a personal computer 
and a hand-held device. 

On the other hand, GPU devices are becoming more and 
more popular on current electronic equipments. A large num­
ber of high-end smart TVs and smart phones all equip high­
performance GPUs. Moreover, since ARM began to support 
OpenCL programming interface [6] on its GPUs, NVIDIA also 
announced a plan to enter the embedded system market. In this 
paper, we focus on utilizing GPU devices to accelerate the 
content-aware algorithms to achieve real-time image resizing. 
We use seam carving as an example in this paper, but our 
optimizing techniques are general for this type of image 
resizing algorithms. 

Effective parallelization of seam carving on GPU devices 
is a challenging problem due to its complex computation 
model. There are two main challenges: (1) Computation 
Dependence: Dynamic programming is a key step to compute 
an optimal seam during image resizing, which accounts for a 
large proportion of the program execution time. It is very hard 
to parallelize the dynamic programming on GPU devices due 
to the computation dependency. (2) Intensive and Irregular 
Memory Access: In order to compute various intermediate 
results, such as energy maps and seam maps, a variety of 
irregular memory access patterns are used, which can hurt the 
program performance significantly with the complex memory 
hierarchy of GPUs. 

To address these problems, we propose a series of opti­
mization methods in this paper to improve the seam carving 
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performance on the GPU platform. In summary, we make the 
following contributions: 

1) We propose a novel Non-Cumulative Seam Carv­
ing (NCSC) algorithm for effective image resizing, 
which removes the dynamic programming part in 
the traditional algorithm and guarantees the similar 
image quality. Our algorithm can be effectively scaled 
to large-scale GPU systems due to the reduction of 
computation dependence. Moreover, we also extend 
our algorithm for a hybrid CPU-GPU version for 
better utilization of CPU resources. 

2) We also propose an adaptive multi-seam algorithm, 
which can compute multiple seams at each iteration 
and automatically decides the number of seams to 
be deleted. We implement these two algorithms, the 
NCSC and the adaptive multi-seam, on multi-GPU 
systems with the GPU peer to peer access feature. 

3) We propose a series of GPU architecture-dependent 
implementation methods for improving the parallel 
seam carving algorithm. And we also share our 
optimization experience on the memory allocation, 
access patterns, and transmission techniques of the 
GPU memory management. 

We implement our optimized seam carving algorithm on 
multi-GPU heterogeneous systems. Results show that our 
method can reduce the image resizing overhead significantly. 
For example, the single-GPU version carving a single seam at 
a time can achieve 57 x speedup over the CPU version, and 
the two-GPU version with the removal of 2 seams at one time 
achieves 140x speedup. It only takes about 0.11 second to 
resize a 1024 x 640 image by half in width. 

The rest of this paper is organized as follows. We first 
present related work in Section II and introduce seam carving 
algorithm in Section III, and describes NCSC, adaptive multi­
seam and multi-GPU algorithm in the following section. In 
Section V, we present various optimizations for CUDA archi­
tecture. We show evaluation results in Section VI, and give the 
conclusions in Section VII. 

II. RELATED WORK 

Image resizing has been studied widely in the literature on 
various sized display devices. The most popular method is to 
adapt scale down, but it causes image distortion and does not 
recognize important objects in the image. Cropping [1], [7], 
one of the other methods, contain insufficient information in 
the cropped image compared with the original image. 

Avidan and Shamir [4] proposed a new method of resizing 
an image, called seam carving. Seam carving focuses on the 
contents of an image and remains the main objects that have 
large energy value in the resized image with little distortion. 
However, seam carving algorithm is not proper to the real-time 
applications because of its large computation and the limitation 
of parallelism using dynamic programming method.Hence 
previous work [8], [9] mainly focus on improving the quality 
of resized image rather than the performances. 

