
Performance Prediction for Large-Scale Parallel
Applications Using Representative Replay

Jidong Zhai, Wenguang Chen, Weimin Zheng, and Keqin Li, Fellow, IEEE

Abstract—Automatically predicting performance of parallel applications has been a long-standing goal in the area of high performance

computing. However, accurate performance prediction is challenging, since the execution time of parallel applications is determined by

several factors, such as sequential computation time, communication time and their complex interactions. Despite previous efforts,

accurately estimating the sequential computation time in each process for large-scale parallel applications remains an open problem.

In this paper, we propose a novel approach to acquiring accurate sequential computation time using a parallel debugging technique called

deterministic replay. Themain advantage of our approach is that we only need a single node of a target platform but the whole target

platform does not need to be available. Therefore, with this approach we can simply measure the real sequential computation time on a

target node for each process on by one. Moreover, we observe that there is great computation similarity in parallel applications, not only

within each process but also among different processes. Based on this observation, we further propose representative replay that can

significantly reduce replay overhead, because we only need to replay partial iterations for representative processes instead of all of them.

Finally, we implement a complete performance prediction system, called PHANTOM, which combines the above computation-time

acquisition approach and a trace-driven simulator. We validate our approach on both traditional HPC platforms and the latest Amazon

EC2 cloud platform. On both types of platforms, prediction error of our approach is less than 7 percent on average up to 2,500 processes.

Index Terms—Deterministic replay, high performance computing, MPI, parallel applications, performance prediction, trace-driven simulation

Ç

1 INTRODUCTION

1.1 Motivation

AUTOMATICALLY predicting and modeling performance
of parallel applications has been a long-standing goal

in the area of high performance computing (HPC) [1], [2],
[3], [4], [5], [6], [7], [8]. Accurate performance prediction of
parallel applications has many important uses.

Today, large-scale parallel computers consist of tens of
thousands of processor cores and cost millions of dollars
which take years to design and implement. For designers of
these computers, it is critical to answer the following ques-
tion at the design phase.

What is the performance of application X on a parallel machine
Y with 10,000 nodes connected by network Z?

Accurate answer to the question above enables designers
to evaluate various design alternatives and make sure
which design can meet the performance goal.

Recently, with introduction of cloud platforms targeting
HPC applications, such as the Amazon EC2 cluster compute
instances (CCIs) [9], public clouds have become a cost-
effective choice for many scientific application users and
developers [10]. To fit different use cases, public clouds pro-
vide a wide selection of optimized instance types. For exam-
ple, Amazon EC2 provides a series of instances varying in

CPU, memory and network capacity and gives users flexibil-
ity to choose the most appropriate mix of resources for their
applications. However, for users on clouds, they always ask
the following question to make a cost-effective decision.

Which type of cloud instances should I choose or how many
instances should I apply for to execute my application?

However, accurate performance prediction of parallel
applications1 is difficult, because execution time of large
parallel applications is determined by sequential computa-
tion time in each process, communication time, and their
convolution. Due to complex interactions between compu-
tation and communication, prediction accuracy can be hurt
significantly if either computation or communication time is
estimated with notable errors. Despite previous efforts, it
remains an open problem to estimate the sequential compu-
tation time in each process accurately and efficiently for
large-scale parallel applications.

A lot of approaches have been proposed to estimate
the sequential computation time for parallel applications.
For model-based methods [1], [2], application signatures,
including integer and floating-point instruction count,
memory access patterns, etc., are collected on a host platform
through instrumentation or hardware performance coun-
ters. Then a parameterized model is constructed to estimate
the time for each of these operations according to the
parameters of a target platform and give the estimation for
each sequential computation unit.

However, with rising architecture and software complex-
ity, the prediction accuracy of model-based approaches is

� J. Zhai, W. Chen, and W. Zheng are with the Department of Computer
Science and Technology, Tsinghua University, Beijing 100084, China.
E-mail: {zhaijidong, cwg, zwm-dcs}@tsinghua.edu.cn.

� K. Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12561. E-mail: lik@newpaltz.edu.

Manuscript received 21 Sept. 2014; revised 23 Aug. 2015; accepted 25 Aug.
2015. Date of publication 16 Sept. 2015; date of current version 15 June 2016.
Recommended for acceptance by J.D. Bruguera.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2015.2479630

1. Because message passing interface (MPI) is the dominant pro-
gramming model in large-scale high performance computing, we use
parallel applications to indicate parallel applications written in MPI in
this paper. However, our approach is applicable to other message pass-
ing programming models.

2184 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 7, JULY 2016

0018-9340� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:

becoming increasingly compromised. For example, an out-
of-order issue super-scalar processor can execute multiple
instructions in parallel. Also, contention for shared resour-
ces, such as shared cache and memory bus, on multi-core
platforms can result in complex program behavior. These
factors make model-based approaches difficult to estimate
the accurate sequential computation time.

Some researchers [3], [4] measure the sequential compu-
tation time of weak-scaling applications through executing
the applications on a small-scale system of the target plat-
form. For the weak-scaling applications, where the problem
size is fixed for each process and the sequential computation
does not change with the number of processes, the measure-
ment above is sufficient to acquire the accurate computation
performance.

However, the measurement-based approach fails to deal
with large strong-scaling applications without the full-scale
target platform, where the whole problem size is fixed and
the sequential computation varies with the number of pro-
cesses. For the strong-scaling applications, a few work [5],
[11] uses regression-based approaches to extrapolating the
computation performance for a large problem size. Unfortu-
nately, the extrapolation is not always effective due to the
non-linear behavior in real applications [12].

To conclude, previous approaches are not able to per-
form accurate sequential computation time estimation at
affordable cost and time, especially for large strong-scaling
parallel applications.

1.2 Our Approach and Contributions

In this paper, we propose a novel approach based on
deterministic replay to solve the problem above. For read-
ers not familiar with deterministic replay, please refer to
Section 4.1 and [13], [14], [15], [16]. Our paper makes four
main contributions.

1. We first introduce deterministic replay to measure the
sequential computation time of strong-scaling applica-
tions only using a single node of the target platform. A
main challenge of the previous measurement-based
method is its inability to separately execute partial
processes of a large strong-scaling application for
effective measurement. As a result, the traditional
method cannot obtain accurate sequential computa-
tion time without a full-scale target platform. To
address this problem, we employ a parallel debug-
ging technique, called deterministic replay, which
enables us to execute any single process of a parallel
application on a single target node without a full-
scale target platform. So we can simply measure the
real sequential computation time only with a target
node for each process one by one.

2. We employ sub-group replay to capture the effect of
resource contention. On currently multi-core servers,
resource contention can significantly affect the appli-
cation performance. To capture the contention effect
of shared resources within a server, we propose sub-
group replay, which replays number-of-cores pro-
cesses simultaneously instead of one process to
obtain accurate sequential computation time. More-
over, it should be emphasized that the replayed

processes are executed at full speed. According to
our experimental results, the replay-based execution
is about two orders of magnitude faster than cycle-
accurate simulation.

3. We further propose representative replay to significantly
reduce replay overhead. Although with the approach
proposed above, we can obtain accurate sequential
computation time with a single node of the target
platform, it still requires long measurement time if
we replay a program with thousands of processes on
a small number of target nodes. To address this
problem, we further propose representative replay,
which is based on our observation that computation
behavior in parallel applications shows great similar-
ity, not only within each process but also among
different processes. Based on this observation, we
partition the processes of a parallel application into a
few groups, where processes in each group have
similar computation behavior, and select representa-
tive processes from each group. For each selected
process, we also replay partial iterations if there is
also computation similarity between different itera-
tions. Representative replay can significantly reduce
replay overhead because we only need to execute
partial iterations for selected parallel processes
instead of all of them.

4. We integrate the computation time acquisition approach
above with a trace-driven network simulator for effective
performance prediction. We implement an automatic
performance prediction system, called PHANTOM,
which can predict application performance without a
full-scale target platform. We validate our system on
both traditionalHPC platforms and the latest Amazon
EC2 cloud platform [9]. On both types of platforms,
prediction error of our approach is less than 7 percent
up to 2,500 processes on average. We also compare
PHANTOM with a cross-platform prediction method [8]
and a regression-based prediction approach [5].

