
Optimizing Seam Carving on Multi-GPU Systems
for Real-time Image Resizing

Ikjoon Kimt, Jidong Zhait,*, Yan Lit and Wenguang Chent,�
tDepartment of Computer Science and Technology, Tsinghua University, Beijing

'Technology Innovation Center at Yinzhou, Yangtze Delta Region Institute of Tsinghua University, ZheJiang

Email: jjkim622@gmail.com.zhaijidong@tsinghua.edu.cn.liyan665@gmail.com.cwg@tsinghua.edu.cn

Abstract-Image resizing is increasingly important for picture
sharing and exchanging between various personal electronic
equipments. Seam Carving is a state-of-the-art approach for
effective image resizing because of its content-aware characteris
tic. However, complex computation and memory access patterns
make it time-consuming and prevent its wide usage in real-time
image processing. To address these problems, we propose a novel
algorithm, called Non-Cumulative Seam Carving (NCSC), which
removes main computation bottleneck. Furthermore, we also
propose an adaptive multi-seam algorithm for better parallelism
on GPU platforms. Finally, we implement our algorithm on a
multi-GPU platform. Results show that our approach achieves
a maximum 140x speedup on a two-GPU system over the
sequential version. It only takes 0.11 second to resize a 1024 x 640
image by half in width compared to 15.5 seconds with the
traditional seam carving.

I. INTRODU CTION

Image resIZIng is increasingly important for exchanging
and sharing pictures with different resolutions between various
electronic equipments, such as smart phones, pads and smart
TVs.

A large number of on-line image resizing softwares have
been provided on the website, and they mainly fall into two
categories, scaling and cropping [1]. Scaling is a popular
image-resizing method through resizing a whole image without
considering its contents, resulting in the main contents of the
image are distorted (See Figure l(b)). Cropping is another
famous approach to resize an image, but the resized image
may not include the important information of the image (See
Figure l(c)).

Recently, an important category of methods, called content
aware image resizing algorithms are proposed for effective
image scaling [2], [3]. The purpose of these methods is
to resize images without distortion on various media (cell
phones, pads) through preserving main objects of the image
and discarding unimportant parts (See Figure led)). Because
of few of image distortions, the content-aware image resizing
method has been attracting more and more people's attention.
Among these methods, seam carving [4] is a state-of-the-art
algorithm for effective image resizing, which focuses on the
energy value of each pixel and removes a number of seams
that have the lowest energy value until satisfying the desired
size of an image.

* Jidong Zhai is the corresponding author of this paper.

Fig. 1. Comparison of various image resizing methods. (a) Original image.
(b) Scaling. (c) Cropping (d) Seam carving.

However, the main limitation of seam carving is its com
plex computation model. In order to find an optimal seam,
a dynamic programming process is needed during the image
resizing. Typically, these methods need to take a long time
to resize a moderate size of image. For example, resizing a
1024 x 640 image by half in horizontal direction takes more
than 15 seconds on a personal computer with 2GHz Intel
Xeon processor. As a result, it is not proper for the real-time
application on current user devices such as a personal computer
and a hand-held device.

On the other hand, GPU devices are becoming more and
more popular on current electronic equipments. A large num
ber of high-end smart TVs and smart phones all equip high
performance GPUs. Moreover, since ARM began to support
OpenCL programming interface [6] on its GPUs, NVIDIA also
announced a plan to enter the embedded system market. In this
paper, we focus on utilizing GPU devices to accelerate the
content-aware algorithms to achieve real-time image resizing.
We use seam carving as an example in this paper, but our
optimizing techniques are general for this type of image
resizing algorithms.

Effective parallelization of seam carving on GPU devices
is a challenging problem due to its complex computation
model. There are two main challenges: (1) Computation
Dependence: Dynamic programming is a key step to compute
an optimal seam during image resizing, which accounts for a
large proportion of the program execution time. It is very hard
to parallelize the dynamic programming on GPU devices due
to the computation dependency. (2) Intensive and Irregular
Memory Access: In order to compute various intermediate
results, such as energy maps and seam maps, a variety of
irregular memory access patterns are used, which can hurt the
program performance significantly with the complex memory
hierarchy of GPUs.

To address these problems, we propose a series of opti
mization methods in this paper to improve the seam carving

978-1-4799-7615-7/14/$31.00 ©2014 IEEE

performance on the GPU platform. In summary, we make the
following contributions:

1) We propose a novel Non-Cumulative Seam Carv
ing (NCSC) algorithm for effective image resizing,
which removes the dynamic programming part in
the traditional algorithm and guarantees the similar
image quality. Our algorithm can be effectively scaled
to large-scale GPU systems due to the reduction of
computation dependence. Moreover, we also extend
our algorithm for a hybrid CPU-GPU version for
better utilization of CPU resources.

