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Abstract
Traditionally distributed graph processing systems have
largely focused on scalability through the optimizations
of inter-node communication and load balance. How-
ever, they often deliver unsatisfactory overall processing
efficiency compared with shared-memory graph comput-
ing frameworks. We analyze the behavior of several
graph-parallel systems and find that the added overhead
for achieving scalability becomes a major limiting factor
for efficiency, especially with modern multi-core proces-
sors and high-speed interconnection networks.

Based on our observations, we present Gemini, a
distributed graph processing system that applies multi-
ple optimizations targeting computation performance to
build scalability on top of efficiency. Gemini adopts (1)
a sparse-dense signal-slot abstraction to extend the hy-
brid push-pull computation model from shared-memory
to distributed scenarios, (2) a chunk-based partitioning
scheme enabling low-overhead scaling out designs and
locality-preserving vertex accesses, (3) a dual represen-
tation scheme to compress accesses to vertex indices, (4)
NUMA-aware sub-partitioning for efficient intra-node
memory accesses, plus (5) locality-aware chunking and
fine-grained work-stealing for improving both inter-node
and intra-node load balance, respectively. Our eval-
uation on an 8-node high-performance cluster (using
five widely used graph applications and five real-world
graphs) shows that Gemini significantly outperforms all
well-known existing distributed graph processing sys-
tems, delivering up to 39.8× (from 8.91×) improvement
over the fastest among them.

1 Introduction

Graph processing is gaining increasing attentions in both
academic and industrial communities. With the magni-
tude of graph data growing rapidly, many specialized dis-
∗Corresponding author (cwg@tsinghua.edu.cn).

tributed systems [3, 12, 16, 17, 30, 32, 41, 45] have been
proposed to process large-scale graphs.

While these systems are able to take advantage of mul-
tiple machines to achieve scalability, their performance
is often unsatisfactory compared with state-of-the-art
shared-memory counterparts [36, 47, 49, 57]. Further, a
recent study [33] shows that an optimized single-thread
implementation is able to outperform many distributed
systems using many more cores. Our hands-on experi-
ments and performance analysis reveal several types of
design and implementation deficiencies that lead to loss
of performance (details in Section 2).

Based on the performance measurement and code ex-
aminations, we come to recognize that traditional dis-
tributed graph-parallel systems do not fit in today’s pow-
erful multi-core cluster nodes and fast-speed networks.
To achieve better overall performance, one needs to fo-
cus on the performance of both computation and commu-
nication components, compressing the computation time
aggressively while hiding the communication cost, rather
than focusing primarily on minimizing communication
volume, as seen in multiple existing systems’ design.

To bridge the gap between efficient shared-memory
and scalable distributed systems, we present Gemini, a
distributed graph processing system that builds scalabil-
ity on top of efficiency. More specifically, the main con-
tributions of this work are summarized as follows:
• We perform detailed analysis of several existing

shared-memory and distributed graph-parallel sys-
tems and identify multiple design pitfalls.
• We recognize that efficient and scalable distributed

graph processing involves intricate interplay be-
tween the properties of the application, the under-
lying system, and the input graph. In response, we
explore adaptive runtime choices, such as a density-
aware dual-mode processing scheme and multiple
locality-aware data distribution and load balancing
mechanisms. The result is a system that can de-
liver competitive performance on a range of system
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scales, from multi-core to multi-node platforms.
• We identify a simple yet surprisingly effective

chunk-based graph partitioning scheme, which fa-
cilitates exploitation of natural locality in input
graphs and enables seamless hierarchical refine-
ment. We present multiple optimizations enabled
by this new partitioning approach.
• We evaluate our Gemini prototype with extensive

experiments and compared it with five state-of-the-
art systems. Experiments with five applications on
five real-world graphs show that Gemini signifi-
cantly outperforms existing distributed implemen-
tations, delivering up to 39.8× (from 8.91×) im-
provement over the fastest among them. We collect
detailed measurement for performance analysis and
validating internal design choices.

2 Motivation

While state-of-the-art shared-memory graph processing
systems are able to process graphs quite efficiently, the
lack of scalability makes them fail to handle graphs that
do not fit in the memory of a single machine. On the
other hand, while existing distributed solutions can scale
graph processing to larger magnitudes than their shared-
memory counterparts, their performance and cost effi-
ciencies are often unsatisfactory [33, 59, 60].

To study the performance loss, we profiled several rep-
resentative graph-parallel systems, including Ligra [47],
Galois [36], PowerGraph [16], PowerLyra [12], as well
as the optimized single-thread implementation proposed
in the COST paper [33] for reference. We set up ex-
periments on an 8-node high-performance cluster in-
terconnected with Infiniband EDR network (with up to
100Gbps bandwidth), each node containing two Intel
Xeon E5-2670 v3 CPUs (12 cores and 30MB L3 cache
per CPU) and 128 GB DRAM. We ran 20 iterations of
PageRank [38] on the twitter-2010 [28] graph, a test case
commonly used for evaluating graph-parallel systems.

Cores 1 24×1 24×8
System OST Ligra Galois PowerG. PowerL.

Runtime (s) 99.9 21.9 19.3 40.3 26.9
Instructions 525G 496G 482G 7.15T 6.06T
Mem. Ref. 15.8G 32.3G 23.4G 95.8G 87.2G

Comm. (GB) - - - 115 38.1
IPC 1.71 0.408 0.414 0.500 0.655

LLC Miss 8.77% 43.9% 49.7% 71.0% 54.9%
CPU Util. 100% 91.7% 96.8% 65.5% 68.4%

Table 1: Sample performance analysis of existing sys-
tems (20 iterations of PageRank on twitter-2010). OST
refers to the optimized single-thread implementation.

Table 1 gives detailed performance metrics for the five
targeted systems. Overall, systems lose efficiency as

we move from single-thread to shared memory, then to
distributed implementations. Though this is to be ex-
pected with communication/synchronization overhead,
load balance issues, and in general higher software com-
plexities, the large span in almost all measurement cate-
gories across alternative systems indicates a large room
for improvement.

As seen from the profiling results, the network is far
from saturated (e.g., lower than 3Gbps average aggre-
gate bandwidth usage with PowerGraph). Computation,
rather than communication, appears to be the actual bot-
tleneck of evaluated distributed systems, which echoes
recent findings on distributed data analytics frame-
works [37]. Compared with their shared-memory coun-
terparts, they have significantly more instructions and
memory references, poorer access localities, and lower
multi-core utilization. We further dig into the code and
find that such inefficiency comes from multiple sources,
such as (1) the use of hash maps to convert vertex IDs be-
tween global and local states, (2) the maintenance of ver-
tex replicas, (3) the communication-bound apply phase
in the GAS abstraction [16], and (4) the lack of dynamic
scheduling. They either enlarge the working set, produc-
ing more instructions and memory references, or prevent
the full utilization of multi-core CPUs.

We argue that many of the above side-effects could be
avoided when designing distributed graph-parallel sys-
tems, by building scalability on top of efficiency, instead
of focusing on the former in the first place. The subse-
quent distributed system design should pay close atten-
tion to the computation overhead of cross-node operation
over today’s high-speed interconnect, as well as the local
computation efficiency on partitioned graphs.

To this end, we adapt Ligra’s hybrid push-pull com-
putation model to a distributed form, which facilitates
efficient vertex-centric data update and message pass-
ing. A chunk-based partitioning scheme is adopted, al-
lowing low-overhead graph distribution as well as recur-
sive application at multiple system levels. We further de-
ploy multiple optimizations to aggressively compress the
computation time. Finally, we design a co-scheduling
mechanism to overlap computation and inter-node com-
munication tasks.

