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Abstract
I/O reduction has been a major focus in optimizing data-
parallel programs for big-data processing. While the current
state-of-the-art techniques use static program analysis to re-
duce I/O, Cybertron proposes a new direction that incorpo-
rates runtime mechanisms to push the limit further on I/O
reduction. In particular, Cybertron tracks how data is used in
the computation accurately at runtime to filter unused data
at finer granularity dynamically, beyond what current static-
analysis based mechanisms are capable of, and to facilitate a
new mechanism called constraint based encoding for more
efficient encoding. Cybertron has been implemented and ap-
plied to production data-parallel programs; our extensive
evaluations on real programs and real data have shown its
effectiveness on I/O reduction over the existing mechanisms
at reasonable CPU cost, and its improvement on end-to-end
performance in various network environments.

1. Introduction
MapReduce-style [11] data-parallel programs for big-data
processing often involve multiple stages of computation sep-
arated by cross-stage data transfer (e.g., between a map stage
and the subsequent reduce stage). A user-defined function
is used to describe the data-processing logic for each stage.
Examples of such data-parallel systems include Hadoop [2],
Dryad [16], Pig [22], Hive [25] and SCOPE [32]. The exe-
cution of data-parallel programs is often I/O intensive and
incurs a significant amount of cross-stage I/O, which has been
a major target for optimizations [13, 14, 17, 21, 28, 30, 31].

[Copyright notice will appear here once ’preprint’ option is removed.]

High-level SQL-like languages [22, 25, 27, 32] have been
proposed for data-parallel programs, so that relational-algebra
based database optimizations, such as early filtering and
projection, can be applied. The user-defined functions in the
data-parallel programs often limit the effectiveness of these
optimization techniques because of the inherent diversity and
complexity of the processing logic in those functions.

The more recent work [13, 17] proposes to apply static
program analysis to user-defined functions. Static program
analysis can help identify the fields that are not used by a
user-defined function or extract from the imperative code
the relational operations, such as projection and selection,
to enable deeper relational optimizations even with user-
defined functions, resulting in fewer records and fields being
transmitted. PeriSCOPE [14] further rewrites user-defined
functions by partitioning it and moving one part across the
network to minimize the cross-stage I/O through smart cut.

Even though the static approach has been proven effective,
our experiences with real production data-parallel jobs have
revealed the limitations of this approach. First, we observe
that user-defined functions often contain data-dependent loop
and conditional processing logic, where the value of one data
portion in a data entry influences the use of other portions in
further data processing; for example, the number of ’;’s in a
string determines the number of iterations of a loop that does
further data processing; a field A might not be used if another
field B has a certain value V . Analyzing such constructs to
identify optimization opportunities is fundamentally beyond
the capabilities of static program analysis. Second, static
approaches such as smart cut involve estimating data sizes
in order to find an optimal point. The accuracy of such
estimation (e.g., on the size of a string) is again fundamentally
limited by the static approach, leading to suboptimal choices.
Finally, we find that in many cases even for data that are
explicitly used in a user-defined function the actual raw values
might not be necessary. Instead, any value that satisfies certain
constraints and leads to the same execution result can be used.
Collecting the constraints, and replacing the raw value with
a different value that satisfies the collected constraints and
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b123-456,107,WEB,ACTION,2013-01-20.12:00:00,b123,ACTION,ip=192.168.0.1;scheduler=611;flags=0x4C0;action=b123,

MUID,b123-456,ANID,b123-456,EXT_DATA,len=33;data=v3/atz.prospectID/atc1.productID

Figure 1. A sample log entry generated by a production on-line advertisement system.

is more friendly to data encoding, can often reduce network
I/O.

These limitations makes the static partitioning approach
insufficient because the optimal partition can vary on different
input data. In addition, an optimal partition for certain data
may even increase network I/O for other data. So static
approaches such as smart cut must be conservative and
miss optimization opportunities. A possible workaround is
to prepare multiple versions of partitioned code and decide
which to use by investigating data at runtime. However, the
number of code versions can be huge for complex user-
defined functions, making this approach feasible only for
small programs.

We therefore propose Cybertron, a novel dynamic ap-
proach to I/O reduction for data-parallel programs, which
leaves the user-defined function untouched while exploiting
different opportunities for different data. Specifically, Cy-
bertron generates a shadow program that runs on the data
sender side, which incorporates runtime mechanisms that
are capable of understanding string operations, dynamically
inspects which data fields are unused, collects the constraints
that the data must satisfy in order for the code to produce
the same result as on the original data, and constructs new
data with more efficient encoding while preserving correct-
ness. Through a combination of static analysis and runtime
techniques, Cybertron reduces data size with respect to a
user-defined function in two execution-equivalent ways. First,
Cybertron attempts to exclude data regions by pre-executing
conditions that would govern their use in the computation,
which is called unused-data elimination. Second, Cybertron
extracts constraints that govern how the computation will
use data regions to enable a more space-efficient constraint
based data encoding. Cybertron further introduces the key
technique of constraint concretization to enable efficient con-
straint based encoding and decoding without expensive con-
straint solving.

The paper makes the following contributions. First, Cy-
bertron represents a new class of I/O-reduction optimizations
that incorporates dynamic mechanisms, which is beyond the
capabilities of the state-of-the-art techniques and is shown to
be effective on production data-parallel programs. Second,
Cybertron introduces a novel concept of constraint based en-
coding based on the notion of execution equivalence. Third,
the paper describes a practical realization of Cybertron that
has been implemented and extensively evaluated on both its
effectiveness on I/O reduction and its impact on end-to-end
performance in various network environments.

The rest of the paper is organized as follows. Section 2
illustrates several examples that motivate our work. Section 3

WorkflowName ReportKey Payload
Build StartTime 1/1/2013 1:00:00 AM

Build FileName some/long/path

Build EndTime 1/1/2013 2:00:00 AM

Build FileName another/long/path

Table 1. Three fields in four rows from an internal workflow
log. Confidential fields are filled with fake values.

describes the detailed design. Implementation details are
the subject of Section 4, followed by our evaluations in
the context of some MapReduce programs extracted from
production systems in Section 5. We survey the related work
in Section 6, and conclude in Section 7.