The modern GPU architecture has more than hundred of 
cores and it can be used for general purpose computation. 
R. Duarte et al. [10] implemented seam carving with CUDA 

mainly focusing on energy map. Unlike above work, we 
analyze the memory access pattern and computation workload 
of the whole seam carving algorithm, and also consider CUDA 
characteristics, such as the overhead of kernel function call and 
the cost of using pinned memory. In addition, we propose a 
new approach for seam map, NCSC (Non-Cumulative Seam 
Carving) removing dynamic progranuning, and apply a new 
method to configure CUDA threads for reducing time complex­
ity. Stream is a significant feature of CUDA for heterogeneous 
CPU-GPU system. We also use this feature to concurrently 
execute CPU and GPU. We hide most data transfer time 
between GPU and CPU to achieve better performance. In 
addition, we use multi-seam method to delete several seams 
at the same time, and achieve significant speedup with little 
image distortion. Finally, we implement multi-GPU version 
using GPU peer-to-peer access, which is a key feature of 
CUDA for optimization on multi-GPU platform. 

III. SEAM CARVING ALGORITHM 

Seam carving [4] resizes an image by removing or dupli­
cating a seam, which is an optimal connected path of pixels 
having the lowest energy in an image from top to bottom for 
horizontal adjustment or left to right for vertical adjustment. 
It consists of three stages. Firstly, we construct an energy map 
by calculating the energy value for each pixel of an image 
according to the Eq. 1. Then we compute seams that connect 
low energy pixels crossing an image and find the optimal 
seam with the lowest energy summation. Finally, we delete 
the optimal seam and resize the image. The last two stages are 
executed repetitively until the desired size is reached. Figure 2 
shows these stages for horizontal adjustment of an image. 

(a) 

2 1 3 2  2 1 3 2  2 3 2  

2 3 1 2 3 4 2 4 3 4 4  

4 5 2 4 7 7 4 6  7 7 6  

8 8 5 7 15 12 9 11 15 12 11 

5 6 5 4 17 15 14 13 17 15 

(b) (e) (d) (e) 

Fig. 2. Seam carving stages. (a) The original image. (b) The energy map of 
the image. (c) The optimal seam within the seam map. (d) Resize the map. 
(el Resized image. 

A. Energy map 

One method to calculate the energy value of each pixel is 
to use the magnitude of the gradient. Let I be an n x m image 
and the energy function is generally defined as: 

(1) 

The energy value of each pixel depends on the other eight 
surrounding pixels. We quantify the amount of changes from 
each pixel to the neighbor in x and y directions. 

The serial implementation of energy map utilizes nested 
Jor-Ioops to compute those two directions of the derivatives for 
each pixel. We add the results in x and y directions, and write 
them to the energy map table. The computation of each pixel is 
independent, and it means that we can achieve vast parallelism. 



Thus we can explore massive thread-level parallelism in GPU 
to accelerate the computation. However, the performance of 
this function on GPU is limited by its computation workload, 
and we analyze how the amount of computation workload 
affects the performance in the later section. 

B. Seam map 

After constructing energy map, we obtain the optimal seam, 
vertical or horizontal, which is determined by dynamic pro­
gramming. We concentrate on finding of the optimal vertical 
seam for horizontal image resizing. 

if i = 0 
otherwise (2) 

In the Eg. 2, E is the energy map, S is the seam map, and 
i and j indicate row and column each. The first row of seam 
map is the same as energy map, and starts to use dynamic 
programming from the second row. Then we select the pixel 
has the minimum value from the last row, and use backward 
track from this pixel to the first row to make the path of the 
optimal vertical seam. Figure 3 describes the steps of seam 
map. 
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Fig. 3. Seam map steps. The top-left value in black represents the energy 
value of that pixel. The value in red represents the cumulative sum of energies 
including that pixel. 

Each pixel looks up the adjacent three pixels in the upper 
row, and selects the pixel that has the lowest cumulative sum 
of energy values among them. That value is added to its own 
energy value. If we see the second pixel in the second row 
(shown in Figure 3(a» , its energy value is 3 which is marked 
in black and there are three possible choices (2,1 and 3) that are 
marked in red in the above row. Then, we select the minimum 
value (1) and add it to the orignal value to update the value. 
Hence the current energy value is 4. 

The computation continues until the last row of the image is 
reached, and we finally obtain the cumulative energy values of 
all seams. Then we select the lowest value in the last row, and 
get the optimal vertical path following the blue arrow which 
starts with the last row (the white path in Figure 3(c» . 

Unlike the energy map, the seam map has low parallelism 
due to its dynamic programming characteristic. We have to 
access the energy map row by row, thus it has O(N) time 
complexity if the height of an image is N. In this paper, we 
propose NCSC for seam map to improve the performance. 