A preliminary version of this work has been published in
PPoPP [17]. In this version, we improve the representative
replay within a computing server node. We further reduce
the replay overhead through exploring repetitive computa-
tion patterns within each process and propose a method of
partial recording and replaying. Moreover, we extend our
experimental results to 10 times the scale of the earlier ver-
sion. We also validate our approach on the latest cloud plat-
form with more applications. At last, we demonstrate the
usage of PHANTOM with two applications.

2 BASE PREDICTION FRAMEWORK

We use a trace-driven simulation approach for the perfor-
mance prediction. In our framework, we split the parallel
applications into computation and communication parts,
predict computation and communication performance
separately and finally use a simulator to convolve them
to get the execution time of the whole parallel application.
It includes the following key steps.

1. Collecting computation and communication traces. We
generate communication traces of parallel applica-
tions by intercepting all communication operations

ZHAI ETAL.: PERFORMANCE PREDICTION FOR LARGE-SCALE PARALLEL APPLICATIONS USING REPRESENTATIVE REPLAY 2185

for each process, and mark computations between
communication operations as sequential computa-
tion units. The purpose of this step is to separate
communications and computations in parallel appli-
cations to enable us to predict them separately. Fig. 1
shows a simple MPI program and its computation
and communication traces are given in Fig. 2a for
two processes (The elapsed time for the kth compu-
tation unit of process x is denoted by CPU_Burst

(x,k).).
It should be noted that we only need partial com-

munication information (e.g., message type, message
size, source and destination etc.) and interleave of
communication and computation in this step. All
temporal properties are not used in later steps of per-
formance prediction. A common approach of gener-
ating these traces is to execute parallel applications
with instrumented MPI libraries. To further reduce
the overhead in this step, ScalaExtrap [18] and
FACT [19] can be used to generate traces of large-scale
applications on small-scale systems.

2. Acquiring the sequential computation time for each pro-
cess.The sequential computation time for each MPI
process is measured through executing each process
separately on a node of the target platform with
replay techniques. We will elaborate it in Sections 4
and 5. For now, we just assume that we acquire the
accurate computation time for each MPI process that
can be filled into the traces generated in step 1.
Fig. 2b shows the acquired sequential computation
time for process 0 of the program in Fig. 1.

3. Using a trace-driven simulator to convolve communica-
tion and computation performance. Finally, a trace
driven simulator, called SIM-MPI, is used to con-
volve communication and computation perfor-
mance. As shown in Fig. 2c, the simulator reads
trace files generated in step 1, the sequential compu-
tation time acquired in step 2, and the network
parameters of the target platform, predicts the com-
munication performance of each communication
operation and convolves it with the sequential com-
putation time to predict the execution time of the
whole parallel application. We will elaborate this
step in Section 6.

3 DEFINITIONS

To illustrate our method more clearly, we give two key defi-
nitions for parallel applications. One is communication
sequence, the other is sequential computation vector.

Definition 1 (Communication Sequence). A communication
sequence is a representation of communication patterns for a
given parallel program, which records the main message infor-
mation of each communication operation in chronological order
for each parallel process.

Communication sequence is first introduced by Shao
et al. [20], which describes intrinsic communication charac-
teristics of parallel applications. In our earlier conference
version [17], we give an example of communication
sequence for a simple parallel application.

Definition 2 (Sequential Computation Vector). A sequential
computation vector is a time vector that is used to record the
sequential computation performance for a given process of a
parallel application. Each element of the vector is the elapsed
time of the corresponding computation unit.

The sequential computation vector for process x is
denoted by cx: cx ¼ ½t0; t1; . . . ; tm�, where tk ¼ ðBkþ1 �EkÞ;
k � 0, and Bk and Ek are the time-stamps of entry and exit
points for the kth communication operation respectively in
process x. The dimension of the computation vector is the
number of segmenting computation units for a given pro-
cess, denoted by dimðcÞ.

4 SEQUENTIAL COMPUTATION TIME

In this section, we present our basic approach to acquiring
the sequential computation time for a parallel application
with deterministic replay.

4.1 Deterministic Replay

Deterministic replay [13], [14], [15], [16] is a powerful
technique for debugging parallel applications. Deterministic
replay normally includes two phases: record and replay. Dur-
ing the record, it records all return values and/or orders for

Fig. 1. An example of Fortran MPI program.

Fig. 2. Base performance prediction framework.

2186 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 7, JULY 2016

irreproducible function calls, such as incoming messages,
during the application execution. During the replay, it replays
faulty processes to any state of the recorded execution. Data
replay [14], [16] is an important type of the deterministic
replay for parallel applications. It records all incoming mes-
sages for each process during the application execution. With
this approach, developers can execute any single process sep-
arately for debugging during the replay rather than have to
execute the whole parallel application. We leverage this merit
of data replay to execute any single process on one node of
the target platform for performance prediction.

4.2 Acquiring Sequential Computation Time

In contrast to previous methods, our approach is based on
data-replay techniques to acquire sequential computation
time. Our replay-based approach requires two platforms.
One is the host platform, which is used to collect message
logs of applications like traditional data-replay techniques.
The other is one single node of the target platform on which
we will predict application performance. For homogeneous
HPC systems, only one node of the target platform is suffi-
cient for our approach. More nodes can be used to accelerate
the replay. If the target platform is heterogeneous, at least
one node for each architecture type should be available.

As shown in Fig. 3, there are two main steps to acquire
the sequential computation time for a given application.

1) Building message-log database: Record all necessary
information as in the data-replay tools when execut-
ing the application on the host platform and store
this information to a message-log database. This step
is only done once and the message-log database can
be reused in the future prediction.

2) Replaying each process separately: Replay each process
of the application on a single node separately and
collect the elapsed time for each sequential computa-
tion unit. We will show more details below.

Building message-log database: This step is the same as the
record phase in the data replay. All irreproducible informa-
tion should be recorded during the application execution.
We maintain a message-log database to record the data for
different applications, which can be reused in the future
prediction. This step can also be done during application
development, which is reasonable when data-replay techni-
ques are used for debugging.

In our data-replay system, we record the information
above using the MPI profiling interface (PMPI), which
requires no modifications of either applications or MPI
libraries. During the record, our system intercepts each
MPI computation operation, and then records the returned
values and memory changes into log files, including all

incoming messages of each process. For receive operations,
we record contents of received messages, the return values
of functions, and MPI routine status. For send operations,
only the returned values of functions are recorded. For non-
blocking receive operations, we maintain a table to map
request handler to corresponding receive buffer and record
message contents until invocation of corresponding MPI_-

Wait or MPI_Waitall. Fig. 4 gives an example to record
logs for MPI_Recv routine.

Replaying each process separately: To acquire the sequential
computation time for a given process, we just need to exe-
cute the process separately rather than execute the whole
parallel application. The data-replay technique is able to
execute particular process during the replay. The message-
log database records the necessary information for replay-
ing each process. To collect the sequential computation
time, we insert two timing functions at the entry and exit
points of communication operations in the replay system.
An analysis program is used to calculate the final sequential
computation time for each process. Fig. 5 shows an example
for replaying MPI_Recv routine and recording time-
stamps. Bk and Ek are the time-stamps of entry and exit
points for the kth communication operations.

4.3 Subgroup Replay

On multi-core platforms or symmetric multi-processor
(SMP) servers, resource contention can significantly affect
the application performance. For example, Fig. 6 shows
sequential computation performance of process 0 for NPB
CG with eight processes when there are different numbers
of processes executing on one server node. The server is
equipped with two-way quad-core Intel Xeon E5345 pro-
cessors. Note that when there are more processes executing
on one server node, the sequential computation perfor-
mance of process 0 changes dramatically.

To accurately capture the effect of resource contention on
the application performance, we propose a method of sub-
group replay in PHANTOM. During the replay, we replay a sub-
group of processes simultaneously according to the number
of processes executing on one node of the target platform.
To reduce cost of recording message logs, we also integrate
the subgroup reproducible replay technique [13] into

Fig. 3. Acquire the sequential computation time. Fig. 4. An example of recording logs for MPI_Recv.

Fig. 5. Replay MPI_Recv and record time-stamps.

