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ABSTRACT
Concurrency bugs, particularly data races, are notoriously diffi-
cult to debug and are a significant source of unreliability in mul-
tithreaded applications. Many tools to catch data races rely on pro-
gram instrumentation to obtain memory instruction traces. Unfor-
tunately, this instrumentation introduces significant runtime over-
head, is extremely invasive, or has a limited domain of applicability
making these tools unsuitable for many production systems. Con-
sequently, these tools are typically used during application testing
where many data races go undetected.

This paper proposes RACEZ, a novel race detection mechanism
which uses a sampled memory trace collected by the hardware
performance monitoring unit rather than invasive instrumentation.
The approach introduces only a modest overhead making it us-
able in production environments. We validate RACEZ using two
open source server applications and the PARSEC benchmarks. Our
experiments show that RACEZ catches a set of known bugs with
reasonable probability while introducing only 2.8% runtime slow
down on average.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Reliability, Design, Performance

Keywords
Data races, performance monitoring unit, sampling, probability anal-
ysis

1. INTRODUCTION

1.1 Motivation
The dominance of multi-core processors has made concurrent

programming essential to achieve peak performance from mod-
ern systems. Unfortunately, parallel programming is considerably
more difficult than its sequential counterpart. In addition to all the
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bugs common to sequential code, one must also contend with con-
currency bugs [12] such as data races, atomicity violations, dead-
lock, and livelock. Among concurrency bugs, data races are often
serious and extremely difficult to debug. For example, a race con-
dition was partially responsible for the black out in the northeastern
part of the United States, described as the “worst outage in North
American history” [23].

A data race occurs when multiple threads concurrently access
the same location without proper synchronization, and at least one
of the accesses is a write. Data races are difficult to diagnose for
two primary reasons. First they often manifest only under certain,
potentially very rare, thread interleavings. This makes data race
bugs difficult to reproduce. Second, the actual data race typically
only corrupts data. User visible effects, such as program crashes or
corrupted output, may occur much later which makes it difficult to
isolate where in the code the race actually occurred.

Because data races are serious bugs that are notoriously difficult
to find, the literature is replete with approaches to automatically
detect data races. These approaches can broadly be classified into
two categories: static race detection and dynamic race detection.

While static analyses have made great strides, currently, main-
stream practical race detection tools use the dynamic approach [22,
17, 19, 10]. These tools monitor a program at runtime and check
to see if any data race has (or could have) occurred. To enable
this checking, synchronization operations and memory accesses
in the program are instrumented, and the race detection tool ana-
lyzes the streams of synchronizations and accesses. Although these
dynamic tools can detect many data races, they typically suffer
from significant instrumentation overhead. For example, the Intel
Thread Checker reported an average 100–200x slow down [21], and
a new valgrind based tool ThreadSanitizer, which is widely used at
Google [25], has a 30–40x slow down. Even recent proposals such
as FastTrack [10] still incur an average 8.5x slow down.

The significant overhead of these tools makes them unusable in
production environments. Instead, developers test for concurrency
bugs during their pre-deployment testing, or to triage bugs after
they have been observed in the field. In addition to using tools ex-
plicitly designed to find the root cause of data races, developers also
use program testing methods designed to increase the probability
that bugs are triggered [13, 18, 15, 6]. However, some concurrency
bugs still escape testing and remain in the production code. Pre-
deployment testing does not catch all data races for three primary
reasons:

1. Lack of representative testing input. In order to expose all
bugs during testing, developers must construct representative
testing input to cover all the code in the program. This has
been proven to be very challenging.

2. Incomplete modeling of the runtime environment. The test-
ing environment is often very different from the real pro-
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duction environment (e.g., operating system kernel version,
thread library version). This poses a serious challenge for
concurrency bugs since differences in environment can af-
fect the likelihood of various thread interleavings.

3. Insufficient testing time. Data races often manifest infre-
quently. Even with approaches to boost the probability of
occurrence, data races will often not manifest during test-
ing and will occur only infrequently in production leading to
mysterious program crashes or data corruption.

Sampling has emerged as a promising technique to overcome
these challenges. Sampling can dramatically lower overhead, and
therefore allows the race detection tool to be run in production. Re-
cent work [14, 5] has shown that monitoring only a small fraction
of the memory accesses from a program is sufficient for capturing
many race conditions. This approach can lower overhead as low as
28%. Unfortunately, even this overhead is still too high for many
production systems.

Additionally, the approaches are invasive or have limited appli-
cability. For example, to sample memory accesses LiteRace clones
every function, one of which is instrumented, leading to a 2x in-
crease in code size. At the entrance to each function, checks are
inserted to decide whether to execute the instrumented or unin-
strumented versions. This code growth can have significant per-
formance ramifications due to instruction cache, instruction TLB,
and branch prediction affects. Another recent sampling approach,
Pacer, avoids the code growth by relying on a JIT compiler to insert
instrumentation. Unfortunately, while JIT compilation works well
for managed languages such as Java, it is inapplicable to unman-
aged (e.g., C/C++) code.

Further, users may be hesitant to deploy LiteRace or Pacer pro-
tected code due to the invasive instrumentation that could create
pathological performance issues observed only in production, lead
to unforeseen program crashes, or obscure the root cause of other
bugs observed in the field.

1.2 Our Contribution
In this paper, we propose a dynamic data race detection method

that samples memory accesses using the hardware performance
monitoring unit (PMU) rather than relying on instrumentation of
memory instructions. Our approach is based on the observation
that memory accesses occur much more frequently than synchro-
nization operations. Consequently, instrumenting memory accesses
is far more invasive and results in much higher overhead than in-
strumenting only synchronization primitives. Fortunately, modern
hardware PMUs can sample memory accesses with very low over-
head.