C. Resize map 

Resize map is relatively simple than other stages. We 
already know the optimal seam path, then delete a single pixel 
in each row. We move the pixels that are located at the right 
of the deleted pixel from right to left. Since resizing operation 

is independent for each row and it is memory-intensive, GPU 
can offer good performance benefits. 

In this section, we have presented the original seam carving 
algorithm and its serial implementation. We will show how to 
optimize seam carving using CUDA progamming model in the 
following sections. 

IV. OPTIMIZATIONS FOR SEAM CARVING ALGORITHM 

A big challenge of seam carving is how to reduce the time 
consumption of dynamic programming in a seam map. Since 
dynamic programming is very hard to parallelize, we propose 
a new approach, NCSC, which consists of three parts: non­
cumulative selection, reduced time complexity and CPU-GPU 
hybrid method. Then, we also present adaptive multi-seam 
algorithm and multi-GPU method. 

A. NCSC (Non-Cumulative Seam Carving) 

1) Non-cumulative selection: Original seam carving uses 
cumulative energy sum to select the minimum energy value 
when each pixel decides the direction. Although this idea guar­
antees to find the optimal seam which has the lowest energy 
level among seams, its dynamic programming characteristic 
causes significant time loss. Therefore, we only focus on the 
energy value of a pixel not the cumulative energy sum to select 
the direction of a pixel. 

Fig. 4. Non-cumulative energy selection 

Figure 4 shows all possible choices of each pixel. A pixel 
looks down the energy value of three adjacent pixels in the 
right bottom row, and chooses the one that has the minimum 
energy value. The selection of all pixels can be performed at 
the same time. This method owns vast parallelism, and we 
obtain the result in very short time. After the selection of each 
pixel, we write the value of the selected index to the index 
map that is used to construct a seam path later. For example, 
in Figure 5, the first three pixels in the first row select the 
second pixel of the second row as the minimum energy value, 
whose index is 6, thus the index value of those pixels is 6 in 
the index map. 

I EnergyMap I I lndexMap I 
1, 2 k r2 ..... 3 6 6 6 7 8 
2, <V 2 v3 ..... 

4 
.. 

11 11 11 12 13 
3 �1� 3� 4" 5 15 17 17 17 18 
2 3 1 3 5 21 21 21 22 24 

2 1 2 4 3 

Fig. 5. Construction of index map for tracing the path of seams 



2) Reduced time complexity: In spite of not using dynamic 
programming, we still need to calculate the total energy value 
of each seam to find an optimal seam. Every single seam has 
the number of pixels as much as the height of the image, and 
we need to add all energy values of pixels. We access the 
energy map row-by-row based on the index map, and it means 
that we have to visit the global memory of GPU as much as 
the height of the image. If both the height and width of the 
image are N, time complexity is O(N2). 
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Therefore, we propose a new algorithm using an offset 
map to reduce the time complexity. Figure 6 shows how to 
calculate the total energy value of each seam using the offset 
map. Initialized values of the offset map and sum map are 
the same as the index map and the energy map each. At the 
first iteration, the number of CUDA blocks is equal to the 
half of the height of an image and each block manages two 
consecutive rows. Then threads of each block add the energy 
value of own pixel to the energy value of another pixel in 
the next row connected as a seam based on the offset map. 
Next, threads write the sum of the energy value of two pixels 
to the sum map, and update own offset value with the offset 
value of another pixel in the offset map for the next iteration. 
The number of CUDA blocks in the second step is reduced 
to the half of the first step and each block manages two-line 
apart rows. According to this method, the number of block 
of CUDA is the half of the second step in the third iteration, 
and each block manages four-line apart rows. This procedure 
continues till only one row is remained, and finally the first 
row of the sum map has the cumulative energy value in each 
seam. The number of iterations to be executed is O(NlogN), if 
N is the height of an image. Therefore, this approach reduces 
time complexity O( N2) to O( NlogN). 