3 Gemini Graph Processing Abstraction

Viewing modern clusters as small or moderate number
of nodes interconnected with fast networks similar to
a shared-memory multi-core machine, Gemini adopts a
graph processing abstraction that enables a smooth ex-
tension of state-of-the-art single-node graph computation
models to cluster environments.

Before getting to details, let us first give the targeted
graph processing context. Like assumed in many graph-
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parallel systems or frameworks, single-node [47, 59, 60]
or distributed [11, 18, 23, 50] alike, a graph process-
ing problem updates information stored in vertices, while
edges are viewed as immutable objects. Also, like com-
mon systems, Gemini processes both directed and undi-
rected graphs, though the latter could be converted to di-
rected ones by replacing each undirected edge with a pair
of directed edges. The rest of our discussion therefore
assumes all edges are directed.

For a common graph processing application, the pro-
cessing is done by propagating vertex updates along the
edges, until the graph state converges or a given num-
ber of iterations are completed. Vertices with ongoing
updates are called active vertices, whose outgoing edges
collectively form the active edge set for processing.

3.1 Dual Update Propagation Model

At a given time during graph processing, the active edge
set may be dense or sparse, typically determined by its
size (total number of outgoing edges from active ver-
tices) relative to |E|, the total number of edges. For ex-
ample, the active edge set of the CC (connected com-
ponents) application is dense in the first few iterations,
and gets increasingly sparse as more vertices receive
their final labels. SSSP (single-source shortest paths), on
the other hand, starts from a very sparse edge set, get-
ting denser as more vertices become activated by their
in-neighbors, and sparse again when the algorithm ap-
proaches the final convergence.

State-of-the-art shared-memory graph processing sys-
tems [4, 36, 47, 57] have recognized that different active
edge set densities call for different update propagation
models. More specifically, sparse active edge sets prefer
the push model (where updates are passed to neighboring
vertices along outgoing edges), as the system only tra-
verses outgoing edges of active vertices where new up-
dates are made. In contrast, dense active edge sets ben-
efit more from the pull model (where each vertex’s up-
date is done by collecting states of neighboring vertices
along incoming edges), as this significantly reduces the
contention in updating vertex states via locks or atomic
operations.

While Ligra [47] proposed the adaptive switch be-
tween these two modes according to the density of an
active edge set in a shared-memory machine (with the de-
fault threshold |E|/20, which Gemini follows), here we
explore the feasibility of extending such design to dis-
tributed systems. The major difference is that a graph
will be partitioned and distributed across different nodes,
where information and updates are shared using explicit
message passing. To this end, Gemini uses the master-
mirror notion as in PowerGraph [16]: each vertex is as-
signed to (owned by) one partition, where it is a mas-

ter vertex, as the primary copy maintaining vertex state
data. The same vertex may also have replicas, called mir-
rors, on each node/partition that owns at least one of its
neighbors. A pair of directed edges will be created be-
tween each master-mirror pair, though only one of them
will be used in either propagation mode. Note that unlike
in PowerGraph, mirrors in Gemini act like placeholders
only for update propagation and do not hold actual data.

v v 

sparseSignal sparseSlot 

v 

denseSignal 

v 

denseSlot 

communica2on computa2on master mirror 

Figure 1: The sparse-dense signal-slot model

With replicated vertices, Gemini adopts a sparse-dense
dual engine design, using a signal-slot abstraction to de-
couple the propagation of vertex states (communication)
from the processing of edges (computation). Borrowed
but slightly different from in the Qt software frame-
work [1], signals and slots denote user-defined vertex-
centric functions describing message sending and receiv-
ing behaviors, respectively. Computation and commu-
nication are handled differentially in the two modes, as
illustrated in Figure 1. In the sparse (push) mode, each
master first sends messages containing latest vertex states
to its mirrors via sparseSignal, who in turn update
their neighbors through outgoing edges via sparseSlot.
In the dense (pull) mode, each mirror first performs lo-
cal computation based on states of neighboring vertices
through incoming edges, then sends an update message
containing the result to its master via denseSignal,
who subsequently updates its own state appropriately via
denseSlot.

An interesting feature of the proposed abstraction is
that message combining [32] is automatically enabled.
Only one message per active master-mirror pair of each
vertex is needed, lowering the number of messages from
O(|E|) to O(|V |). This also allows computation to be
performed locally to aggregate outgoing updates without
adopting an additional “combining pass”, which is nec-
essary in many Pregel-like systems [3, 32, 44].

3.2 Gemini API

Gemini adopts an API design (Figure 2) similar to those
presented by shared-memory systems [47, 57]. Data and
computation distribution details are hidden from users.
A graph is described in its entirety with a type E for edge
data, and several user-defined vertex arrays. A compact
VertexSet data structure (internally implemented with
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class	  Graph<E>	  {	  
	  	  	  	  VertexID	  ver2ces;	  
	  	  	  	  EdgeID	  edges;	  
	  	  	  	  VertexID	  []	  outDegree;	  
	  	  	  	  VertexID	  []	  inDegree;	  
	  	  	  	  def	  allocVertexArray<V>()	  -‐>	  V	  [];	  
	  	  	  	  def	  allocVertexSet()	  -‐>	  VertexSet;	  
	  	  	  	  def	  processVer2ces<A>	  (	  
	  	  	  	  	  	  	  	  work:	  (VertexID)	  -‐>	  A,	  
	  	  	  	  	  	  	  	  ac2ve:	  VertexSet,	  
	  	  	  	  	  	  	  	  reduce:	  (A,	  A)	  -‐>	  A,	  
	  	  	  	  )	  -‐>	  A;	  
	  	  	  	  def	  processEdges<A,	  M>	  (	  
	  	  	  	  	  	  	  	  sparseSignal:	  (VertexID)	  -‐>	  void,	  
	  	  	  	  	  	  	  	  sparseSlot:	  (VertexID,	  M,	  OutEdgeIterator<E>)	  -‐>	  A,	  
	  	  	  	  	  	  	  	  denseSignal:	  (VertexID,	  InEdgeIterator<E>)	  -‐>	  void,	  
	  	  	  	  	  	  	  	  denseSlot:	  (VertexID,	  M)	  -‐>	  A,	  
	  	  	  	  	  	  	  	  reduce:	  (A,	  A)	  -‐>	  A,	  
	  	  	  	  	  	  	  	  ac2ve:	  VertexSet	  
	  	  	  	  )	  -‐>	  A;	  
	  	  	  	  def	  emit<M>	  (recipient:	  VertexID,	  message:	  M)	  -‐>	  void;	  
};	  

// 

Figure 2: Core Gemini API

bitmaps) is provided for efficient representation of a ver-
tex subset, e.g., the active vertex set.

The only major Gemini APIs for users to provide
custom codes are those specifying computation tasks,
namely the processVertices and processEdges col-
lections. For the rest of this section we illustrate the se-
mantics of these user-defined functions using CC as an
example.