Unfortunately, using the PMU for race detection is not a panacea.
The PMU was originally designed for performance monitoring.
Consequently, the following artifacts in its behavior must be over-
come to enable race detection:

1. Precise PMU signal delivery Traditional race detection tools
instrument both the synchronization and memory operations
in user-level code. As shown in Figure 1, when using the
PMU to sample memory accesses, the synchronization data
comes from user-level instrumentation, while the memory
access data comes from hardware, through the kernel, to user-
level code via a signal. In the figure, if the memory operation
W1 is sampled by the PMU, we would like the signal to be
delivered to thread 1 before the unlock (edge 1 in the figure).
This guarantees the tool knows the correct lock context in
which the memory was accessed. However, the signal may
be delivered at the points indicated by edges 2 and 3 due to
various OS and PMU issues.

2. Distributed and biased samples from the PMU All sam-
pling approaches will only collect data for part of a pro-
gram’s execution. As shown in Figure 2(a), previous sam-
pling approaches to race detection such as LiteRace[14] and
Pacer[5] collect data from a contiguous sequence of instruc-
tions on each sample. However, as shown in Figure 2(b), the
PMU collects data for only one instruction in each sample.
This means that races must be detected by synthesizing infor-
mation from temporally distant instructions in the program.
Additionally, due to bias in PMU sampling, certain instruc-
tions (even memory instructions) may never be sampled [7].

T1 T2

Lock

Unlock
PMU signal

W1

R1

W2

R2

1
3

2

Figure 1: Challenges in precise signal delivery from the PMU.
Edge 1 is the desired signal delivery, however, in practice edges
2 and 3 are possible.

(a) (b)

Figure 2: Different sampling mechanisms.

To address the first challenge, we propose both a combination of
kernel enhancements and hardware and software solutions to guar-
antee that the sample of memory operations can be correlated back
to the trace of synchronization operations. We address the second
challenge using several strategies. First, by computing a program
slice originating at each sampled instruction, we extend each in-
struction sample into effectively many. Not only does this allow us
to reduce our sampling rate, it also provides coverage to instruc-
tions that may not be sampled due to PMU artifacts. Second, we
rely on the lockset race detection algorithm which does not depend
on bursts of memory operation data for race detection. Finally, we
observe that if the tool’s overhead is sufficiently low, it can be run
in production. Consequently, in the context of data center applica-
tions, we need not catch race conditions with very high probabil-
ity. Since each application is running on many machines, over very
long periods of time, even a small probability of catching the race
on one particular invocation of the application is acceptable since
it is sufficient to catch the race on any one of the many machines
running the application.

We refer to our implementation of these techniques as RACEZ.
We evaluate RACEZ with two open source server applications and
one standalone parallel benchmarks suite. For the two server ap-
plications, given a set of known data races bugs, using a modest
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Figure 3: Overview of RACEZ architecture

sampling rate, RACEZ can successfully catch all of them with rea-
sonable probability. At the same sampling rate, RACEZ only incurs
a 2.8% slow down on average.

The main contributions of this paper include:
1. RACEZ, a lockset based race detection tool which uses the

PMU, rather than instrumentation, to sample program mem-
ory accesses. Besides very low overhead with sampling, the
most important merit of RACEZ is that it is non-invasive and
requires minimum modification to the original applications.
To the best of our knowledge, this is the first tool that uses
existing PMU hardware to do race detection.

2. We develop several techniques to overcome the fundamental
problems when using the PMU race detection.

3. We provide a theoretical analysis and detailed experimen-
tal evaluation to prove the effectiveness and efficiency of
RACEZ

The rest of part of this paper is organized as follows. Section 2
gives the system overview of RACEZ. Section 3 describes the de-
sign and implementation of RACEZ. We give a simple mathemati-
cal analysis for the probability of catching data races and introduce
our main optimization techniques in Section 4. Our experimental
results are reported in Section 5. We discuss our limitations in Sec-
tion 6 and briefly describe the related work in Section 7. Finally,
we conclude in Section 8.

2. SYSTEM OVERVIEW
All data race detection tools require traces containing synchro-

nization operations and memory references. Traditional race detec-
tion methods instrument both and apply race detection algorithms
for online or postmortem analysis. As illustrated in Figure 4b, tra-
ditional methods instrument the lock and unlock operations, as well
as the two memory operations(read,write). RACEZ also instruments
the lock/unlock operations. However, it uses a different approach
to obtain the trace of memory addresses. Instead of instrumenting
each memory access, addresses are obtained from PMU samples.
As shown in Figure 4c, RACEZ only instruments the two lock re-
lated functions and reads the memory addresses from the PMU.

Before providing an in-depth discussion in the following sec-
tions, we briefly introduce how RACEZ combines these two pieces
of information to detect data races. Our architecture is shown in
Figure 3. RACEZ uses self-monitoring to collect PMU samples
from the server application; i.e., RACEZ runs as a component of the
target application and resides in the same address space. With mon-
itoring enabled, the thread library redirects synchronization calls
to wrapper functions which update lockset information for each
thread. A separate signal handler retrieves memory address infor-
mation whenever an instruction of that thread is sampled by the
PMU. The hardware PMU is accessed through a kernel system call

interface. For each sample, the PMU generates processor interrupts
which the kernel eventually transforms into an asynchronous signal
delivered to the user application.

Depending on the processor family, there are different ways of
sampling memory accesses with the PMU. In this paper, for sim-
plicity, we only discuss the Intel implementation. We briefly dis-
cuss other PMU implementations in Section 3.5. Using precise
event based sampling (PEBS), the Intel PMU can record the reg-
ister state of the processor with each sample. However, it is not
possible to sample only memory accesses. Therefore we use an
offline phase to identify relevant samples and detect races using a
standard lockset algorithm[22].