ZHAI ETAL.: PERFORMANCE PREDICTION FOR LARGE-SCALE PARALLEL APPLICATIONS USING REPRESENTATIVE REPLAY 2187

PHANTOM. We let the processes executing on one node as a
replay subgroup. Only the communications crossing sub-
groups are recorded, while the communications within a
subgroup are not recorded.

Besides reducing the cost of recording the message log, a
main advantage of subgroup replay is that the program exe-
cution mode during the replay is very similar to the real
execution. The reason is that in subgroup replay intra-node
communications are the same with the original execution
and only the inter-node communications need to be read
from the message log. As a result, the effect of resource con-
tention can be accurately captured during the replay.

5 REPRESENTATIVE REPLAY

5.1 Challenges for Large-Scale Applications

The basic approach can already acquire the accurate
sequential computation time for a strong-scaling application
on a single node. However, there are two main challenges
for large-scale parallel applications.

1. Large time overhead: For a parallel application with n
processes, assuming that we replay one process at a
time and the average time for replaying one process is
T , it will take nT to obtain all the computation perfor-
mance. However, this time complexity is impractical
for an applicationwith tens of thousands of processes.

2. Huge log size: As the data replay technique needs to
record all the contents of incoming messages for
each process, the log size will become increasingly
large with the rising number of processes.

5.2 Observation

In this paper, we observe that there are two important com-
putation properties in MPI-based parallel applications.

1. Intra-process repetitive Computation: For most of MPI-
based parallel applications, iterative programming
models are always used to solve a complex scientific
problem. For each iteration, the application always
shows periodic computation behavior.

2. Inter-process similar computation: Due to the single
program multiple data (SPMD) characteristic of most
MPI applications, programprocesses can be clustered
into a few groups and the processes in each group
execute the same program branch but with unique
input data. These processes in the same group always
have very similar computation behavior.

Based on our observation above, computation patterns are
very common for most MPI applications. Several previous
studies for analyzing MPI applications have also shown the
similar computation behavior [3], [4], [6], [12]. For example,
in NPB MG (CLASS ¼ C) with 16 processes, the sequential
computation time within a process shows great repetitive-
ness and has a periodic pattern every 500 computation units.
Also, the computation behavior of a group of processes 0-3,
8-11 shows great similarity, and that of another group of pro-
cesses 4-7, 12-15 also shows great similarity. The computa-
tion behavior of processes between two groups shows great
difference. For the purpose of clear presentation, we only list
the computation behavior of processes 10, 11, 13 in Fig. 7.

5.3 Measuring Computation Similarity

To measure the similarity degree of computation behavior
for two given sequential computation vectors, we use vector
distance to quantify them. There are several methods to cal-
culate the distance of two vectors, such as euclidean dis-
tance and Manhattan distance. In this paper, we adopt
Manhattan distance to measure the distance of two vectors.
The reason is that it weights the difference for each dimen-
sion of two vectors more heavily. Hence, it is consistent
with our objective of identifying computation patterns with
the most similar behavior. For sequential computation vec-
tors cx and cy, the distance is calculated as below:

Distðcx; cyÞ ¼
Pm

i¼1 jcxi � cyi j if dimðcxÞ ¼ dimðcyÞ
1 if dimðcxÞ 6¼ dimðcyÞ;

�
(1)

where cxi and cyi are the ith elements of the sequential com-
putation vectors. dimðcxÞ and dimðcyÞ are vector dimen-
sions. When the dimensions of two sequential computation
vectors are not equal, our trace-driven simulator regards
them as different computation patterns. Hence, we set their
distance infinity.

5.4 Representative Replay

Based on the observation above, we further propose repre-
sentative replay to address the challenges listed in Section 5.1.
Our idea is to partition the processes of applications into a
number of groups so that the computation behavior of pro-
cesses in the same group are as similar as possible, and
select a representative process from each group. For the
selected process, we only record and replay partial itera-
tions according to applications’ computation patterns. The
acquired sequential computation time during the replay
will be used for other processes in the same group.

Fig. 6. Sequential computation performance of process 0 for NPB CG
(CLASS ¼ B, NPROCS ¼ 8) when there are different numbers of pro-
cesses executing on one server node.

Fig. 7. The sequential computation time for NPB MG (CLASS ¼ C,
NPROCS ¼ 16). The computation behavior of processes 10, 11 shows
great similarity, while that of processes 11, 13 shows great difference.

2188 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 7, JULY 2016

5.4.1 Selecting Representative Processes

To identify the similar processes, we employ clustering
techniques, which are very effective to analyze the complex
nature of multivariable relationships. There are two main
clustering approaches, i.e., K-means clustering and hierar-
chical clustering. K-means is efficient in computing, but it
requires an a priori number for classification. It is suitable
for users who have well understood applications’ computa-
tion patterns. Hierarchical clustering is a general method
for users with little knowledge about the application, which
forms a final cluster through hierarchically grouping sub-
clusters with a predefined distance metric. Both clustering
techniques are supported in our framework.

The algorithm of the hierarchical clustering used in
PHANTOM is listed in Algorithm 1. Complete linkage is used
to measure inter-cluster distance in the hierarchical cluster-
ing (The complete linkage denotes the distance between the
furthest points in two clusters.). The hierarchical clustering
finally outputs a dendrogram, in which each level indicates
a merge of the two closest sub-clusters. Fig. 8 shows the
dendrogram for NPB MG with 16 processes. Depending on
expected accuracy of final prediction, a horizontal line is
drawn in the dendrogram to partition processes into a num-
ber of groups. For each group, the process that is closest to
the center of the cluster is selected as representative process.
Combining with the subgroup replay, we also need to
replay those adjacent processes within the same node. Nor-
mally, we replay number-of-cores processes simultaneously
to capture the resource contention. Although we replay
more processes than representative processes, it does not
introduce extra overhead due to concurrent execution.

Algorithm 1.Hierarchical Clustering in PHANTOM

1: procedure CLUSTERING

2: Assign each process to its own cluster
3: Compute the inter-cluster distance matrix by Formula 1
4: repeat
5: Find the most closest pair of clusters (have minimal distance)

and merge them into a new cluster
6: Re-compute the distance matrix between new cluster with

each old cluster using complete linkage
7: until Only a single cluster is left
8: end procedure

If the target platform has more processor cores than the
host platform, we need to use the communication traces of
the large-scale target platform acquired on the small-scale
host platform to choose the representative processes.

Our approach is to partition parallel processes into a num-
ber of groups so that the processes in the same group have
completely identical communication sequences (e.g., mes-
sage type, message size, message source and destination,
and message tag etc.), which can be extracted from the col-
lected communication traces. Moreover, we also need to
perform computation similarity analysis on the host plat-
form for the small-scale processes using the clustering algo-
rithms and validate the above partition results.

5.4.2 Partial Recording and Replaying

To further reduce the cost of recording and replaying repre-
sentative processes, we explore repetitive computation pat-
terns within each process and propose a method of partial
recording and replaying. Our idea is that we only record par-
tial iterations of the representative processes when periodic
computation patterns exist in these processes and use the
acquired computation time of these iterations to predict the
whole application performance.

Our method includes the following key steps. First, we
collect communication traces for the representative pro-
cesses, which record the message type, size, source, destina-
tion, and so on. Second, we use a sliding window to traverse
the communication traces and identify repeated communi-
cation patterns. Third, we calculate computation similarity
for those sequential computation vectors within the repeated
communication patterns. Finally, according to the prediction
precision, we decide whether the partial recording mecha-
nism is enabled. We also need to record total iteration count
and recorded iteration count for performance prediction.

We use an example to describe the method above. In
Fig. 9, we list communication traces for one process of a sim-
ple MPI program. c0, c2ðkÞ, and c3ðkÞ (0 � k < n) denote
the sequential computation time between communication
operations. We can identify that [MPI_Send, MPI_Recv]

is a repetitive communication pattern in this process. ck is
the computation vector within this communication pattern,

ck ¼ ½c2ðkÞ; c3ðkÞ� ð0 � k < nÞ. We calculate computation
similarity for continuous computation vectors using
Equation (1). We enable partial recording and replaying, if the
sum of the vector distances is less than a predefined thresh-

old defined in Equation (2), i.e.,
Pn�1

k¼0 Distðck; ckþ1Þ � L,
where L is defined below:

L ¼ k%
1

n

Xn

x¼1

Xm

i¼1

cxi : (2)

6 CONVOLVING COMPUTATION AND

COMMUNICATION PERFORMANCE

In order to convolve computation and communication per-
formance, we design and implement a trace-driven simula-
tor, called SIM-MPI. SIM-MPI consumes computation and
communication traces of a given parallel application and

Fig. 8. Acquired dendrogram for NPB MG (CLASS ¼ C).