2) We also propose an adaptive multi-seam algorithm,
which can compute multiple seams at each iteration
and automatically decides the number of seams to
be deleted. We implement these two algorithms, the
NCSC and the adaptive multi-seam, on multi-GPU
systems with the GPU peer to peer access feature.

3) We propose a series of GPU architecture-dependent
implementation methods for improving the parallel
seam carving algorithm. And we also share our
optimization experience on the memory allocation,
access patterns, and transmission techniques of the
GPU memory management.

We implement our optimized seam carving algorithm on
multi-GPU heterogeneous systems. Results show that our
method can reduce the image resizing overhead significantly.
For example, the single-GPU version carving a single seam at
a time can achieve 57 x speedup over the CPU version, and
the two-GPU version with the removal of 2 seams at one time
achieves 140x speedup. It only takes about 0.11 second to
resize a 1024 x 640 image by half in width.

The rest of this paper is organized as follows. We first
present related work in Section II and introduce seam carving
algorithm in Section III, and describes NCSC, adaptive multi
seam and multi-GPU algorithm in the following section. In
Section V, we present various optimizations for CUDA archi
tecture. We show evaluation results in Section VI, and give the
conclusions in Section VII.

II. RELATED WORK

Image resizing has been studied widely in the literature on
various sized display devices. The most popular method is to
adapt scale down, but it causes image distortion and does not
recognize important objects in the image. Cropping [1], [7],
one of the other methods, contain insufficient information in
the cropped image compared with the original image.

Avidan and Shamir [4] proposed a new method of resizing
an image, called seam carving. Seam carving focuses on the
contents of an image and remains the main objects that have
large energy value in the resized image with little distortion.
However, seam carving algorithm is not proper to the real-time
applications because of its large computation and the limitation
of parallelism using dynamic programming method.Hence
previous work [8], [9] mainly focus on improving the quality
of resized image rather than the performances.

The modern GPU architecture has more than hundred of
cores and it can be used for general purpose computation.
R. Duarte et al. [10] implemented seam carving with CUDA

mainly focusing on energy map. Unlike above work, we
analyze the memory access pattern and computation workload
of the whole seam carving algorithm, and also consider CUDA
characteristics, such as the overhead of kernel function call and
the cost of using pinned memory. In addition, we propose a
new approach for seam map, NCSC (Non-Cumulative Seam
Carving) removing dynamic progranuning, and apply a new
method to configure CUDA threads for reducing time complex
ity. Stream is a significant feature of CUDA for heterogeneous
CPU-GPU system. We also use this feature to concurrently
execute CPU and GPU. We hide most data transfer time
between GPU and CPU to achieve better performance. In
addition, we use multi-seam method to delete several seams
at the same time, and achieve significant speedup with little
image distortion. Finally, we implement multi-GPU version
using GPU peer-to-peer access, which is a key feature of
CUDA for optimization on multi-GPU platform.

III. SEAM CARVING ALGORITHM

Seam carving [4] resizes an image by removing or dupli
cating a seam, which is an optimal connected path of pixels
having the lowest energy in an image from top to bottom for
horizontal adjustment or left to right for vertical adjustment.
It consists of three stages. Firstly, we construct an energy map
by calculating the energy value for each pixel of an image
according to the Eq. 1. Then we compute seams that connect
low energy pixels crossing an image and find the optimal
seam with the lowest energy summation. Finally, we delete
the optimal seam and resize the image. The last two stages are
executed repetitively until the desired size is reached. Figure 2
shows these stages for horizontal adjustment of an image.

(a)

2 1 3 2 2 1 3 2 2 3 2

2 3 1 2 3 4 2 4 3 4 4

4 5 2 4 7 7 4 6 7 7 6

8 8 5 7 15 12 9 11 15 12 11

5 6 5 4 17 15 14 13 17 15

(b) (e) (d) (e)

Fig. 2. Seam carving stages. (a) The original image. (b) The energy map of
the image. (c) The optimal seam within the seam map. (d) Resize the map.
(el Resized image.

A. Energy map

One method to calculate the energy value of each pixel is
to use the magnitude of the gradient. Let I be an n x m image
and the energy function is generally defined as:

(1)

The energy value of each pixel depends on the other eight
surrounding pixels. We quantify the amount of changes from
each pixel to the neighbor in x and y directions.

The serial implementation of energy map utilizes nested
Jor-Ioops to compute those two directions of the derivatives for
each pixel. We add the results in x and y directions, and write
them to the energy map table. The computation of each pixel is
independent, and it means that we can achieve vast parallelism.

Thus we can explore massive thread-level parallelism in GPU
to accelerate the computation. However, the performance of
this function on GPU is limited by its computation workload,
and we analyze how the amount of computation workload
affects the performance in the later section.