For the code in Figure 4c, when the Write operation is sampled
by the PMU, the signal handler in T1 records the current register
values together with the currently held lockset {L} to the log file. If
a Read operation of the same shared variable with a disjoint lockset
is sampled by the PMU in another thread, RACEZ’s offline analysis
tool will report a warning for these two memory references.

3. MONITORING AND ANALYSIS
RACEZ has two major parts: runtime monitoring and offline

analysis. This section first discusses the runtime component and
concludes by describing the offline analysis..

3.1 Definitions
We first provide some definitions for the information we want to

collect.
DEFINITION 1 (EVENT AND EVENT TYPE). An event is an

operation that should be recorded for race detection. Currently
we support three types of events: Lock/Unlock operations, memory
references, and memory allocation/deallocation events.

DEFINITION 2 (LOCKSET). A lockset denotes the set of locks
that a thread holds at a particular point during the program’s exe-
cution.

With these two definitions, the simplest lockset based algorithm
only needs to track memory reference and lock/unlock events. How-
ever, this algorithm could report false positives due to two logical
variables sharing the same virtual address. In RACEZ, we improve
this simple algorithm by additionally tracking memory allocation
events to help filter out these false positives. Figure 5 shows the
format of the information logged by RACEZ.

3.2 Thread Library Instrumentation
To track lock/unlock events, RACEZ relies on instrumented syn-

chronization functions in the threading library. Each thread main-
tains its lockset in thread local storage and updates these sets for
each lock/unlock event.

To enable PMU self-monitoring, each thread must request the
operating system to enable the PMU when the thread is running.
RACEZ relies on instrumentation in the threading library’s thread
creation routines to perform the PMU setup. If the threading library
supports a mechanism to traverse all live threads while a program
is running, RACEZ can also be enabled on an already running ap-
plication by traversing all threads and having each do the necessary
PMU setup.

3.3 PMU Context Manipulation
The PMU is managed by the kernel and is accessible to user ap-

plication via a system call interface. A PMU session, or context, is
identified by a file descriptor, and it is used throughout the session
to configure and read data from the PMU. A typical sampling PMU
session consists of five phases:
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1 T1:

2 Lock(L)

3 ..........

4 Write X

5 ..........

6 Unlock(L)

7 .........

8 T2:

9 ..........

10 Read X

11 ..........

(a) A program with a race

T1:
//Instrument lock operation
Lock(L)

..........
//Instrument Memory operation
Write X

..........

Unlock(L)
//Instrument unlock operation
T2:

..........
//Instrument Memory operation
Read X

..........

(b) Traditional method

T1:
//Instrument lock operation
Lock(L)

..........
//Read the address from PMU
Write X

..........

Unlock(L)
//Instrument unlock operation

T2:

..........
//Read the address from PMU
Read X

..........

(c) RACEZ method

Figure 4: Different data race detection methods

Format of an entry:

no: record number

tid: thread id

type: type of the event

event data: varies based on the type

stack trace : optional stack trace for the event

Figure 5: The format of a logging entry.

1. The user selects an event and a sampling period. RACEZ uses
the Instruction_Retired event.

2. Set the sampling buffer size. The kernel manages a sampling
buffer where samples are saved on PMU interrupts. The ap-
plication is notified by a signal only when that buffer be-
comes full. The cost of user level notification is thus amor-
tized over a large number of samples. Since RACEZ needs to
correlate each memory access with the thread’s lockset at the
time of the memory access, the sampling buffer size must be
set to one entry to trigger a signal on each sample.

3. Create the PMU context for monitoring. Using the file de-
scriptor, the application can then program the event and sam-
pling period. The file descriptor is also used to bind the signal
delivery to a particular thread[31].

4. Start the monitoring. After the PMU context is configured, a
system call is invoked to start PMU monitoring for the spec-
ified thread.

5. Read PMU samples and restart monitoring. On each signal
notification, samples are read from the sampling buffer. The
PMU is stopped during this processing and must be restarted
after processing is complete. Before restarting the PMU, it
can be reconfigured. RACEZ uses this opportunity to adjust
the sampling period dynamically. This optimization is dis-
cussed further in Section 4.2.

Steps 1–4 are implemented in a wrapper function for thread cre-
ation. For Step 5, the signal handler is provided as part of the
RACEZ library.

3.4 Signal Delivery
Whenever a memory access is sampled by the PMU, it triggers

an interrupt on the processor core where the access was sampled.
The kernel stores the PMU sample in the user provided sampling
buffer, and, on buffer overflow, delivers an asynchronous signal
(RACEZ uses SIGIO) to the monitored application. For RACEZ,
there are two basic requirements for this signal delivery mecha-
nism:

• The signal should be dispatched immediately after the hard-
ware interrupt happens.

• The signal must be dispatched to the correct thread, i.e., the
thread in which the sample was captured.

The first requirement is necessary because RACEZ combines lock-
set information that is updated by the lock/unlock instrumentation
with the memory access information. Consider the code in Fig-
ure 4a. If the write operation at line 4 is sampled by the PMU, and
if the user level code only receives the signal at line 7, then the log
recorded by RACEZ will contain the wrong lockset for the access
because Unlock already updated that lockset.

The second requirement stems from the fact that both the mem-
ory access and the lockset should come from the same thread. When
an instruction in a thread is sampled, if we cannot guarantee that
the corresponding thread will receive the signal, the output record
entry will be wrong. For example, in Figure 4a, if Line 4 in T1
is sampled, but T2 receives the signal, RACEZ would incorrectly
report that T2 performed the access. While this seems trivial and
self-evident, the POSIX (and in particular Linux) signal delivery
mechanism does not guarantee this behavior. POSIX signals may
be delivered to any thread in the process. For Linux, it is even trick-
ier. Older Linux versions provided an extension to support precise
asynchronous signal dispatching. However, this was changed at
version 2.6.12. As a result, this problem existed in the Linux ker-
nel until it was fixed [31] as part of the RACEZ implementation.