2. Motivating Examples
This section illustrates the I/O reduction opportunities beyond
the capability of the current static-analysis based approaches,
using real job snippets from a production MapReduce cluster.
The opportunities motivate a hybrid approach with both
static and dynamic techniques, leads to the novel concept
of execution-equivalent encoding, and helps to shape the
design of Cybertron.
Field dependencies and conditionally unused data. Data
in a field may be only used by a user-defined function when
the value of another field in the same row satisfies a cer-
tain condition. For example, Table 1 shows four internal
workflow log entries with the same WorkflowName from our
production environment. A reducer aggregates the logs by
WorkflowName, computes the duration between StartTime

and EndTime, and counts the number of related files. Whether
data in field Payload is used or not depends on the string in
field ReportKey. In this example, the concrete file names in
the 2nd and 4th row are not used. To remove such condition-
ally unused data, it is necessary to check at runtime whether
ReportKey equals “StartTime” or “EndTime”, while a
static approach can only conservatively consider that the
Payload field is always used by the user-defined function.
Ad hoc string parsing and constraint based encoding. We
observed that log data, which is a major class of data in
production settings, tends to be semi-structured or even
unstructured in nature. A user-defined function consuming
such log data usually uses various string operations to locate
and extract those portions of interest. What matters to the
result of the processing can often be summarized as a set
of constraints, not necessarily the actual raw values. It is
often possible to construct an alternative piece of data that
satisfies the same set of constraints, while allowing a more
efficient encoding. Such constraint based encoding preserves
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ip=192.168.0.1;scheduler=611;flags=0x4C0;action=b123

Equals(“flags=”)

Equals(“4C0”)

Equals(“;”)

ip=192.168.0.1;$$$$$$$$$$$$$;flags=$$4C0;$$$$$$$$$$$

Equivalent value:

Essential constraints on fields[7]:

string flags = null;
string ip = null;
foreach (string token in fields[7].Split(";")) {
  if (token.StartsWith("flags="))
    flags = token.Substring(8);
  if (token.StartsWith("ip="))
    ip = token.Substring(3);
}

Code:

Equals(“;”)

Equals(“;”)

Equals(“192.168.0.1”)

Equals(“ip=”) NOT Equals(“ip=”)

NOT Equals(“flags=”) NOT Equals(“flags=”)

NOT Equals(“ip=”)

Figure 2. A code snippet to extract the IP address and flags
from the 8th field (fields[7], marked by underline) in the
log in Figure 1. Both the original string and the alternative
string satisfy the same set of constraints that matter to the
execution; replacing the original string with the “equivalent
value” allows more efficient encoding, while preserving
correctness. Some constraints are not shown due to space
limitation.

correctness of the computation because all the necessary
constraints are satisfied, while offering opportunities for I/O
reduction through better encoding. Collecting the constraints
imposes challenges for static program analysis and requires
dynamic information.

Figure 1 shows an example entry from a log generated
by a production on-line advertisement system to record
events related to impressions, clicks, conversions, and so
on. The log entry consists of comma-separated fields and
some fields have nested structures. The first 8 fields (the first
line in the figure) are mandatory, while the rest are optional
properties as key-value pairs, with key and value occupying
two fields separately. Figure 2 shows a code snippet in a
mapper to extract the IP address and flags from the 8th
field (fields[7], marked by underline in Figure 1). The
constraints that matter to the execution of the code are marked
on the data shown in Figure 2. (We omit the constraints
NOT Equals(";") for all the non-";" positions.) One can
construct an equivalent value for the string that satisfies
these constraints. Replacing the original value with this
equivalent one does not change the mapper’s output, but
can bring I/O reduction because the new string can clearly be
encoded more efficiently. Note that the iteration count of the
loop depends on the concrete value of fields[7] and may
vary for different log entries. Understanding such a loop is
beyond the capability of static program analysis in previous
approaches.
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Figure 3. Cybertron Overview.

3. Execution-Equivalent Encoding
At the core of Cybertron is the notion of execution-equivalent
encoding, where Cybertron encodes the input data to a user-
defined function in such a way that the encoded data is equiv-
alent to the original input with respect to the user-defined
function, thereby preserving correctness, and yet is smaller
in size than the original one. The left part of the Figure 3
shows a typical setting, where a stream of objects is trans-
ferred through the network; for example, for feeding from
a storage system to mappers or for transmitting key-value
pairs from mappers to reducers. Such data transfer is often
necessary due to the inherent computation paradigm (e.g., be-
tween mappers and reducers) or due to the isolation between
storage and computation resources in certain settings [13].
Cybertron can be applied on both mappers and reducers given
the subsequent user-defined function that consumes the data.

3.1 Overview
Figure 3 depicts the high-level workflow in Cybertron to
realize execution-equivalent encoding. The key to Cybertron
is to figure out how a given user-defined function uses the
input data. This is done through a shadow program that
Cybertron derives from the given user-defined function in
the code generation step. The shadow program provides a
conservative estimate on what in the input data matters to the
given user-defined function. The encoding step of Cybertron
executes the shadow program in a shadow run, which does
usage tracking and constraint recording. Usage tracking
identifies the unused portions of the input data and is basis for
unused-data elimination (UDE). Constraint recording tracks
the constraints that the input data must satisfy to preserve the
correctness of the user-defined function. Cybertron further
applies constraint concretization to generate a synthesized
value that satisfies the constraints, but can be more efficiently
encoded. This encoding process is constraint based data
encoding (CDE). Finally, Cybertron applies object encoding
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1 // Input object type
2 struct Anchor {
3 string targetUrl;
4 string anchorInfo;
5 int extraScore;
6 }
7

8 // Consumer program
9 class AnchorReducer {

10 void Reduce(string key, Anchor obj) {
11 string[] tokens = obj.anchorInfo.Split(’;’);
12 string anchorType = tokens[0];
13 string scoreStr = tokens[1];
14 string url = tokens[2];
15 string anchorText = tokens[tokens.Length - 1];
16 string domain = GetDomain(url);
17 int score = Int32.Parse(scoreStr);
18 if (_dict.ContainsKey(domain)) {
19 _dict[domain] += score;
20 } else {
21 _dict[domain] = score;
22 _textSample[domain] = anchorText;
23 }
24 if (anchorType.Equals("external"))
25 _dict[domain] += obj.extraScore;
26 } // Emitting code is omitted
27 string GetDomain(string url) {
28 if (url.Contains("://"))
29 url = url.Substring(url.IndexOf("://") + 3);
30 if (url.StartsWith("www."))
31 url = url.Substring(4);
32 return url.Split(’/’)[0];
33 }
34 Dictionary<string, int> _dict = ...;
35 Dictionary<string, string> _textSample = ...;
36 }

Figure 4. A sample user-defined function.

as the last step before transferring the object and object
decoding after receiving it.

Figure 4 shows a sample user-defined function with the in-
put object definition extracted from a production MapReduce
job. The user-defined function is a reducer that receives all
the Anchors linking to the same target URL to compute
the sum of the anchor scores for those sharing the same do-
main name. An Anchor object has three fields: targetUrl,
anchorInfo, and extraScore. The former two are of the
string type, and the last one is an integer. For each ob-
ject, AnchorReducer splits the anchorInfo field into to-
kens (line 11) and gets the anchorText, domain and score

(line 15-17). An extra token anchorType is used to judge
whether the extraScore field should be added to the score
(line 24, 25).

Figure 5 shows the encoding and decoding process on
an input entry that has 70 bytes. In the shadow run, usage
tracking infers that fields targetUrl and extraScore are
unused: targetUrl is always unused, while extraScore

is conditionally unused because whether it is used or
not depends on the value of anchorType. In addition,
anchorText (line 15) is extracted from anchorInfo at
a position known only at runtime, imposing challenges
to static approaches such as smart cut. Constraint record-
ing collects the necessary constraints on each field to
guarantee execution-equivalence. Figure 5 shows the con-
straints discovered for field anchorInfo. The first constraint

Original Object

[0...7]      != external 
[8]            == ; 
[9...10]    :UseValue
[11]          == ; 
[16...18]  == :// 
[19...22]  == www. 