3) CPU-GPU hybrid: After obtaining the cumulative en­
ergy value of each seam, we select the optimal seam that has 
the minimum value between seams, and trace the path of the 
optimal seam from the first entry in the first row to the bottom 
of the image based on the index map. It means to access global 
memory that is corresponding the index map row by row, and 
it requires very high cost. The access latency between CPU 
and GPU's global memory is very high, and we have to copy 
data from GPU to CPU to make CPU trace a path. Hence 
we need to pipeline the data transfer between host and device 

and computation in both sides. We exploit CUDA concurrency 
characteristic to obtain an efficient workload division between 
CPU and GPu. 

Time 1o...""';;;=-_..lI Hiji 
Stream1 

I GeCMinPath 

I HtD - MinPath 

Siream2 

I Get_EnergyMap 

I GeUndexMap 

I Get_SumMap 

1 Get_MinCol 

l OtH-Min 

1 Get_ ResizeMap 

Fig. 7. CPU-GPU hybrid and concurrency method for seam carving 

In Figure 7, after the index map is made, stream} starts to 
copy the index map to CPU, and stream2 computes the sum 
map and finds the index value of the optimal seam that has 
the minimum energy sum at the same time. By doing this, the 
transfer time of index map is almost hidden. Then, the index 
value is transferred to CPU, and CPU starts to trace the path 
of the optimal seam based on the index map. CPU also needs 
to access DDR memory the times as much as the height of 
the image, but it takes much less time than GPU. Finally, the 
optimal seam path is copied into GPU to use it for resizing 
energy map. 

B. Adaptive Multi-seam Algorithm 

The original seam carving deletes one optimal seam at a 
time, and resizes the energy map to obtain newly reconstructed 
seams. Although this method is able to find the optimal seam 
per iteration, it takes too much time. Hence, we propose to 
sort the cumulated energy value of each seam to delete several 
seams in an ascending order at a time. We define the number 
of multi-seam first, then find the optimal seam using reduction 
method that is very faster than sorting algorithm, and reserve 
the indices of that optimal seam to another data set. After that, 
change the energy value of that optimal seam into maximum 
integer not to be selected as the optimal seam in the next 
iteration. Applying reduction method one more to find the 
second optimal seam, and this operation continues to find the 
number of seams same as the number of multi-seam we defined 
before. We tested several values of multi-seam, from 2 to 10, 
and 2 has good quality of resized image but achieves smaller 
speedup benefits respectively, otherwise, 10 causes too much 
distortion of most images in spite of dramatically improving 
the performance. 2 to 5 is proper for the most of images. 

Multi-seam has good quality with fast speed, but we cannot 
easily decide which value of multi-seam is the best for an 
image. The large number of multi-seam is available in the 
beginning, but as the image is resized and the distance among 
objects in the image is closer, we need to carefully adjust the 
value of multi-seam to prevent too much distortion of objects 
in the image. Therefore, we propose an adaptive multi-seam 
method to define the number of seams to be deleted at a time 
automatically. 



We find that the seams around the optimal seam are likely 
to be the optimal seam in the next iteration. Thus, at first, we 
set the maximum value of multi-seam and find first and the 
other optimal seams with above multi-seam method within the 
maximum value of the multi-seam we define, then determine 
the distance value and calculate the distance between the first 
optimal seam and other seams. If the distance of those seams 
is smaller than the distance we defined, we delete them at a 
time. 
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Fig. 8. Example of adaptive multi-seam method. If the red seam is the 
optimal seam and we set the distance value to 5, the orange and green seams 
are deleted with the red seam at a time, but the blue seam is remained because 
its distance value is greater than 5. 

If we set the distance value as 5, all seams which the 
distance value from the optimal seam is less than 5 are deleted 
simultaneously within the maximum value of multi-seam (See 
Figure 8). 

C. Multi-GPU Algorithm 

In this section, we describe a multi-GPU implementation 
of seam carving on two GPUs. Since a host thread is only able 
to create a context of one GPU, we created two host threads 
using OpenMP to evaluate our experiments on two GPUs. Each 
GPU manages about half of the original data, and co-work with 
another CPU thread. We describe it below in detail. 

