
CYPRESS: Combining Static and Dynamic Analysis
for Top-Down Communication Trace Compression

Jidong Zhai†, Jianfei Hu1,‡, Xiongchao Tang†, Xiaosong Ma2,§ and Wenguang Chen†,¶
†Tsinghua University, ‡University of California Irvine, §Qatar Computing Research Institute,

¶Technology Innovation Center at Yinzhou, Yangtze Delta Region Institute of Tsinghua University, Zhejiang

Email: zhaijidong@tsinghua.edu.cn, {hujianfei258,tomxice}@gmail.com, xma@qf.org.qa, cwg@tsinghua.edu.cn

Abstract—Communication traces are increasingly important,
both for parallel applications’ performance analysis/optimization,
and for designing next-generation HPC systems. Meanwhile, the
problem size and the execution scale on supercomputers keep
growing, producing prohibitive volume of communication traces.
To reduce the size of communication traces, existing dynamic
compression methods introduce large compression overhead with
the job scale. We propose a hybrid static-dynamic method that
leverages information acquired from static analysis to facilitate
more effective and efficient dynamic trace compression. Our
proposed scheme, CYPRESS, extracts a program communication
structure tree at compile time using inter-procedural analysis.
This tree naturally contains crucial iterative computing features
such as the loop structure, allowing subsequent runtime com-
pression to “fill in”, in a “top-down” manner, event details into
the known communication template. Results show that CYPRESS
reduces intra-process and inter-process compression overhead up
to 5× and 9× respectively over state-of-the-art dynamic methods,
while only introducing very low compiling overhead.

Keywords—High Performance Computing, Message Passing,
Performance Analysis, Trace Compression.

I. INTRODUCTION

Communication traces are indispensable in analyzing com-
munication characteristics of MPI (Message Passing Interface)
programs for performance problem identification and optimiza-
tion [1], [2]. They are also highly useful for designing/co-
designing future HPC (High Performance Computing) sys-
tems [3], such as Exa-scale systems, where trace-driven simu-
lators (such as DIMEMAS [4], BSIM [5], and SIM-MPI [6])
are often employed to predict and compare application perfor-
mance under alternative design choices.

Many communication trace collection tools have been
developed, such as Intel ITC/ITA [7], Vampir [8], TAU [9],
Kojak [10] and Scalasca [11]. Typically, these collection tools
instrument MPI programs with the MPI profiling layer (PMPI),
and record communication operation details (e.g., message
type, size, source/destination, and timestamp) during the pro-
gram execution.

However, as the applications scale up (in terms of both
the number of processes and the problem size), the volume
of communication traces increases dramatically. For example,
ASC benchmark SMG2000 [12] generates about 5TB commu-
nication traces only with a small problem size (64× 64× 32)

1Jianfei took part in this work at Tsinghua University.
2Part of the work was performed during author’s leave from North Carolina

State University.

for 22,538 processes [13]. A large volume of communication
traces not only put pressure on trace collection and storage,
but also interfere with the execution of user programs. Iron-
ically, while trace analysis becomes more crucial for Exa-
scale applications’ performance debugging and system design,
trace collection itself becomes less and less affordable on such
systems.

for (i=0; i<10; i++){
 for(j=0; j<=i; j++){
 if(j%2 == 0)
 MPI_Isend(...);
 else
 MPI_Irecv(...);
 }
 MPI_Waitall(...);
 MPI_Reduce(...);
}

1:MPI_Isend(...)
2:MPI_Waitall(...)
3:MPI_Reduce(...)
4:MPI_Isend(...)
5:MPI_Irecv(...)
6:MPI_Waitall(...)
7:MPI_Reduce(...)
8:MPI_Isend(...)
9:MPI_Irecv(...)

10:MPI_Isend(...)
11:MPI_Waitall(...)
12:MPI_Reduce(...)
13:MPI_Isend(...)
14:MPI_Irecv(...)
15:MPI_Isend(...)
16:MPI_Irecv(...)

Fig. 1. Sample segments of MPI program and its communication trace

To reduce the size of communication traces for large-scale
parallel programs, several recent studies investigated com-
munication trace compression to address the ever-increasing
trace size [14]–[18]. For most applications, these approaches
can produce orders-of-magnitude reduction in trace sizes,
facilitating more efficient trace storage and processing. Mean-
while, dynamic trace compression methods take a “bottom-up”
approach to discover patterns from the event sequence itself.
As reported by existing research, they may have difficulty in
compressing complex communication patterns or have very
high computational complexity to process such patterns [15].
Also, trace compression itself brings non-trivial overhead (see
Figure 1). In particular, the inter-process compressed trace
comparison and merge is a rather expensive procedure, with
an O(n2) complexity in merging a pair of per-process traces
(where n is the total length of compressed “patterns” after
intra-process compression) [14]. We have found that the inter-
process compression overhead grows linearly with the number
of processes with a recent compression tool [18], which makes
it challenging to scale to serve Exa-scale workloads.

In this paper, we propose a novel “top-down” technique,
called CYPRESS, for effective, scalable communication trace
compression. CYPRESS combines static program analysis with
dynamic runtime trace compression. It extracts program struc-
ture at compile time, obtaining critical loop/branch control
structures, which enable the runtime compression module to
easily identify similar communication patterns. This approach
is motivated by the observation that most of communication
information needed by trace compression can be acquired from
program structure. E.g., in Figure 1, a compiler can effortlessly
gather that MPI_Waitall and MPI_Reduce are in the

SC14: International Conference for High Performance Computing, Networking, Storage and Analysis

978-1-4799-5500-8/14 $31.00 © 2014 IEEE

DOI 10.1109/SC.2014.17

143

outermost loop, while MPI_Isend and MPI_Irecv are in
the innermost loop but in different branch structures.

We propose using compiler techniques to statically extract
the program structure as an ordered tree called communica-
tion structure tree (CST). Our research has found that such
structural information provides dynamic trace compression
valuable guidance, by offering a “big picture” naturally lacked
in bottom-up runtime pattern search. During intra-process trace
compression, only communication operations at the same ver-
tex of the CST need to be compared, resulting in a dramatically
smaller search space. During inter-process compression, since
all the per-process CSTs have the same structure, merging
traces is of O(n) computational complexity, compared to
O(n2) offered by existing dynamic methods.

In addition, we have found that the extra overhead caused
by such static analysis is negligible, making this hybrid “top-
down” method appealing for Exa-scale applications/systems,
where we can choose to pay this small, one-time static analysis
cost and significantly trim the trace volume as well as trace
compression overhead, both growing with the job execution
time or the number of processes used. More specifically, we
consider the major contributions of this work as:

Combining static and dynamic analysis for trace compres-
sion. This approach pays a negligible cost for extra program
structure analysis and storage, which is independent of the job
execution time or the number of processes used. In exchange,
the structural information acquired at compile time enables the
dynamic compression to gain enormous enhancement in both
compression effectiveness and efficiency.

Sequence-preserving trace compression and replay for
trace-driven performance prediction. We enable sequence-
preserving trace compression, a feature not afforded by most
current trace compression tools, using the CST data structure.
This allows more accurate trace-driven simulation or perfor-
mance analysis.