3.5 Implementation
We implemented RACEZ on Linux and support Intel PMUs using

PEBS and AMD PMUs using instruction-based sampling (IBS).
The whole PMU framework is implemented based on the API pro-
vided by Perfmon2[3] which provides system call APIs to interact
with the PMU. RACEZ can be downloaded from http://code.
google.com/p/racez/.

To load our instrumentation code, we currently use LD_PRELOAD
to redirect standard pthread functions to RACEZ wrapper functions
which include custom instrumentation. For memory allocation rou-
tines, we also redirect standard malloc/free functions to wrapper
functions that record memory allocation information. RACEZ also
provides interfaces which can be inserted into custom memory al-
locators to record memory allocation information. These interfaces
are very useful because large applications often have their own cus-
tom memory allocators.

For server applications, we need to insert start and stop function
calls into the application code in order to enable and disable moni-
toring when the programs are running. In our experiments, the start
function is inserted at program startup and the stop function in the
signal handler for shutting down the server (server applications are
typically shutdown by sending a signal such as SIGUSR1). In a pro-
duction environment, in order to monitor a server for short window
of time, one would, for example, insert an HTTP request handler in
the code, that allows a user to enable and disable RACEZ by send-
ing an HTTP request to a special port. For standalone applications,
users do not need to modify any of their source code.
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function foo
{

......

*p = var
.....

}

(a) Code with a write

.....
IP1: mov -0x8(%rbp),%edx
IP2: mov %edx,(%rax)
IP3: addl 0x1,-0x4(%rbp)
.....

(b) Assembly for the write
Figure 6: Memory Address Computation

3.6 Offline Analysis
Race detection can be performed online, while monitoring an

application. However, in order to minimize overhead, we adopted
an offline approach. For Intel platforms, our offline tool first must
convert the PMU samples into memory accesses. Each PMU sam-
ple contains the contents of the integer register file for the sampled
instruction. We use MAO [2], an assembly-level analysis tool, to
determine if the sampled instruction accesses memory, and if so, to
compute the effective address accessed based on the register con-
tents. For example, for the assembly code in Figure 6b, if IP2 has
been sampled, a final memory address can be computed by reading
the contents of register rax. For AMD platforms, the PMU samples
already contain effective addresses, so this preprocessing is unnec-
essary. These memory accesses are fed into an Eraser[22] style
lockset algorithm to read the trace and detect races. Section 4 will
describe several extensions to this basic offline analysis to improve
the probability of finding races.

4. PROBABILITY ANALYSIS AND
OPTIMIZATION

As discussed in Section 1, any sampling based analysis method
will potentially miss information. For data race detection this means
that memory accesses are only caught with a certain probability,
there is no guarantee that a specific memory reference will be sam-
pled. In this section, we first present a formal probability analysis.
We then propose three key optimization techniques to greatly im-
prove the results. We evaluate the effects of these optimizations in
Section 5.

4.1 Probability Analysis
For the sampling based techniques in RACEZ, the fundamental

question to ask is: given a fixed sampling period T and a dynamic
instruction stream {I1, I2, ..Ii.., Is}, if two memory accesses in-
volved in a race occur m and n times in the stream, respectively,
what is the probability to catch both memory references at least
once?1

To answer this question, we first compute the total number of
samples as t = s

T
(s is the total number of instructions and T is

the sampling period). The probability P for catching both memory
references at least once is:

P = 1 −
`

t
s−m

´

+
`

t
s−n

´

−
`

t
s−m−n

´

`

t
s

´

≈ 1 −
“

1 − m

s

”t

−
“

1 − n

s

”t

+
“

1 − m

s
− n

s

”t

(3)

where the notation
`

n
k

´

represents the number of ways to choose
k items from a population of n. The approximation assumes that
after an instruction is sampled, it is returned to the pool and can be
1Note that not all occurrences of the same instruction will be in-
volved in a race. Howerver, same memory operation with incon-
sistent lockset among its occurrences always indicates a potential
problem.

sampled again. Additionally, it assumes that instructions are sam-
pled independently. Obviously, the PMU cannot sample the same
dynamic instruction twice. However, if s >> m and s >> n, this
assumption does not significantly affect the calculation. In prac-
tice, because racy memory accesses only occupy a small part of the
dynamic instruction stream, this assumption is satisfied. Similarly,
the PMU samples are collected periodically (not randomly), so they
are not completely independent. To mitigate this, rather than rely-
ing on pure periodic sampling, each sample period includes a ran-
dom delta. As an application of the above equation, for the pair
{s= 1,000,000,000, T=200,000, m

s
=0.01%, n

s
=0.01%}, we com-

pute that t=5000 and final probability will be 15.5%.
The equation 3 shows that to improve the probability of detecting

a race, we must increase t since m
s

and n
s

are properties of the
program and are constant. We can increase t in two ways. First, we
can increase s, then the length of time we sample the application2

Second, we can collect more samples by effectively decreasing T .
Below we present 2 techniques to effectively reduce the sam-

pling period T and discuss how we can increase s in the context of
server applications.

4.2 Sampling Period Adjustment
While the sampling period can be reduced to increase the prob-

ability of catching a race, the overhead of sampling is proportional
to the number of hardware interrupts. The shorter the sampling pe-
riod, the more hardware interrupts will be generated. We provide
a way to dynamically adjust the sampling period according to an
overhead budget for different users. In Section 5 we evaluate the
overhead of different sampling periods for different applications.
Additionally, we randomize the sampling period by adding a ran-
domized factor to the sampling period to avoid the problem when
every sample fall into a synchronized pattern in some loops.