}) Data partitioning: To implement seam carving on multi­
GPU, the first challenge is how to separate the data of an 
image. At first, we vertically divide an image into two regions, 
namely upper half and lower half. Because each pixel requires 
data from surrounding pixels to calculate own energy value, 
the last row of upper half and the first row of lower half need 
one more additional row. In addition, to obtain the index map, 
each pixel of the last row in the upper half needs the energy 
value of the next row to select the minimum energy value, 
and it means that to compute the energy value of the next 
row requires one more next row. Therefore the upper half area 
needs two more rows than the half height of an image, on the 
other hand, one more row is needed for the lower half area. 
We set the size of two regions as the same in convenient, thus 
each GPU has the data as much as the half height of an image 
plus two rows (See Figure 9). 

2) Reducing communication overhead between GPUs: 
After data partitioning, each GPU computes the energy map 
and index map at almost the same time, then transfers own 
index map to host using stream} to let host make an optimal 
seam path later. At this time, stream2 of each GPU starts to 
calculate the sum map concurrently. Although each GPU is 
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Fig. 9. Data partitioning for multi-GPU implementation 

executed at a time to get own sum map, it manages half of each 
seam, so we should combine each result of the sum map from 
two GPUs to obtain the cumulative energy value of each seam. 
Since NVIDIA supports peer-to-peer access between GPUs, a 
GPU directly accesses the result of the sum map of another 
GPU and adds it to own sum map, then find the index of the 
optimal seam which has the lowest cumulative energy value . 
The GPU sends the index value to host, and the master thread 
in host starts to trace the optimal seam path. After that, the 
master thread distributes the data of optimal seam path to each 
GPU, then individual GPU executes the resizing work for the 
energy map. Figure 10 shows the block diagram for all of these 
processes. 
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Fig. 10. CPU and multi-GPU implementation block diagram 

V. IMPLEMENTATIONS FOR GPU ARCHITE CTURE 

In this section, we describe several CUDA characteristics 
like memory management, branch overhead for block-thread 
model, and kernel launch overhead, then explain how these 
features affect the performance of seam carving. 

A. Reducing memory transfer and allocation time 

In order to use GPU, we have to allocate a space in host 
side first and transfer the data from CPU to GPu. Allocating 
memory in host is most often carried out using malloc function 
of C standard library. Another approach is to use cudaMallo­
cHost provided by CUDA which offers pinned memory for 
high speed transfer between host and device memory [11]. 
We use this feature to allocate memory in the host to achieve 
higher throughput for moving the data of an image. However, 
allocating memory using cudaMallocHost is unfortunately 
very expensive than using malloc in spite of the advantage of 
reduced transfer time. R. Duarte et al. [10] included this feature 
to optimize the memory transfer time, but we evaluated the 
total time of both memory allocation and transfer for malloc 



and cudaMallocHost respectively, then reach a conclusion that 
the pinned memory provided by cudaMallocHost takes much 
more time than page memory offered by malloc. Moreover, 
seam carving algorithm does not need to frequently copy the 
image data between CPU and GPU, thus we decide to use 
page memory not pinned memory. 

B. Coalescing global memory access 

In CUDA prograrmning, coalesced memory access to a 
global memory is one of the important rules to achieve high 
performance improvement. cudaMallocPitch guarantees that 
corresponding pointers in any row of an image will meet 
the alignment requirements for coalescing access to global 
memory. We use this feature with cudaMemcpy2D for each 
thread to be able to access to the global memory of alignment 
boundary. 

C. Reducing computation workload 

In general, thread divergence in CUDA will reduce parallel 
computation ability of block-thread model, thus there are 
various techniques to solve this problem. However, we still 
need to consider how much thread divergence affects system 
performance because avoiding it might cause more workload to 
computation. R. Duarte et al. [10] proposed a memory padding 
technique not to allow branch divergence in calculating an 
energy map, but this technique causes more computation 
workload. In seam carving, branch divergent problem only 
happens to the outer line of an image, and the speed of 
the energy map is affected by the amount of computation 
work. Therefore, we suggest allowing branch divergence for 
obtaining the benefit of the reduced computation work. Adding 
branch condition statement in calculating the energy value of 
the pixels in the outer line reduces the amount of computation 
work for those pixels up to 42%. 