Fig. 9. Identifying periodic computation patterns.

ZHAI ETAL.: PERFORMANCE PREDICTION FOR LARGE-SCALE PARALLEL APPLICATIONS USING REPRESENTATIVE REPLAY 2189

the network parameters of the target platform and outputs
the execution time of the application.

For the underlying machine model, we extend
LogGP [21] model, considering synchronization overhead
and overlap between computation and communication in
MPI applications. The LogGPmodel abstracts the communi-
cation performance by five parameters: communication
latency (L), overhead (o), bandwidth for small messages
(1=g), bandwidth for large messages (1=G), and the number
of processors (P). The gap (g) has little effect on the commu-
nication cost for high-level communication routines. There-
fore, we disregard g in SIM-MPI. We add two additional
parameters in LogGP model, the synchronization overhead
(syn) and the overlap length (overlap).

SIM-MPI supports two important communication proto-
cols, i.e., eager and rendezvous. For the eager protocol, mes-
sages are transmitted without regard to the receive process’s
state. If a matching receive operation has not been posted,
messages need to be buffered at the receive process. In SIM-
MPI, we distinguish send overhead and receive overhead, os
and or. Therefore, the minimal communication overheads
incurred by the send and receive processes are os and or
respectively. The total end-to-end communication cost of
sending and receiving a message can be modeled as
os þGðK � 1Þ þ Lþ or (K is message size). In Fig. 10a, Ts

and Tr are arrival times for send and receive operations. If
the receive operation arrives early, the synchronization over-
head, syn, is incurred at the receive process. In both send
and receive processes, there isGðK � 1Þ þ L communication
time that can be overlapped with useful computation.

For the rendezvous protocol, it needs a negotiation for
the buffer availability before messages are actually trans-
ferred. We assume that communication overhead for send-
ing or receiving a control message is o0. Therefore, the
communication overheads introduced at send and receive
processes are 2ðo0 þ Lþ o0Þ þ os and o0 þ o0 þ Lþ o0 þ os þ
GðK � 1Þ þ Lþ or respectively. If synchronization over-
head is not introduced, the total end-to-end communication
cost is 2ðo0 þ Lþ o0Þ þ os þGðk� 1Þ þ Lþ or. Similarly, if
the receive operation arrives early, the synchronization
overhead, syn, is incurred at the receive process. Otherwise,
the synchronization overhead is introduced at the send pro-
cess. There is Lþ o0 þ os þGðK � 1Þ þ L communication

time that can be overlapped at the receive process and
2ðo0 þ LÞ þGðK � 1Þ þ L at the send process (denoted by
overlap in Fig. 10b).

For the sequential computation time, SIM-MPI replicates
the computation time of representative processes for other
processes in the same group. For each process, SIM-MPI
maintains a virtual clock, stating from zero. SIM-MPI adds
the sequential computation time and the communication
overhead to the virtual clock based on aforementioned com-
munication protocols. When partial recording and replaying is
enabled, SIM-MPI needs to calculate the execution time with
the recorded iteration count and the total iteration count.
Finally, it outputs the execution time for each process.

In most of MPI implementations, non-blocking communi-
cations are used to achieve computation and communication
overlap. However, different MPI implementations can cause
different overlap ratios. These factors have been considered
in SIM-MPI. Furthermore, collective communications are
simulated through decomposing them into a series of point-
to-point communications according to their algorithms [22].

7 PHANTOM PREDICTION FRAMEWORK

Fig. 11 shows overall performance prediction framework,
called PHANTOM. PHANTOM is an automatic tool chain not
requiring users to understand the detailed algorithm or
implementation of a given parallel application, and it consists
of threemainmodules,CompAna,CommAna, andNetSim.

CompAna module is responsible for acquiring the sequen-
tial computation time for each process. First, it acquires
communication traces and computation patterns for a given
parallel application. The computation patterns of each pro-
cess are collected on a host platform. Second, it analyzes
computation similarity and selects representative processes.
Note that if the target platform has more processor cores
than the host platform, we need to combine both the compu-
tation similarity patterns acquired on the host platform and
the communication sequences for the large-scale target plat-
form to decide the representative processes. Third, for the
selected representative processes, it identifies periodic com-
putation patterns within these processes and determines
whether partial recording and replaying is enabled. Fourth,
it builds the message-log database for the representative
processes on the host platform. Finally, it uses a single node
of the target platform to replay representative processes
and outputs the computation traces. CommAna module is

Fig. 10. Convolve computation and communication in SIM-MPI.

Fig. 11. Overview of PHANTOM.

2190 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 7, JULY 2016

responsible for collecting communication traces. The com-
munication traces can be acquired using the traditional trac-
ing methods or any recent work such as ScalaExtrap [18] and
FACT [19]. In the NetSim module, the computation and com-
munication traces generated by previous two modules are
fed into SIM-MPI simulator. SIM-MPI outputs the final per-
formance prediction result of the application.

8 EVALUATION

8.1 Methodology

Experimental Platforms. Table 1 shows the experimental
platforms used to evaluate our approach. For traditional
HPC platforms, we use six platforms with a variety of sys-
tem configurations, Nebulae, Dawning, DeepComp-F,
DeepComp-B, Explorer, and Explorer-100. Among these
systems, Nebulae was ranked number 2 in the June 2010
TOP500 list. For cloud platforms, we use the latest Amazon
EC2 platform, with node type cc2.8xlarge of CCIs [9]. Both
Explorer and Explorer-100 are used as the host platforms to
collect the message logs and the message traces.

Benchmarks. We evaluate PHANTOM with 6 NPB pro-
grams [23], eight applications of the SPEC MPI2007 bench-
mark suite [24], ASCI Sweep3D [25], and NWChem [26]. For
NPB programs, the version is 3.3 and input data set is CLASS
E. For SPEC MPI2007, we use the medium-sized reference
configuration. For Sweep3D, the grid size is 512� 512� 200.
For NWChem, the input set is c240_pbe0.nw.

Comparison. In this paper, we compare the prediction
accuracy of PHANTOM with two state-of-the-art approaches, a
cross-platform prediction proposed by Yang et al. [8] and a
regression-based model proposed by Barnes et al. [5].

Cross-platform performance prediction utilizes partial
execution for a limited number of timesteps to compute the
relative performance across platforms for an application.
This novel approach is observation-based. On real plat-
forms, this method demonstrates very high accuracy at a
low cost for several real-world applications. In this paper,
we implement two strategies of the cross-platform predic-
tion to compute the relative performance. One is using a full
target platform and the other is using a subset of the target
platform (256 processors). We use Explorer-100 as the host
platform and Nebulae as the target platform.

Regression-based model uses several program executions
on a small subset of the processors to predict the execution
time on larger numbers of processors. They explore three dif-
ferent regression techniques for effective prediction and show
that the lowest root-mean-squared-error generally provides
the best prediction. In this paper, we repeat different regres-
sion approaches and only report their best result for each case.

8.2 Sequential Computation Time

8.2.1 The Number of Representative Replay Groups

Table 2 shows the results of the number of process groups
that have similar computation behavior for each program
with different numbers of processes (For BT and SP, the
number of processes is 256, 400, 1,024, 1,600, and 2,500.).
The grouping strategy is described in Section 5.4.1. The
computation patterns of the applications are collected on
DeepComp-B platform. The results can be classified into three
categories: 1) For BT, CG, EP and SP, all the processes have
the similar computation behavior for different numbers of
processes. 2) For LU and Sweep3D, the number of groups
keeps constant with the number of processes. 3) For MG,
the number of groups increases with the number of pro-
cesses. However, the number of groups grows much slower
than the number of processes. The experimental results con-
firm our observation that most processes in parallel pro-
grams have the similar computation behavior.