Graph<empty>	  g	  (…);	  //	  load	  a	  graph	  from	  the	  file	  system
VertexSet activeCurr =	  g.allocVertexSet();
VertexSet activeNext =	  g.allocVertexSet();
activeCurr.fill();	  //	  add	  all	  vertices	  to	  the	  set
VertexID []	  label	  =	  g.allocVertexArray <VertexID>	  ();
def add (VertexID a,	  VertexID b)	  :	  VertexID {
return	  a	  +	  b;

}
def initialize	  (VertexID v)	  :	  VertexID {
label[v]	  =	  v;
return 1;

}
VertexID activated	  =	  g.processVertices <VertexID>	  (
initialize,
activeCurr

);

Figure 3: Definitions and initialization for CC

As illustrated in Figure 3, we first create active ver-
tex sets for the current/next iteration, define the label

vertex array, and initialize the latter with own vertex IDs
through a processVertices call.

A classic iterative label propagation method is then
used to compute the connected components. Fig-
ure 4 gives the per-iteration update logic defined in two

def CCSparseSignal (VertexID v)	  {
g.emit(v,	  label[v]);

}
def CCSparseSlot (VertexID v,	  VertexID msg,	  OEI	  iter)	  :	  VertexID
{
VertexID activated	  =	  0;
while (iter.hasNext())	   {
VertexID dst =	  iter.next().neighbour;
if (msg <	  label[dst]	  &&	  atomicWriteMin(label[dst],	   msg))	   {
activeNext.add(dst);	  //	  add	  ‘dst’	   to	  the	  next	  frontier
activated	  +=	  1;

}
}
return activated;

}
def CCDenseSignal (VertexID v,	  IEI	  iter)	  :	  void	  {
VertexIDmsg =	  v;
while	  (iter.hasNext())	   {
VertexID src =	  iter.next().neighbour;
msg =	  msg <	  label[src]	  ?	  msg :	  label[src];

}
if (msg <	  v)	  g.emit(v,	  msg);

}
def CCDenseSlot (VertexID v,	  VertexIDmsg)	   :	  VertexID {
if (msg <	  label[v]	  &&	  atomicWriteMin(label[v],	  msg))	   {
activeNext.add(v);	  //	  add	  ‘v’	  to	  the	  next	  frontier
return 1;

}
else	  return 0;

}
while (activated>0)	  {
activeNext.clear();	  //	  make	  an	  empty	  vertex	  set
activated	  =	  g.processEdges <VertexID,	  VertexID>	  (
CCSparseSignal,
CCSparseSlot,
CCDenseSignal,
CCDenseSlot,
activeCurr,
add

);
swap(activeCurr,	  activeNext);

}

Figure 4: Iterative label propagation for CC. OEI and IEI
are edge iterators for outgoing edges and incoming edges
respectively. atomicWriteMin(a, b) atomically assigns
b to a if b < a. swap(a, b) exchanges a and b.

signal-slot pairs. In the sparse mode, every active ver-
tex first broadcasts its current label from the master to its
mirrors, including the master itself (CCSparseSignal).
When a mirror receives the label, it iterates over its local
outgoing edges and updates the vertex states of its neigh-
bors (CCSparseSlot). In the dense mode, each vertex
(both masters and mirrors, active or inactive) first iterates
over its local incoming edges and sends the smallest label
from the neighborhood to its master (CCDenseSignal).
The master updates its own vertex state, upon receiving
a label smaller than its current one (CCDenseSlot). The
number of overall vertex activations in the current itera-
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tion is collected, via aggregating the slot function return
values using add, to determine whether convergence has
been reached.

Note that in Gemini, graph partitioning stops at the
socket level. Cores on the same socket do not commu-
nicate via message passing, but directly perform updates
on shared graph data. Therefore, as shown in the ex-
ample, atomic operations are used in slots to ensure that
vertex states are updated properly.

Not all user-defined functions are mandatory, e.g.,
reduce is not necessary where there is no aggregation.
Also, Gemini’s dual mode processing is optional: users
may choose to supply only the sparse or dense mode al-
gorithm implementation, especially if it is known that
staying at one mode delivers adequate performance (such
as dense mode for PageRank), or when the memory is
only able to hold edges in one direction.

4 Distributed Graph Representation

While Gemini’s computation model presents users with
a unified logical view of the entire graph, when deployed
on a high-performance cluster, the actual graph has to
be partitioned and distributed internally to exploit par-
allelism. A number of partitioning methods have been
proposed, including both vertex-centric [30, 32, 48] and
edge-centric (aka. vertex-cut) [8, 12, 16, 24, 39] solu-
tions. Vertex-centric solutions enable a centralized com-
putation model, where vertices are evenly assigned to
partitions, along with their associated data, such as vertex
states and adjacent edges. Edge-centric solutions, on the
other hand, evenly assign edges to partitions and repli-
cate vertices accordingly.

However, as profiling results in Section 2 demon-
strated, prior studies focused on partitioning for load bal-
ance and communication optimizations, without paying
enough attention on the resulted system complexity and
the implication of partitioning design choices on the ef-
ficiency of computation.

To achieve scalability while maintaining efficiency,
we propose a lightweight, chunk-based, multi-level par-
titioning scheme. We present several design choices
regarding graph partitioning and internal representation
that aim at improving the computation performance in
distributed graph processing.

4.1 Chunk-Based Partitioning
The inspiration of Gemini’s chunk-based partitioning
comes from the fact that many large-scale real-world
graphs often possess natural locality, with crawling be-
ing the common way to collect them in the first place.
Adjacent vertices likely to be stored close to each other.
Partitioning the vertex set into contiguous chunks could

effectively preserve such locality. For example, in typical
web graphs the lexicographical URL ordering guarantees
that most of the edges connect two vertices close to each
other (in vertex ID) [7]; in the Facebook friendship net-
work, most of the links are close in geo-locations [52].
When locality happens to be lost in the input, there also
exist effective and affordable methods to “recover” local-
ity from the topological structure [2, 5], bringing the ben-
efit of chunk-based partitioning for potentially repeated
graph processing at a one-time pre-processing cost.

On a p-node cluster, a given global graph G = (V,E)
will be partitioned into p subgraphs Gi = (V ′i ,Ei) (i from
0 to p−1), where V ′i and Ei are the vertex subset and the
edge subset on the ith partition, respectively. To differen-
tiate master vertices from others, we denote Vi to be the
owned vertex subset on the ith partition.

Gemini partitions G using a simple chunk-based
scheme, dividing V into p contiguous vertex chunks
(V0,V1, ...,Vp−1), whose sizes are determined by addi-
tional optimizations discussed later in this section. Fur-
ther, we use ES

i and ED
i to represent the outgoing and

incoming edge set of partition i, used in the sparse and
dense mode respectively. Each chunk (Vi) is assigned to
one cluster node, which owns all vertices in this chunk.
Edges are then assigned by the following rules:

ES
i = {(src,dst,value) ∈ E|dst ∈Vi}

ED
i = {(src,dst,value) ∈ E|src ∈Vi}

where src, dst, and value represent an edge’s source ver-
tex, destination vertex, and edge value, respectively. In
other words, for the ith partition, the outgoing edge set
ES

i contains edges destined to its owned vertices Vi, while
the incoming edge set ED

i contains edges sourced from Vi.

0 1 

2 

3 

4 5 
Node0 Node1 Node2 Example	  Graph 

0 1 

2 

3 5 

2 3 

0 1 

4 5 4 5 

0 2 

3 

V_split	  =	  [2,	  4] 

Figure 5: An example of chunk-based partitioning (dense
mode), where the ID-ordered vertex array is split into
three chunks {0,1},{2,3},{4,5}. Again black and white
vertices denote mirrors and masters respectively.