D. Reducing kernel launch overhead 

The original seam map is not easy to parallelize because of 
its characteristic of dynamic programming. The basic version 
of our approach is much similar as R. Duarte et al. [10]. We 
divide each row of the image into horizontal tiles, and carefully 
select the width of the tile to utilize the maximum occupancy 
of the GPU resource. In this version, we must repeatedly call 
kernel function once per row to synchronize among threads 
on the different blocks because CUDA does not guarantee 
the completion time of each block inside a kernel. However, 
these recursive kernel calls cause vast kernel launch overhead 
and lead to performance degradation despite of the tile effect 
of each row. Therefore, we suggest using only one block to 
remove kernel launch overhead, and for-loop outside kernel 
is moved to inside kernel. We only call kernel function one 
time and use _syncthreads function to synchronize the work 
among threads for each row inside the kernel. 

VI. EVALUATION 

In this section, we evaluate the performance and quality of 
output of GPU implementation. First of all, we verify NCSC 
by comparing the resized image of ours and original seam 
carving. Then, the results of performance improvement for 

various optimizations are presented. This section will give you 
answers to the following questions. 

• What about the performance and quality of NCSC 
compared to original seam carving? 

• How effective is using multi-GPU? 

• how much performance improvement can we obtain 
by exploiting CUDA characteristics efficiently? 

All of the experiments on single-GPU are evaluated on the 
2GHz Intel Xeon CPU and NVIDIA Tesla K20c heterogeneous 
computer system. Tesla K20c has 13 SMs, 196 cores per SM, 
and 4.8GB global memory with CUDA computation capability 
of 3.5. Another system with 2.7GHz Intel Xeon CPU and 
NVIDIA Tesla K20m which has almost same features as K20c 
is utilized for multi-GPU implementation. 

A. Verification of NCSC 

We compare the resized image of NCSC with results from 
original seam carving method. 

(a) Original Image (b) Seam Carving (e) NCSC 

Fig. 11. Comparison of image resized by different methods. (a) Original 
image (683 x 1024). (b) Original seam carving (383 x 1024). (c) NCSC 
(383 x 1024). 

In Figure 11 (b), the left side of the tree is distorted, and the 
body of the child becomes narrower than the original image. 
Compared to original seam carving, NCSC (Figure ll(c» can 
maintain the shape of the tree and the proportion of the child. 
Original seam caving considers cumulative energy level, and 
it rnight delete the important pixel having high energy value 
if the cumulative energy level of the seam which passes the 
pixel is low. In contrast, although NCSC can not guarantee 
to delete the seam that has the lowest energy level as original 
seam carving does, it can avoid to select the large energy value 
of the pixel because it just focus on the direction of each 
pixel. Through experiments, NCSC shows that it maintains 
the quality of the resized image on conserving contents of an 
image like structures and lines. 

B. Results of Algorithm Optimizations 

We evaluated NCSC and multi-seam method for the seam 
map (Figure 12). NCSC shows the performance improvement 
of 21.3x over the single-thread CPU implementation and 
removing the multiple seams at a time with NCSC presents 
dramatically high performance improvement, 39.4x and l71 x 
speedup for using 2 and 10 multi-seam respectively. 



Fig. 12. Performance comparison Fig. 13. Performance comparison 
of NCSC and multi-seam of single and multiple GPU 

Figure 13 shows the result of multi-GPU version. We use 
two NVIDIA Tesla K20m cards to implement and optimize 
multi-GPU experimentation. We have considered all of time 
for energy map, seam map, and resize map, even include 
the overhead of OpenMP primitives, barrier, for the serial 
execution part to find an optimal seam path. Figure 13 shows 
the speedup of the multi-GPU implementation over the single­
GPU implementation with deleting a seam at a time. We 
achieve about 1.6x performance improvement than single­
GPU version through the multi-GPU implementation. 

C. Results of GPU Architecture Implementations 

We measured the time for memory allocation of maUoc 
and cudaMallocHost and the time for data transfer from CPU 
to GPU for each. Figure 14 presents the comparison results. 
Non-pinned memory refers to the memory allocated by maUoc 
function and cudaMallocHost allocates a block of pinned 
memory. Although the data transfer time of pinned memory is 
2.2 x faster than non-pinned memory, the memory allocation 
time of the former is significantly slow, thus the total time of 
memory allocation and transfer shows that non-pinned memory 
is more efficient than pinned memory. 