We implemented CYPRESS in the LLVM compiler frame-
work [19]. We evaluated it using NPB programs and a real-
world application with a variety of communication patterns,
and compare our method with a state-of-the-art dynamic
method. Results show that CYPRESS can improve compression
ratios in the majority of test cases, and get an average 5-fold
and 9-fold reduction for intra- and inter-process trace com-
pression overhead respectively. Finally, we use a real-world
application to demonstrate how to use CYPRESS to analyze
program performance and replay program for performance
prediction.

This paper is organized as follows. In section II, we
present an overview of the CYPRESS system. We introduce the
key static data structure, the communication structure tree in
Section III, followed by intra-process and inter-process com-
munication trace compression algorithms in Section IV. We
describe the design of the replay engine and implementation
of CYPRESS in Section V and Section VI. Our experimental
results are reported in Section VII. Section VIII gives a
discussion of related work. Finally, we conclude in Section IX.

II. OVERVIEW

CYPRESS is a hybrid communication trace compression
system consisting of both a static and a dynamic analysis
module, as shown in Figure 2. The rest of our discussion
focuses on MPI programs/traces, while the CYPRESS approach
is general and can be applied to other communication libraries.

Link

Intra-Process Trace
Compression

Customized MPI
Communication Library

D
ynam

ic A
nalysis M

odule

Static Analysis Module

Identify MPI
Communication

Invocations

Analysis over Control
Flow Graph

Intra-Procedural A
nalysis

Build Program Call
Graph (PCG)

Inter-procedural
Analysis Algorithm

Inter-Procedural A
nalysis

An MPI Program

Program Communication
Structure Tree

Compressed Communication Traces

Execute

Output
Inter-Process Trace

Compression

Fig. 2. Overview of CYPRESS

The static analysis module first generates an intermediate
summary for each procedure by identifying MPI communi-
cation invocations, which collectively determine the program
communication patterns. It also identifies control structures,
such as loop and branch, that may affect the execution of
communication operations. The static module then constructs
the call graph for the whole program, combines the above
intermediate summaries through inter-procedural analysis, and
stores the resulting program communication structure in a
compressed text file.

The dynamic analysis module implements a customized
communication library with the MPI profiling layer. Like
existing dynamic compression tools, it compresses the intra-
process communication traces on-the-fly and conducts an
inter-process trace compression at the end of the program’s
execution. However, the aforementioned program structural
information from static analysis contains crucial iterative com-
puting features such as the loop structure, enabling top-down
dynamic compression. The key idea is that when informed of
such apriori structures, CYPRESS can focus on communication
traces generated by the same piece of code, which are very
likely to have high redundancy.

We illustrate the CYPRESS workflow with a simplified
MPI code snippet for Jacobi iteration (Figure 3). In the
static analysis module, CYPRESS identifies the loop (line
8) containing four branches (lines 9, 11, 13, 15), eaching
calling an MPI routine. Such loop body is likely to generate
similar traces across different iterations. Because CYPRESS

knows which communication traces correspond to the same
call site at runtime, it can pinpoint its similarity search and
avoid expensive dynamic probing. Similarly, CYPRESS also
tries to merge traces generated by the same piece of code in
different processes for further compression. Figure 4 illustrates
the compression process, where both intra-process and inter-
process repeating patterns are identified. In Figure 4, we use

144

1 int main(int argc, char** argv){
2 MPI_Init(&argc, &argv);
3 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
4 MPI_Comm_size(MPI_COMM_WORLD, &size);
5 // initialization
6 ...
7 double local[(N/size)+2][N], new[(N/size)+2][N];
8 for (k=0; k<steps; k++){
9 if (rank < size - 1)

10 MPI_Send(local[N/size], N, MPI_DOUBLE, rank+1...);
11 if (rank > 0)
12 MPI_Recv(local[0], N, MPI_DOUBLE, rank-1...);
13 if (rank > 0)
14 MPI_Send(local[1], N, MPI_DOUBLE, rank-1...);
15 if (rank < size - 1)
16 MPI_Recv(local[N/size+1], N, MPI_DOUBLE, rank+1...);
17 // compute the variable new and exchange new and local
18 ...
19 }
20 MPI_Finalize();}

Fig. 3. A simplified MPI program for Jacobi Iteration

the term of loop-level to denote the repeating patterns within
each process and task-level to denote the repeating patterns
between different processes.

Rank: 0 Rank: size-1Ranks: 1� size-2

MPI_Init

MPI_Send

MPI_Recv

MPI_Send

MPI_Recv

MPI_Fin.

MPI_Init

MPI_Recv

MPI_Send

MPI_Fin.

MPI_Init

MPI_Send

MPI_Recv

MPI_Fin.

Repeated
Patterns

Repeated
Patterns

Repeated
Patterns

Loop-level Task-level
Loop-level

Loop-level

Fig. 4. Communication trace compression (intra-process and inter-process)
for Jacobi Iteration

CYPRESS combines the merit of both static analysis and
dynamic analysis. The static module can collect the complete
program communication structure with little overhead at com-
pile time, while the dynamic module can record the input-
dependent control structures, such as loop iteration counts and
branch outcomes. When combined, the static program structure
enables the dynamic module to perform informed and scalable
trace processing that compresses more efficiently.

III. EXTRACTING COMMUNICATION STRUCTURE

As mentioned earlier, CYPRESS leverages static analysis
techniques to extract a program communication structure at
compile time. The program communication structure records
communication invocations and related control structures,
which can be used not only to accelerate identification of
repetitive communication operations but also to help store
compressed communication traces.

To this end, we propose a tree-based data structure called
Communication Structure Tree (CST). To retain the original
sequence of communication operations traced, the CST is
organized into an ordered tree to record the communication
invocations and the program control structures. In our MPI-
oriented design, the leaf nodes represent MPI communication
invocations, while non-leaf nodes represent program control

structures, including branch nodes and loop nodes. Edges rep-
resent the hierarchy of the program communication structure.
Note that we use an ordered tree to organize all the nodes of
the CST, this is because that a pre-order traversal of the CST is
completely matched with the static structure of the program.
As a result, we can easily capture the program execution at
runtime over the static CST.

The CST of a given MPI program is built in two major
phases: intra-procedural analysis and inter-procedural analysis.
Below we give more details on their perspective processing.

A. Intra-Procedural Analysis Algorithm

The intra-procedural analysis phase builds an intermediate
CST for each procedure. This is done by collecting its control
flow graph (CFG) and identifying all the loop and branch
structures. For loops, CYPRESS uses a classic dominator-based
algorithm [20].

This phase identifies all the MPI communication invoca-
tions and user-defined functions in the program, each of which
represented as a leaf node in the intermediate CST. (Note that
the user-defined function nodes will be refined during inter-
procedural analysis.) If a procedure does not contains any MPI
or user-defined function calls, its intra-procedural CST is null.
Finally, we add a virtual root vertex to connect all the first-
level vertices. For each vertex in the CST, we assign it a unique
global id (denoted by GID) in pre-order, which is useful
for handling MPI asynchronous communications. Algorithm 1
gives the complete process of building an intra-procedural
CST. Figure 6 shows the intra-procedural CST for the function
main in our sample MPI program (Figure 5).