4.3 Sampling Skid: Opportunity and
Challenge

For each hardware interrupt, we can get two samples due to the
skid introduced by the PMU. Figure 7 demonstrates the approach.
If the retirement of instruction m causes counter overflow, the Intel
PEBS hardware will record the state of instruction m+1. However,
the signal indicating that the sample was collected will not be de-
livered until much later. Fortunately, the OS always delivers the
current process state with any signal. Since this state is collected at
the time of signal delivery, which is distinct from where the hard-
ware recorded the process state, the OS process state can be used
as a second sample, effectively halving the sampling period.

Unfortunately, the optimization is not this simple. For exam-
ple, if IP1 in Figure 7b(b) is m+1, and the signal is received at IP2,
RACEZ will incorrectly assume that the memory access occurs with
a lock held. This can be handled in two ways. First, a stall loop can
be inserted in the synchronization primitives to reduce the proba-
bility that a sample collected before a synchronization is delivered
after the synchronization. While this does increase the instrumenta-
tion overhead, it allows us to effectively halve the sampling period,
thus decreasing other overhead and improving race detection prob-
ability.

Alternatively, a simple hardware extension can be used to over-
come this. An additional register could be added to the PMU which
gets recorded on each sample. RACEZ would increment this regis-
ter each time it encounters a synchronization instruction. When the
signal handler is invoked, instead of using the thread’s current lock-

2Increasing s will also increase m and n. The ratios m
s

and n
s

will
remain constant.
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Instruction m

Instruction m+1

Signal Received

Counter overflow

Sample 

Recording

Interrupt Delivery

Sigal Handler

PMU 

Hardware
User Code

(a) signal skid problem

IP1:

//Lock Instrumentation

Lock

IP2:

....

IP3:

Unlock

//Unlock Instrumentation

IP4:

.....

(b) Example
Figure 7: Sample skid problem of PMU

set, it would use the lockset corresponding to the register value in
the sample. This avoids any timing mismatch between the lockset
data and the memory access data.

In our current implementation, we use the former approach and
we treat the hardware solution as future work.

4.4 Extending Samples
We can effectively decrease the sampling period in another way.

As described earlier, we apply an offline analysis to compute the
effective address based on the register state for each event. Be-
sides this address computation, RACEZ employs static instruction
simulation based on the recorded register values. Static instruction
simulation is based on static data flow analysis.

Given a set of register value for an instruction i, we can use these
register value to compute memory address for another instruction
j if the registers are not invalidated between i and j. For instance,
if IP1 in Figure 6b was sampled, since the value of register rax is
not killed by the instruction at IP1, we can use the register value of
rax at the IP1 to compute memory address of the instruction at IP2
through forward simulation.Similarly, if we IP3 were sampled, we
could use reverse simulation to compute the memory address of the
instruction at IP2.

RACEZ implements both forward and reverse simulation in MAO
within one basic block. Extending beyond the basic block bound-
aries requires branch history information which is currently not col-
lected. As a future work, we are considering to use branch tracing
features in the PMU [26] to collect the branch history thus allow
us to further enlarge our analysis scope. The sampling extension
method is very effective and the final results are reported in Section
5.

4.5 Increasing the Sampling Window
Finally, the probability of catching a race can be increased sim-

ply by increasing the number of samples collected, i.e., make the
program run longer or sample for a longer time. A server applica-
tion running in a data center often runs on many machines concur-
rently. Consequently, the time can be effectively increased by sam-
pling all the machines. Since all machines are running the same
code, it does not matter which machine catches a race, as long as it
is caught on some machine.

In Section 5, for the bugs we studied, we simply run the program
longer to make memory accesses involved in a race occur more
frequently. It is equivalent to monitoring the program constantly
and reading multiple traces together to detect race.

5. EVALUATION
In this section, we first present our experimental platform and

target benchmarks in Section 5.1. Section 5.2 reports our overall
race detection results. Finally, we evaluate the overhead and false
positives in Section 5.4 and Section 5.5.

Table 1: Benchmarks used in the evaluation.
Benchmarks Description LOC

Test A custom testing case
Apache Httpd Web Server 220K

MySQL Database Server 1.1M
PARSEC A parallel benchmark suite 1.99M

Bug BugId Type Description/Symptoms
Test Benign update the same variable in two threads

httpd-1 44402 Harmful race in fd_queue.c
httpd-2 25520 Harmful race in buffered_log_writer, corrupted logs
httpd-3 21287 Harmful race in decrease_refcount, crash server
httpd-4 Benign update requests_this_child in worker.c
httpd-5 False false positives in apr_pool.c

mysqld-1 28249 Harmful Wrong sync for query cache, wrong result
mysqld-2 791 Harmful flushing log is not atomic, corrupted logs
mysqld-3 3596 Harmful reference thr->proc is not atomic,cold,crash server
mysqld-4 Benign Benign race in statistic_increment
mysqld-5 False false positives in thr_lock.c

Table 2: Known Bugs we studied.

5.1 Experimental Platform and Benchmarks
The experiments were conducted on a machine with a 2.40GHz

Intel Core 2 Q6600 processor, 4GB of memory. The linux kernel
version is 2.6.30 with perfmon2[3] kernel patch.

We evaluated 2 real-world server applications as shown in Ta-
ble 1, including a web server(Apache httpd) and a database server
(MySQL). Besides, in order to learn the overhead for different kinds
of applications, we also used a parallel benchmark suite (PARSEC)
which includes several standalone multithreaded programs. The
Test benchmark is written by ourselves for detection and overhead
study. We extracted 11 races from 3 applications as shown in Table
2. For each race, we classify it into 3 categories: Harmful, Benign,
False.

For httpd server, we use its own performance testing script ab
as the client to generate queries. For the httpd-21287, we use the
httperf as the testing client. For mysqld server, we adopt its testing
script under mysql-test to produce detection testing inputs and the
script under sql_bench as the overhead testing input. The PARSEC
benchmark suite has its own testing script to report performance
numbers.