S(8)C(;)V(10)C(;)S(4)C(://)C(www.)V(acm.org)C(/)S(6)C(;)S(3)C(;)V(home)

014S8C1V(10)C1S4C2C3V(acm.org)C4S6C1S3C1V(home)

unused unusedused

size: 70 bytes

size: 47 bytes

[23...29]  :UseValue
[30]          == / 
[37]          == ; 
[41]          == ; 
[42...45]  :UseValue

anchorInfo Constraints: (conditional)

Equivalent Object

Network

extraScore
$

(always)

Cybertron

targetUrl
$

anchorInfo
$$$$$$$$;10;$$$$://www.acm.org/$$$$$$;$$$;home

extraScore
17

         targetUrl
http://www.acm.org/

anchorInfo
               internal;10;http://www.acm.org/search;q=a;home

Figure 5. Cybertron on a sample object.

(anchorInfo[0...7] != ’external’) ensures that the
condition for the if-statement in line 24 of the sample pro-
gram is false, as in the shadow run. Any other value that
satisfies the same constraints is going to yield the same re-
sult. Constraint concretization synthesizes a new value for the
used field anchorInfo according to the collected constraints.
Cybertron further encodes the new object with both the usage
information from usage tracking and this new value into a
compact format, which takes only 47 bytes in this case. The
decoder creates a different input, but is equivalent to the given
user-defined function because all the constraints on the used
segments are preserved. The following subsections describe
the technical details of the key steps: code generation, usage
tracking, constraint recording, and concretization.

3.2 Code Generation
Code generation derives a shadow program from the given
user-defined function and provides a wrapper for the input
object to enable usage tracking and constraint recording when
running the shadow program on the input data.
Wrapping input objects. Figure 6 shows the wrapper class
for Anchor defined in Figure 4. Besides the original object
(line 2), the wrapper contains additional fields for usage track-
ing and constraint recording. For instance, fieldUsage is a
bitmap with each bit representing whether a correspondent
field is used or not. We create a corresponding wrapper type
StrMeta for each string-typed field. StrMeta has the same
interface as String and implements constraint recording
for each string method. For example, when a Split(’;’)

method is invoked, StrMeta knows that certain positions in
the host string must be character ’;’, while the other ranges
contain any characters other than ’;’.
Deriving a shadow program. Cybertron derives a shadow
program from a given user-defined function. For correctness,
a shadow program must provide a conservative approximation
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1 class AnchorWrapper {
2 Anchor originalObject;
3 BitMap fieldUsage;
4 StrMeta targetUrl;
5 StrMeta anchorInfo;
6 // Construction
7 AnchorWrapper(Anchor obj) {
8 originalObject = obj;
9 fieldUsage = BitMap.Empty();

10 targetUrl = new StrMeta(obj.targetUrl);
11 anchorInfo = new StrMeta(obj.anchorInfo);
12 }
13 }

Figure 6. Object wrapper for the example in Figure 4.

on how input data is used in the user-defined function, such
that (i) if a portion of the data is unused in the shadow
program, it is unused in the original user-defined function; (ii)
if a constraint matters to the original user-defined function,
the constraint must be implied by the constraints derived in
the shadow program.

There are cases where a pre-run cannot accurately follow
the execution of a user-defined function; for example, when
the execution uses environmental variables such as the time
of the day. Another case is when the original user-defined
function operates on a stream of input data entries and
maintains states across the processing of individual data
entries. Cybertron chooses to ensure that a shadow program
does not include such states because accuracy in modeling
such states depends on the assumption that the user-defined
function processes the same stream of input data in the same
order. Such an assumption does not always hold; for example,
when the user-defined function is a reducer in a MapReduce
program. We label those environmental variables and state
variables unsafe variables.

Constructing a shadow program also involves trade-offs
between effectiveness and overhead. In an extreme case,
a shadow program can simply mark that all input data is
important to the user-defined function, which is correct and
incurs no overhead, but brings no network I/O saving. To
maximize the opportunity for network I/O saving, the shadow
program should ideally simulate the behavior of the original
user-defined function closely in using the input data, as long
as it does not depend on unsafe variables. Certain function
calls in the original user-defined function might be excluded
from the shadow program if they are expensive or hard to
analyze because Cybertron’s encoding involves executing the
shadow program.

The process of deriving a shadow program starts with
the construction of the dependency graph in a given user-
defined function. Figure 7 illustrates the dependency graph
for the sample in Figure 4. Each vertex in the graph is a
statement with its line number in the leading square. The
directed edges indicate data dependencies (solid lines) and
control dependencies (dotted lines). For example, the edge
from vertex 11 to vertex 12 indicates that statement 12 uses
the data defined in statement 11 (tokens[0]). The edge from

anchorType12

obj (Input Object)10

tokens = ... obj.anchorInfo ...11

scoreStr13 url14

anchorText15

if (...)24 score17 domain16

_dict ... obj.extraScore25

if (_dict ...)18

_dict ...19

_dict ...21 _textSample ...22

Figure 7. Dependency analysis and boundary cut.

vertex 24 to vertex 25 indicates that statement 25 executes
only when statement 24 evaluates true. Vertex 16 represents a
function call and the dependency analysis drills down into the
callee (as depicted in the dotted circle). Cybertron searches
for an appropriate boundary in the dependency graph to derive
a shadow program.

On the dependency graph, Cybertron marks unsafe state-
ments that (recursively) depend on or define unsafe variables,
i.e., those variables not purely decided by the current input
object. In this case, dict and textSample are unsafe vari-
ables, and statements 18, 19, 21, 22 and 25 are therefore
identified as unsafe. These statements cannot be selected as
part of the shadow program. Starting from the input object,
Cybertron traverses the graph by following data and control
dependencies in the program. It marks a cut point whenever
it encounters an unsafe statement. It can also choose to stop
early not to include certain statements in the shadow pro-
gram. For example, a string is converted into a primitive type
through Int32.Parse on line 17. In this case, the full con-
tent of the string is required (scoreStr); there is no further
opportunity for network I/O saving. Cybertron can therefore
make this a cut point and exclude from the shadow program
this statement and all the subsequent ones.

The set of cut points constitutes a boundary cut. The bold
dotted line in Figure 7 shows one boundary cut. With the
boundary cut, Cybertron selects the statements on the same
side of the boundary cut as the input object vertex (vertex 10)
on the dependency graph. In this case, vertices 17, 18, 19, 21,
22 and 25 are excluded.