Algorithm 1 Intra-procedural analysis algorithm in CYPRESS

1: input: A CFG for a procedure p (a node of the CFG is a basic block)
2: initialize: T ← φ
3: Identify all the loop and branch structures in the CFG
4: for all node n in Post-Order over CFG do
5: if n is a loop header node then
6: Insert a loop vertex n into T
7: for all vertex v ∈ T do
8: if v ∈ successor(n) then
9: Insert an edge e from n to v into T

10: end if
11: end for
12: else if n is a branch node then
13: For each path insert a branch vertex n′ into T
14: for all vertex v ∈ T do
15: if v ∈ successor(n′) then
16: Insert an edge e from n′ to v into T
17: end if
18: end for
19: else
20: for all invocation i ∈ n do
21: if i is an MPI invocation or a user-defined function then
22: Insert a leaf vertex i into T
23: end if
24: end for
25: end if
26: end for
27: Delete the leaf node not an MPI invocation or a user function iteratively

B. Inter-Procedural Analysis Algorithm

The inter-procedural analysis phase combines the inter-
mediate results from intra-procedural phase into a complete

145

1 int main(){
2 for (i=0; i<k; i++) {
3 if (myid % 2 == 0)
4 MPI_Send(buf, size, MPI_INT,
5 myid+1, 0, MPI_COMM_WORLD);
6 else
7 MPI_Recv(buf, size, MPI_INT,
8 myid-1, 0, MPI_COMM_WORLD, &status);
9 bar();

10 }
11 foo();
12 if (myid % 2 == 0)
13 MPI_Reduce(sbuf, rbuf, 1, MPI_INT,
14 MPI_SUM, root, comm);
15 }
16 int bar() {
17 for(k=0; k<n; k++)
18 MPI_Bcast(buf, size, MPI_INT, root, MPI_COMM_WORLD);
19 }
20 int foo() {
21 for(j=0; j<m; j++)
22 sum += j;
23 }

Fig. 5. An MPI program for illustrating the usage of the CST

0:Root

1:Loop 8:Br

4:Br2:Br 6:bar()

7:foo()

3:MPI_Send 5:MPI_Recv

9:MPI_Reduce

Fig. 6. Intra-procedural CST for the function main in Figure 5

CST. The core idea is to connect all the intra-procedural CSTs
according to the relationship of function calls. To do this, we
first construct a program call graph (PCG), followed by inter-
procedural analysis to iteratively replace user-defined functions
with their intra-procedural CSTs. A bottom-up inter-procedural
analysis algorithm (Algorithm 2) effectively reduces the itera-
tion number. At the end of this process, the CST of the function
main is the final CST for the program. Figure 7 portraits the
complete CST for the MPI program in Figure 5.

After analyzing with Algorithm 2, we get an MPI program
communication structure tree. However, there are some irrel-
evant vertices in the CST that will not be used during the
trace compression phase, such as the leaf vertices that are not
MPI invocations. We conduct a pruning pass over the CST

Algorithm 2 Pseudo code for constructing Communication
Structure Tree (CST).

1: input: Intra-procedural CSTs for each procedure p: I CST (p)
2: input: The program call graph (PCG)
3: Change ← True
4: /* Bottom-Up inter-procedural analysis */
5: while (Change == True) do
6: Change ← False
7: for all procedure p in Post-Order over PCG do
8: for all vertex v in Pre-Order over I CST (p) do
9: if v is a user-defined function then

10: Replace the vertex v with its intra-procedural CST of
I CST (v)

11: Change ← True
12: end if
13: end for
14: end for
15: end while

0:Root

1:Loop 8:Br

4:Br2:Br 6:Loop

3:MPI_Send 5:MPI_Recv 7:MPI_Bcast

9:MPI_Reduce

Fig. 7. A complete CST for the program in Figure 5

and delete all the irrelevant vertices. Our pruning algorithm
includes two steps: (1) Delete all the leaf vertices in the CST
that are not MPI invocations. (2) Repeat step 1 until all the leaf
vertices are MPI invocations. We use an iterative DFS (Depth
First Search) algorithm over the CST to accomplish the two
steps above.

1 void foo (float* buf, int num) {
2 if (num == 0) return;
3 else if (num<k && num>j) {
4 MPI_Bcast(...);
5 MPI_Reduce(...);
6 foo(buf, num-1); }
7 else {
8 MPI_Bcast(...);
9 foo(buf, num-1);

10 MPI_Reduce(...); }
11 }

Loop

Br3Br2Br1

MPI_Bcast MPI_Bcast MPI_ReduceMPI_Reduce

Fig. 8. Conversion of recursive function calls in the CST

Recursive function call creates a challenging problem for
building the CST. In CYPRESS, we unroll all the recursions and
convert each recursive function call into an approximate loop
control structure, adopting the method proposed by Emami et
al. [21]. At compile time, we insert a pseudo loop node at
the entry point of the recursive function, and replace all the
internal recursive functions with branch nodes in the CST.
Figure 8 shows an example of converting recursive function
calls in CYPRESS. At runtime, we record the branch outcomes
and compress the repetitive communication operations. We will
further illustrate this in Section IV.

The static CST serves as a template for runtime com-
munication trace compression. Any communication invoca-
tion or program control structure has a corresponding vertex
in the CST to match. To inform our runtime compression
library of the currently executing vertex in the CST, we
introduce two extra functions, PMPI_COMM_Structure and
PMPI_COMM_Structure_Exit, as shown in Figure 9.
CYPRESS automatically inserts codes to bracket each control
structure with this pair of functions during static analysis,
where the id field assists the runtime analysis to identify the
matching CST vertex.

IV. RUNTIME COMMUNICATION TRACE COMPRESSION

At runtime, CYPRESS again adopts two-phase commu-
nication trace processing, with intra-process and an inter-
process trace compression respectively. Both phases utilize

146

PMPI_COMM_Structure (int type, int id)
type: the program control structure (loop, branch)

in the CST
id: the unique global ID in the CST

PMPI_COMM_Structure_Exit(int id)
id: the unique global ID in the CST

Fig. 9. Instrumented functions during the static phase in CYPRESS

the program communication structure to achieve effective and
low-overhead compression. In order to efficiently organize and
store compressed traces, CYPRESS uses a data structure similar
to the CST, called the Compressed Trace Tree (CTT). It is an
ordered tree with the same edges and the number of vertices
as the CST. Each CTT vertex, however, is associated with a
linked list storing runtime information.

A. Intra-Process Communication Trace Compression

During the intra-process compression phase, repeated com-
munication operations for each process are compressed and
stored in the CTT. This phase is completed on-the-fly during
the program execution.

At the beginning of the program execution, CYPRESS

initializes the CTT according to the CST and set the linked
list of each CTT vertex to null. It maintains a program pointer,
p. Facilitated by the ordered nature of the CTT and the
instrumented functions at compile time, the pointer p always
points to the CTT vertex that is currently being executed.
This enables the runtime compression to “fill in” event details
into the known communication template. Below we give more
details on compressing each type of CTT vertices.

Communication vertex compression For each communica-
tion operation, the following parameters are collected: com-
munication type, size, direction, tag, context, and time. For
the communication time, two types of recording methods are
supported in CYPRESS. One records the average time and
the standard deviation of repeated communication operations.
The other uses a histogram to record the distribution of the
communication time [14].

For each incoming communication operation, the current
CYPRESS implementation only compares it with the last one in
the same CTT vertex, merging them if all their communication
parameters (all but the communication time) match. Potentially
one can set a larger sliding window for each leaf vertex, to find
more similar communication patterns. There is clearly a trade-
off between cost and compression effectiveness. We find our
current implementation adequate for most of parallel programs.