5.2 Race Detection
5.2.1 Methodology

In general, we run applications with input that will manifest data
races and monitor the execution with RACEZ to see if we can catch
these data races. In principle, the execution and monitoring can be
infinite. But in real scenarios, even with very low overhead, the
monitoring framework such as RACEZ may only be allowed to ex-
ecute for a period of time(e.g. 5-10 minutes) per day instead of
monitoring all the time. The reason for this limitation is due to
some requirements on real production systems which is out of the
scope of this paper. To reflect this limitation, instead of executing
applications infinitely, we execute them period by period. In each
period, the application and RACEZ are cold started without using
any data from previous execution. It is clear that with this experi-
ment setup, RACEZ can only detect data races inside an execution
period.

At a certain sampling rate, the length of period is almost propor-
tional to the number of samples we get during the period. Thus, We
define the Experiment Unit to represent the execution period of ap-
plications which is measured by number of samples we get during
the period.

For each test case, we repeat Experiment Unit many times and
RACEZ will report if it catches data races in the the Experiment Unit
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Bugs Experiment Unit(samples) Running result
Base OS Sample Offline Ext.

Test 10,000 1% 3% 7%
httpd-1 80,000 1% 3% 4%
httpd-2 80,000 4% 4% 6%
httpd-3 80,000 x x x
httpd-4 8,000 1% 3% 5%
httpd-5 6,000 2% 4% 4%

mysqld-1 20,000 2% 4% 9%
mysqld-2 20,000 0% 1% 1%
mysqld-3 20,000 x x x
mysqld-4 10,000 1% 2% 3%
mysqld-5 10,000 3% 6% 8%

Table 3: Overall Detection Result for T=200,000. Experiment
Unit is defined based on the number of samples that is equal to
s/T. OS Sample is the optimization that can get another sample
from OS in addition to the PMU sample. The Offline Ext. result
is reported by adding the OS sample optimization. RACEZ can-
not catch httpd-3 and mysqld-3 since they either are located in
cold regions or crash the server immediately.

or not. We use the ratio of number of Experiment Unit in which
RACEZ catches data races to the total number of Experiment Unit
tested for the bug as the metric. In our experiment, the sampling
rate is 1/200,000 which is an acceptable sampling rate for produc-
tion systems. For a one minute Experiment Unit, this sampling rate
normally results in 100,000 samples in our testing platform.

5.2.2 Detection Result
The race detection result is shown in Table 3. RACEZ can catch

9 bugs out of 11 bugs. The table also shows how long it takes for
RACEZ to catch these bugs and the effects of two optimizations pro-
posed in this paper. The column base shows result for basic RACEZ
approach while the OS Sample column denotes the result after ap-
plying the optimization(Get an extra sample from OS in addition
to the hardware PMU sample), and the Offline Ext column reports
the result after applying offline sample extension optimization. For
bugs that can be caught by RACEZ, the average ratio after the op-
timizations is around 5% which means we only need to monitor
about 20 Execution Units to catch these data races. Considering
each Exeuction Unit is usually 1 minutes, it only takes around 20
minutes for RACEZ to detect these data races. Since RACEZ can be
deployed in multiple servers, the time required for RACEZ to catch
bugs is likely much shorter.

5.2.3 Uncaught Data Races
As shown in Table 3, there are 2 bugs that RACEZ fails to catch.

Taking the mysqld-3 bug as an example, the racy memory accesses
are all located in a very infrequently executed code region. One of
racy memory accesses will happen only once every 108 instruc-
tions given the trigger testing input. According to Equation 3,
the probability to catch both memory accesses in one Experiment
Unit(20,000 Samples) is only 0.0008%. On the contrary, for bugs
that are caught by RACEZ, the probability to sample each of the
racy accesses is much higher. For example, the two racy memory
accesses in httpd-2 bug will be executed once every 106 instruc-
tions, and the theoretical probability to catch the data race with
80000 samples is 2.2%(Note that the result in Table 3 is running
experimental result, not theoretical result).

5.2.4 Effect of Offline Sample Extension
Table 4 shows the effects of offline sample extension that is de-

scribed in Section 4.4. For the two memory accesses in each race ,
the extending phase can consistently extend average 4.1x and 6.3x
samples.

As an example, in Figure 9, we list the final assembly code for

Bugs Memory Access 1 Memory Access 2
Base Extend Base Extend

Test 1 3 1 3
httpd-1 1 3 1 5
httpd-2 1 3 1 3
httpd-4 1 2 1 2
httpd-5 1 10 1 10

mysqld-1 1 3 1 18
mysqld-2 1 3 1 6
mysqld-4 1 4 1 4
mysqld-5 1 6 1 6
average 1 4.1 1 6.3

Table 4: The sampling extension optimization result.

the write statement in thread T2 of Figure 8 that corresponds to
the mysqld-1 bug. In the assembly code, Line 15 is the instruc-
tion we want to sample; however, because rax is not killed from
Line 1 to Line 18, any sample from these 18 instructions can be fi-
nally attributed into the sample of Line 15 by applying our sample
extension optimization. Such structure copy operations are pretty
common in program, and it further justifies our sample extension
optimization.

5.3 Real Races Study
In this section, we present our races detection experiences in real

applications. The bugs demonstrate the weakness of traditional in-
house testing and detection methods. Although RACEZ can only
detect them with a probability, it at least shows a low overhead and
non-invasive solution to catch them.

5.3.1 Race Exposed by Special Input
Some races can only be exposed by special external input. In

this part, we present one of such bugs found in MySQL. The code
is shown in Figure 8. This bug corresponds to mysqld-1 in Table 3.

1 T1:

2 Query_cache::store_query() {

3 LOCK L1

4 if (!handler->register_query_cache_table(...)

5 UNLOCK L1}

6

7 ha_myisam::register_query_cache_table(...) {
8 ⇒ actual_data_file_length=

9 file->s->state.state.data_file_length;
10 }

11 T2:

12 void thr_unlock(...)