B. Seam map

After constructing energy map, we obtain the optimal seam,
vertical or horizontal, which is determined by dynamic pro
gramming. We concentrate on finding of the optimal vertical
seam for horizontal image resizing.

if i = 0
otherwise (2)

In the Eg. 2, E is the energy map, S is the seam map, and
i and j indicate row and column each. The first row of seam
map is the same as energy map, and starts to use dynamic
programming from the second row. Then we select the pixel
has the minimum value from the last row, and use backward
track from this pixel to the first row to make the path of the
optimal vertical seam. Figure 3 describes the steps of seam
map.

22
t...

2+1
= 3

4

1 1
,+"

3 3
.t."

22
,�

3+1
=4

5

1 :1
= 2

2

2+2
=4

4
7 7

(a) (b)

2 2 1 1 3 3 22
." of; '" +

2 3 1 2

i 4." i ",4
4 • 5 2 4

6 7 7 4 6

(e)

Fig. 3. Seam map steps. The top-left value in black represents the energy
value of that pixel. The value in red represents the cumulative sum of energies
including that pixel.

Each pixel looks up the adjacent three pixels in the upper
row, and selects the pixel that has the lowest cumulative sum
of energy values among them. That value is added to its own
energy value. If we see the second pixel in the second row
(shown in Figure 3(a» , its energy value is 3 which is marked
in black and there are three possible choices (2,1 and 3) that are
marked in red in the above row. Then, we select the minimum
value (1) and add it to the orignal value to update the value.
Hence the current energy value is 4.

The computation continues until the last row of the image is
reached, and we finally obtain the cumulative energy values of
all seams. Then we select the lowest value in the last row, and
get the optimal vertical path following the blue arrow which
starts with the last row (the white path in Figure 3(c» .

Unlike the energy map, the seam map has low parallelism
due to its dynamic programming characteristic. We have to
access the energy map row by row, thus it has O(N) time
complexity if the height of an image is N. In this paper, we
propose NCSC for seam map to improve the performance.

C. Resize map

Resize map is relatively simple than other stages. We
already know the optimal seam path, then delete a single pixel
in each row. We move the pixels that are located at the right
of the deleted pixel from right to left. Since resizing operation

is independent for each row and it is memory-intensive, GPU
can offer good performance benefits.

In this section, we have presented the original seam carving
algorithm and its serial implementation. We will show how to
optimize seam carving using CUDA progamming model in the
following sections.

IV. OPTIMIZATIONS FOR SEAM CARVING ALGORITHM

A big challenge of seam carving is how to reduce the time
consumption of dynamic programming in a seam map. Since
dynamic programming is very hard to parallelize, we propose
a new approach, NCSC, which consists of three parts: non
cumulative selection, reduced time complexity and CPU-GPU
hybrid method. Then, we also present adaptive multi-seam
algorithm and multi-GPU method.

A. NCSC (Non-Cumulative Seam Carving)

1) Non-cumulative selection: Original seam carving uses
cumulative energy sum to select the minimum energy value
when each pixel decides the direction. Although this idea guar
antees to find the optimal seam which has the lowest energy
level among seams, its dynamic programming characteristic
causes significant time loss. Therefore, we only focus on the
energy value of a pixel not the cumulative energy sum to select
the direction of a pixel.

Fig. 4. Non-cumulative energy selection

Figure 4 shows all possible choices of each pixel. A pixel
looks down the energy value of three adjacent pixels in the
right bottom row, and chooses the one that has the minimum
energy value. The selection of all pixels can be performed at
the same time. This method owns vast parallelism, and we
obtain the result in very short time. After the selection of each
pixel, we write the value of the selected index to the index
map that is used to construct a seam path later. For example,
in Figure 5, the first three pixels in the first row select the
second pixel of the second row as the minimum energy value,
whose index is 6, thus the index value of those pixels is 6 in
the index map.

I EnergyMap I I lndexMap I
1, 2 k r2 3 6 6 6 7 8
2, <V 2 v3

4
..

11 11 11 12 13
3 �1� 3� 4" 5 15 17 17 17 18
2 3 1 3 5 21 21 21 22 24

2 1 2 4 3

Fig. 5. Construction of index map for tracing the path of seams

2) Reduced time complexity: In spite of not using dynamic
programming, we still need to calculate the total energy value
of each seam to find an optimal seam. Every single seam has
the number of pixels as much as the height of the image, and
we need to add all energy values of pixels. We access the
energy map row-by-row based on the index map, and it means
that we have to visit the global memory of GPU as much as
the height of the image. If both the height and width of the
image are N, time complexity is O(N2).