Loop vertex compression For each loop vertex, we need to
record its actual iteration counts. This is done by incrementing
a certain counter every time the PMPI_COMM_Structure
function associated with this loop vertex is invoked. The
counter stops after MPI_COMM_Structure_Exit is called.
For nested loops, the inner loop iterations during each round
of the outer loop iteration are recorded, to recover the correct
communication sequence.

Figure 10 shows a program containing a nested loop with
varied inner loop iteration counts. For leaf vertices, similar
traces are compressed. a × n means that the trace a repeats

for(i=0; i<k; i++){
 MPI_Bcast();
 for(j=0; j<i; j++){
 MPI_Isend();
 MPI_Irecv();
 MPI_Waitall();
 }
}

Loop

LoopMPI_Bcast

MPI_Isend MPI_WaitallMPI_Irecv

Loop

LoopMPI_Bcast

MPI_Isend MPI_WaitallMPI_Irecv

�<0,1,2,3 , k-1>�<b,b,b >

<a,a,a > �

� <0, k-1, 1>

� <k>

� <k>

n=(k-1)k/2

...�...�

<a×n>� ...� ...�

<b×k>�

Fig. 10. Compress communication traces over a nested loop in the CTT.

n times. CYPRESS can further compress loop counts with
striding patterns, using tuples like < 0, k−1, 1 >, which means
that the iteration count is from 0 to k − 1 and the stride is 1.
For the outermost loop, we only need to record its iteration
count k.

for (i=0; i<10; i++){
 if(i%2==0)
 MPI_Isend();
 else
 MPI_Irecv();
 MPI_Waitall();
}

Loop

Br1

MPI_Irecv�5MPI_Isend�5

Br2 MPI_Waitall�10

�10

�<0,8,2> �<1,9,2>

Fig. 11. Branch compression example

Branch vertex compression As mentioned earlier, CYPRESS

records all branch outcomes at runtime. Moreover, if a branch
vertex is a child of one or more loops, the current iteration
number for all the parent loop vertices should also be recorded.
Figure 11 shows how to record the branch outcomes in a CTT.
Here the branch is selected with an alternating pattern, which
can again be denoted by tuples like < 0, 8, 2 > (branch taken
at iteration numbers from 0 to 8 with a stride of 2).

id1:Loop

id2:MPI_Isend(rq1) id4:MPI_Wait(rq1) id5:MPI_Wait(rq2)id3:MPI_Irecv(rq2)

rq1 � id2 rq2 � id3

Fig. 12. Example of mapping between the request handler and GID

Asynchronous Communication For asynchronous commu-
nication, the MPI library uses request handlers to con-
nect asynchronous communication routines with checking
functions (e.g., MPI_Wait, MPI_Waitall). To associate
each non-blocking communication routine (e.g., MPI_Isend,
MPI_Irecv) with its corresponding checking function, we
map its request handler to its unique GID in the CST. Then,
in the checking function, the request handler is replaced with
this GID. Figure 12 shows an example of such mapping.
During the decompression phase, the MPI checking function
and asynchronous communication routine can be paired again
using the GID.

For partial completion in MPI programs, such as
MPI_Waitsome, MPI_Testsome, and MPI_Testany, we
also use the GID to record the actual non-blocking commu-
nication completion. During the decompression phase, we can
replay the complete communication sequence using the GID
and CTT structure.

147

0:Root

1:Loop 8:Br

4:Br2:Br 9:MPI_Reduce

5:MPI_Recv3:MPI_Send

6:Loop

7:MPI_Bcast3:MPI_Send

0:Root

1:Loop 8:Br

4:Br2:Br 9:MPI_Reduce

5:MPI_Recv

6:Loop

7:MPI_Bcast

0:Root

1:Loop 8:Br

4:Br2:Br 9:MPI_Reduce

5:MPI_Recv3:MPI_Send

6:Loop

7:MPI_Bcast

+ �

A CTT of an even process: p0 A CTT of an odd process: p1 Merged CTT
compare the corresponding node

<0,k,1>

<k>

<null>

<p0,p1:k>

<p0:0,k,1,
p1:null>

<k> <null> <k>

<k>

Fig. 13. Perform inter-process communication trace compression with the CTTs (For simplicity, only partial linked lists of the vertices in the CTTs are shown).

Non-Deterministic Events Non-deterministic events compli-
cates trace compression. For a non-blocking wildcard receive
(e.g., MPI_Irecv with MPI_ANY_SOURCE), the source is
not known when the routine is posted, so the non-blocking
wildcard receive cannot be matched upon invocation. In CY-
PRESS, these wildcard receives are cached, with compression
delayed until the corresponding checking functions are exe-
cuted.

B. Inter-Process Communication Trace Compression

Finally, the inter-process trace compression phase identifies
similar communication patterns across different processes, at
the end of the program execution (e.g., MPI_Finalize).
This is where the static-CST-assisted CYPRESS obtains most
outstanding advantage against traditional dynamic-only meth-
ods: the knowledge obtained at compile time enables CYPRESS

to perform informed compression, scalable to large numbers
of parallel processes.

Due to the characteristics of the prevailing SPMD (Sin-
gle Program Multiple Data) model, in common applications
today most of the processes execute the same path in the
program call graph. As a result, processes generate highly
similar communication traces. Still, dynamic-only methods
face the challenging communication trace alignment task [14].
For example, when compressing the sequences (a:3, b:4) and
(b:2, a:2) (trace:repeating counts) for two processes, dynamic
methods may produce three different results using different
strategies, (b:2, a:5, b:4), (a:3, b:6, a:2), and (a:5, b:6). There-
fore, the computational complexity in compressing a pair of
per-process traces for dynamic methods is O(n2) (n is the
number of compressed trace events for each process), which
makes it challenging to scale with ever-increasing system size.

CYPRESS solves this problem elegantly, thanks to owning
top-down structural information: statically extracted CSTs and
dynamically populated CTTs based on the former. The SPMD
nature of parallel programs dictates that CTTs across most
processes share the common structure existing in the single
source code. As any MPI communication invocation corre-
sponds to a unique CTT vertex, we only need to compare the
communication invocations at the same vertex in the CTT. If
a process has not executed a certain call path in the CTT, the
call path is ignored for this process.

In Figure 13, we demonstrate the process of merging the
CTTs of an even process p0 and an odd process p1 of the
program in Figure 5. CYPRESS traverses the CTTs in pre-
order. It first merges the virtual nodes 0 (referred to by its
GID). Next, it merges the loop vertices 1. Since both processes
have the same iteration count, a single value is recorded. After

that, it merges the branch vertex 2. Since process p1 does
not take this branch, it just records the information for p0.
It then merges the leaf vertex 3, where we just record the
repeating communication operations for process p0, and so
on. Finally, it merges the two CTTs into one. This procedure
continues until all per-process CTTs are combined into the
merged CTT. We can use a parallel algorithm to merge all the
CTTS. Therefore, the computational complexity of CYPRESS

is O(n log(P)) when merging P per-process traces, each with
length n. In contrast, the complexity for the dynamic-only
method is dependent on the per-process communication traces,
and the complexity for the worst case is O(nP log(P)).