Figure 5 gives an example of chunk-based partition-
ing, showing the vertex set on three nodes, with their
corresponding dense mode edge sets. Here mirrors are
created for all remote vertices that local masters have
out edges to. These mirrors will “pull” local neighboring
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states to update their remote masters. The sparse mode
edge sets are similar and omitted due to space limit.

With chunk-based partitioning, Gemini achieves scal-
ability with little overhead. The contiguous partitioning
enables effortless vertex affiliation queries, by simply
checking partition boundaries. The contiguous feature
within each chunk also simplifies vertex data represen-
tation: only the owned parts of vertex arrays are actu-
ally touched and allocated in contiguous memory pages
on each node. Therefore, the memory footprint is well
controlled and no vertex ID conversions are needed to
compress the space consumption of vertex states.

As accesses to neighboring states generate random ac-
cesses in both push and pull modes, vertex access locality
is often found to be performance-critical. Chunk-based
partitioning naturally preserves the vertex access locality,
which tends to be lost when random-based distribution is
used. Moreover, random accesses to vertex states all falls
into the owned chunk Vi rather than V or V ′i . Gemini can
then benefit from chunk-based partitioning when the sys-
tem scales out, where random accesses could be handled
more efficiently as the chunk size decreases.

Such lightweight chunk-based partitioning does sacri-
fice balanced edge distribution or minimized cut edge set,
but compensates for such deficiency by (1) low-overhead
scaling out designs, (2) preserved memory access locali-
ties, and (3) additional load balancing and task schedul-
ing optimizations to be presented later in the paper.

4.2 Dual-Mode Edge Representation

0

1

2

3

5

0

1

2

4

nbr =	  [1,	  0,	  1,	  0]
idx =	  [0,	  1,	  1,	  3,	  3,	  4,	  4]

nbr =	  [0,	  0,	  1,	  1]
idx =	  [0,	  0,	  1,	  2,	  3,	  3,	  4]

CSC

Sparse	  Mode Dense	  Mode

CSR

vtx =	  [1,	  2,	  3,	  5]
off	  	  =	  [0,	  1,	  2,	  3,	  4]

ext =	  “101010”

Figure 6: Sample representation of sparse/dense mode
edges using CSR/CSC, with Gemini enhancement high-
lighted

Gemini organizes outgoing edges in the Compressed
Sparse Row (CSR) and incoming ones in the Compressed
Sparse Column (CSC) format. Both are compact sparse
matrix data structures commonly used in graph systems,
facilitating efficient vertex-centric sequential edge ac-
cess. Figure 6 illustrates the graph partition on clus-
ter node 0 from the sample graph in Figure 5 and its
CSR/CSC representation to record edges adjacent to
owned vertices (0 and 1). The index array idx records

each vertex’s edge distribution: for vertex i, idx[i]

and idx[i+1] indicate the beginning and ending offsets
of its outgoing/incoming edges to this particular parti-
tion. The array nbr records the neighbors of these edges
(sources for incoming edges or destinations for outgoing
ones).

Yet, from our experiments and performance analysis,
we find that the basic CSR/CSC format is insufficient.
More specifically, the index array idx can become a scal-
ing bottleneck, as its size remains at O(|V |) while the size
of edge storage is reduced proportionally at O(|E|/p) as
p grows. For example, in Figure 6, the partition has only
4 dense mode edges, but has to traverse the 7-element
(|V |+ 1) idx array, making the processing of adjacent
vertices (rather than edges) the bottleneck in dense mode
computation. A conventional solution to this is to com-
press the vertex ID space. This comes at the cost of con-
verting IDs between global and local states, which adds
other non-negligible overhead to the system.

To resolve the bottleneck in a lightweight fashion, we
use two schemes for enhancing the index array in the two
modes, as described below and illustrated in Figure 6:

• Bitmap Assisted Compressed Sparse Row: for
sparse mode edges, we add an existence bitmap
ext, which marks whether each vertex has outgo-
ing edges in this partition. For example, only ver-
tex 0, 2, and 4 are present, indicated by the bitmap
101010.
• Doubly Compressed Sparse Column: for dense

mode edges, we use a doubly-compression scheme
[9] to store only vertices with incoming edges (vtx)
and their corresponding edge offsets (off, where
(off[i+1]-off[i]) indicates the number of local
incoming edges vertex vtx[i] has). For example,
only vertex 1, 2, 3, and 5 has local incoming edges.

Both schemes reduce memory accesses required in
edge processing. In the dense mode, where all the ver-
tices in a local partition has to be processed, the com-
pressed indices enable Gemini to only access O(|V ′i |)
vertex indices reduced from O(|V |). In the sparse mode,
the bitmap eliminates the lookups into idx of vertices
that do not have outgoing edges in the local partition,
which occurs frequently when the graph is partitioned.

4.3 Locality-Aware Chunking
We now discuss how Gemini actually decides where to
make the p− 1 cuts when creating p contiguous vertex
chunks, using a locality-aware criterion.

Traditionally, graph partitioning pursues even distri-
bution of either the vertices (in vertex-centric scenarios)
or the edges (in edge-centric scenarios) to enhance load
balance.
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While Gemini’s chunk-based partitioning is vertex-
centric, we find that balanced vertex distribution exhibits
poor load balance due to the power-law distribution [15]
of vertex degrees exhibited in most real-world graphs, of-
ten considered a disadvantage of vertex-centric solutions
compared with their edge-centric counterparts [16].

However, with chunk-based partitioning, even bal-
anced edge chunking, with |E|/p edges per partition uni-
formly brings significant load imbalance. Our closer ex-
amination finds that vertex access locality (one of the
performance focal points of Gemini’s chunk-based parti-
tioning) differs significantly across partitions despite bal-
anced edge counts, incurring large variation in |Vi|, the
size of vertex chunks.

While dynamic load balancing techniques [26, 41]
such as workload re-distribution might help, they in-
cur heavy costs and extra complexities that go against
Gemini’s lightweight design. Instead, Gemini employs
a locality-aware enhancement, adopting a hybrid met-
ric that considers both owned vertices and dense mode
edges in setting the balancing criteria. More specifically,
the vertex array V is split in a manner so that each par-
tition has a balanced value of α · |Vi|+ |ED

i |. Here α is
a configurable parameter, set empirically to 8 · (p− 1)
as Gemini’s default configuration in our experiments,
which might be adjusted according to hardware configu-
rations or application/input properties.

The intuition behind such hybrid metric is that one
needs to take into account the computation complexity
from both the vertex and the edge side. Here the size of
the partition, in terms of |Vi| and |ED

i |, not only affects
the amount of work (|ED

i |), but also the memory access
locality (|Vi|). To analyze the joint implication of specific
system, algorithm, and input features on load balancing
and enable adaptive chunk partitioning (e.g., automatic
configuration of α) is among our ongoing investigations.

4.4 NUMA-Aware Sub-Partitioning

An interesting situation with today’s high-performance
cluster is that the scale of intra-node parallelisms could
easily match or exceed that of inter-node levels. For in-
stance, our testbed has 8 nodes, each with 24 cores. Ef-
fectively exploiting both intra- and inter-node hardware
parallelism is crucial to the overall performance of dis-
tributed graph processing.

Most modern servers are built on the NUMA (Non-
Uniform Memory Access) architecture, where memory
is physically distributed on multiple sockets, each typi-
cally containing a multi-core processor with local mem-
ory. Sockets are connected through high-speed intercon-
nects into a global cache-coherent shared-memory sys-
tem. Access to local memory is faster than to remote
memory (attached to other sockets), both in terms of

lower latencies and higher bandwidths [14], making it
appealing to minimize inter-socket accesses.