I I'; iter I I SumMap
1, 2 �<

�<

I 2n� iter. I

$(

2 1
3 1 2 3
2 1

I SumMap
2\ 3

5 ""2'

Y rL
2 3
3 Y �1· 3 2 4

I
4 4

V
4 5

IOffsetMap
3 W 6 6 7
4 11 � 11 12

� ft [QJ) 17 17
5 /21 21 21 22
3

\ OffsetMap I
6 @ 11 11 11

8 21 21 21 21

Fig. 6. Computation of total energy of each seam

8
13
18
24

12
22

Therefore, we propose a new algorithm using an offset
map to reduce the time complexity. Figure 6 shows how to
calculate the total energy value of each seam using the offset
map. Initialized values of the offset map and sum map are
the same as the index map and the energy map each. At the
first iteration, the number of CUDA blocks is equal to the
half of the height of an image and each block manages two
consecutive rows. Then threads of each block add the energy
value of own pixel to the energy value of another pixel in
the next row connected as a seam based on the offset map.
Next, threads write the sum of the energy value of two pixels
to the sum map, and update own offset value with the offset
value of another pixel in the offset map for the next iteration.
The number of CUDA blocks in the second step is reduced
to the half of the first step and each block manages two-line
apart rows. According to this method, the number of block
of CUDA is the half of the second step in the third iteration,
and each block manages four-line apart rows. This procedure
continues till only one row is remained, and finally the first
row of the sum map has the cumulative energy value in each
seam. The number of iterations to be executed is O(NlogN), if
N is the height of an image. Therefore, this approach reduces
time complexity O(N2) to O(NlogN).

3) CPU-GPU hybrid: After obtaining the cumulative en
ergy value of each seam, we select the optimal seam that has
the minimum value between seams, and trace the path of the
optimal seam from the first entry in the first row to the bottom
of the image based on the index map. It means to access global
memory that is corresponding the index map row by row, and
it requires very high cost. The access latency between CPU
and GPU's global memory is very high, and we have to copy
data from GPU to CPU to make CPU trace a path. Hence
we need to pipeline the data transfer between host and device

and computation in both sides. We exploit CUDA concurrency
characteristic to obtain an efficient workload division between
CPU and GPu.

Time 1o...""';;;=-_..lI Hiji
Stream1

I GeCMinPath

I HtD - MinPath

Siream2

I Get_EnergyMap

I GeUndexMap

I Get_SumMap

1 Get_MinCol

l OtH-Min

1 Get_ ResizeMap

Fig. 7. CPU-GPU hybrid and concurrency method for seam carving

In Figure 7, after the index map is made, stream} starts to
copy the index map to CPU, and stream2 computes the sum
map and finds the index value of the optimal seam that has
the minimum energy sum at the same time. By doing this, the
transfer time of index map is almost hidden. Then, the index
value is transferred to CPU, and CPU starts to trace the path
of the optimal seam based on the index map. CPU also needs
to access DDR memory the times as much as the height of
the image, but it takes much less time than GPU. Finally, the
optimal seam path is copied into GPU to use it for resizing
energy map.

B. Adaptive Multi-seam Algorithm

The original seam carving deletes one optimal seam at a
time, and resizes the energy map to obtain newly reconstructed
seams. Although this method is able to find the optimal seam
per iteration, it takes too much time. Hence, we propose to
sort the cumulated energy value of each seam to delete several
seams in an ascending order at a time. We define the number
of multi-seam first, then find the optimal seam using reduction
method that is very faster than sorting algorithm, and reserve
the indices of that optimal seam to another data set. After that,
change the energy value of that optimal seam into maximum
integer not to be selected as the optimal seam in the next
iteration. Applying reduction method one more to find the
second optimal seam, and this operation continues to find the
number of seams same as the number of multi-seam we defined
before. We tested several values of multi-seam, from 2 to 10,
and 2 has good quality of resized image but achieves smaller
speedup benefits respectively, otherwise, 10 causes too much
distortion of most images in spite of dramatically improving
the performance. 2 to 5 is proper for the most of images.

Multi-seam has good quality with fast speed, but we cannot
easily decide which value of multi-seam is the best for an
image. The large number of multi-seam is available in the
beginning, but as the image is resized and the distance among
objects in the image is closer, we need to carefully adjust the
value of multi-seam to prevent too much distortion of objects
in the image. Therefore, we propose an adaptive multi-seam
method to define the number of seams to be deleted at a time
automatically.

We find that the seams around the optimal seam are likely
to be the optimal seam in the next iteration. Thus, at first, we
set the maximum value of multi-seam and find first and the
other optimal seams with above multi-seam method within the
maximum value of the multi-seam we define, then determine
the distance value and calculate the distance between the first
optimal seam and other seams. If the distance of those seams
is smaller than the distance we defined, we delete them at a
time.

distance'S

dista�ce:2 distanc:? I
I

I

I
• I" optimal seam 0 0 other optimal seams

Fig. 8. Example of adaptive multi-seam method. If the red seam is the
optimal seam and we set the distance value to 5, the orange and green seams
are deleted with the red seam at a time, but the blue seam is remained because
its distance value is greater than 5.