Cybertron generates the shadow program according to
this cut. Figure 8 shows the result. The differences from
the original user-defined function in Figure 4 are underlined.
The following changes are worth noting. First, the shadow
program uses a wrapper class AnchorWrapper, rather than
the original input object class, and replaces all String types
to the corresponding StrMeta wrapper class. Second, for the
boundary String variables at the boundary cut, Cybertron
conservatively adds UseValue for all these variables to
ensure their values are faithfully transmitted (e.g., for domain
used in vertices 18, 19, 21 and 22, anchorText used in vertex
22, and scoreStr used in vertex 17), and sets usage bit for
the others that directly references the field of the input object
(e.g., extraScore used in vertex 25).
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1 class ShadowAnchorReducer {
2 AnchorWrapper Reduce(Anchor obj) {
3 AnchorWrapper wp = new AnchorWrapper(obj);

4 wp.fieldUsage.Set(Field_anchorInfo);

5 StrMeta[] tokens = wp.anchorInfo.Split(’;’);

6 StrMeta anchorType = tokens[0];
7 StrMeta scoreStr = tokens[1];
8 StrMeta url = tokens[2];
9 StrMeta anchorText = tokens[tokens.Length - 1];

10 StrMeta domain = GetDomain(url);
11 scoreStr.UseValue();
12 domain.UseValue();
13 anchorText.UseValue();
14 if (anchorType.Equals("external"))
15 wp.fieldUsage.Set(Field_extraScore);
16 return wp;

17 }
18 StrMeta GetDomain(StrMeta url) {
19 if (url.Contains("://"))
20 url = url.Substring(url.IndexOf("://") + 3);
21 if (url.StartsWith("www."))
22 url = url.Substring(4);
23 return url.Split(’/’)[0];
24 }
25 }

Figure 8. Shadow program for the example in Figure 4.

3.3 Usage Tracking
Usage tracking is performed by the input object wrapper
to discover what is unused when running the shadow pro-
gram. As shown in Figure 6, Cybertron uses a bitmap (e.g.,
fieldUsage in AnchorWrapper) in the wrapper for usage
tracking. Each bit of the bitmap corresponds to a field of
the input type and indicates whether or not that field is used.
For instance, anchorInfo is used at the beginning of the
Process method in AnchorReducer (line 11, Figure 4). Cy-
bertron emits a statement to set the corresponding bit in
fieldUsage (line 4, Figure 8). Because usage tracking is
done at runtime, the bit corresponding to a field that is condi-
tionally used will not be set if the execution does not touch
the field. For example, line 15 in Figure 8 is not executed
when line 25 in Figure 4 is not executed. For a field of a non-
primitive data type, such as a tree or a dictionary, Cybertron
chooses not to track the detailed usage information and to
conservatively assume that the entire structure is used as long
as any single element is accessed.

After the shadow run, Cybertron uses the resulting bitmap
when encoding the data: it attaches the bitmap as the header
of the serialized data, and simply skips all the unused fields.
The corresponding decoder reads the bitmap first and knows
which fields to skip.

3.4 Constraint Recording
Cybertron also records constraints on the input data during
the shadow run. This is done using the wrappers on particular
data types. Because strings are the type of 89% fields in
the input data we examine and offer the most significant
opportunities for size reductions, Cybertron uses the String
type as the showcase and implements the StrMeta wrapper.
For all other types, we use their concrete values during the
shadow run.

Defining Constraints. Cybertron encodes constraints im-
posed by string operations as a list of range constraints, each
denoted as (s, l,c), where the substring starting from index s
with length l in the input string must satisfy data constraint c.
Cybertron introduces the following three types of constraints:

• Any: the concrete value of the substring does not matter,
which usually happens when the substring is unused or
the later user-defined function cares only about its length.

• Pred(predicate): the substring must satisfy a certain predi-
cate; for example, it must not contain a certain constant
string.

• Value: the substring must be faithfully preserved, as its
actual value matters to the user-defined function.

Table 2 illustrates the range constraints for some popular
string operations. For example, a range constraint of (0,
this.Length, Any) ensures that the length of host string
remains unchanged, but the content does not matter. A more
complicated case is Split, which divides the host string into
substrings by the given separator v. Cybertron ensures that
the separator is present at exactly the same positions as in the
host string by introducing range constraints (si − v.Length,
v.Length, Value) for i = 2, . . . ,n, where n is the number of
resulting substrings and si are their start positions. Cybertron
also introduces (si, si+1 − si − 1, Pred(!value.Contains(v)))
for i = 1, . . . ,n where sn+1 is the host string length plus 1,
guaranteeing that the separator does not appear elsewhere.

For operations returning substring(s) of the host string,
such as Substring and Split, Cybertron tracks the data
ranges with regard to the original input string at runtime.
For example, url on line 19 in Figure 8 is derived from the
results of the Split operation on line 5. So when Contains

on line 19 returns true, (s, 3, Value) is added to anchorInfo

where s is the correspondent start position of “://” in
anchorInfo.

Range constraints imposed by a string operation may differ
depending on the return value. Equals and IndexOf shown
in Table 2 are two examples. For IndexOf, when the return
value ≥ 0, the range constraints are similar to that with Split;
otherwise, the range constraint makes sure that the given
parameter string v does not appear in the host string.

3.5 Constraint Concretization
With the range constraints that the shadow run collects,
a naive scheme is to encode the constraints directly in
the encoding process and to use a constraint solver in the
decoding stage to come up with an input that satisfies these
constraints (and hence is equivalent to the original input
with respect to the given user-defined function.) For the
scheme to work effectively, Cybertron must find an efficient
encoding of the constraints for size reduction, while at the
same time coming up with a specific constraint solver that
is efficient to be used in decoding. Two properties of the
collected constraints make this task particularly challenging.
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String operation Return Range constraint
int Length() - (0, this.Length, Any)
string[] Split(string v) - (si − v.Length, v.Length, Value) for i = 2, . . . ,n

(si, si+1 − si −1, Pred(!value.Contains(v))) for i = 1, . . . ,n
where si . . .sn are start positions of the resulting substrings,
and sn+1 = this.Length+1.

string Substring(int start, int len) - -
string ToLower() - (0, this.Length, Value)
bool Equals(string v) true (0, this.Length, Value)

false (0, this.Length, Pred(value != v))
int IndexOf(string v) r (≥ 0) (r, v.Length, Value), (0, r+ v.Length−1, Pred(!value.Contains(v)))

r (< 0) (0, this.Length, Pred(!value.Contains(v)))

Table 2. Range constraints for common String operations. Constraints for certain operations depend on the return value. “this”
represents the host string for the current operation, and “value” represents the substring of the correspondent range in the host
string specified by the current constraint.

First, the ranges from different range constraints may
partially overlap. Normalizing the constraints in a reason-
able way is non-trivial. For example, one might attempt to
transform the existing set of constraints into one on non-
overlapping ranges. This requires safe decomposition of con-
straints into those on smaller ranges, i.e., any strings satisfy-
ing the decomposed constraints must satisfy the old constraint
as well. This is doable for Any and Value constraints, but
difficult for Pred ones. For example, the constraint (0, 6,
Pred(!value.Contains(“xy”))) cannot be simply decomposed
into two sub-constraints (0, 3, Pred( !value.Contains(“xy”)))
and (3, 3, Pred(!value.Contains(“xy”))), because a string
“abxycd” satisfying the two sub-constraints fails the original
one, which violates the safety requirement of decomposition.