Gemini’s chunk-based graph partitioning demon-
strates another advantage here, by allowing the system to
recursively apply sub-partitioning in a consistent man-
ner, potentially with different optimizations applicable
at each particular level. Within a node, Gemini applies
NUMA-aware sub-partitioning across multiple sockets:
for each node containing s sockets, the vertex chunk Vi is
further cut into s sub-chunks, one for each socket. Edges
are assigned to corresponding sockets, using the same
rules as in inter-node partitioning (Section 4.1).

NUMA-aware sub-partitioning boosts the perfor-
mance on NUMA machines significantly. It retains the
natural locality present in input vertex arrays, as well as
lightweight partitioning and bookkeeping. With smaller
yet densely processed sub-chunks, both sequential ac-
cesses to edges and random accesses to vertices are likely
to fall into the local memory, facilitating faster memory
access and higher LLC (last level cache) utilization si-
multaneously.

5 Task Scheduling

Like most recent distributed graph processing systems
[3, 11, 12, 16, 17, 23, 26, 32, 41, 43], Gemini follows
the Bulk Synchronous Parallel (BSP) model [53]. In
each iteration of edge processing, Gemini co-schedules
computation and communication tasks in a cyclic ring
order to effectively overlap inter-node communication
with computation. Within a node, Gemini employs a
fine-grained work-stealing scheduler with shared pre-
computed chunk counters to enable dynamic load bal-
ancing at a fine granularity. Below we discuss these two
techniques in more detail.

5.1 Co-Scheduling of Computation and
Communication Tasks

Inspired by the well-optimized implementation of collec-
tive operations in HPC communication libraries, such as
AllGather in MPI, Gemini organizes cluster nodes in a
ring, with which message sending and receiving opera-
tions are coordinated in a balanced cyclic manner, to re-
duce network congestion and maximize aggregate mes-
sage passing throughput. Such orchestrated communica-
tion tasks are further carefully overlapped with computa-
tion tasks, to hide network communication costs.

On a cluster node with c cores, Gemini maintains
an OpenMP pool of c threads for parallel vertex-centric
edge processing, performing the signal and slot tasks.
Each thread is bound to specific sockets to work with
NUMA-aware sub-partitioning. In addition, two helper
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threads per node are created for inter-node message send-
ing/receiving operations via MPI.

Here again thanks to Gemini’s chunk-based partition-
ing and CSR/CSC organization of edges, it can naturally
batch messages destined to the same partition in both
sparse and dense modes for high-performance commu-
nication. Moreover, the batched messages enable us to
schedule the tasks in a simple partition-oriented fashion.
Figure 7 illustrates the co-scheduled ordering of the four
types of tasks, using the dense mode in the first partition
(node0) of the previous figure as an example.

0 1
20

31
51

MiniStep0 MiniStep1 

denseSignal 

sendBatchTo Node1 Node2 Node0 

MiniStep2 

recvBatchFrom Node2 Node1 Node0 

denseSlot MsgFromNode2 MsgFromNode1 MsgFromNode0 

Figure 7: Example of co-scheduled computation and
communication tasks on node0

The iteration is divided into p mini-steps, during each
of which nodei communicate with one peer node, start-
ing from nodei+1 back to itself. In the particular exam-
ple shown in Figure 7, there are three such stages, where
node0 communicates with node1, node2, and node0 re-
spectively. In each mini-step, the node goes through lo-
cal denseSignal processing, message send/receive, and
final local denseSlot processing. For example, here
in the first mini-step, local mirrors of vertices 2 and 3
(owned by node1) pull updates from vertices 0 and 1
(owned by self), creating a batched message ready for
node1, after whose transmission node0 expects a simi-
lar batched message from node2 and processes that in
denseSlot. In the next mini-step, similar update is
pulled by all local mirrors owned by node2 (only ver-
tex 5 in this figure), followed by communication and lo-
cal processing. The process goes on until node0 finally
“communicates” with itself, where it simply pulls from
locally owned neighbors (vertex 1 from 0). As sepa-
rate threads are created to execute the CPU-light message
passing tasks, computation is effectively overlapped with
communication.

5.2 Fine-Grained Work-Stealing

While inter-node load balance is largely ensured through
the locality-aware chunk-based partitioning in Gemini,
the hybrid vertex-edge balancing gets more and more
challenging when the partition goes smaller, from nodes

to sockets, then to cores. With smaller partitions, there
are fewer flexibilities for tuning the α parameter to
achieve inter-core load balance, especially for graphs
with high per-vertex degree variances.

Leveraging shared memory not available to inter-node
load balancing, Gemini employs a fine-grained work-
stealing scheduler for intra-node edge processing. While
the per-socket edge processing work is preliminarily par-
titioned with a locality-aware balanced manner across all
the cores as a starting point, each thread only grabs a
small mini-chunk of vertices to process (signal/slot)
during the OpenMP parallel region. Again, due to our
chunk-based partitioning scheme, this refinement retains
contiguous processing, and promotes efficient cache uti-
lization and message batching. Bookkeeping is also easy,
as it only requires one counter per core to mark the cur-
rent mini-chunk’s starting offset, shared across threads
and accessed through atomic operations. The default
Gemini setting of mini-chunk size is 64 vertices, as used
in our experiments.

Each thread first tries to finish its own per-core parti-
tion, then starts to steal mini-chunks from other threads’
partitions. Compared with finely interleaved mini-chunk
distribution from the beginning, this enhances memory
access by taking advantage of cache prefetching. Also,
this delays contention involved in atomic additions on
the shared per-core counters to the epilogue of the whole
computation. At that point, the cost is clearly offset by
improved inter-core load balance.

Vi
cluster

p partitions

V

Vij
per-‐node

S sub-‐partitions

per-‐socket
C	  per-‐core-‐partitions

V’ijk

per-‐core
(|V’ijk|/64)	   mini-‐chunks

V’ij

Data	  Partitioning

Work	  Partitioning

Figure 8: Hierarchical view of Gemini’s chunking

Finally, we summarize Gemini’s multi-level chunk-
based partitioning in Figure 8, all the way from node-
level, to socket-level, core-level, and finally to the mini-
chunk granularity for inter-core work stealing. The illus-
tration depicts the partitioning scenario in our actual test
cluster with 8 nodes, 2 sockets per node, 12 cores per
socket, and 64 vertices per mini-chunk. As shown here,
such simple chunk-based partitioning can be refined in
a hierarchical way, retaining access locality in edge pro-
cessing continuously.
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6 Implementation