If we set the distance value as 5, all seams which the
distance value from the optimal seam is less than 5 are deleted
simultaneously within the maximum value of multi-seam (See
Figure 8).

C. Multi-GPU Algorithm

In this section, we describe a multi-GPU implementation
of seam carving on two GPUs. Since a host thread is only able
to create a context of one GPU, we created two host threads
using OpenMP to evaluate our experiments on two GPUs. Each
GPU manages about half of the original data, and co-work with
another CPU thread. We describe it below in detail.

}) Data partitioning: To implement seam carving on multi
GPU, the first challenge is how to separate the data of an
image. At first, we vertically divide an image into two regions,
namely upper half and lower half. Because each pixel requires
data from surrounding pixels to calculate own energy value,
the last row of upper half and the first row of lower half need
one more additional row. In addition, to obtain the index map,
each pixel of the last row in the upper half needs the energy
value of the next row to select the minimum energy value,
and it means that to compute the energy value of the next
row requires one more next row. Therefore the upper half area
needs two more rows than the half height of an image, on the
other hand, one more row is needed for the lower half area.
We set the size of two regions as the same in convenient, thus
each GPU has the data as much as the half height of an image
plus two rows (See Figure 9).

2) Reducing communication overhead between GPUs:
After data partitioning, each GPU computes the energy map
and index map at almost the same time, then transfers own
index map to host using stream} to let host make an optimal
seam path later. At this time, stream2 of each GPU starts to
calculate the sum map concurrently. Although each GPU is

2h

W
1

(a) original data

W
1

(b) divided data

Fig. 9. Data partitioning for multi-GPU implementation

executed at a time to get own sum map, it manages half of each
seam, so we should combine each result of the sum map from
two GPUs to obtain the cumulative energy value of each seam.
Since NVIDIA supports peer-to-peer access between GPUs, a
GPU directly accesses the result of the sum map of another
GPU and adds it to own sum map, then find the index of the
optimal seam which has the lowest cumulative energy value .
The GPU sends the index value to host, and the master thread
in host starts to trace the optimal seam path. After that, the
master thread distributes the data of optimal seam path to each
GPU, then individual GPU executes the resizing work for the
energy map. Figure 10 shows the block diagram for all of these
processes.

Time

I Ge,-MinPath

" :.. I -Hi"-
,--- -::csl -"'�m l=� Stream2 I I I Stream2 I I Stream1

�I G="_=E'="=GYM='=, �III Get_EnergyMap I

I HtD-MinPath

I GeUndexMap I i I GeUndexMap I I G,'_S"mM', II! I G,'_S"mM" I
I

D IH I - indexMap

F
IG�M=��"c=o'==� ______ �1 L-____ �

I DtH-M', I I
I I HtD-MinPath

" G-"_-R'-SiZ -" -,,, ---'1 1 1 Get_ResizeMap

D memory transfer D GPU peer-Io-peer access

Fig. 10. CPU and multi-GPU implementation block diagram

V. IMPLEMENTATIONS FOR GPU ARCHITE CTURE

In this section, we describe several CUDA characteristics
like memory management, branch overhead for block-thread
model, and kernel launch overhead, then explain how these
features affect the performance of seam carving.

A. Reducing memory transfer and allocation time

In order to use GPU, we have to allocate a space in host
side first and transfer the data from CPU to GPu. Allocating
memory in host is most often carried out using malloc function
of C standard library. Another approach is to use cudaMallo
cHost provided by CUDA which offers pinned memory for
high speed transfer between host and device memory [11].
We use this feature to allocate memory in the host to achieve
higher throughput for moving the data of an image. However,
allocating memory using cudaMallocHost is unfortunately
very expensive than using malloc in spite of the advantage of
reduced transfer time. R. Duarte et al. [10] included this feature
to optimize the memory transfer time, but we evaluated the
total time of both memory allocation and transfer for malloc

and cudaMallocHost respectively, then reach a conclusion that
the pinned memory provided by cudaMallocHost takes much
more time than page memory offered by malloc. Moreover,
seam carving algorithm does not need to frequently copy the
image data between CPU and GPU, thus we decide to use
page memory not pinned memory.

B. Coalescing global memory access

In CUDA prograrmning, coalesced memory access to a
global memory is one of the important rules to achieve high
performance improvement. cudaMallocPitch guarantees that
corresponding pointers in any row of an image will meet
the alignment requirements for coalescing access to global
memory. We use this feature with cudaMemcpy2D for each
thread to be able to access to the global memory of alignment
boundary.