. 
MemorySiZe(�) 

(a) The time of memory alloca­
tion and data transfer with maUoe 
or eudaMalloeHost. Non-pinned 
and pinned memory are allocated 
by maUoe and eudaMaUoeHost 
respectively 

. 
MemorySIze(Mbyte) 

(b) The time of memory alloca­
tion + data transfer with malloc 
or cudaMallocHost 

Fig. 14. Comparison of the time for memory allocation and data transfer 
with non-pinned or pinned memory 

Figure 15 shows the comparison results of memory padding 
and reduced computation technique with/without coalesced 
memory access. Reduced computation technique increases the 
performance improvement by 7% over the memory padding 
method, and we achieve 1.44x speedup using reduced compu­
tation technique with coalesced memory access over the mem­
ory padding technique with non-coalesced memory access. 

Table I illustrates the performance speedup of two versions 
for the energy map on CUDA over single thread implementa­
tion. Version} consists of pinned memory, non-coalesced mem­
ory access, and memory padding technique, on the other hand, 

Fig. 15. Memory padding and 
reduced computation technique de­
pend on memory access pattern 

Fig. 16. Performance of seam map 
based on an original seam carving 

Version2 adopts the use of non-pinned memory, coalesced 
memory access, and reduced computation method. Version2 
yields 231 x performance improvement which is much higher 
than 146x of Version} over the single thread implementation. 
This results tell us that how much performance improvement 
we can achieve depends on how to use CUDA characteristics 
efficiently, as described in Section V. 

Figure 16 represents the performance improvement of 
several CUDA versions based on original seam carving. First 
version using recursive kernel call method has 2.7 x improve­
ment over single-thread CPU implementation. To reduce kernel 
launch overhead in this version, we use loop inside kernel 
method and achieve 5.2 x performance benefit. We can also 
see this version, despite using single block, is about 2 x  faster 
than recursive kernel call method using multiple blocks. In 
addition, applying shared memory to loop inside kernel version 
increases the speedup a little bit, 5.9 x. 

D. Execution Time 

In the previous sections, we represent performance im­
provement for various optimization methods. However, to 
apply the seam carving to a real world application, total 
execution time should be evaluated including the time for 
copying the data from host to device and vice versa, and 
computing the energy map, seam map, and resize map. 

Figure 17 illustrates the total time of 5 different versions 
with various image sizes. We measure the time to reduce the 
image size by 50%. CPU version takes huge time, and original 
seam caving method on GPU respectively needs less time than 
CPU, but it still takes several seconds (more than 4 seconds 
for 8 megabytes image). For NCSC, the total time is within a 
second, and multi-GPU implementation with deleting 2 seams 
at a time only takes about 45 milliseconds to reduce the size 
of a 1 MB image by a half and 270 milliseconds for an 8 MB 
image. 

All experiments of this paper were performed on a desktop­
scale computer not a mobile device, but with lighting trends in 
embedded systems industry, sooner or later, high performance 
GPU will be embedded into various personal devices. When 
the time comes, the method proposed in this paper can be used 
as an actual user application. 

VII. CONCLUSION 

Seam carving is a very powerful method for reslzmg 
an image. In general, content-aware image resizing is very 
efficient to sustain main content of the whole image with 
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COMPARISON OF TWO CU DA VERSIONS FOR ENERGY MAP 

host memory analysis device memory analysis workload analysis 
speedup 
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memory memory memory access 
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Fig. 17. Total time for all seam carving process. to copy from and to host. 
and to compute the energy map. seam map. and resize map to reduce the 
image width by 50%. 

little distortion. However, seam carving not only has large 
computation amount but also needs dynamic programming, 
thus it is not proper to be applied to current personal devices. 

In this paper, we analyzed the characteristics of seam 
carving and implemented it using CUDA-enabled GPu. We 
basically accomplished various optimization through explor­
ing memory management method and CUDA characteristic 
analysis. Our new approach, NCSC (Non-Cumulative Seam 
Carving), achieved high performance enhancement by remov­
ing dynamic programming, reducing algorithm complexity and 
utilizing CPU-GPU hybrid parallel strategy while maintaining 
the quality of the resized images. In addition, multi-seam 
method brought significant performance improvement with 
little distortion of an image. Finally, we have achieved great 
speedup by implementing multi-GPU version with GPU peer­
to-peer access feature. 
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