To effectively compress similar communication invocations
for different processes, we need to encode the process rank in a
uniform way. To this end, CYPRESS adopts an existing relative
ranking method [14]. For example, we use the current process
rank id plus or minus a constant value to denote the source
process or the destination process. This method is effective for
most parallel programs, especially stencil applications.

V. DECOMPRESSION AND PERFORMANCE ANALYSIS

Compressed communication traces stored in the CTT by
CYPRESS can be decompressed by traversing the CTT in pre-
order and performing the following tasks depending on the
vertex type: (1) for a loop vertex, iteratively traversing its child
vertices according to the recorded loop count, (2) for a branch
vertex, traversing its child vertices according to the recorded
branch outcome, and (3) for a communication vertex, printing
the communication trace stored in the per-vertex linked list.

Cypress
Traces

Communication
Sequence

Sequential
Computation Time

Network
Parameters

Trace-driven
Simulator

Performance
Prediction

Decompress

PHANTOM
System

Fig. 14. Integrate CYPRESS with a trace-driven simulator.

Communication traces acquired by CYPRESS can be
used for various performance analysis based on communica-
tion traces. As a proof-of-concept prototype, we integrated
CYPRESS with a trace-driven performance simulator, SIM-
MPI [6], as shown in Figure 14. SIM-MPI can simulate
various MPI communication routines. The LogGP communi-
cation model [22] is used to simulate point-to-point routines,
while collective routines are decomposed into point-to-point

148

64 121 256 400
10-1

100

101

102

103

104

105

106

107

108

Tr
ac

e
si

ze
 (K

B
)

Num of Processes

 Gzip
 ScalaTrace
 ScalaTrace2
 ScalaTrace2+Gzip
 Cypress
 Cypress+Gzip

(a) BT

64 128 256 512
100

101

102

103

104

105

106

107

Tr
ac

e
si

ze
 (K

B
)

Num of Processes

 Gzip
 ScalaTrace
 ScalaTrace2
 ScalaTrace2+Gzip
 Cypress
 Cypress+Gzip

(b) CG

48 64 128 256
100

101

102

103

Tr
ac

e
si

ze
 (K

B
)

Num of Processes

 Gzip
 ScalaTrace
 ScalaTrace2
 ScalaTrace2+Gzip
 Cypress
 Cypress+Gzip

(c) DT

64 128 256 512
10-1

100

101

102

103

104

Tr
ac

e
si

ze
 (K

B
)

Num of Processes

 Gzip
 ScalaTrace
 ScalaTrace2
 ScalaTrace2+Gzip
 Cypress
 Cypress+Gzip

(d) EP

64 128 256 512
10-1

100

101

102

103

104

Tr
ac

e
si

ze
 (K

B
)

Num of Processes

 Gzip
 ScalaTrace
 ScalaTrace2
 ScalaTrace2+Gzip
 Cypress
 Cypress+Gzip

(e) FT

64 128 256 512
100

101

102

103

104

105

106

107

108

109

Tr
ac

e
si

ze
 (K

B
)

Num of Processes

 Gzip
 ScalaTrace
 ScalaTrace2
 ScalaTrace2+Gzip
 Cypress
 Cypress+Gzip

(f) LU

64 128 256 512
100

101

102

103

104

105

106

107

Tr
ac

e
si

ze
 (K

B
)

Num of Processes

 Gzip
 ScalaTrace
 ScalaTrace2
 ScalaTrace2+Gzip
 Cypress
 Cypress+Gzip

(g) MG

64 121 256 400
100

101

102

103

104

105

106

107

108

Tr
ac

e
si

ze
 (K

B
)

Num of Processes

 Gzip
 ScalaTrace
 ScalaTrace2
 ScalaTrace2+Gzip
 Cypress
 Cypress+Gzip

(h) SP

Fig. 15. Total communication trace sizes (KB, log-scale) of NPB programs with different compression tools

operations [23]. In addition to decompressed communication
traces, SIM-MPI also needs the sequential computation time of
the target program on a target platform, which can be obtained
by using deterministic replay on a single node of the target
platform [6]. Combining the above results, SIM-MPI predicts
the overall performance for a given parallel program.

VI. IMPLEMENTATION

We implemented the static analysis module of CYPRESS

as a plug-in of the LLVM compiler [19], identifying loop and
branch structures over the control flow graph at the LLVM
intermediate representation (IR) level. Our prototype stores
the program CST in a compressed text file. The runtime
compression library of CYPRESS is implemented with the MPI
profiling layer (PMPI) and is independent of any specific MPI
implementation. We have tested CYPRESS with Intel MPI-4.0,
Intel MPI-4.1, and MPICH2-1.5. Users do not need to manu-
ally modify any application source code to use CYPRESS.

VII. EVALUATION

A. Methodology

We evaluate CYPRESS with the NPB benchmark and a real-
world application, collectively presenting a variety of commu-
nication patterns, to assess the benefits of our approach. We
design several groups of experiments to answer the following
questions:

1) How does the performance of communication trace
compression of CYPRESS compare with that of ex-
isting dynamic methods?

2) What is the compression overhead of CYPRESS com-
pared to dynamic methods, both intra-process and
inter-process?

3) What is the compilation overhead of CYPRESS to
build the CSTs?

4) How to use the compressed traces of CYPRESS to
analyze the communication performance for a given
parallel program?

We use the Explorer-100 cluster system at Tsinghua Uni-
versity as our experimental platform, which has a peak per-
formance of 104TFlops/s. Compute nodes, each with two 6-
core Intel Xeon X5670 processors and 48GB of memory, are
interconnected via the QDR Infiniband network. The operating
system is RedHat Enterprise Linux Server 5.5 and the MPI
library is Intel MPI-4.0.2.

For NAS, we used the NPB 3.3 programs [24], including
BT, CG, DT, EP, FT, LU, MG and SP benchmarks. All
tests use the CLASS D problem size. We also tested with a
real-world application, LESlie3d [25] for computational fluid
dynamics, to demonstrate the effectiveness of using CYPRESS

compressed traces to analyze the communication performance
of a given parallel program. The grid size of LESlie3d is
193× 193× 193.

We compare CYPRESS with the other three techniques,
Gzip, ScalaTrace [14], and ScalaTrace-2 [18]. Gzip is a popular
technique for compressing user documents and data on Linux
systems and it is also the trace compression method used in
the OTF library [26]. ScalaTrace is the state of the art for
lossless dynamic trace compression developed at North Car-
olina State University. ScalaTrace-2 improves the performance
of ScalaTrace by using a loop agnostic inter-node compression
scheme. However, the probabilistic method used in ScalaTrace-
2 only preserves partial communication information and may
lose much information for better compression [18], while
CYPRESS retains trace details. CYPRESS supports two types of
trace compression files, a normal binary file and a compressed
version with Gzip (labeled with CYPRESS+Gzip in the figures).
Gzip does bring extra compression at very small overhead, and
can be integrated into CYPRESS. ScalaTrace-2 does not support
Gzip compression files currently. In order to fairly compare the
results, we add extra Gzip support for ScalaTrace-2 (labeled
with ScalaTrace2+Gzip in the figures).