C. Reducing computation workload

In general, thread divergence in CUDA will reduce parallel
computation ability of block-thread model, thus there are
various techniques to solve this problem. However, we still
need to consider how much thread divergence affects system
performance because avoiding it might cause more workload to
computation. R. Duarte et al. [10] proposed a memory padding
technique not to allow branch divergence in calculating an
energy map, but this technique causes more computation
workload. In seam carving, branch divergent problem only
happens to the outer line of an image, and the speed of
the energy map is affected by the amount of computation
work. Therefore, we suggest allowing branch divergence for
obtaining the benefit of the reduced computation work. Adding
branch condition statement in calculating the energy value of
the pixels in the outer line reduces the amount of computation
work for those pixels up to 42%.

D. Reducing kernel launch overhead

The original seam map is not easy to parallelize because of
its characteristic of dynamic programming. The basic version
of our approach is much similar as R. Duarte et al. [10]. We
divide each row of the image into horizontal tiles, and carefully
select the width of the tile to utilize the maximum occupancy
of the GPU resource. In this version, we must repeatedly call
kernel function once per row to synchronize among threads
on the different blocks because CUDA does not guarantee
the completion time of each block inside a kernel. However,
these recursive kernel calls cause vast kernel launch overhead
and lead to performance degradation despite of the tile effect
of each row. Therefore, we suggest using only one block to
remove kernel launch overhead, and for-loop outside kernel
is moved to inside kernel. We only call kernel function one
time and use _syncthreads function to synchronize the work
among threads for each row inside the kernel.

VI. EVALUATION

In this section, we evaluate the performance and quality of
output of GPU implementation. First of all, we verify NCSC
by comparing the resized image of ours and original seam
carving. Then, the results of performance improvement for

various optimizations are presented. This section will give you
answers to the following questions.

• What about the performance and quality of NCSC
compared to original seam carving?

• How effective is using multi-GPU?

• how much performance improvement can we obtain
by exploiting CUDA characteristics efficiently?

All of the experiments on single-GPU are evaluated on the
2GHz Intel Xeon CPU and NVIDIA Tesla K20c heterogeneous
computer system. Tesla K20c has 13 SMs, 196 cores per SM,
and 4.8GB global memory with CUDA computation capability
of 3.5. Another system with 2.7GHz Intel Xeon CPU and
NVIDIA Tesla K20m which has almost same features as K20c
is utilized for multi-GPU implementation.

A. Verification of NCSC

We compare the resized image of NCSC with results from
original seam carving method.

(a) Original Image (b) Seam Carving (e) NCSC

Fig. 11. Comparison of image resized by different methods. (a) Original
image (683 x 1024). (b) Original seam carving (383 x 1024). (c) NCSC
(383 x 1024).

In Figure 11 (b), the left side of the tree is distorted, and the
body of the child becomes narrower than the original image.
Compared to original seam carving, NCSC (Figure ll(c» can
maintain the shape of the tree and the proportion of the child.
Original seam caving considers cumulative energy level, and
it rnight delete the important pixel having high energy value
if the cumulative energy level of the seam which passes the
pixel is low. In contrast, although NCSC can not guarantee
to delete the seam that has the lowest energy level as original
seam carving does, it can avoid to select the large energy value
of the pixel because it just focus on the direction of each
pixel. Through experiments, NCSC shows that it maintains
the quality of the resized image on conserving contents of an
image like structures and lines.

B. Results of Algorithm Optimizations

We evaluated NCSC and multi-seam method for the seam
map (Figure 12). NCSC shows the performance improvement
of 21.3x over the single-thread CPU implementation and
removing the multiple seams at a time with NCSC presents
dramatically high performance improvement, 39.4x and l71 x
speedup for using 2 and 10 multi-seam respectively.

Fig. 12. Performance comparison Fig. 13. Performance comparison
of NCSC and multi-seam of single and multiple GPU

Figure 13 shows the result of multi-GPU version. We use
two NVIDIA Tesla K20m cards to implement and optimize
multi-GPU experimentation. We have considered all of time
for energy map, seam map, and resize map, even include
the overhead of OpenMP primitives, barrier, for the serial
execution part to find an optimal seam path. Figure 13 shows
the speedup of the multi-GPU implementation over the single
GPU implementation with deleting a seam at a time. We
achieve about 1.6x performance improvement than single
GPU version through the multi-GPU implementation.

C. Results of GPU Architecture Implementations

We measured the time for memory allocation of maUoc
and cudaMallocHost and the time for data transfer from CPU
to GPU for each. Figure 14 presents the comparison results.
Non-pinned memory refers to the memory allocated by maUoc
function and cudaMallocHost allocates a block of pinned
memory. Although the data transfer time of pinned memory is
2.2 x faster than non-pinned memory, the memory allocation
time of the former is significantly slow, thus the total time of
memory allocation and transfer shows that non-pinned memory
is more efficient than pinned memory.