An interesting finding observed in our experiments is
that the processes having completely identical communica-
tion sequences always process the same amount of compu-
tation and therefore have similar computation behaviors.
For example, Fig. 12 lists partial communication sequences
for LU with 16 processes. We put the processes that have
identical communication sequences into the same group.
There are nine groups in total. After measuring computa-
tion similarity for each group, we find that the processes in
the same group also have similar computation behavior.
Based on this observation, when the host platform does
not have enough processor cores to obtain the sequential
computation vector, we can leverage the communication
sequences to group parallel processes in MPI applications.

8.2.2 Validation of Sequential Computation Time

We validate all the sequential computation time acquired
using our approach with the real sequential computation
performance measured on the target platform. Results show
that our approach can get accurate sequential computation
time. The average error for the acquired sequential

TABLE 1
Experimental Platforms Used in the Evaluation

System Amazon EC2 Nebulae Dawning DeepComp-F DeepComp-B Explorer Explorer-100

CPU type Intel E5-2670 Intel X5650 AMD 2350 Intel X7350 Intel E5450 Intel E5345 Intel E5-2670
CPU speed 2.6 GHz 2.66 GHz 2.0 GHz 2.93 GHz 3.0 GHz 2.33 GHz 2.6 GHz
cores/node 16 12 8 16 8 8 16
nodes 8 209 32 16 128 32 100
Memory 60.5 GB 24 GB 16 GB 128 GB 32 GB 8 GB 32 GB
Network 10 G.E. IB QDR IB DDR IB DDR IB DDR IB DDR IB QDR
Shared FS NFS Lustre NFS StorNext StorNext NFS NFS

TABLE 2
The Number of Representative Replay Groups

Proc. # BT CG EP LU MG SP Sweep3D

128 1 1 1 9 12 1 9
256 1 1 1 9 18 2 9
512 1 1 1 9 27 1 9
1,024 1 1 1 9 36 1 9
2,048 1 1 1 9 48 1 9

ZHAI ETAL.: PERFORMANCE PREDICTION FOR LARGE-SCALE PARALLEL APPLICATIONS USING REPRESENTATIVE REPLAY 2191

computation time is less than 5 percent for all the programs.
The main difference between the replay-based execution
with the normal execution is the sources of incoming
messages. During the replay-based execution, received mes-
sages are read from the message logs. We find that the oper-
ations of reading logs has little effect on the application
performance. The subgroup replay can effectively capture
computation contention within one server node. In the next
Section, we will further show detailed results of prediction
accuracy using the acquired sequential computation time.

8.2.3 Analysis of Sequential Computation Time

To study the characteristics of the sequential computation
time in parallel applications, we present the acquired
sequential computation time of process 0 for BT, LU and SP
on Nebulae platform (vector size = 2,000) in Fig. 13. We find
that the sequential computation time within each process
for these programs shows great repetitiveness. For example,
the sequential computation vector in BT has a periodic pat-
tern every 250 computation units. Through analyzing its
source codes, we find that the periodic computation is gen-
erated by repeated loop iterations. We leverage this compu-
tation property and enable partial recording and replaying to
reduce replay time for representative processes.

8.3 Performance Prediction for HPC Platforms

In PHANTOM, all the sequential computation times of repre-
sentative processes are acquired using a single node of the
target platform. The network parameters needed by SIM-
MPI are measured with micro-benchmarks on the network
of the target platform. In this paper, prediction error is
defined as (predicted time—measured time)/(measured time) �
100 percent and all experiments are conducted for five times.

Fig. 14 shows prediction results with PHANTOM, the cross-
platform prediction, and the regression-based approach for

Fig. 13. Acquired sequential computation time for BT, LU and SP on Nebulae.

Fig. 14. Predicted time with PHANTOM, cross-platform prediction, and regression-based approach on Nebulae. Cross-Platform uses a full target plat-
form to compute the relative performance and Cross-Platform-256 only uses 256 processors to compute the relative performance. Measured means
the real execution time. commmeans the communication time percentage.

Fig. 12. Partial communication sequences for LU with 16 processes.
(B=MPI_Bcast, S=MPI_Send, I=MPI_Irecv, W=MPI_Wait, A=MPI_
Allreduce, F=MPI_Barrier, R=MPI_Recv).

2192 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 7, JULY 2016

NPB programs on Nebulae. We validate our approach up to
2,500 processes. As shown in Fig. 14, the agreement between
the predicted execution time of PHANTOM and the measured
time is remarkably high. The prediction error with PHANTOM

is less than 5 percent on average for all the programs. The
maximum error is 9.36 percent for CG with 1,024 processes.
As the number of processes increases, the network conten-
tion becomes a significant bottleneck and the communication
time accounts for a large proportion of the execution time in
CG, about 53.76 percent for 1,024 processes and 77.88 percent
for 2,048 processes. Note that EP is an embarrassing parallel
program, which has very little communication. Its prediction
accuracy actually reflects the accuracy of the sequential com-
putation time acquired with our approach. For EP, the pre-
diction error is only 0.95 percent on average.

Table 3 also lists prediction errors of PHANTOM, the regres-
sion-based approach, and the cross-platform prediction for
1;024 and 2;048 processes (Due to the limitations of the
regression-based approach, only the large processor config-
urations can be predicted. We use the Explorer-100 as the
host platform in the cross-platform prediction, so we can
only predict the performance up to 1,600 processes). The
maximum absolute prediction error of PHANTOM is less than
10 percent for all the programs up to 2,500 processes (for BT
and SP), while the absolute errors for the regression-based
approach vary from 2.62 to 61.77 percent. The cross-plat-
form prediction shows very high prediction accuracy using
a full target platform to compute the relative performance
and the average prediction error is 2.32 percent. However,

the prediction has relatively large errors for some programs
when using a subset of the target platform and the average
prediction error is 18.75 percent. Also, EP is not an iteration-
based application, so we cannot use the cross-platform
approach to predict its performance.

We also analyze the average communication time per-
centage for these programs on Infiniband network in
Fig. 14. For most of these programs, communication time
increases with the number of processes. Among these
programs, CG is the most communication-intensive with
the maximum communication percentage of 77.88 percent
for 2,048 processes.

8.4 Performance Prediction for Amazon
Cloud Platform

Fig. 15 shows prediction results on the Amazon cloud plat-
form with PHANTOM. The sequential computation time of
representative processes is acquired using a single node of
the Amazon EC2 platform. We can find that PHANTOM shows
very high prediction accuracy for most of the applications.
The prediction error of PHANTOM is less than 7 percent on
average for all the applications. For both 113.GemsFDTD
and 128.GAPgeofem, the prediction errors are relative high.
This is because the communication time accounts for most
of the execution time in these programs and communication
contention becomes more serious with the number of pro-
cesses. For example, the communication time percentage in
113.GemsFDTD is more than 80 percent for 128 processes.
In addition, we can find that the applications of 113.
GemsFDTD, 127.wrf2 and 128.GAPgeofem are not scalable
on the cloud.

Through comparing the communication time between
the HPC platform and the Amazon cloud platform in
Figs. 14 and 15, we can find that the communication
becomes a main bottleneck on the cloud platform. On the
Amazon cloud platform using 10-Gigabit Ethernet, the com-
munication time increases rapidly. For some applications,
the communication time is more than 40 percent only for
128 processes. While on the HPC platform, the communica-
tion time is moderate for most of applications. Fig. 16 shows
the latency and bandwidth on HPC platforms and the Ama-
zon cloud platform. The HPC platform has very lower
latency for small messages than the cloud platform, while
the bandwidth of the cloud platform is very close to the
Dawning platform using IB DDR network. Our previous

TABLE 3
Prediction Errors (Percent) of PHANTOM (P.T.), Regression-Based

Approach (R.B.), and Cross-Platform Prediction
(C.P. Uses a Full Target Platform to Compute the
Relative Performance and C.P.-256Only Uses 256

Target Processors to Compute the Relative
Performance) onNebulae

Proc.# BT CG EP LU MG SP

1,024

P.T. -6.22 -9.36 0.95 -6.07 -9.17 -3.68
R.B. -8.38 -25.83 2.62 -30.60 -33.37 -13.31
C.P. 0.72 1.45 N.A. 6.27 2.91 0.25

C.P.-256 -7.59 -28.14 N.A. 28.80 -24.21 -5.02

2,048
P.T. 2.83 -5.33 1.20 -8.15 6.77 -5.58
R.B. -7.26 -34.89 9.00 -61.77 -49.23 -21.29

Fig. 15. Predicted time with PHANTOM on Amazon EC2 cloud platform. Measured means the real execution time of applications. comm means
the communication time percentage of total execution time.