149

64 121 256 400
0%

2%

4%

6%

8%

10%

12%

14%

16%

M
em

or
y

ov
er

he
ad

 (%
)

Ti
m

e
ov

er
he

ad
 (%

)

Num of Processes

 Time ovhd-ScalaTrace
 Time ovhd-ScalaTrace2
 Time ovhd-Cypress

0%

2%

4%

6%

8%

10%
 Mem ovhd-ScalaTrace
 Mem ovhd-Cypress

(a) BT

64 128 256 512
0%

5%

10%

15%

20%

M
em

or
y

ov
er

he
ad

 (%
)

Ti
m

e
ov

er
he

ad
 (%

)

Num of Processes

 Time ovhd-ScalaTrace
 Time ovhd-ScalaTrace2
 Time ovhd-Cypress

0%

5%

10%

15%

20%
 Mem ovhd-ScalaTrace
 Mem ovhd-Cypress

(b) CG

64 128 256 512
0%

3%

6%

9%

12%

M
em

or
y

ov
er

he
ad

 (%
)

Ti
m

e
ov

er
he

ad
 (%

)

Num of Processes

 Time ovhd-ScalaTrace
 Time ovhd-ScalaTrace2
 Time ovhd-Cypress

0%

1%

2%

3%

4%

5%

6%
 Mem ovhd-ScalaTrace
 Mem ovhd-Cypress

(c) FT

64 128 256 512
0%

10%

20%

30%

40%

50%

60%

70%

80%

Ti
m

e
ov

er
he

ad
 (%

)

Num of Processes

 Time ovhd-ScalaTrace
 Time ovhd-ScalaTrace2
 Time ovhd-Cypress

0%

50%

100%

150%

200%
 Mem ovhd-ScalaTrace
 Mem ovhd-Cypress

M
em

or
y

ov
er

he
ad

 (%
)

(d) LU

64 128 256 512

1%

10%

100%

1000%

M
em

or
y

ov
er

he
ad

 (%
)

Ti
m

e
ov

er
he

ad
 (%

)

Num of Processes

 Time ovhd-ScalaTrace
 Time ovhd-ScalaTrace2
 Time ovhd-Cypress

1%

10%

100%

1000%
 Mem ovhd-ScalaTrace
 Mem ovhd-Cypress

(e) MG

64 121 256 400

0.1%

1%

10%

100%

M
em

or
y

ov
er

he
ad

 (%
)

Ti
m

e
ov

er
he

ad
 (%

)

Num of Processes

 Time ovhd-ScalaTrace
 Time ovhd-ScalaTrace2
 Time ovhd-Cypress

0.1%

1%

10%

100% Mem ovhd-ScalaTrace
 Mem ovhd-Cypress

(f) SP

Fig. 16. Intra-process compression overhead in terms of time and memory (per process) with ScalaTrace and CYPRESS

B. Communication Trace Size

Figure 15 shows the total trace size of NPB programs in
log-scale, collected with different methods. Since Gzip cannot
perform inter-process trace compression, the trace sizes in-
crease linearly with the number of processes. In contrast, both
CYPRESS and dynamic methods (ScalaTrace and ScalaTrace-
2) can get near-constant trace sizes (DT, EP and LU) or sub-
linear scaling of trace sizes (BT, CG, FT, MG and SP) as the
number of processes increases.

For most of NPB programs (DT, FT, LU, MG and SP),
CYPRESS shows an order of magnitude improvement over
ScalaTrace. Although ScalaTrace-2 has improved the compres-
sion ratios over ScalaTrace, CYPRESS outperforms ScalaTrace-
2 for DT, EP, FT and LU. At the same time, Gzip appears
to bring significant improvement in compression effectiveness
for both CYPRESS and ScalaTrace-2. With Gzip incorporated
(the “+Gzip” bars), CYPRESS offers up to an order of mag-
nitude improvement over ScalaTrace-2 for the majority of
NPB programs. The only case where CYPRESS significantly
underperforms is SP, due to its non-uniform communication
patterns and varied message sizes. However, from the analysis
of compression overhead below, ScalaTrace-2 introduces much
more compression overhead than CYPRESS for SP as the
number of processes increases.

Among the NPB codes, MG and SP feature complex
communication patterns, as shown in Figure 17. MG solves
a three-dimensional discrete Poisson equation using a v-cycle
multi-grid method. There is a nested 3D torus for some
particular communication processes, which results in irregular
communication operations between different processes. For ex-
ample, processes of 8-11 and processes of 12-15 have different
communication patterns. SP also presents non-uniform com-
munication patterns between processes. Moreover, for some
loops in SP, the message sizes and the message tags of sending

0 7 14 21 28 35 42 49 56 63
0

7

14

21

28

35

42

49

56

63

Sender Rank

R
ec

ei
ve

r
R

an
k

0

0.5

1

1.5

2

x 10
8

(a) MG

0 7 14 21 28 35 42 49 56 63
0

7

14

21

28

35

42

49

56

63

Sender Rank

R
ec

ei
ve

r
R

an
k

0

0.5

1

1.5

2

2.5

3

3.5

x 10
9

(b) SP

Fig. 17. Communication patterns of MG and SP (64 processes). The gray
level of a cell at the xth row and yth column represents the communication
volume (in Byte) between two processes x and y.

and receiving communications are varied for each process.
Without such information, dynamic methods fail to compress
communications effectively (see MG and SP trace sizes of
ScalaTrace). To address these complex patterns, ScalaTrace-
2 [18] proposes a special algorithm that introduces large
compression overhead. However, CYPRESS is able to acquire
these information automatically from the source codes and
achieve effective trace compression, as discussed further below
in overhead analysis.

C. Trace Compression Overhead

1) Intra-Process Overhead: Figure 16 shows the intra-
process compression overhead in terms of memory and time
for both CYPRESS and dynamic methods. Among the NPB
benchmarks, DT, EP, and FT contain few communication
operations, resulting in very low memory and time overhead
regardless of compression methods. We include only FT to
represent this group.

For time overhead (bars in Figure 16), CYPRESS introduces
very little overhead on the NPB programs, about 1.58% on

150

64 121 256 400 64 128 256 512 64 128 256 512 64 128 256 512 64 121 256 400
10-1

100

101

102

103
In

te
r-

pr
oc

es
s

ov
er

he
ad

 (S
ec

.) ScalaTrace ScalaTrace2 Cypress

BT CG LU MG SP

Fig. 18. Inter-process trace compression overhead (in second, log-scale) with different compression methods

average. The maximum overhead of CYPRESS is 5.18% for
CG on 512 processes. With both ScalaTrace and ScalaTrace-
2, however, the time overhead varies greatly. For example,
ScalaTrace incurs a 400%+ overhead on 512 processes for MG.
This is caused by the complex nested branches in MG to im-
plement different types of message exchange. For ScalaTrace-
2, the time overhead varies from less than 1% to about
60% (LU on 512 processes). In summary, the average intra-
process compression overhead for NPB programs is 51.05%
for ScalaTrace, 9.1% for ScalaTrace-2, and only 1.58% for
CYPRESS.

For memory consumption (line+symbol graphs in Fig-
ure 16), CYPRESS outperforms dynamic methods significantly.
At runtime, CYPRESS only uses extra memory resources to
store the CTT, consuming about 2.2MB (1.79%) memory
for each process of NPB programs on average, and the
memory consumption changes little with increasing number
of processes. ScalaTrace, on the other hand, consumes much
more memory, averaging 34MB (36.31%) per process. Its
memory consumption also increases rapidly with the number
of processes.