Gemini is implemented in around 2,800 lines of C++
code, using MPI for inter-process communication and
libnuma for NUMA-aware memory allocation. Below
we discuss selected implementation details.
Graph Loading: When Gemini loads a graph from in-
put file, each node reads its assigned contiguous portion
in parallel. Edges are loaded sequentially into an edge
buffer in batches, where they undergo an initial pass.
Compared to common practice in existing systems, this
reduces the memory consumption of the loading phase
significantly, making it possible to load graphs whose
scales approach the aggregate memory capacity of the
whole cluster. For symmetric graphs, Gemini only stores
the graph topology data of one mode, as sparse mode
edges in this case are equivalent to the dense mode ones.
Graph Partitioning: When loading edges, each node
calculates the local degree of each vertex. Next, an
AllReduce operation collects such degree information
for chunking the vertex set as discussed in Section 4.
Each node can then determine the cuts locally without
communication. Edges are then re-loaded from file and
distributed to target nodes accordingly for constructing
local subgraphs.
Memory Allocation: All nodes share the the node-level
partitioning boundaries for inter-node message passing,
while the socket-level sub-partition information is kept
node-private. Each node allocates entire vertex arrays
in shared memory. However, Gemini only touches data
within its own vertex chunk, splitting the per-node ver-
tex partition and placing the sub-chunks on correspond-
ing sockets. The sub-partitioned graph topology datasets,
namely edges and vertex indices, also adopts NUMA-
aware allocation to promote localized memory accesses.
Mode Selection: Gemini follows Ligra’s mode switch-
ing mechanism. For each ProcessEdges operation,
Gemini first invokes an internal operation (defined via its
ProcessVertices interface) to get the number of active
edges, then determines the mode to use for the coming
interation of processing.
Parallel Processing: When the program initializes,
Gemini pins each OpenMP thread to specific sockets
to prevent thread migration. For work-stealing, each
thread maintains its status (WORKING or STEALING), cur-
rent mini-chunk’s start offset, and the pre-computed end
offset, which are accessible to other threads and allocated
in a NUMA-aware aligned manner to avoid false-sharing
and unnecessary remote memory accesses (which should
only happen in stealing stages). Each thread starts work-
ing from its own partition, changes the status when fin-
ished, and tries to steal work from threads with higher
ranks in a cyclic manner. Concurrency control is via
OpenMP’s implicit synchronization mechanisms.

Message Passing: Gemini runs one process on each
node, using MPI for inter-node message passing. At
the inter-socket level, each socket produces/consumes
messages through per-socket send and receive buffers in
shared memory to avoid extra memory copies and per-
form NUMA-aware message batching.

7 Evaluation

We evaluate Gemini on the 8-node cluster, whose specifi-
cations are given in Section 2, running CentOS 7.2.1511.
Intel ICPC 16.0.1 is used for compilation.

The graph datasets used for evaluation are shown in
Table 2. Our evaluation uses five representative graph
analytics applications: PageRank (PR), connected com-
ponents (CC1), single source shortest paths (SSSP2),
breadth first search (BFS), and betweenness centrality
(BC). For comparison, we also evaluated state-of-the-art
distributed graph processing systems, including Power-
Graph (v2.2), GraphX (v2.0.0), and PowerLyra (v1.0),
as well as shared-memory Ligra (20160826) and Galois
(v2.2.1). For each system, we make our best effort to
optimize the performance on every graph by carefully
tuning the parameters, such as the partitioning method,
the number of partitions, JVM options (for GraphX), the
used algorithm (for Galois), etc. To get stable perfor-
mance, we run PR for 20 iterations, and run CC, SSSP,
BFS, and BC till convergence. The execution time is re-
ported as elapsed time for executing the above graph al-
gorithms (average of 5 runs) and does not include loading
or partitioning time.

Graph |V| |E|
enwiki-2013 4,206,785 101,355,853
twitter-2010 41,652,230 1,468,365,182
uk-2007-05 105,896,555 3,738,733,648
weibo-2013 72,393,453 6,431,150,494
clueweb-12 978,408,098 42,574,107,469

Table 2: Graph datasets [5, 6, 7, 20] used in evaluation.

7.1 Overall Performance
As Gemini aims to provide scalability on top of effi-
ciency, to understand the introduced overhead, we first
take a zoom-in view of its single-node performance,
using the five applications running on the twitter-2010
graph. Here, instead of using distributed graph-parallel
systems, we compare Gemini with two state-of-the-art
shared-memory systems, Ligra and Galois, which we
have verified to have superior performance compared

1Gemini makes the input graphs undirected when computing CC.
2A random weight between 0 and 100 is assigned to each edge.
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with single-node executions of all the aforementioned
distributed systems.

Application Ligra Galois Gemini
PR 21.2 19.3 12.7
CC 6.51 3.59* 4.93

SSSP 2.81 3.33 3.29
BFS 0.347 0.528 0.468
BC 2.45 3.94* 1.88

Table 3: 1-node runtime (in seconds) on input graph
twitter-2010. The best times are marked in bold. “*” in-
dicates where different algorithm is adopted (i.e. union-
find for CC and asynchronous for BC).

Table 3 presents the performance of evaluated sys-
tems. Though with communication complexity designed
for distributed execution, Gemini outperforms Ligra and
Galois for PR and BC, and ranks the second for CC,
SSSP, and BFS. With the use of NUMA-aware sub-
partitioning, Gemini benefits from faster memory access
and higher LLC utilization in edge processing, thanks
to significantly reduced visits to remote memory. Un-
like the NUMA-oblivious access patterns of Ligra and
Galois, Gemini’s threads only visit remote memory for
work-stealing and message-passing.

Meanwhile, the distributed design inevitably brings
additional overhead. The messaging abstraction (i.e.,
batched messages produced by signals and consumed by
slots) introduces extra memory accesses. This creates
a major performance constraint for less computation-
intensive applications like BFS, where the algorithm
does little computation while the numbers of both vis-
ited edges and generated messages are in the order of
O(Σ|Vi|).3 In contrast, most other applications access all
adjacent edges of each active vertex, creating edge pro-
cessing cost proportional to the number of active edges
and sufficient to mask the message generation overhead.

Also, vertex state propagation in shared-memory sys-
tems employs direct access to the latest vertex states,
while Gemini’s BSP-based communication mechanism
can only fetch the neighboring states through message
passing in a super-step granularity. Therefore, its vertex
state propagation lags behind that of shared-memory sys-
tems, forcing Gemini to run more iterations than Ligra
and Galois for label-propagation-style applications like
CC and SSSP.

Overall, with a relatively low cost paid to support
distributed execution, Gemini can process much larger
graphs by scaling out to more nodes and to work quite
efficiently on single-node multi-core machines, allowing
it to handle diverse application-platform combinations.

3In BFS’s dense mode, edge processing at a vertex completes as
soon as it successfully “pulls” from any of its neighbors [4].

Graph PowerG.GraphX PowerL. Gemini Speedup
(×times)

PR
enwiki-2013 9.05 30.4 7.27 0.484 15.0
twitter-2010 40.3 216 26.9 3.02 8.91
uk-2007-05 64.9 416 58.9 1.48 39.8
weibo-2013 117 - 100 8.86 11.3
clueweb-12 - - - 31.1 n/a

CC
enwiki-2013 4.61 16.5 5.02 0.237 19.5
twitter-2010 29.1 104 22.0 1.22 18.0
uk-2007-05 72.1 - 63.4 1.76 36.0
weibo-2013 56.5 - 58.6 2.62 21.6
clueweb-12 - - - 25.7 n/a

SSSP
enwiki-2013 16.5 151 17.1 0.514 32.1
twitter-2010 12.5 108 10.8 1.15 9.39
uk-2007-05 117 - 143 3.45 33.9
weibo-2013 63.2 - 60.6 4.24 14.3
clueweb-12 - - - 56.9 n/a
GEOMEAN 19.1

Table 4: 8-node runtime (in seconds) and improvement
of Gemini over the best of other systems. “-” indicates
failed execution.