Second, there can be multiple range constraints discovered
for the same range. Note that the types of the range constraints
have a total order Any � Pred � Value; that is, a Value
constraint is stronger than any Pred constraints discovered
for the same range, which in turn can always satisfy any
Any constraints. When constraints with different types are
discovered for the same range, Cybertron can always select
the strongest one as the only constraint for the range. The real
difficulty lies in resolving two Pred constraints. For example,
strings satisfying (4, 2, Pred(!value.Contains(“x”))) may not
satisfy (4, 2, Pred(!value.Contains(“y”))).

In general, solving a set of Pred constraints is difficult.
Cybertron gets around this problem by removing the need for
any constraint solving during decoding. This is done by intro-
ducing a constraint concretization process, where Cybertron
essentially solves the constraints with an alternative input
during encoding. That alternative input satisfies all the con-
straints and can be more efficiently encoded than the original
input.

The key to constraint concretization is to solve all the Pred
constraints by assigning concrete values to each position in
a string. To simplify, for any Pred constraint not of types
(value != v) or (!value.Contains(v)), where v must
be a constant string, Cybertron conservatively upgrades it to

the Value type. This simplification is justified because our
experiences show that those two types are the dominant Pred
constraints and retain the most potentials for size reductions.
Others (e.g., those for Compare) are rare. Cybertron then
picks a special character σ that is not used in any parameters
in the Pred constraints, and does the following for each
position: if the position is covered by a Value constraint,
Cybertron assigns the character from the original input string
at this position. Otherwise, it must be covered by only Any or
Pred constraints, and Cybertron assigns the special character
σ to this position.

Constraint concretization produces an assignment that
satisfies all the constraints: for any Value constraint on a
certain range, the whole range must have been filled with the
original characters, thereby satisfying the constraint. For any
Pred constraint, which must be of the types (value != v)

and (!value.Contains(v)), each position in the range is
filled with either the one in the original input data if that range
is also covered by a Value constraint, or σ otherwise. Because
the original input data satisfy the constraint and σ is not in v,
the newly constructed string must satisfy the constraint. Any
Any constraint is trivially satisfied.
Putting it all together. Constraint concretization solves all
the constraints and creates strings with either the original
characters or the special character that satisfy the constraints
needed to preserve the correctness of the given user-defined
function. To help with efficient encoding, Cybertron further
identifies the constant strings that appear as the parameters to
string operations in the user-defined function. Because those
constant strings recur frequently in the input data, Cybertron
introduces a constant table and each occurrence of a constant
can be represented simply by its index to the table. In the end,
Cybertron generates three types of constraints: Special, Value,
and Const on non-overlapping ranges, where Special fills the
range with the special character σ and Const is a special case
of Value that matches a constant in the user-defined function.
Cybertron then efficiently encodes those constraints in the
encoding process.
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1 // original program
2 if (obj.field0)
3 _str = obj.field1; // safe
4 idx = _str.Indexof("something"); // unsafe
5

6 // after transformation
7 if (obj.field0) {
8 _str = obj.field1; // safe
9 idx = _str.Indexof("something"); // safe

10 } else {
11 idx = _str.Indexof("something"); // unsafe

12 }

Figure 9. Enlarged shadow program by code transformation
(highlighted with underline).

4. Implementation
Cybertron is implemented as two major components: a run-
time library and a code generator, which take 1,100 and
6,900 lines of C# code, respectively. The runtime library
provides the implementation of BitMap and StrMeta used
by the code generator. The runtime also provides Encode to
encode the results from usage tracking and constraint con-
cretization, and the corresponding Decode. The encoding is
straight-forward: a header describes which fields are used,
i.e., the BitMap, followed by the serialized buffer for each
field if the field is used. The header is omitted when static
analysis in the code generator finds only statically unused
fields. For each field with constraints, the field is encoded as
a list of non-overlapped range constraints (from constraint
concretization), each with its type and type-specific payload:
length for Special constraints, length and concrete values
for Value constraints, and constant id (referring to a global
constant table from code generation) for Const constraints.

The code generator is built on top of ILSpy [15], an open-
source .NET decompiler, to handle both .NET assembly
and C# code. Given the input consumer program, the code
generator transforms it into ILAst, which is the internal
Intermediate Representation (IR) in ILSpy, analyzes the
ILAst, and generates the target code. We report here the
worthy bits from our experiences.
Merge adjacent range constraints. Cybertron merges adja-
cent range constraints when possible to make the encoding
more efficient. Given continuous Value ranges, Cybertron
merges them together to be one larger range. When the range
of a Const constraint is only one byte (a common case be-
cause the separator of Split is usually a single character)
and it is next to a Value constraint, Cybertron merges it into
the neighboring Value constraint.
Make unsafe statements partially safe. Shown in Figure 9,
str is a global variable which records field1 of the latest

object whose field0 is true. Therefore it is an unsafe
variable, and the statement on line 4 is excluded from the
shadow run because it uses the unsafe variable. Cybertron
enlarges the shadow run scope by duplicating this statement
into both the two preceding branches, as shown on lines 9
and 11, which makes statement 9 safe. The shadow program

can now include statement 9 to uncover more size reduction
opportunities (e.g., when obj.field0 is true).
Track constraints after ToLower and ToUpper. We ob-
serve that some string operations, such as ToLower and
ToUpper, are often used to sanitize input data for later com-
putation, especially for comparison against constants. Be-
cause they may change every character in the host string,
they impose a Value constraint over the whole range, which
terminates the traversal for generating the shadow program
as discussed in Section 3.2. If all computation on a string is
done after such a string operation, we can safely apply the
operation on the input data first. We can use the transformed
data as the input data. This has no impact on the correct-
ness of the computation because applying the same operation
again produces the same result. This allows Cybertron to
track the constraints further to uncover more size reduction
opportunities.

5. Evaluation
This section reports the effectiveness of Cybertron against
10 user-defined functions in different MapReduce jobs and
their input data extracted from the production environment
to answer the following questions: (i) How much network
I/O reduction can Cybertron achieve? (ii) What are the key
factors that affect the effectiveness? (iii) How does Cybertron
compare with the previous static approaches and traditional
compression algorithms? (iv) How does Cybertron affect the
end-to-end performance under various network conditions?