2) Inter-Process Overhead: Figure 18 shows the inter-
process compression overhead (in second) on a log-scale for
NPB programs. Due to space limit, we only list the results for
BT, CG, LU, MG and SP, considering the small overhead for
DT, EP, and FT.

CYPRESS shows 1.5 orders of magnitude improvement for
BT and CG, and 2 orders of magnitude improvement for LU
over ScalaTrace and ScalaTrace-2. Because the computational
complexities for CYPRESS and dynamic methods are O(n)
vs. O(n2) (where n is the length of compressed traces per
process), the inter-process overhead is significantly reduced
by CYPRESS. For MG and SP, CYPRESS shows about 2-
5 times improvement over ScalaTrace-2. In summary, the
average inter-process compression overhead for NPB programs
is 170.69% for ScalaTrace, 30.3% for ScalaTrace-2, and 3.29%
for CYPRESS. These results confirm that our method can be
extended to a much larger HPC systems.

TABLE I. COMPILATION OVERHEAD OF CYPRESS (IN SECOND)

Compile Time BT CG DT EP FT LU MG SP

w/o CYPRESS 7.19 0.95 0.40 0.34 1.56 6.57 2.51 7.40
w/ CYPRESS 7.44 1.06 0.45 0.43 1.61 6.73 2.60 7.51
Overhead(%) 3.51 11.20 12.79 27.72 3.21 2.54 3.67 1.51

3) Compilation Overhead of CYPRESS: To build the CST
of an MPI program, we add an extra phase in the LLVM
compiler. Table I shows the compilation overhead for NPB
programs. We can find that for most of NPB programs the
compilation overhead is negligible. The average compilation
overhead is 8.27% for NPB programs. The maximum time to
built the CST is 0.25 seconds for BT.

D. Case Study

32 64 128 256 512

101

102

103

104

105

106

107

C
om

pr
es

se
d

tra
ce

 s
iz

e
(K

B)

Number of Processes

 Gzip
 ScalaTrace
 Cypress

Fig. 19. Compressed communication traces of LESlie3d with Gzip, Scala-
Trace and CYPRESS

In this section, we use a real-world application, LESlie3d,
to demonstrate the use of CYPRESS to analyze a parallel
program performance. LESlie3d (Large-Eddy Simulations with
Linear-Eddy Model in 3D) is a computational fluid dynamics
program used to investigate a wide array of turbulence phe-
nomena, such as mixing, combustion, acoustics, and general
fluid mechanics. Figure 19 shows the trace sizes collected
with different methods. Here CYPRESS brings about 1.5 orders
of magnitude improvement over ScalaTrace, and 4 orders of
magnitude improvement over Gzip.

0 6 12 18 24 30
0

6

12

18

24

30

Sender Rank

R
ec

ei
ve

r R
an

k

0

2

4

6

8

10

12

14

16

x 108

(a) 32 Processes

0 7 14 21 28 35 42 49 56 63
0

7

14

21

28

35

42

49

56

63

Sender Rank

R
ec

ei
ve

r R
an

k

0

1

2

3

4

5

6

7

8

x 108

(b) 64 Processes

Fig. 20. Extracted communication patterns of LESlie3d with CYPRESS traces

151

1) Analyzing Communication Patterns: The basic function
with the compressed traces of CYPRESS is to analyze program
communication patterns. Figure 20 shows the communication
patterns when the number of processes is 32 and 64. We
observe that there is a communication locality in this appli-
cation. For example, the process 0 only communicates with
the processes of 1, 2 and 8. There are only two types of
message sizes, 43KB and 83KB. With this information, we can
perform communication optimization for this application. For
instance, on a non-uniform cluster system, we can improve
program communication performance with process mapping
techniques [27].

32 64 128 256 512
0

200

400

600

800

1000

1200
 Measured Execution Time
 Predicted Execution Time
 Communication Time Percentage

Number of Processes

Ex
ec

ut
io

n
Ti

m
e

(S
ec

.)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
om

m
unication Tim

e Percentage

Fig. 21. Predict execution time of LESlie3d with CYPRESS traces.

2) Performance Prediction: CYPRESS preserves the com-
plete communication sequence of the original traces. We
decompress LESlie3d communication traces and feed them
into the SIM-MPI simulator. The network parameters needed
by the SIM-MPI is acquired using two nodes of the Explorer-
100 cluster. The sequential computation time is acquired with
the deterministic replay technique on a single node of the
Explorer-100 cluster. In Figure 21, SIM-MPI obtains high pre-
diction accuracy with the compressed traces, with an average
prediction error of 5.9%. We can also see that the program
speedup grows slowly as the number of processes increases.
This is because the communication time of LESlie3d increases
with the number of processes. For example, at process 32 ,
the average communication time percentage is only 2.85%,
whereas the communication time percentage reaches 32.47%
at process 512.

VIII. RELATED WORK

Communication traces are widely used to characterize
communication patterns and identify performance bottlenecks
for large-scale parallel applications [1], [2]. Many trace col-
lection tools have been developed, such as Intel ITC/ITA [7],
Vampir [8], TAU [9], Kojak [10] and Scalasca [11]. mpiP [28]
is a popular communication profiling tool, which collects
statistical information for MPI programs and helps developers
analyze communication performance.

Open Trace Format (OTF) [26] is a fast and efficient trace
format library with regular Zlib compression, but it does not
support inter-process communication trace compression, and
so the volume of traces size increases with the number of
processes. Knupfer et al. [29] proposed using compressed
complete call graphs (cCCG) to compress communication
traces. However, their method is post-mortem and original
traces have to be collected.

Noeth et al. [14] proposed a scalable communication trace
compression method, called ScalaTrace. The compression al-
gorithm maintains a queue of MPI events and attempts to
greedily compress the first matching sequence. Their method
extends regular section descriptors (RSD) and power-RSD
(PRSD) to express repeating communication events involved
in loop structures. Since all the compression work is completed
during the program execution, large compression overhead
can be introduced for parallel programs when processing
complex communication patterns, especially for inter-process
trace compression. Wu et al. proposed a novel framework
of ScalaTrace-2 to address the compression inefficiencies of
ScalaTrace [18]. Compared to ScalaTrace, ScalaTrace-2 can
significantly improve compression rates for scientific applica-
tions with inconsistent behavior across time steps and nodes.
However, the inter-process compression process still introduces
large overhead for large-scale parallel applications.

Xu et al. [15] introduced a framework for identifying the
maximal loop nest based on Crochemore’s algorithm. Their
algorithm can efficiently discover long range repeating com-
munication patterns due to outer loops in MPI traces. However,
their algorithm cannot process inter-process trace compres-
sion. Krishnamoorthy et al. [16] augmented the SEQUITUR
compression algorithm for communication trace compression.
Although they employed various optimizations to improve
compression overhead for dynamic compression techniques,
large overhead is still incurred in their system.

Ratn et al. [30] proposed a method for adding timing
information to compressed traces generated by ScalaTrace.
They rely on delta times rather than absolute time stamps
to express similarities for repeating communication patterns.
CYPRESS focuses on trace-driven simulation so it uses two
simple mechanisms of histogram and mean values to represent
communication time. Their work can be integrated with our
work to better record communication time.