ZHAI ETAL.: PERFORMANCE PREDICTION FOR LARGE-SCALE PARALLEL APPLICATIONS USING REPRESENTATIVE REPLAY 2193

study [10] shows that the communication latency is a main
reason hindering tightly-coupled parallel applications run-
ning on the current cloud.

8.5 Message-Log Size and Replay Overhead

Table 4 shows the message log size of the representative
processes for NPB programs. Because the number of the
representative processes is far smaller than the total number
of processes described in Section 8.2.1, the message-log size
is reasonable for all the programs. Results also show that
the message log size is highly dependent on the application
communication patterns. Although the number of process
groups in MG increases with the number of processes, the
message log size does not present the similar trend. EP has
the least message logs due to its little communication.

Fig. 17 shows the replayed execution compared with the
normal execution with 1,024 processes. For some programs
such as CG and SP, the replayed execution is much longer
than the normal execution. There are two main reasons
about it. First, we employ the sub-group replay to execute a
subgroup of processes on the same node, so all the inter-
node communications need to be read from the message
logs stored in local disks. Therefore, the replayed execution
time is highly dependent on the message-log size and the
underlying I/O performance of the local disks. Second, dur-
ing the sub-group replay, all the intra-node communica-
tions use the traditional message-passing interfaces, so
large synchronization overhead (waiting for the incoming
messages) can be introduced due to slower processes. How-
ever, based on our experimental results, these aspects have
little impact on the sequential computation time.

On Nebulae, both the lower bandwidth and longer latency
of the local disks compared with IB QDR network signifi-
cantly slow down the replayed execution. Fig. 17 also lists
the disk I/O time for reading the message logs for each pro-
gram (denoted by IO-HDD). We find that the I/O time
accounts for a large proportion of the replayed execution
time. We also measure the replayed I/O time on a RAID-0
built with five solid-state drive (SSD) disks on a local server
(denoted by IO-SSD).We can find that the I/O time is signifi-
cantly reduced. Moreover, the sub-group replay can

eliminate partial inter-node synchronization, so the replayed
execution may be shorter than the normal execution for syn-
chronization-intensive programs such as LU andMG.

8.6 Performance of SIM-MPI Simulator

Table 5 shows the performance of SIM-MPI simulator. SIM-
MPI is a parallel simulator and each thread simulates an
MPI process, but the I/O time used to read message trace
files is limited to the underlying disk performance. All simu-
lations in this paper are executed on a server node (two-way
Xeon E5504 processors, 12 GB of memory). Table 5 gives the
performance of SIM-MPI simulator for different programs.
For most of programs, the simulation time is from several
seconds to several minutes up to 2,500 processes (BT and
SP). Among these programs, LU has the longest simulation
time due to its frequent communication operations.

8.7 Case Study

8.7.1 Analyzing Program Behavior

PHANTOM provides various what-if analysis for application
developers through changing the input parameters of SIM-
MPI. With this feature, application developers can identify
applications’ potential performance bottleneck. We take
NWChem as an example. NWChem [26] is a large computa-
tional chemistry suite supporting electronic structure
calculations using a variety of chemistry models. We use
NWChem to perform a PBE0 calculation on the C240 system
with the c240_pbe0.nw input set. Fig. 18 shows performance
prediction and what-if analysis for NWChem on Explorer-
100. PHANTOM gets very high prediction accuracy and the
average prediction error is 3.3 percent.

To analyze the program behavior, we perform twowhat-if
analysiswith PHANTOM. First, we improve the sequential com-
putation performance by two times (labeled with comp/2),
and then the performance ofNWChemwill improve 22.7 per-
cent on average. Second, if we double the network perfor-
mance (labeled with comm/2), it has little impact on the
application’s performance. To identify the potential perfor-
mance bottleneck of NWChem, we break down the detailed

TABLE 4
Message-Log Size (in GB Except EP in Byte)

Proc. # BT CG EP LU MG SP

128 15.7 31.6 143B 31.8 8.5 20.7
256 13.0 31.6 146B 30.4 13.2 16.8
512 8.1 21.1 146B 18.3 8.0 10.7
1,024 6.7 21.1 146B 12.2 9.5 8.6
2,048 5.4 13.2 146B 9.1 12.7 6.9

Fig. 17. The replayed execution versus the normal execution, and the
replayed I/O time on HDD and SSD for 1,024 processes on Nebulae.

TABLE 5
Performance of SIM-MPI Simulator (Sec.)

Proc. # BT CG EP LU MG SP

128 8.2 8.1 0.1 100.1 1.8 15.7
256 15.9 15.4 0.2 195.0 3.3 29.6
512 64.0 37.4 0.3 349.5 5.8 119.0
1,024 127.5 75.4 0.6 642.9 10.8 233.4
2,048 255.2 182.4 1.2 1196.0 21.0 481.1

Fig. 16. Latency and bandwidth on HPC platforms and Amazon
cloud platform.

2194 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 7, JULY 2016

communication overhead ofNWChem in Fig. 19.We can find
that the synchronization overhead accounts for a large pro-
portion of communication overhead. So the network perfor-
mance has little impact on the performance.

8.7.2 Platform Selection

We demonstrate another example of using PHANTOM to help
users select a suitable platform. Fig. 20 shows the prediction
results of PHANTOM for Sweep3D on three target platforms.
The real execution time is measured on each target platform
to validate our predicted results. As shown in Fig. 20,
PHANTOM gets very high prediction accuracy on these plat-
forms. Prediction errors onDawning,DeepComp-F, andDeep-
Comp-B are 2.67, 1.30, and 2.34 percent respectively, with the
maximum absolute error of �6.54 percent on Dawning for
128 processes. We can use the prediction results to help
users compare these platforms. For example, although
Dawning has much lower CPU frequency and peak perfor-
mance than DeepComp-F, it has better application perfor-
mance before 256 processes. DeepComp-B demonstrates the
best performance for Sweep3D among these platforms.

9 DISCUSSIONS

Problem size. The problem size we can deal with is limited by
the scale of host platforms since we need to execute the par-
allel application with the same problem size and the same
number of parallel processes on them to collect message logs
that are required during the replay phase. It should be
noticed that neither the CPU speed nor the interconnect per-
formance of host platforms is relevant to the accuracy of per-
formance prediction on target platforms in our framework.
This implies that we can generate message logs on a host
platform with fewer number of processors/cores than the
target platform. In fact, in our evaluation we have collected
our message logs on a small-scale system. The only hard
requirement for the host platform is its memory size.

There are several potential ways to address this limita-
tion. One is to use grid computing techniques through exe-
cuting applications on grid systems that provide larger
memory size than any single host platform. Another prom-
ising way is to use SSD devices and virtual memory to trade
speed for cost. Note that the message logs only need to be
collected once for one application with a given problem
size, which is a favorable feature of our approach to avoid
high cost for message log collection.

Even so, we still believe that our approach is a solid step
ahead of existing work because it can acquire accurate
sequential computation time with one single node of the tar-
get platform. This is a greatly desired feature for HPC sys-
tem vendors and customers when they design or purchase a
new parallel computer that is in the scale of current largest
machine. Our approach is also important for users of public
clouds to make more cost-effective decision when selecting
suitable cloud instances.

Node of target platforms. We assume that we have at least
one node of the target platform that enables us to measure
computation time at real execution speed. This raises a
problem of how we can predict performance of the target
platform even without a single node.

Our approach can apply with a single node simulator
that is usually ready years before the parallel machine. It is
clear that this will be much slower than the measurement.
Thanks to the representative replay proposed in this paper,
we only need to simulate a few representative processes
and the simulation can be also performed in parallel.