13 {

14 LOCK L2

15 (*lock->update_status)(...);

16 UNLOCK L2

17 }

18 void mi_update_status(...)

19 {
20 ⇒ info->s->state.state= *info->state;
21 }

Figure 8: Sample code extracted from a race of MySQL

1 mov (%rax),%rax

2 mov -0x10(%rbp),%rdx

3 mov 0x8(%rdx),%rdx

4 mov (%rdx),%rcx

5 mov %rcx,0x18(%rax)

6 mov 0x8(%rdx),%rcx

7 mov %rcx,0x20(%rax)

8 mov 0x10(%rdx),%rcx

9 mov %rcx,0x28(%rax)

10 mov 0x18(%rdx),%rcx

11 mov %rcx,0x30(%rax)

12 mov 0x20(%rdx),%rcx

13 mov %rcx,0x38(%rax)

14 mov 0x28(%rdx),%rcx
15 ⇒ mov %rcx,0x40(%rax)
16 mov 0x30(%rdx),%rdx

17 mov %rdx,0x48(%rax)

18 mov -0x10(%rbp),%rax

Figure 9: The final assembly code for the write statement in
thread T2 of code in Figure8

This bug can only be triggered when the following conditions are
satisfied:
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• Enable the concurrent_insert=1 to allow concurrent inser-
tion when other query operations to the same table are still
pending.

• Set special query cache flags.The query cache is a common
optimization for database server to cache previous query re-
sults.

• A thread added to lock one of the two involved tables
If the data race happens, the second query will use old value in
query cache and return wrong value while not aware of the con-
current insert from another client. In our experiment, we send the
buggy input to the server frequently to make the race occur more
often, and as shown in Table 3, we successfully caught the race
with desirable probability at a low sampling rate.

5.3.2 Corrupted Data or Logs
As shown in Table 2, some races only will produce wrong result

or corrupted logs. The httpd-2 is a race condition bug that will
finally make the server produce corrupted logs. As the sample code
shown in Figure 10, the shared variable references buf->outcnt at
Line 2 and 7 should be guarded inside a critical section. However,
the buggy code did not maintain such atomicity for Line 2 and Line
7. While there is context switch between Line 2 and 7, the result
will be wrong. This bug is located in hot region and RACEZ can
catch it easily based on the lockset algorithm.

1 ap_buffered_log_writer(....) {

2 for (i = 0, s = &buf->outbuf[buf->outcnt];

3 i < nelts; ++i) {

4 memcpy(s, strs[i], strl[i]);

5 s += strl[i];

6 }

7 buf->outcnt += len;

8 }

Figure 10: The sample code for race httpd-2. The race is be-
tween the read and write references at Line 2 and 7.

The mysql-2 is another race condition that will produce wrong
log files and RACEZ can catch it easily.

5.4 Overhead Study
5.4.1 Overall Runtime Overhead

Figure 11 shows the overall overhead result for 3 benchmarks.
The average slow down at T=200,000 is 2.8% which is practical for
production usage. Note that, at T=20,000, the slow down quickly
increase into 30%. In the following sections, we will further ana-
lyze the overhead. For each benchmark, we run it 5 times and get
the average number for the final result.
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Figure 11: The overhead for different benchmarks. T=20,000
means the sampling period is 20,000. The average slow down is
2.8% for T=200,000. The result has been normalized according
to the base result.

.

5.4.2 Factors of Runtime Overhead
The overhead of runtime monitoring mainly comes from two

parts: lockset instrumentation and signal delivery. Furthermore,
since we instrument the standard and custom memory allocators
to filter out false positives , we also measure their overhead. Fi-
nally, we include the overhead of the two online optimizations as
mentioned before. The breakdown result is reported in Figure 12.
We can see that the signal handler processing is the major source
of overhead for RACEZ. This processing requires several OS sys-
tem calls to interrupt user level code and read the information from
OS kernel and hardware. The overhead of sampling adjust is mod-
erately high because it also needs to invoke system calls to set the
hardware control bits. The OS sample incurs a very small overhead.
The overhead of lockset instrumentation is determined by the lock
usage of different benchmarks. Since mysqld uses much more locks
to protect concurrent accesses of same table, its overhead is higher
than the other two benchmarks. We insert a number of lock/unlock
and memory allocation functions into the custom Test benchmark
to study the breakdown of the overhead. We do not include the
overhead of stacktrace that is relatively high in our experiments.
The stacktrace function is turned off by default in RACEZ. We are
also developing a much cheaper stacktrace collection solution.
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Figure 12: The breakdown of overhead.

For different sampling period, we give the overhead result in Fig-
ure 13. We can see that the overhead is nearly linear with sample
period. This is because the overhead is mainly determined by the
number of hardware interrupts which is controlled by sampled pe-
riod as the Figure 12 shows.
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Figure 13: The overhead for httpd with different sampling pe-
riods.The input is fixed at 100,000 requests in total. The x-axis
is the sampling period and y-axis is the throughput result, i.e.,
requests per second.

5.4.3 Scalability Analysis
Normally, a large server application will initialize large num-

ber of threads during startup and put them into a thread pool for
later use. We also measure the overhead by varying the number of
threads for monitored application in Figure 14. The result shows
that the number of threads does not matter for RACEZ. This is be-
cause hardware PMU only has effects for scheduled threads. If one
thread is switched out by kernel and does not run on any of cores
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in CPU, the PMU will not sample it. The final number of hardware
interrupts is only determined by the number of concurrent running
threads on CPU which is again controlled by the number of physi-
cal CPU cores. One subtle limitation is that RACEZ relies on kernel
modules to maintain a context for each thread, thus we need to en-
large some critical OS kernel resources, such as locked memory, in
order to monitor applications which have large number of threads.
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Figure 14: The overhead for httpd with different number of
threads. The sampling period is fixed with T=200,000. The
x-axis is the number of threads and y-axis is the throughput
result, i.e., requests per second.

