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Automatic Cloud I/O Configurator for I/O Intensive
Parallel Applications

Jidong Zhai, Mingliang Liu, Ye Jin, Xiaosong Ma and Wenguang Chen

Abstract—As the cloud platform becomes a promising alternative to traditional HPC (High Performance Computing) centers or in-
house clusters, the I/O bottleneck problem is highlighted in this new environment, typically with top-of-the-line compute instances but
sub-par communication and I/O facilities. It has been observed that changing the cloud I/O system configurations, such as choices of
file systems, number of I/O servers and their placement strategies, etc., will lead to a considerable variation in the performance and
cost efficiency of I/O intensive parallel applications. However, storage system configuration is tedious and error-prone to do manually,
even for expert users, leading to solutions that are grossly over-provisioned (low cost inefficiency), substantially under-performing (poor
performance) or, in the worst case, both.
This paper proposes ACIC, a system which automatically searches for optimized I/O system configurations from many candidates
for each individual application running on a given cloud platform. ACIC takes advantage of machine learning models to perform
performance/cost predictions. To tackle the high-dimensional parameter exploration space, we enable affordable, reusable, and
incremental training on cloud platforms, guided by the Plackett and Burman Matrices for experiment design. Our evaluation results
with four representative parallel applications indicate that ACIC consistently identifies optimal or near-optimal configurations among a
large group of candidate settings. The top ACIC-recommended configuration is capable of improving the applications’ performance by
a factor of up to 10.5 (3.1 on average), and cost saving of up to 89% (51% on average), compared with a commonly used baseline I/O
configuration. In addition, we carried out a small-scale user study for one of the test applications, which found that ACIC consistently
beat the user and even the application’s developer, often by a significant margin, in selecting optimized configurations.

Index Terms—Performance Tool, Cloud Computing, Storage Configuration, Parallel Applications.
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1 INTRODUCTION

More and more HPC users today are beginning to ex-
plore running their applications in the cloud [1], [2], [3],
[4]. Emerging cloud resources targeting HPC usage, such
as the Amazon CCIs (Cluster Compute Instances) [2],
have largely improved the outlook for HPC in the
cloud. Clouds offer many advantages over traditional
HPC platforms: elastic resource allocation, elimination
of queue waiting, no up-front hardware investment or
hosting/maintenance/upgrades, and convenient pay-as-
you-go pricing models. By closing on the performance
gap between cloud instances vs. in-house clusters [4],
public clouds have become a cost-effective choice to
many scientific application users and developers.

Unfortunately, cloud platforms amplify the growing
performance gap between the I/O subsystem and other
system components long existing in conventional HPC
environments [5]. Leading cloud platforms such as Ama-
zon interconnect the compute instances with commodity
networks instead of dedicated high-speed interconnec-
tion, such as InfiniBand. Also, multi-tenant cloud re-
sources deliver inferior and sometimes highly variable
performance [6].

On the flip side, clouds empower users with full, a-
la-carte configuration of the I/O subsystem, which is
impossible on traditional HPC clusters. For example,

• J. Zhai, M. Liu, and W. Chen are with the Department of Computer
Sciences and Technology, Tsinghua University, Beijing, China.

• Y. Jin and X. Ma are with the North Carolina State University, USA.

 40

 60

 80

 100

 120

 140

 160

 180

 16  36  64  81  100  121

T
o

ta
l 
e

x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Number of processes

nfs.D.eph
nfs.P.eph

pvfs.1.D.eph
pvfs.2.D.eph
pvfs.4.D.eph
pvfs.4.P.eph

(a) Execution time

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 16  36  64  81  100  121

C
o

s
t 

($
)

Number of processes

nfs.D.eph
nfs.P.eph.

pvfs.1.D.eph
pvfs.2.D.eph
pvfs.4.D.eph
pvfs.4.P.eph

(b) Total cost

Fig. 1: The execution time and monetary cost of BTIO
under selected I/O system configurations, in terms of
file system type (nfs vs. pvfs), number of I/O servers (1,
2, 4), placement strategy (Part-time vs. Dedicated), and
disk device (ephemeral).

users can choose important I/O parameters such as
the file system type, the number of I/O servers, the
type and number of I/O devices to use, etc. Previous
study revealed that the in-cloud performance of repre-
sentative HPC applications is highly sensitive to such
I/O system configurations [7]. Figure 1 demonstrates
this impact on both performance and monetary cost of
running the NPB BTIO application (more information
in Section 5), shown to vary dramatically with different
I/O system configurations. It also shows that even for
a single HPC application, its performance/cost behavior
across different I/O configurations varies with different
problem/job sizes, and no single configuration excels in
all cases. The cloud enables users to setup optimized
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I/O configurations for individual application upon its
execution, instead of forcing all applications to use a pre-
configured solution.

However, taking advantage of this uniquely available
configurability and deriving optimized per-application
I/O configuration are very challenging and potentially
very expensive. Several factors, including the lack of
one-size-fits-all parameter choices, the complexity from
both the system and the application side, and the ob-
scureness of I/O system hardware/software details due
to virtualization, make white-box modeling and analysis
unrealistic. Meanwhile, the high-dimensional cloud I/O
configuration parameter space makes learning-based,
black-box approaches quite costly, in terms of both time
and monetary overhead. Furthermore, as I/O configura-
tion has been shown to be application- and even scale-
dependent, knowledge and training data obtained from
one application may not apply to another.

There are many tools that evaluate and configure
storage systems for traditional clusters [8], [9], [10],
[11] (more discussions in Section 7). However, some
of them [10], [11] focus on the storage devices only
and hence are not able to address the complex, high-
dimensional cloud I/O configuration problem. Some
others (such as Minerva [8]) are extremely complicated
for non-expert users, requiring expertise with advanced
tools and a large number of experiments. Moreover,
none of them covers the complicated cost-performance
tradeoff unique to the cloud.