5.1 Benchmarks
We collect 5 mappers and 5 reducers in different MapReduce
jobs developed and used by various production teams, includ-
ing the search team, the advertisement team. and data mining
teams. These jobs are written in SCOPE [32], a SQL-like
declarative language with user-defined functions written in
C#, similar to Pig [22] and Hive [25]. We briefly describe
these jobs and their data.
RevenueByPosition (Case 1, Reducer) This job computes
the total advertisement revenue in each page position, which
is a predefined three-character string. Besides summing up the
revenue, the reducer also aggregates several other properties
about advertisement events in a customized way.
PageGem (Case 2, Reducer) This job mines commercial
values from web pages containing videos of electronic prod-
ucts. The PageGem reducer in this job aggregates a list of
records by URLs and, for each URL, sorts products by their
ranks.
InternalSysReport (Case 3, Reducer) The input is the log
generated by an internal work flow. The log contains the
starting and finishing times of various events in the system.
The reducer in this case aggregates the log by the work-flow
name and computes the duration of each event.
HostRule (Case 4, Reducer) This job computes the statistics
for each URL from the crawler’s log. In each log entry, the
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reducer uses the first several integers to compute the result,
while ignoring any subsequent long sequence of IP addresses
or English words (depending on log entry types).
FollowAnalysis (Case 5, Reducer) This job processes the
search-engine log to find out the clicks to a given domain A
after a user clicks a link to domain B. Each record in the log
contains several fields to identify a user, a URL, a query string
and a timestamp. Although URLs in the log are usually very
long, pointing to specific web pages, this program cares only
about the domain name and the depth (number of slashes) in
each of them.
FatigueMeasure (Case 6, Mapper) This job processes the
log generated by a production on-line advertisement system
(shown in Figure 1). It computes the fatigue level of each ad-
vertisement impression, which is the number of impressions
with the same user identity and on the same site within a
given time window. Then it counts the number of impressions
and the number of clicks for each user, site, and fatigue level.
AnswerRelativeness (Case 7, Mapper) The input of this
job is the cooked log from a question answering system. Each
line contains 10 key-value pairs indicating how relevant the
answer is to each domain (e.g., sports or music). This job
finds out the sum of relevance in 8 out of 10 domains. Other
metadata in the input is discarded.
AnswersArbitration (Case 8, Mapper) This job works
for the same question answering system as in Case 7, but
processes a different log that contains the detailed information
of each answer arbitration event in a nested format. This job
extracts only a specific attribute from those events and joins
them with another data file.
DeDupQuery (Case 9, Mapper) The input log records local
performance data of a machine in the search engine. The log
contains machine names, queries, timestamps, process IDs,
and other detailed information. This job extracts some feature
words from each query and finds out queries with distinct
features in every minute.
MentionGraph (Case 10, Mapper) This job extracts a
mention graph from the Twitter data. Each line of the input
consists of the user name, the timestamp, and the text of a
tweet. The job creates an edge from node A to node B in the
mention graph if there is a tweet by user A containing a word
“@B”.

5.2 Network I/O Reduction
Experimental setup. To ease the evaluation of each case,
we manually download the source code and a sample of
around 500MB to 1GB input data from the production
cluster to a local machine. For a reducer case, we manually
re-run the preceding mapper in the job to generate the
reducer’s input. We further apply Cybertron to generate
the encoder and decoder functions, which takes less than
2 seconds for all cases. Finally, we run the encoders and
decoders on the local machine to compare their performance
numbers; certain instrumentation is done to collect these
numbers. The evaluation successfully verifies the correctness
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Figure 10. Overall normalized encoded sizes and the break-
down. The left bar has the breakdown before encoding, while
the right bar after encoding.
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Figure 11. CDE breakdown. The left bar has the breakdown
before encoding, while the right bar after encoding.

of Cybertron on these cases by running the original user-
defined functions on both the original data and the data
manipulated by Cybertron, and comparing their results. The
local machine where the evaluation is done has 8 GB memory
and 4 core 2.83 GHz Intel Xeon CPU.
Overall effectiveness. Figure 10 shows the data size reduc-
tion ratio, as well as the contributions from various tech-
niques used in Cybertron. We further show a breakdown on
the sources of size reduction, which could come from CDE,
UDE(always), and UDE(conditional). “None” refers to the
fields that Cybertron does not handle. For fields that can be
saved by UDE(conditional), only those really unused are
counted, the rest are either encoded by CDE further if they
are strings, or not changed otherwise. The right bars show the
same breakdowns based on the total bytes (normalized) after
encoding for each technique. Note that UDE(always) and
UDE(conditional) do not appear on the right bars because
those portions of the data are thrown away during encoding.
UDE(conditional) introduces an additional header, which
should be included in Cases 1 to 5, but the total size of this
header is less than 2% of the encoded size for all these cases
and therefore omitted in the figure. For the mapper cases
(Cases 6 to 10), only CDE works because they process raw
logs with a single string in each line, while in the reducer
cases (Cases 1 to 5) UDE can usually remove some unused
fields.

As shown in the figure,Cybertron reduces I/O by at least
23.5% and by as much as 99.4%. In particular, Cybertron
can reduce the sizes by more than 50% of the input data
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Cases 1 2 3 4 5 6 7 8 9 10
Conditionally used fields X
Input-dependent loops X X X
Data size estimation X X X X

Table 3. Optimization opportunities uncovered by Cybertron while not possible with static approaches.

for most cases, among which UDE(always) and CDE are
particularly effective. This is not surprising because many of
these data are shared and analyzed by many big-data analysis
programs, which may focus on different parts of the data and
therefore leave opportunities for UDE and CDE. We examine
the computations and the resulting encoding by Cybertron;
manually writing a program that extracts the information with
the same effect is difficult. Doing so would also make the code
hard to understand and maintain. When changes are made,
the manual process needs to be re-done. Effectiveness of
UDE(conditional) relies largely on how frequently a certain
condition is false. For example, it works well in Case 3 whose
sample data is shown in Table 1. Payload is only used when
ReportKey is “StartTime” or “EndTime”, which is true in
only 2% of the records. On the other hand, Case 1 does not
have significant savings because the condition filters out only
a small number of mal-formatted values.
CDE effectiveness. We also study the breakdown of CDE
to understand the key factors affecting its effectiveness.
Figure 11 shows the contributions from the three constraint
types Special, Value, and Const. For each case, the left bar
has the breakdown before encoding, while the right bar after
encoding.

The largest benefit comes from the Special constraints,
where the payload of the encoding contains the range length
only. All cases benefit from this type of constraints. Among
all ranges contributed by the Special constraints in the
10 cases, we find 84% of the total range size is contributed
by the Pred constraints, while the other 16% by the Any
constraints.

The Const constraints also contribute to the savings. Each
Const can usually be encoded into a one-byte constant ID.
The longer the constant, the higher the savings. For example,
Case 1 has only one constant of size 3, causing the encoded
size to be a third of the original input data size marked with
Const. Cases 10 has only constants of size 1 (a single space
to split words and “@” to identify mentions in tweets) and
therefore shows no savings.