I/O operations. Our current approach only models and
simulates communication and computation of parallel
applications. However, I/O operations are also an impor-
tant factor of parallel applications. In this paper, we focus
on how to acquire the sequential computation time. We
believe that the framework of our approach can be extended
to cope with I/O operations although there are many pend-
ing issues to investigate.

Non-deterministic applications. As a replay-based frame-
work, PHANTOM has limitations in predicting performance for
applications with non-deterministic behaviors. PHANTOM can
only predict the performance of one possible execution of a
non-deterministic application. However, we argue that for
well-behaved applications, non-deterministic behaviors should
not cause significant impact on their performance because it
means poor performance portability. So we believe that it
is acceptable to use the predicted performance of one execu-
tion to represent the performance ofwell-behaved applications.Fig. 19. Breaking down the communication overhead in NWChem.

Fig. 20. Performance prediction for Sweep3D onDawning,DeepComp-F,
and DeepComp-B (M means the real execution time, P means predicted
timewith PHANTOM).

Fig. 18. Performance prediction and what-if analysis for NWChem on
Explorer-100.

ZHAI ETAL.: PERFORMANCE PREDICTION FOR LARGE-SCALE PARALLEL APPLICATIONS USING REPRESENTATIVE REPLAY 2195

Irregular parallel applications. For irregular parallel appli-
cations such as parallel graph applications, if these pro-
grams are written with message passing interfaces such as
MPI, our approach can also deal with this type of programs.
But we need to emphasize that the load balance of these
irregular applications is highly dependent on the input set
and sometimes there is little computation similarity among
different processes. In the worst case, we need to replay
more process groups for accurate performance prediction.

10 RELATED WORK

There are two types of approaches for performance predic-
tion. One approach is to build an analytical model for the
application on the target platform [3], [4], [6], [12], [27], [28].
Spafford and Vetter also proposed a domain specific lan-
guage for performance modeling [29]. The main advantage
of analytical methods is low-cost. However, constructing
analytical models of parallel applications requires a thor-
ough understanding of the algorithms and their implemen-
tations. Most of such models are constructed manually by
domain experts, which limits their accessibility to normal
users. Moreover, a model built for an application cannot be
applied to another one. PHANTOM is an automatic framework
that requires little user intervention.

The second approach is to develop a system simulator to
execute applications on it for performance prediction. Simu-
lation techniques can capture detailed performance behav-
ior at all levels, and can be used automatically to model a
given program. However, an accurate system simulator is
extremely expensive, not only in terms of simulation time
but especially in the memory requirements. A lot of meth-
ods have been explored to improve the accuracy and
efficiency of predicting parallel performance for system
simulators, such as BigSim [7], [30], MPI-SIM [31].

Trace-driven simulation [1], [32] and macro-level simu-
lation [11] have better performance than detailed system
simulators since they only need to simulate the communi-
cation operations. The sequential computation time is usu-
ally acquired by analytical methods or extrapolation in
previous work. We have discussed their limitations in Sec-
tion 1. In this paper, our proposed representative replay
can acquire more accurate computation time, which can
be used in both trace-driven simulation and macro-level
simulation.

Yang et al. [8] proposed a novel cross-platform predic-
tion method without program modeling, code analysis, or
architecture simulation, which utilizes partial execution for
a limited number of timesteps to compute the relative per-
formance across platforms for a given application. This
novel approach is observation-based and has demonstrated
very high accuracy at extremely low cost for several real-
world applications on multiple large parallel computers. In
fact, we can also use the representative replay to compute
the relative performance and integrate it with the cross-
platform approach for effective prediction. Lee et al. pre-
sented piecewise polynomial regression models and artifi-
cial neural networks that predict application performance
as a function of its input parameters [33]. Barnes et al. [5]
employed the regression-based approach to predict parallel
program scalability and their method shows good accuracy

for some applications. However, the number of processors
used for training is still very large for better accuracy.

Wu and Mueller [18] proposed a set of novel algorithms
to extrapolate communication traces of a large scale app-
lication with information gathered from smaller executions.
Arnold et al. [34] proposed equivalence classes for quick
identification of errors from thousands of processes. Laguna
et al. [35] used scalable sampling-based clustering and near-
est-neighbor techniques to detect abnormal processes in
large-scale systems. Gioachin et al. [36] employed the
record-replay technique to debug large-scale parallel appli-
cations. Statistical techniques have been used widely for
studying program behaviors from large-scale data [37], [38].
Our approach is inspired by these work but to our best
knowledge we are the first to employ determine replay
to acquire the sequential computation time for performance
prediction.

11 CONCLUSION

In this paper, we demonstrate the benefit of an automatic
and accurate prediction method for large-scale parallel
applications. We propose a novel technique of using replay
techniques to acquire the accurate sequential computation
time for large-scale parallel applications on a single node of
the target platform and integrate this technique into a trace-
driven simulation framework to accomplish effective per-
formance prediction. We further propose the representative
replay scheme that employs the similarity of computation
patterns in parallel applications to significantly reduce the
replay overhead. We verify our approach on traditional
HPC platforms and the latest Amazon EC2 cloud platform.
The experimental results show that our approach can get
high prediction accuracy on both types of platforms.

ACKNOWLEDGMENTS

We sincerely thank the anonymous reviewers for their valu-
able comments and suggestions. We thank Dandan Song,
Bowen Yu, Haojie Wang, and Feng Zhang for their valuable
feedback. This work has been partially sponsored by NSFC
project 61472201 and the National High-Tech Research and
Development Plan (863 project) 2012AA01A302.

REFERENCES

[1] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and A.
Purkayastha, “A framework for application performancemodeling
and prediction,” in Proc. ACMConf. Supercomput., 2002, pp. 1–17.

[2] G. Marin and J. Mellor-Crummey, “Cross-architecture perfor-
mance predictions for scientific applications using parameterized
models,” in Proc. ACM SIGMETRICS Int. Conf. Meas. Model. Com-
put. Syst., 2004, pp. 2–13.

[3] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman,
and M. Gittings, “Predictive performance and scalability model-
ing of a large-scale application,” in Proc. ACM Conf. Supercomput.,
2001, pp. 37–48.

[4] D. Sundaram-Stukel and M. K. Vernon, “Predictive analysis of a
wavefront application using LogGP,” in Proc. 7th ACM SIGPLAN
Symp. Principles Practice Parallel Programm., 1999, pp. 141–150.

[5] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. de Supinski,
and M. Schulz, “A regression-based approach to scalability
prediction,” in Proc. 22nd Annu. Int. Conf. Supercomput., 2008,
pp. 368–377.

[6] M. Mathias, D. Kerbyson, and A. Hoisie, “A performance model
of non-deterministic particle transport on large-scale systems,” in
Proc. Workshop Performance Model. Anal., 2003, pp. 905–915.

2196 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 7, JULY 2016

[7] G. Zheng, G. Kakulapati, and L. V. Kale, “Bigsim: A parallel simu-
lator for performance prediction of extremely large parallel
machines,” in Proc. IEEE Int. Symp. Parallel Distrib. Process., 2004,
pp. 78–87.

[8] L. T. Yang, X. Ma, and F. Mueller, “Cross-platform performance
prediction of parallel applications using partial execution,” in
Proc. ACM Conf. Supercomput., 2005, p. 40.

[9] Amazon Inc. (2011). High Performance Computing (HPC) [Online].
Available: http://aws.amazon.com/ec2/hpc-applications/

[10] Y. Zhai, M. Liu, J. Zhai, X. Ma, and W. Chen, “Cloud versus in-
house cluster: Evaluating amazon cluster compute instances for
running MPI applications,” in Proc. ACM Conf. Supercomput.,
2011, p. 11.

[11] R. Susukita, H. Ando, and M. Aoyagi, et al., “Performance predic-
tion of large-scale parallell system and application using macro-
level simulation,” in Proc. ACM Conf. Supercomput., 2008, pp. 1–9.

[12] K. J. Barker, S. Pakin, and D. J. Kerbyson, “A performance model
of the Krak hydrodynamics application,” in Proc. Int. Conf. Parallel
Process., 2006, pp. 245–254.