5.5 False Positives Classification and Solution
RACEZ will produce a lot of false positives because it used the

lockset algorithm. The major source of false positives comes from
memory allocator and happen-before edges. For example, during
a monitoring of httpd with 600M log file size, it will produce 131
warnings. After applying the standard and custom memory alloca-
tion instrumentation, the number will dramatically drop down to 11
warnings. Among these 11 warnings, only two are real races. Other
9 warnings are false positives caused by happen-before edges. Al-
though 80% false positive rate is very high, however, we can em-
ploy the method proposed in [24, 28] to filter out these warnings.

6. LIMITATIONS AND DISCUSSIONS
6.1 A Preliminary Race Characteristic Study

As we have shown in the early part of the paper, it is very hard for
RACEZ to catch races that occurred very infrequently. In addition,
if most data races causes immediate system crash, users don’t need
RACEZ to know there are data races. So we face a question to
answer: Are there many data races that happens frequently and
don’t crash system immediately?

It is difficult to answer the question and there’re contradictory
evidence in the literature. While [29] reveals that concurrency bugs
are highly correlated with program crash, [5] find that potentially
harmful data races, which occur quite frequently without causing
any crashing errors, are also common in reality.

To understand this problem better, we collect 14 race condition
bugs from previous research works[29, 28, 1] and perform a pre-
liminary study on data race characteristics in real applications. We
categorize each data race with the following two criteria:

• Does the race condition bug finally crash the server or only
produce wrong result?

• Is the race condition bug located in hot executed code region?
We define one racy memory access per million instructions
as hot code.

Table 5 shows the result. Among the 14 data race bugs studied,
7 will crash systems immediately and 7 will not. Among 7 bugs
that will not crash systems immediate, 4 of them are in hot region.
Although the study is preliminary, we believe it hints that bugs that
can be caught with RACEZ are not rare.

Total crash server wrong result/logs
hot cold hot cold

14 5 2 4 3

Table 5: Race condition bug characteristics

6.2 False Positive Reduction
Another problem is that we are using lockset method to reduce

the overhead, which is known as an imprecise technique. Fortu-
nately, recent research has made progress on classifying real races
from original races warning produced by imprecise races detection
tools. One of such techniques is RACEFUZZER[24] which is al-
ready used by one widely used valgrind based tool[25]. The method
proposed in [28] also can be used to filter out false positives.

6.3 Overhead in Sampling Window
The overhead over the sampling window of RACEZ can be much

larger than lightweight software instrumentation method. In our
experiment, it is about 5000 cycles(including signal handler pro-
cessing, PMU information collecting, etc). That means it may af-
fect the latency of individual client request if it is just interrupted
by hardware PMU. However, as the throughout result shows, the
overall overhead for all requests is very slow.

7. RELATED WORK
The most closely related work of RACEZ are LiteRace[14] and

Pacer[5] that both proposed a sampling-based techniques to detect
races with software instrumentation. However, they either need to
clone the program that causes at least 2X code size expansion[14]
or only can be applicable to managed Java language program[5].
As discussed in Section 1, even though they can achieve low over-
head, their invasive instrumentation makes it hard to be applied in
some production environments.

Static data races[9, 27] detection techniques have the advantage
that they can exploit all execution paths through data flow analysis
thus do not have testing input problem as dynamic analysis. How-
ever, static methods always produce large number of false positives
since it is hard to model pointer aliasing and synchronization mech-
anism precisely.

In literature for data races detection, most of them are dynamic
methods. It can be further classified as lockset based methods and
happen-before based methods. Lockset methods [22] usually re-
port false positives due to the widely used other synchronization
operations, such as signal-wait, custom synchronization mecha-
nisms,etc. In contrast, pure happen-before based methods consider
all synchronization operations, and apply a vector clock algorithm
to order all memory accesses in different threads. Happens-before
methods were known as expensive methods because both the in-
strumentation and detection algorithm are expensive. Recently,
some new lightweight vector clock algorithms[10] were proposed
to improve the detection overhead. However, the overhead of these
methods is still very high and only can be used during pre-deployment
testing.

Software instrumentation based solutions always incur signifi-
cant slow down to the original programs, thus several hardware so-
lutions [16, 30] are proposed. They always evaluate their methods
on simulators thus the effectiveness is hard to prove. Our solution
can also be treated as a hardware solution, but we use the PMU
hardware which is popular and fairly mature on commodity pro-
cessors.

Besides data races detection, several low overhead dynamic mon-
itoring techniques are proposed to detect software defects when the
applications are deployed. QVM[4] incorporates an overhead man-
ager component in JVM to control the overhead and detects soft-
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ware defects in deployed systems. Dimmunix[11] uses a quite low
overhead monitoring methods and can successfully defend against
deadlocks in real systems. Rx[20] makes an interesting observation
that software bugs are sensitive to the underlying environment thus
are likely to disappear after modifying the environments. However,
for race detection, because of its inherent high overhead, few works
have been done towards deployed systems.

Finally, PMU based sampling[26, 8, 7, 3] is widely used to iden-
tify performance problem for production applications when they
are deployed. Instead of focusing on performance problem, we use
PMU sampling to improve correctness of programs.

8. CONCLUSION
In this paper, we presented RACEZ, an approach to detect data

races in production systems with PMU sampling techniques. We
show that RACEZ can catch reasonable portion of data races with-
out big overhead and aggressive instrumentation. Although PMUs
are originally designed to catch performance characteristics of ap-
plications, we demonstrate that they are versatile and can be em-
ployed for bug detection purposes effectively. We expect this paper
will motivate more new usage model of PMUs.
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