The encoded size of the Value constraints is always
slightly larger than the original size, because the encoding
format introduces additional overhead besides the raw value.
This overhead is significant for cases like Case 1, in which all
ranges of the Value constraints contain a single byte, thereby
making the resulting size exactly twice of the input data
size. The overhead becomes negligible when the range for
Value constraints is large. For example, a distribution analysis
of the range sizes for Value constraints in Case 9 reveals
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Figure 12. Comparison with a static approach. The
left bar represents the resulting network I/O optimized
by PeriSCOPE, while the right bar by Cybertron after
PeriSCOPE; both are normalized to the original data size.

that the ranges usually contain a thousand of bytes as each
range covers intermediate analysis results of a search query
including a query string and many properties.
Comparison with static approaches. We also compare Cy-
bertron with the previous static approaches to assess how
much extra I/O reduction (relatively) the dynamic approach
in Cybertron can achieve. PeriSCOPE [14] is a representative
state-of-the-art static approach. PeriSCOPE not only uncov-
ers the semantic of projection through column reduction and
selection through early filtering in user-defined functions, but
also incorporates smart cut to move certain processing logic
in user-defined functions across different stages to reduce
I/O.

We conduct the experiments as follows. For each case, we
first run PeriSCOPE, which might rewrite the user-defined
functions and redefine the schema of data transmitted on
the network, and then apply Cybertron on the resulting user-
defined functions. Figure 12 shows the resulting network I/O
optimized by PeriSCOPE (on the left bars) and that further
achieved by Cybertron after PeriSCOPE (on the right bars).
Both bars are normalized to the original data size. In 6 out of
10 cases, Cybertron further reduces data size by a factor of
1.17x to 4.30x.

The improvement primarily comes from three opportuni-
ties uncovered by Cybertron’s dynamic approach. The first
two have been discussed in Section 2. Table 3 shows the cases
that benefit from each opportunity. The first opportunity is
to reveal conditional used fields as shown by the example in
Table 1, which is extracted from Case 3. The second oppor-
tunity is in the input-dependent loops, whose iteration count
is unknown statically. Analyzing such loops is beyond the
capability of the static program analysis in PeriSCOPE, while
Cybertron is able to track constraints imposed in each itera-
tion dynamically. Cases 6 (the example in Figure 2), 7 and
10 benefit from this opportunity. Static approaches also suffer
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Figure 13. Compression algorithm improvement and dis-
jointness with Cybertron. RCB, RAlgo and RCB+Algo are the
compression ratio (compressed size over input size) of Cy-
bertron, Algo, and their combination (applying Algo com-
pression after Cybertron compression), respectively. Algo is
DEFLATE or PPMd.

from their inability to estimate data sizes accurately. This
third opportunity contributes to the additional size reduction
in Cases 1, 3, 7 and 9. For the example in Figure 4, the user-
defined function extracts domain and anchorText from the
anchorInfo field. When PeriSCOPE performs smart cut, it
has an option to move the extraction logic across the net-
work and transmit domain and anchorText (and something
else) instead of anchorInfo. However, without any runtime
information, it is impossible to figure out whether domain
and anchorText have a smaller size than anchorInfo. As a
result, PeriSCOPE makes a conservative decision to transmit
the original field faithfully. In contrast, Cybertron is able to
find out which parts in the field in each input object really
matters to the computation.

5.3 Interaction and Comparison with Traditional
Compression Algorithms

Most data compression algorithms can also be used to reduce
the volume of data on network. For example, Hadoop [2]
supports compression to reduce the size of data written
to and read from the distributed file system and also data
transferred between mappers and reducers. The techniques
in Cybertron are largely orthogonal to those in traditional
compression schemes. In the following set of experiments,
we compare Cybertron with traditional schemes and show
the effect of combining Cybertron with traditional ones. We
select two widely used and different compression algorithms,
DEFLATE [12] and PPMd [8], with the implementation
in 7-Zip [23]. DEFLATE compresses duplicate strings and
applies Huffman encoding for further size reduction, while
PPMd uses a completely different algorithm to predict bytes
according to previous bytes in the uncompressed data.
Compression ratio. We first measure how Cybertron can
further improve the compression ratio of a traditional com-

pression scheme by computing

RAlgo

RCB+Algo
,

where Algo is DEFLATE or PPMd and RAlgo and RCB+Algo
are the compression ratio (compressed size over input size)
of Algo and their combination (applying Algo compression
after Cybertron compression), respectively. The upper half
of Figure 13 reports the result. In most cases, Cybertron
improves the compression ratio by a factor ranging from 1.4
to 19, while for Cases 1 and 6 there is only 15% improvement
to 5% degradation. Such impact on compression ratio of
these traditional algorithms depends on both Cybertron’s own
effectiveness shown in Figure 10 and the overlapped effect
between DEFLATE/PPMd and Cybertron which is discussed
below. The results also indicate that, even in cases where
Cybertron cannot help DEFLATE/PPMd, Cybertron does not
introduce any significant negative effect on DEFLATE/PPMd.

To understand how much overlapped effect that DE-
FLATE/PPMd and Cybertron have on compression, we fur-
ther measure the disjointness between DEFLATE/PPMd and
Cybertron, defined as follows:

RCB ×RAlgo

RCB+Algo
,

where Algo is DEFLATE or PPMd and RCB, RAlgo and
RCB+Algo are the compression ratio (compressed size over
input size) of Cybertron, Algo, and their combination (ap-
plying Algo compression after Cybertron compression), re-
spectively. When disjointness equals to 1, Cybertron and
DEFLATE/PPMd are perfectly orthogonal. Disjointness be-
low 1 indicates that Cybertron and DEFLATE/PPMd overlap
with each other to some extent. Disjointness above 1 shows
that one helps make the other even more effective. The lower
half of Figure 13 shows the results, which reveals interest-
ing insights about the interaction between DEFLATE/PPMd
and Cybertron. We find that disjointness is above 1 in over
half of the cases, an indication that DEFLATE/PPMd works
even better on data compressed by Cybertron than on the
original data. This is primarily because Cybertron removes
hard-to-compress data in some cases. Taking Case 8 with dis-
jointness 1.4 for an example, Cybertron manages to discover
two Base64-encoded 128-bit unique IDs, which keep chang-
ing from one object to another, and are difficult to compress.
Once removed, DEFLATE/PPMd becomes significantly more
effective. There are also cases where the disjointness is below
1; for example, Case 7 has a disjointness of 0.6. In this case,
Cybertron mainly removed event type strings and encoded
domain names with constant IDs. These strings have about
only a dozen different values and can be easily compressed
by DEFLATE/PPMd even if not eliminated by Cybertron. In
addition, as shown in the figure, the conclusion is not sen-
sitive to whether the traditional algorithm is DEFLATE or
PPMd.
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Figure 14. Compression and decompression time.
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Figure 15. (De-)Compression time comparison. For each
case, ratio of (de-)compression time of the combination
of DEFLATE/PPMd and Cybertron to that of individual
DEFLATE/PPMd is plotted.

Execution time. We also compare the execution times of
these schemes and their combinations.

The upper half of Figure 14 depicts the compression time
of different compression schemes. Cybertron runs 2.8x∼ 9.7x
faster than DEFLATE and 1.0x ∼ 5.4x faster than PPMd
in compression, partially because DEFLATE/PPMd looks
at a much larger data window across many objects while
Cybertron focuses on one single object and with a static
analysis stage providing additional knowledge (e.g., the
constant table). Their corresponding decompression time
is shown in the lower half of Figure 14. The difference
of decompression speed of Cybertron and DEFLATE is
negligible, while decompression of PPMd is much more
complicated and runs 4.2x ∼ 21.9x slower than Cybertron
due to the its time-consuming prediction model.