Table 4 reports the 8-node performance of Power-
Graph, GraphX, PowerLyra, and Gemini, running PR,
CC, and SSSP on all the tested graphs (BFS and BC re-
sults are omitted as their implementations are absent in
other evaluated systems). The results show that Gemini
outperforms the fastest of other systems in all cases sig-
nificantly (19.1× on average), with up to 39.8× for PR
on the uk-2007-05 graph. For the clueweb-12 graph with
more than 42 billion edges, Gemini is able to complete
PR, CC, and SSSP in 31.1, 25.7, and 56.9 seconds re-
spectively on the 8-node cluster while all other systems
fail to finish due to excessive memory consumption.

Graph Raw PowerGraph Gemini
enwiki-2013 0.755 13.1 4.02
twitter-2010 10.9 138 32.1
uk-2007-05 27.8 322 73.1
weibo-2013 47.9 561 97.5
clueweb-12 318 - 597

Table 5: Peak 8-node memory consumption (in GB). “-”
indicates incompletion due to running out of memory.

The performance gain mostly comes from the largely
reduced distributed overhead. Table 5 compares the
memory consumption of PowerGraph and Gemini. The
raw graph size (with each edge in two 32-bit integers) is
also presented for reference. PowerGraph needs mem-
ory more than 10× the raw size of a graph to process
it. The larger memory footprint brings more instructions
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and memory accesses, and lowers the cache efficiency.
In contrast, while Gemini needs to store two copies

of edges (in CSR and CSC respectively) due to its dual-
mode propagation, the actual memory required is well
controlled. Especially, the relative space overhead de-
creases for larger graphs (e.g., within 2× of the raw size
for clueweb-12). Gemini’s abstraction (chunk-based par-
titioning scheme, plus the sparse-dense signal-slot pro-
cessing model) adds very little overhead to the overall
system and preserves (or enhances when more nodes
are used) access locality present in the original graph.
The co-scheduling mechanism hides the communication
cost effectively under the high-speed Infiniband network.
Locality-aware chunking and fine-grained work-stealing
further improves inter-node and intra-node load balance.
These optimizations together enable Gemini to provide
scalability on top of efficiency.

7.2 Scalability
Next, we examine the scalability of Gemini, starting
from intra-node evaluation using 1 to 24 cores to run
PR on the twitter-2010 graph (Figure 9). Overall the
scalability is quite decent, achieving speedup of 1.9, 3.7,
and 6.8 at 2, 4, and 8 cores, respectively. As expected,
as more cores are used, inter-core load balancing be-
comes more challenging, synchronization cost becomes
more visible, and memory bandwidth/LLC contention
becomes intensified. Still, Gemini is able to achieve a
speedup of 9.4 at 12 cores and 15.5 at 24 cores.
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Figure 9: Intra-node scalability (PR on twitter-2010)

To further evaluate Gemini’s computation efficiency,
we compare it with the optimized single-thread imple-
mentation (which sorts edges in a Hilbert curve or-
der [33]), shown as the dashed horizontal line in Fig-
ure 9. Using the COST metric (i.e. how many cores a
parallel/distributed solution needs to outperform the op-
timized single-thread implementation), Gemini’s number
is 3, which is lower than those of other systems mea-
sured [33], though Gemini’s 2-core execution time is
only 3.1% higher than the optimized single-thread im-
plementation. Considering Gemini’s distributed nature, a

COST close to 2 illustrates its optimized computation ef-
ficiency and lightweight distributed execution overhead.

Figure 10 shows the inter-node scalability results,
comparing Gemini with PowerLyra, which we found to
have the best performance and scalability for our test
cases among existing open-source systems. Due to its
higher memory consumption, PowerLyra is not able to
complete in several test cases, as indicated by the missing
data points. All results are normalized to Gemini’s best
execution time of the test case in question. It shows that
though focused on computation optimization, Gemini is
able to deliver inter-node scalability very similar to that
by PowerLyra, approaching linear speedup with large
graphs (weibo-2013). With the smallest graph (enwiki-
2013), as expected, the scalability is poor for both sys-
tems as communication time dominates the execution.

For twitter-2010, Gemini has poor scaling after 4
nodes, mainly due to the emerging bottleneck from ver-
tex indices access and message production/consumption.
This is confirmed by the change of subgraph dimensions
shown in Table 6: when more nodes are used, both |Ei|
and |Vi| scales down perfectly, reducing edge process-
ing cost. The vertex set including mirrors, V ′i , however,
does not shrink accordingly, making its processing cost
increasingly significant.

p · s TPR (s) Σ|Vi|/(p · s) Σ|Ei|/(p · s) Σ|V ′i |/(p · s)
1 ·2 12.7 20.8M 734M 27.6M
2 ·2 7.01 10.4M 367M 19.6M
4 ·2 3.88 5.21M 184M 13.5M
8 ·2 3.02 2.60M 91.8M 10.5M

Table 6: Subgraph sizes with growing cluster size

7.3 Design Choices
Below we evaluate the performance impact of several
major design choices in Gemini. Though it is tempting to
find out the relative significance among these optimiza-
tions themselves, we have found it hard to compare the
contribution of individual techniques, as they often assist
each other (such as chunk-based partitioning and intra-
node work-stealing). In addition, when we incrementally
add these optimizations to a baseline system, the appar-
ent gains measured highly depend on the order used in
such compounding. Therefore we present and discuss
the advantages of individual design decisions, where re-
sults do not indicate their relative strength.

7.3.1 Adaptive Sparse-Dense Dual Mode

Adaptive switching between sparse and dense modes ac-
cording to the density of active edges improves the per-
formance of Gemini significantly. We propose an exper-
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Figure 10: Inter-node scalability of PowerLyra and Gemini
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Figure 11: Gemini’s per-iteration runtime in sparse and dense modes (uk-2007-05). Red regions indicate iterations
where Gemini’s adaptive engine chooses sub-optimal modes.

iment by forcing Gemini to run under the two modes for
each iteration respectively to illustrate the necessities of
the dual mode abstraction.

As shown in Figure 11, the performance gap between
sparse and dense modes is quite significant, for all three
applications. For PR, the dense mode consistently out-
performs the sparse one. For CC, the dense mode per-
forms better at the first few iterations when most of the
vertices remain active, while the sparse mode is more ef-
fective when more vertices reach convergence. For SSSP,
the sparse mode outperforms the dense mode in most it-
erations, except in a stretch of iterations where many ver-
tices get updated. Gemini is able to adopt the better mode
in most iterations, except 2 out of 76 for CC and 5 out
of 172 iterations for SSSP. These “mis-predictions” are
slightly sub-optimal as they happen, as expected, around
the intersection of the two modes’ performance curves.

7.3.2 Chunk-Based Partitioning

Next, we examine the effectiveness of Gemini’s chunk-
based partitioning through an experiment comparing it
against hash-based partitioning4.

Figure 12 exhibits the performance of Gemini using
these two partitioning methods on twitter-2010 and uk-

4We integrate the hash-based scheme (assigning vertex x to parti-
tion x%p) into Gemini by re-ordering vertices according to the hashing
result before chunking them.
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Figure 12: Hash- vs. chunk-based partitioning (PR on
twitter-2010 and uk-2007-05)

2007-05, sampled to represent social and web graphs,
respectively. Gemini’s chunk-based partitioning outper-
forms the hash-based solution for both graphs. The per-
formance improvement is especially significant for the
web graph uk-2007-05, with more than 5.44× speedup.
The reason behind is the locality-preserving property of
chunk-based partitioning. Hash-based partitioning, in
contrast, loses the natural locality in the original graph.
As a result, hash-based partitioning produces not only
higher LLC miss rates, but also a large number of mirrors
in each partition, higher communication costs, and more
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memory references, for master-mirror message passing
and vertex index accesses.