.
MemorySiZe(�)

(a) The time of memory alloca
tion and data transfer with maUoe
or eudaMalloeHost. Non-pinned
and pinned memory are allocated
by maUoe and eudaMaUoeHost
respectively

.
MemorySIze(Mbyte)

(b) The time of memory alloca
tion + data transfer with malloc
or cudaMallocHost

Fig. 14. Comparison of the time for memory allocation and data transfer
with non-pinned or pinned memory

Figure 15 shows the comparison results of memory padding
and reduced computation technique with/without coalesced
memory access. Reduced computation technique increases the
performance improvement by 7% over the memory padding
method, and we achieve 1.44x speedup using reduced compu
tation technique with coalesced memory access over the mem
ory padding technique with non-coalesced memory access.

Table I illustrates the performance speedup of two versions
for the energy map on CUDA over single thread implementa
tion. Version} consists of pinned memory, non-coalesced mem
ory access, and memory padding technique, on the other hand,

Fig. 15. Memory padding and
reduced computation technique de
pend on memory access pattern

Fig. 16. Performance of seam map
based on an original seam carving

Version2 adopts the use of non-pinned memory, coalesced
memory access, and reduced computation method. Version2
yields 231 x performance improvement which is much higher
than 146x of Version} over the single thread implementation.
This results tell us that how much performance improvement
we can achieve depends on how to use CUDA characteristics
efficiently, as described in Section V.

Figure 16 represents the performance improvement of
several CUDA versions based on original seam carving. First
version using recursive kernel call method has 2.7 x improve
ment over single-thread CPU implementation. To reduce kernel
launch overhead in this version, we use loop inside kernel
method and achieve 5.2 x performance benefit. We can also
see this version, despite using single block, is about 2 x faster
than recursive kernel call method using multiple blocks. In
addition, applying shared memory to loop inside kernel version
increases the speedup a little bit, 5.9 x.

D. Execution Time

In the previous sections, we represent performance im
provement for various optimization methods. However, to
apply the seam carving to a real world application, total
execution time should be evaluated including the time for
copying the data from host to device and vice versa, and
computing the energy map, seam map, and resize map.

Figure 17 illustrates the total time of 5 different versions
with various image sizes. We measure the time to reduce the
image size by 50%. CPU version takes huge time, and original
seam caving method on GPU respectively needs less time than
CPU, but it still takes several seconds (more than 4 seconds
for 8 megabytes image). For NCSC, the total time is within a
second, and multi-GPU implementation with deleting 2 seams
at a time only takes about 45 milliseconds to reduce the size
of a 1 MB image by a half and 270 milliseconds for an 8 MB
image.

All experiments of this paper were performed on a desktop
scale computer not a mobile device, but with lighting trends in
embedded systems industry, sooner or later, high performance
GPU will be embedded into various personal devices. When
the time comes, the method proposed in this paper can be used
as an actual user application.

VII. CONCLUSION

Seam carving is a very powerful method for reslzmg
an image. In general, content-aware image resizing is very
efficient to sustain main content of the whole image with

TABLE I
COMPARISON OF TWO CU DA VERSIONS FOR ENERGY MAP

host memory analysis device memory analysis workload analysis
speedup

non-pinned pinned non-coalesced
memory memory memory access

Version 1 ./ ./
Version 2 ./

10'
c:::::::::JCPU EZZ:J Original SC [SSSj NCSC

I E::3 NCSC + multi-GPU
10' IIIIIIiiIiIiIiI NCSC + multi-GPU + 2-seam

� 10'
c

8 Q)
.!!?.
Q) 10'
E
i=

10.1

I I 10-2
1M 2.5M 6M 8M

Original Image Size (byte)

Fig. 17. Total time for all seam carving process. to copy from and to host.
and to compute the energy map. seam map. and resize map to reduce the
image width by 50%.

little distortion. However, seam carving not only has large
computation amount but also needs dynamic programming,
thus it is not proper to be applied to current personal devices.

In this paper, we analyzed the characteristics of seam
carving and implemented it using CUDA-enabled GPu. We
basically accomplished various optimization through explor
ing memory management method and CUDA characteristic
analysis. Our new approach, NCSC (Non-Cumulative Seam
Carving), achieved high performance enhancement by remov
ing dynamic programming, reducing algorithm complexity and
utilizing CPU-GPU hybrid parallel strategy while maintaining
the quality of the resized images. In addition, multi-seam
method brought significant performance improvement with
little distortion of an image. Finally, we have achieved great
speedup by implementing multi-GPU version with GPU peer
to-peer access feature.