Figure 15 shows the ratio of the (de-)compression time
of the combined DEFLATE/PPMd and Cybertron scheme
over the (de-)compression time of DEFLATE/PPMd. The
upper part shows that in over a half of the cases, running
combined Cybertron and DEFLATE/PPMd is faster than
running just DEFLATE/PPMd (up to 5x in Case 4), which

indicates that preprocessing data by Cybertron not only
helps DEFLATE/PPMd gain higher compression ratio but
also often save computation time. In other cases, we see
an up to 18% additional execution time for DEFLATE and
37% for PPMd. Meanwhile, as shown in the lower half of
Figure 15, the decompression of combination is faster than
the time of the individual counterpart in 2 cases for DEFLATE
and most cases for PPMd, because the compression ratio is
higher due to Cybertron and there is less data to read during
decompression.

5.4 Cost Benefit Analysis
Cybertron trades CPU cycles for reduction in network I/O.
Specifically, it replaces serialization/deserialization with an
encoding process before the network transfer and a decoding
process after. Our measurement shows that the additional
CPU overhead of encoding and decoding ranges from 4.0%
to 63.6% and −59.1% to 14.9% compared to the execution
time of the original user-defined functions, respectively. The
decoding overhead is negative in many cases (1, 3, 4, 5, 8,
and 9), which means the user-defined function becomes faster
with Cybertron due to the reduced amount of data to be
processed.

To understand when this CPU-network trade-off is prof-
itable, we run the benchmarks pulling data over a LAN with
large data sets in an exclusive cluster over which we have
full control and simulate various network environment by
throttling the inbound network bandwidth on each machine
from 100 Mbps to 1 Gbps (no throttling). Note that in the real
production cluster, network resources are shared by many
concurrent jobs. The bandwidth available to a particular job
varies significantly and could be much lower than the capacity
of network adapters: we have often observed effective net-
work bandwidth under 100 Mbps from our production traces.
Figure 16 plots the trend of data processing throughput in
each case when the network bandwidth varies. In most cases,
the network I/O becomes the bottleneck when the bandwidth
is low; Cybertron tends to improve the throughput signif-
icantly due to less data transmitted on the network. Even
when the bandwidth is high, many cases benefit from Cy-
bertron because the user-defined functions have less data to
process and their speedup outweighs Cybertron’s overhead.
The curve in each case primarily depends on the complexity
of the original user-defined function and the size reduction
ratio achieved by Cybertron. For example, Cybertron works
well in Cases 4 and 8 because the encoded data size is so
small that network I/O is almost never the bottleneck with Cy-
bertron enabled. While in Cases 1, Cybertron is less effective
because the original user-defined function is time-consuming
and both the gain of I/O reduction and the CPU overhead is
negligible.

These experiments show that Cybertron could noticeably
improve the end-to-end performance when the network band-
width, rather than the CPU, is the bottleneck. Such cases have
been observed in a shared production cluster deployed even
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Figure 16. Data processing throughput under various network bandwidths. Each point is measured as a mean of five runs.

in a LAN setting. We have also seen the needs for data trans-
fers across a wide area network in several cases, as echoed by
others [13]; for example, when the data and computation have
to be on different data centers due to security, privacy, pol-
icy, or resource constraints, or when data sources originated
from multiple data centers are joined. To verify the results in
the simulation, we also run some cases in a cluster in East
Asia pulling data from U.S. over a WAN with a bandwidth
of 213.7± 8.4 Mbps according to our measurements. This
shows a real case where Cybertron shows a significant benefit
and the measured throughput also validates the points in our
controlled experiments.

6. Related Work
I/O reduction for MapReduce-style programs. MapReduce-
style data parallel programs [2, 6, 11, 16, 22, 25, 27, 32]
are widely used for big-data analysis; their executions
tend to introduce a significant amount of I/O. Many tech-
niques [13, 14, 17, 21, 28, 30, 31] have been developed to
reduce network I/O for this computation paradigm. Most
of the work involves analyzing the code of a program; for
example, to enable partial aggregation [28], to eliminate
unnecessary data shuffling [30], to facilitate database opti-
mizations [17], and to apply compiler optimizations to an
entire program [14]. Fundamentally, these approaches ex-
amine only the code (but not data) to make optimization
decisions statically, while Cybertron leverages the computa-
tion and the data together for optimizations, and is able to
resort to runtime mechanisms for more opportunities.
Computation independent data compression. In contrast
to the code-analysis based approaches, most data compres-
sion algorithms such as DEFLATE [12] and PPM [8] can
also be used to reduce the volume of data on network. For
example, Hadoop [2] supports compression to reduce the size
of data written to and read from the distributed file system
and also data transferred between mappers and reducers. For
those algorithms, decompression of the compressed data al-
ways returns the original data; in contrast, Cybertron ensures

only execution equivalence with respect to a given compu-
tation. Specific data compression schemes have also been
studied and proposed. Abadi et al. [1] discussed several com-
pression schemes that can be integrated into columnar storage
like C-Store [24] and Dremel [19]. Manimal [17] proposes to
use delta-compression. BigTable [7] allows clients to specify
the compression format applied to each file (SSTable) to
save disk storage. These algorithms are largely orthogonal to
Cybertron and can often be applied together with Cybertron
for better overall network I/O reduction.
Execution equivalence and constraint solving. The idea of
using constraint solving to come up with concrete instances
that preserve certain equivalence has been used in other set-
tings, such as securing software by blocking bad input [3, 9],
correlating runtime logs for error diagnosis [29], and privacy-
preserving bug reporting [5, 26]. When a particular input
triggers a bug in a piece of software, it is ideal to send a bug
report that can reproduce the bug, but without revealing user
private data. Privacy-preserving bug reporting finds an input
that can trigger the same bug, but with different values from
the original input. Here, instead of execution equivalence,
the alternative input must follow the same execution path to
trigger the same bug. Symbolic execution [18] is generally
used to generate test input [4, 20] that would take a particular
execution path. This is achieved by collecting the conditions
on the path and solving them with a constraint solver [10].
Cybertron instead uses constraint concretization to avoid the
often expensive constraint solving by leveraging the fact that
the input data provides a concrete instance that satisfies all
the constraints.

7. Conclusion
Cybertron opens up a new avenue for optimizing data-parallel
programs through a novel combination of static and dynamic
mechanisms. It is the first system that establishes the feasi-
bility and effectiveness of this approach through extensive
evaluations with real programs on real data. The techniques
are largely orthogonal to the existing static-analysis based ap-
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proaches and have been shown to bring additional, sometimes
significant, benefits. Even though the dynamic mechanisms
in Cybertron incurs runtime overhead, Cybertron’s design
has carefully avoided expensive operations such as constraint
solving to make such overhead manageable.
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