R
a
n
d
o
m

G
ri

d

O
b
liv

io
u
s

H
D

R
F

H
y
b
ri

d

G
in

g
e
r

C
h
u
n
k0

50

100

150

200

250

300

T
im

e
 (

s)

Preprocessing

Execution

Figure 13: Preprocessing/execution time (PR on twitter-
2010) with different partitioning schemes

Figure 13 shows the preprocessing time (loading plus
partitioning) of different partitioning methods [12, 16,
24, 39] used by PowerGraph, PowerLyra, and Gemini on
twitter-2010, with PR execution time given as reference.
While it appears that preprocessing takes much longer
than the algorithm execution itself, such preprocessing
only poses a one-time cost, while the partitioned graph
data can be re-used repeatedly by different applications
or with different parameters.

NUMA-aware sub-partitioning plays another impor-
tant role, as demonstrated by Figure 14 comparing sam-
ple Gemini performance with and without it. Without
socket-level sub-partitioning, interleaved memory allo-
cation leaves all accesses to the graph topology, vertex
states, and message buffers distributed across both sock-
ets. With socket-level sub-partitioning applied, instead,
remote memory accesses are significantly trimmed, as
they only happen when stealing work from or accessing
messages produced by other sockets. The LLC miss rate
and average memory access latency also decrease thanks
to having per-socket vertex chunks.

7.3.3 Enhanced Vertex Index Representation

Table 7 presents the improvement brought by using
bitmap assisted compressed sparse row and doubly com-
pressed sparse column, with three applications on two
input graphs. Compared with the original CSR/CSC for-
mats, these enhanced data structures reduces memory
consumption by 19-24%. They also eliminate many un-
necessary memory accesses, bringing additional perfor-
mance gain.

7.3.4 Load Balancing

Next, Table 8 portraits the benefit of Gemini’s locality-
aware chunking, by giving the number of owned vertices
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Figure 14: Impact of socket-level sub-partitioning (PR
on twitter-2010 and uk-2007-05)

Graph twitter-2010 uk-2007-05
Mem. Reduction 19.4% 24.3%

Speedup
PR 1.25 2.76
CC 1.11 1.30

SSSP 1.14 1.98

Table 7: Impact of enhanced vertex index representation

and dense mode edges in the most time-consuming par-
tition. Compared with alternatives that aim at balancing
vertex or edge counts, Gemini improves load balance by
considering both vertex access locality and number of
edges to be processed.

Balanced By Runtime (s) |Vi| |ED
i |

|Vi| 5.51 5.21M 957M
|ED

i | 3.95 18.1M 183M
α · |Vi|+ |ED

i | 3.02 0.926M 423M

Table 8: Impact of locality-aware chunking (PR on
twitter-2010)

Finally, we evaluate the effect of Gemini’s fine-
grained work-stealing by measuring the improvement by
three intra-node load balancing strategies. More specif-
ically, we report the relative speedup of (1) static, pre-
balanced per-core work partitions using our locality-
aware chunking, (2) work-oblivious stealing, and (3) the
integration of both (as adopted in Gemini), over the base-
line using static scheduling. Table 9 lists the results.
As expected, static core-level work partitioning is not
enough to ensure effective multi-core utilization. Yet,
pre-computed per-core work partitions do provide a good
starting point when working jointly with work stealing.
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Strategy twitter-2010 uk-2007-05
Balanced partition 1.25 1.66

Stealing 1.55 1.93
Balanced partition + stealing 1.66 2.18

Table 9: PR speedup (over static scheduling) with differ-
ent intra-node load balancing strategies

8 Related Work

We have discussed and evaluated several most closely
related graph-parallel systems earlier in the paper. Here
we give a brief summary of related categories of prior
work.

A large number of graph-parallel systems [3, 10, 11,
12, 16, 17, 21, 22, 23, 26, 29, 30, 32, 36, 41, 42, 43, 44,
47, 49, 55, 56, 57, 59, 60] have been proposed for effi-
cient processing of graphs with increasing scales. Gem-
ini is inspired by prior systems in various aspects, but dif-
fers from them by taking a holistic view on system design
toward single-node efficiency and multi-node scalability.
Push vs. Pull: Existing distributed graph processing sys-
tems either adopt a push-style [3, 26, 32, 43, 44] or a
pull-style [11, 12, 16, 17, 23, 30] model, or provide both
while used separately [13, 19, 22]. Recognizing the im-
portance of a model that adaptively combines push and
pull operators as shown by shared-memory approaches
[4, 36, 47, 57], Gemini extends the hybrid push-pull
model from shared-memory to distributed-memory set-
tings through a signal-slot abstraction to decouple com-
munication from computation, which is novel in the con-
text of distributed graph processing.
Data Distribution: Traditional literature in graph parti-
tioning [8, 12, 16, 24, 25, 30, 32, 39, 48] puts the main fo-
cus on reducing communication cost and load imbalance,
without enough attention on the introduced overhead to
distributed graph processing. Inspired by the implemen-
tation of several single-node graph processing systems
[29, 42, 49, 57, 60], Gemini adopts a chunk-based parti-
tioning scheme that enables a low-overhead scaling out
design. When applying the chunking method in a dis-
tributed fashion, we address new challenges, including
the sparsity in vertex indices, inter-node load imbalance,
and intra-node NUMA issues, with further optimizations
to accelerate computation.
Communication and Coordination: GraM [55] de-
signs an efficient RDMA-based communication stack to
overlap communication and computation for scalability.
Gemini achieves similar goals by co-scheduling compu-
tation and communication tasks in a partition-oriented
ring order, which is inspired by the implementation of
collective operations in MPI [51], and can work effec-
tively without the help of RDMA. PGX.D [22] high-
lights the importance of intra-node load balance to per-

formance and proposes an edge chunking method. Gem-
ini extends the idea by integrating chunk-based core-
level work partitioning into a fine-grained work-stealing
scheduler, which allows it to achieve better multi-core
utilization.

There also exist many systems that focus on query pro-
cessing [40, 46, 54], temporal analytics [13, 19, 27, 31],
machine learning and data mining [50, 58], or more gen-
eral tasks [34, 35, 45] on large-scale graphs. It would be
interesting to explore how Gemini’s computation-centric
design could be applied to these systems.

9 Conclusion

In this work, we investigated computation-centric dis-
tributed graph processing, re-designing critical system
components such as graph partitioning, graph represen-
tation and update propagation, task/message scheduling,
and multi-level load balancing surrounding the theme
of improving computation efficiency on modern multi-
core cluster nodes. Our development and evaluation re-
veal that (1) effective system resource utilization relies
on building low-overhead distributed designs upon opti-
mized single-node computation efficiency, and (2) low-
cost chunk-based partitioning preserving data locality
across multiple levels of parallelism performs surpris-
ingly well, and opens up many opportunities for subse-
quent optimizations throughout the system.

Meanwhile, through the evaluation of Gemini and
other open-source graph processing systems, we have
noticed that performance, scalability, and the location of
bottleneck are highly dependent on the complex inter-
action between algorithms, input graphs, and underlying
systems. Relative performance results comparing multi-
ple alternative systems reported in papers (including this
one) sometimes cannot be replicated with different plat-
form configurations or input graphs. This also highlights
the need of adaptive systems that customizes its deci-
sions based on dynamic application, data, and platform
behaviors.
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