Our previous work [31] proposed a slicing technique to
efficiently acquire MPI communication traces on a small-
scale system for a large-scale application, but it does not
compress the collected communication traces. In the future, we
can combine both work to effectively analyze communication
patterns of parallel applications. Shao et al. [17] proposed a
static compiler framework to analyze communication patterns
for parallel applications. However, due to pointer alias and
program input, their method can only identify static and
persistent communication patterns, dynamic communication
behavior cannot be processed using their framework.

IX. CONCLUSIONS

In this paper, we propose a top-down method, called CY-
PRESS, which can effectively compress communication traces
for large-scale parallel applications with very low overhead
through combining static and dynamic analysis. Our approach
leverages a program’s inherent static structure to improve the
efficiency of trace compression. We implement CYPRESS and
evaluate it with several parallel programs. Results show that
our method can improve compression ratios significantly in
the majority of test cases compared with a state-of-the-art dy-
namic method, and only incurs 1.58% and 3.29% overhead on
average for intra- and inter-process compression respectively.

152

To the best of our knowledge, CYPRESS is the first work that
leverages program structure to improve communication trace
compression.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
their insightful comments. We thank Liwei Chen, Yi Yang,
Mingliang Liu, Yan Li, Tian Xiao, Wentao Han, Heng Lin,
Dandan Song for their valuable feedback and suggestions. In
China, this work has been partially supported by the National
High-Tech Research and Development Plan (863 project)
2012AA010901, NSFC projects 61232008 and 61103021,
MSRA joint project FY14-RES-SPONSOR-111. This work
has been also partially supported by the NSF award CCF-
0937908.

REFERENCES

[1] J. S. Vetter and F. Mueller, “Communication characteristics of large-
scale scientific applications for contemporary cluster architectures,” in
IPDPS’02, 2002, pp. 853–865.

[2] D. Becker, F. Wolf, W. Frings, M. Geimer, B. J. Wylie, and B. Mohr,
“Automatic trace-based performance analysis of metacomputing appli-
cations,” IPDPS’07, p. 48, 2007.

[3] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and
A. Purkayastha, “A framework for application performance modeling
and prediction,” in SC’02, 2002, pp. 1–17.

[4] N. Choudhury, Y. Mehta, and T. L. W. et al., “Scaling an optimistic
parallel simulation of large-scale interconnection networks,” in WSC’05,
2005, pp. 591–600.

[5] R. Susukita, H. Ando, and M. A. et al., “Performance prediction of
large-scale parallell system and application using macro-level simula-
tion,” in SC’08, 2008, pp. 1–9.

[6] J. Zhai, W. Chen, and W. Zheng, “Phantom: predicting performance
of parallel applications on large-scale parallel machines using a single
node,” in PPoPP’10. ACM, 2010, pp. 305–314.

[7] Intel Ltd., “Intel trace analyzer & collector. http://www.intel.com/cd/
software/products/asmo-na/eng/244171.htm.”

[8] W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and K. Solchenbach,
“VAMPIR: Visualization and analysis of MPI resources,” Supercom-
puter, vol. 12, no. 1, Jan. 1996.

[9] S. Shende and A. D. Malony, “TAU: The tau parallel performance
system,” International Journal of High Performance Computing Ap-
plications, vol. 20, no. 2, 2006.

[10] B. Mohr and F. Wolf, “KOJAK–A tool set for automatic performance
analysis of parallel programs,” in Euro-Par, 2003.

[11] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, and
B. Mohr, “The Scalasca performance toolset architecture,” Concurrency
and Computation: Practice and Experience, vol. 22, no. 6, pp. 702–719,
2010.

[12] Advanced Simulation and Computing Program, “The asc smg2000
benchmark code, https://asc.llnl.gov/computing resources/purple/
archive/benchmarks/smg/.”

[13] B. J. N. Wylie, M. Geimer, and F. Wolf, “Performance measurement
and analysis of large-scale parallel applications on leadership computing
systems,” Sci. Program., vol. 16, no. 2-3, pp. 167–181, Apr. 2008.

[14] M. Noeth, F. Mueller, M. Schulz, and B. de Supinski, “Scalable
compression and replay of communication traces in massively parallel
environments,” in IPDPS’07, 2007, pp. 1–11.

[15] Q. Xu, J. Subhlok, and N. Hammen, “Efficient discovery of loop nests
in execution traces,” in MASCOTS’10, 2010, pp. 193–202.

[16] S. Krishnamoorthy and K. Agarwal, “Scalable communication trace
compression,” in IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing (CCGrid), 2010.

[17] S. Shao, A. K. Jones, and R. G. Melhem, “A compiler-based communi-
cation analysis approach for multiprocessor systems,” in IPDPS, 2006.

[18] X. Wu and F. Mueller, “Elastic and scalable tracing and accurate replay
of non-deterministic events,” in ICS’13, 2013, pp. 59–68.

[19] “The LLVM compiler framework. http://llvm.org.”

[20] S. S. Muchnick, Advanced Compiler Design and Implementation. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997.

[21] M. Emami, R. Ghiya, and L. J. Hendren, “Context-sensitive inter-
procedural points-to analysis in the presence of function pointers,” in
PLDI’94. ACM, 1994, pp. 242–256.

[22] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman,
“LogGP: Incorporating long messages into the LogP model-one step
closer towards a realistic model for parallel computation,” in SPAA’95.
New York, NY, USA: ACM, 1995.

[23] J. Zhang, J. Zhai, W. Chen, and W. Zheng, “Process mapping for mpi
collective communications,” in Euro-Par’09. Springer, 2009, pp. 81–
92.

[24] D. Bailey, T. Harris, W. Saphir, R. V. D. Wijngaart, A. Woo, and
M. Yarrow, The NAS Parallel Benchmarks 2.0. Moffett Field, CA:
NAS Systems Division, NASA Ames Research Center, 1995.

[25] J. Wei, C. W. Muelder, K.-L. Ma, S. M. Legensky, C. P. Stone,
D. Hiepler, and E. P. Duque, “Ifdtcintelligent in-situ feature detection,
extraction, tracking and visualization for turbulent flow simulations,” in
ICCFD’12, Big Island, Hawaii, July 2012.

[26] A. Knupfer, R. Brendel, H. Brunst, H. Mix, and W. E. Nagel, “Intro-
ducing the open trace format (OTF),” in International Conference on
Computational Science, 2006, pp. 526–533.

[27] H. Chen, W. Chen, J. Huang, B. Robert, and H. Kuhn, “Mpipp: an
automatic profile-guided parallel process placement toolset for smp
clusters and multiclusters,” in ICS’06. ACM, 2006, pp. 353–360.

[28] J. S. Vetter and M. O. McCracken, “Statistical scalability analysis of
communication operations in distributed applications,” in PPoPP’01,
2001, pp. 123–132.

[29] A. Knupfer and W. Nagel, “Construction and compression of complete
call graphs for post-mortem program trace analysis,” in ICPP’05,
Washington, DC, USA, 2005, pp. 165–172.

[30] P. Ratn, F. Mueller, B. R. de Supinski, and M. Schulz, “Preserving time
in large-scale communication traces,” in ICS’08. New York, NY, USA:
ACM, 2008, pp. 46–55.

[31] J. Zhai, T. Sheng, J. He, W. Chen, and W. Zheng, “FACT: Fast com-
munication trace collection for parallel applications through program

slicing,” in SC’09, 2009.

153