ACKNOWLE DGMENT

We would like to thank anonymous reviewers for their
insightful comments. We also thank PACMAN group members
for their valuable feedback and suggestions. This work is sup
ported by the National High-Tech Research and Development
Plan (863 project) 2012AAOlO901, National 973 Basic Re
search Program 2014CB340402 and NSFC project 61lO3021.

REFEREN CES

[I] A. Santella. M. Agrawala. D. DeCarlo. D. Salesin. and M. Cohen.
"Gaze-based interaction for semi-automatic photo cropping:' in Pro

ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI '06. New York, NY, USA: ACM, 2006, pp. 771-780.

coalesced memory reduce
memory access padding computation

./ 146.7
./ ./ 231.8

[2] Y. Pritch, E. Kav-Venaki, and S. Peleg, "Shift-map image editing," in
Computer Vision, 2009 IEEE 12th International Coriference on. IEEE,
2009, pp. 151-158.

[3] K. Thilagam and S. Karthikeyan, "An efficient method for content
aware image resizing using psc," International Journal of Computer
Technology and Applications, vol. 2, no. 4, 2011.

[4] S. Avidan and A. Shamir, "Seam carving for content-aware image
resizing," ACM Trans. Graph, vol. 26, no. 3, p. 10, 2007 .

[5] N. Hill and P. Eslambolchilar, "Seam carving for enhancing image
usability on mobiles," in Proceedings of the 22Nd British HCI Group
Annual Coriference on People and Computers: Culture, Creativity,
Interaction - Volume 2, ser. BCS-HCI '08. Swinton, UK, UK: British
Computer Society, 2008, pp. 131-134.

[6] ARM, "Mali OpenCL SDK vI. 1.0 Documentation,"
http://malideveloper.arm.com/develop-for-mali/tutorials-developer
guides/sdk-tutorials/mali-opencl-sdk-tutorial/.

[7] B. Suh, H. Ling, B. B. Bederson, and D. W Jacobs, "Automatic
thumbnail cropping and its effectiveness," in UIST. ACM, 2003, pp.
95-104.

[8] K. Thilagam and S. Karthikeyan, "Article: Optimized image resizing
using piecewise seam carving," International Journal of Computer
Applications, vol. 42, no. 14, pp. 24-30, March 2012, published by
Foundation of Computer Science, New York, USA.

[9] A. Mansfield, P. Gehler, L. Van Gool, and C. Rother, "Visibility maps
for improving seam carving," in Proceedings of the 11th European
Coriference on Trends and Topics in Computer Vision - Volume Part
II, ser. ECCV'IO. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 131-
144.

[10] R. Duarte and R. Sendag, "Accelerating and characterizing seam carving
using a heterogeneous cpu-gpu system," PDPTA, 2012.

[II] NVIDlA, " Cuda C Programming Guide,"
http://docs.nvidia.com/cudalcuda-c-programming-guide/index.html.

[12] Y. W Lee, C. Kim, 1. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,
and P. Dubey, "Debunking the 100X GPU vs. CPU myth: An evaluation
of throughput computing on CPU and GPU," in Proc. 37th International
Symposium on Computer Architecture (37th ISCA'lO). Saint-Malo,
France: ACM SIGARCH, Jun. 2010, pp. 451-460.

[13] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, "Accelerating
CUDA graph algorithms at maximum warp," in Proceedings of the
16th ACMISIGPLAN Symposium on Principles and Practice of Parallel
Programming (16th PPOPP'll). San Antonio, TX, USA: ACM Press,
Feb. 2011, pp. 267-276.

[14] M. Harris, "Optimizing parallel reduction in cuda (2007)," CUDA SDK
Whitepaper, 2007.

[IS] 1. M. Cebrian, G. D. Guerrero, and 1. M. Garcia, "Energy efficiency
analysis of GPUs," in Proc. High-Peiformance, Power-Aware Comput

ing - 3rd HPPAC' 12, Proc. IEEE International Parallel and Distributed
Processing Symposium Workshops & PhD Forum (26th IPDPS'12).
Shanghai, China: IEEE Computer Society, May 2012, pp. 1014-1022.

[16] R. Achanta and S. Slisstrunk, "Saliency detection for content-aware
image resizing," in ICIP. IEEE, 2009, pp. 1005-1008.

[17] L.-Q. Chen, X. Xie, X. Fan, W-Y. Ma, H. Zhang, and H.-Q. Zhou,
"A visual attention model for adapting images on small displays,"
Multimedia Syst, vol. 9, no. 4, pp. 353-364, 2003.

[18] G. Ciocca, C. Cusano, F. Gasparini, and R. Schettini, "Self-adaptive
image cropping for small displays," IEEE Trans. Consumer Electronics,
vol. 53, no. 4, pp. 1622-1627, 2007.