[13] R. Xue, X. Liu, M. Wu, Z. Guo, W. Chen, W. Zheng, Z. Zhang, and
G. M. Voelker, “MPIWiz: Subgroup reproducible replay of MPI
applications,” in Proc. ACM SIGPLAN Symp. Principles Practice
Parallel Programm., 2009, pp. 251–260.

[14] M. Maruyama, T. Tsumura, and H. Nakashima, “Parallel program
debugging based on data-replay,” in Proc. Int. Conf. Parallel Dis-
trib. Comput., 2005, pp. 151–156.

[15] T. J. LeBlanc and J. M. Mellor-Crummey, “Debugging parallel pro-
grams with instant replay,” IEEE Trans. Comput., vol. C-36, no. 4,
pp. 471–482, Apr. 1987.

[16] A. Bouteiller, G. Bosilca, and J. Dongarra, “Retrospect: Determin-
istic replay of MPI applications for interactive distributed
debugging,” in Proc. 14th Eur. Conf. Parallel Virtual Mach. Message
Passing Interface, 2007, pp. 297–306.

[17] J. Zhai, W. Chen, and W. Zheng, “Phantom: Predicting perfor-
mance of parallel applications on large-scale parallel machines
using a single node,” ACM Sigplan Notices, vol. 45, no. 5, pp. 305–
314, 2010.

[18] X. Wu and F. Mueller, “Scalaextrap: Trace-based communication
extrapolation for SPMD programs,” in Proc. 7th ACM SIGPLAN
Symp. Principles Practice Parallel Programm., 2011, pp. 113–122.

[19] J. Zhai, T. Sheng, J. He, W. Chen, andW. Zheng, “FACT: Fast com-
munication trace collection for parallel applications through pro-
gram slicing,” in Proc. ACM Conf. Supercomput., 2009, pp. 1–12.

[20] S. Shao, A. K. Jones, and R. G. Melhem, “A compiler-based com-
munication analysis approach for multiprocessor systems,” in
Proc. IEEE 27th Int. Symp. Parallel Distrib. Process., 2006, pp. 1–12.

[21] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman,
“LogGP: Incorporating long messages into the logp model for par-
allel computation,” J. Parallel Distrib. Comput., vol. 44, no. 1,
pp. 71–79, 1997.

[22] J. Zhang, J. Zhai, W. Chen, and W. Zheng, “Process mapping for
MPI collective communications,” in Proc. 15th Int. Euro-Par Conf.
Parallel Process., 2009, pp. 81–92.

[23] D. Bailey, T. Harris, W. Saphir, R. V. D. Wijngaart, A. Woo, and M.
Yarrow, “The NAS parallel benchmarks 2.0,” NAS Syst. Division,
NASA Ames Res. Center, Moffett Field, CA, USA, Tech. Rep.
RNR-91-002, 1995.

[24] S. P. E. Corporation. (2007). SPEC MPI2007 benchmark suite
[Online]. Available: http://www.spec.org/mpi2007/

[25] LLNL.ASCI purple benchmark [Online]. Available: https://asc.llnl.
gov/computing_resources/purple/archive/benchmarks, 2003.

[26] M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma,
H. J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus,
et al., “Nwchem: A comprehensive and scalable open-source solu-
tion for large scale molecular simulations,” Comput. Phys. Com-
mun., vol. 181, no. 9, pp. 1477–1489, 2010.

[27] A. Hoisie, O. Lubeck, H. Wasserman, F. Petrini, and H. Alme, “A
general predictive performance model for wavefront algorithms
on clusters of SMPS,” in Proc. Int. Conf. Parallel Process., 2000,
pp. 219–228.

[28] J. Meng, V. A. Morozov, V. Vishwanath, and K. Kumaran,
“Dataflow-driven GPU performance projection for multi-kernel
transformations,” in Proc. ACM Conf. Supercomput., 2012, pp. 82:1–
82:11.

[29] K. L. Spafford and J. S. Vetter, “Aspen: A domain specific lan-
guage for performance modeling,” in Proc. ACM Conf. Supercom-
put., 2012, pp. 84:1–84:11.

[30] G. Zheng, “Achieving high performance on extremely large paral-
lel machines: performance prediction and load balancing,” Ph.D.
dissertation, Univ. Illinois at Urbana-Champaign, Champaign, IL,
USA, 2005.

[31] S. Prakash and R. Bagrodia, “MPI-SIM: Using parallel simulation
to evaluate MPI programs,” in Proc. Winter Simul. Conf., 1998,
pp. 467–474.

[32] J. Labarta, S. Girona, V. Pillet, T. Cortes, and L. Gregoris, “DiP: A
parallel program development environment,” in Proc. 2nd Int.
Euro-Par Conf. Parallel Process., 1996, pp. 665–674.

[33] B. C. Lee, D. M. Brooks, and B. R. de Supinski, et al., “Methods of
inference and learning for performance modeling of parallel
applications,” in Proc. ACM SIGPLAN Symp. Principles Practice
Parallel Programm., 2007, pp. 249–258.

[34] D. Arnold, D. Ahn, B. De Supinski, G. Lee, B. Miller, and M.
Schulz, “Stack trace analysis for large scale debugging,” in Proc.
IEEE Int. Symp. Parallel Distrib. Process., 2007, pp. 1–10.

[35] I. Laguna, T. Gamblin, B. R. de Supinski, S. Bagchi, G. Bronevetsky,
D. H. Anh, M. Schulz, and B. Rountree, “Large scale debugging of
parallel tasks with automaded,” in Proc. ACM Conf. Supercomput.,
2011, pp. 50:1–50:10.

[36] F. Gioachin, G. Zheng, and L. V. Kal�e, “Robust non-intrusive
record-replay with processor extraction,” in Proc. 8th Workshop
Parallel Distrib. Syst.: Testing, Anal., Debugging, 2010, pp. 9–19.

[37] Y. Zhong, M. Orlovich, X. Shen, and C. Ding, “Array regrouping
and structure splitting using whole-program reference affinity,”
in Proc. ACM SIGPLAN Conf. Programm. Language Design Imple-
mentation, 2004, pp. 255–266.

[38] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically characterizing large scale program behavior,” in
Proc. Int. Conf. Archit. Support Programm. Lang. Oper. Syst., 2002,
pp. 45–57.

Jidong Zhai received the BS degree in computer
science from the University of Electronic Science
and Technology of China in 2003, and the PhD
degree in computer science from Tsinghua Uni-
versity in 2010. He is currently an assistant profes-
sor in the Department of Computer Science and
Technology, Tsinghua University. His research
interests include performance evaluation for high
performance computers, performance analysis,
andmodeling of parallel applications.

Wenguang Chen received the BS and PhD
degrees in computer science from Tsinghua
University in 1995 and 2000, respectively. He was
the CTO of Opportunity International Inc. from
2000 to 2002. Since January 2003, he joined
Tsinghua University. He is currently a professor
and associate head in the Department of Com-
puter Science and Technology, Tsinghua Univer-
sity. His research interest is in parallel and
distributed computing and programming model.

ZHAI ETAL.: PERFORMANCE PREDICTION FOR LARGE-SCALE PARALLEL APPLICATIONS USING REPRESENTATIVE REPLAY 2197

Weimin Zheng received the BS and master’s
degrees from Tsinghua University in 1970 and
1982, respectively. He is currently a professor in
the Department of Computer Science and Tech-
nology, Tsinghua University. He is currently the
director of China Computer Federation (CCF).
His research interests include parallel and
distributed computing, compiler technique, grid
computing, and network storage.

Keqin Li is a SUNY Distinguished professor of
computer science. His current research interests
include parallel computing and high-performance
computing, distributed computing, energy-effi-
cient computing and communication, heteroge-
neous computing systems, cloud computing, big
data computing, CPU-GPU hybrid and coopera-
tive computing, multicore computing, storage and
file systems, wireless communication networks,
sensor networks, peer-to-peer file sharing sys-
tems, mobile computing, service computing,

Internet of things and cyber-physical systems. He has published more
than 350 journal articles, book chapters, and refereed conference
papers, and has received several best paper awards. He is currently or
has served on the editorial boards of IEEE Transactions on Parallel
and Distributed Systems, IEEE Transactions on Computers, IEEE
Transactions on Cloud Computing, Journal of Parallel and Distributed
Computing. He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2198 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 7, JULY 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