To address this problem, we propose ACIC (Automatic
Cloud I/O Configurator), the first tool to optimize the
I/O system for parallel applications in the cloud. Given
a parallel application to run on a given cloud platform,
ACIC automatically searches for optimized I/O system
configurations from many candidate settings. Our ap-
proach takes advantage of a black-box model to learn
the relationship between influential I/O system configu-
rations and the optimization objective (cost or perfor-
mance). After training the model on the target cloud
platform, ACIC automatically extracts the given paral-
lel application’s I/O characteristics, evaluates candidate
I/O configurations, and recommends an optimized con-
figuration according to user’s selected objective.

Though learning-based performance model-
ing/prediction has long been explored, including
for parallel applications [12], [13], ACIC’s originality
lies in the cost-saving mechanisms that make such
approaches affordable on clouds:

1) We explore a crowdsourcing service model for au-
tomatic, per-application cloud system configuration,
where community members build and share a pub-
lic performance/cost database. The service may not
rely on, but can benefit from continuous training
data contributions, which improve its configuration
accuracy, as well as its adaptivity to system up-
grades. We describe our proof-of-concept ACIC tool
using parallel I/O as a case study, yet the service
model applies to other configurable systems.

2) Rather than case-by-case learning/prediction, we
enable reusable training by adopting a generic syn-
thetic I/O benchmark and systematically sampling
the parameter space.

3) To tackle the large training space that renders the
model training prohibitively expensive, we perform
dimension reduction by evaluating parameters’ im-
pact on performance using PB matrices [14].

4) We employ two types of machine learning models in
current ACIC, regression-based and ranking-based,
to better identify the optimal cloud I/O configura-
tion with limited training data.

We implemented ACIC, trained it with the synthetic
yet expressive parallel I/O benchmark IOR (Interleaved
Or Random) [15] on Amazon EC2, and evaluated it
with four real-world data-intensive parallel applications.
Our results indicate that ACIC consistently provides
optimized configurations that improve performance (to-
tal execution time) by a factor of 3.1 on average and
the cost saving of 51% on average under the baseline
configuration (see Section 5).

We have recently released the ACIC tool, plus all
our training data collected from EC2 [16]. Currently,
users can download the shared training data, build the
prediction model, use our provided tool to obtain I/O
characteristics from their applications, run the predic-
tion, and configure EC2 to deploy the recommended I/O
configuration with our provided scripts. A preliminary
version of this work has been published in SC’13 [17].

The rest of the paper is organized as follows. Section 2
introduces the exploration space of the I/O system opti-
mization. Section 3 is the overview of the ACIC system.
Section 4 illustrates the predicting and ranking model.
Section 5 shows the experimental results. Section 6 de-
scribes the user study. Section 7 discusses the related
work and Section 8 concludes the paper.

2 EXPLORATION SPACE

2.1 I/O Configuration Options

Application Application file interface
(MPI-IO vs. POSIX) 

File System

File system internal parameters
(Stripe Size: 64KB/4MB)

I/O server number
(1/2/4) 

I/O server placement 
(Dedicated vs. Parttime)

File system
(NFS vs. PVFS2)

Storage Device

Software RAID
(RAID 0 vs. No RAID)

Device number
(1/2)

Cloud storage device type
(EBS vs. Ephemeral)

Fig. 2: Configurable I/O system stack in the cloud.

Figure 2 depicts the configurable I/O system stack in
the cloud, using Amazon EC2 terms, from I/O library
all the way to storage device hardware. In contrast, on
traditional shared parallel platforms users typically can
only configure the top layer. Therefore, in this paper
we focus on the layers opened up by cloud platforms.
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Below we briefly describe the I/O configurations found
relevant to parallel applications’ performance/cost in the
cloud [7].

Storage device and organization Cloud platforms typ-
ically provide multiple storage choices, with different
levels of abstraction and access interfaces. E.g., with EC2
CCIs, applications have access to: 1) the local block
storage (”ephemeral”) with 4 × 840GB capacity, where
user data does not persist across instance reservations,
2) off-instance, persistent Elastic Block Store (EBS), and
3) SSD disks. Apart from data persistence, the ephemeral
and EBS devices possess different performance charac-
teristics, usage constraints, and pricing policies. Finally,
a cloud HPC user can easily scale up the aggregate I/O
capacity and bandwidth, e.g., by aggregating multiple
disks into a software RAID 0 partition.

File system selection and configuration Typically, su-
percomputers or large clusters have parallel file systems
such as Lustre, GPFS, and PVFS, while smaller clusters
tend to choose shared file systems such as NFS. Unlike
traditional HPC users, cloud users can choose between
the two categories based on individual applications’
demands, and switch between selections quite easily and
quickly. Once selected, a parallel/shared file system itself
has many internal knobs and is non-trivial to configure.

In this proof-of-concept work, we focus on two im-
portant and highly application-dependent parameters,
the number and placement of I/O servers. The number
of I/O servers can significantly affect the performance
of I/O-intensive applications. There are two types of
I/O server placement, dedicated and part-time. With the
former, I/O servers run on dedicated cloud instances,
while with the latter, they share cloud instances with a
subset of the computing instances. Due to the obvious
impact on both performance and cost, it is important
to optimize such server placement for better resource
utilization and cost-effectiveness.

2.2 Application I/O Characteristics

I/O workload characterization has remained an ac-
tive problem [5]. Meanwhile, though applications have
varying concrete I/O patterns, they also share high-
level I/O behaviors common to most HPC scientific
codes, especially the periodic checkpoint/restart output
activities.

To enable reusable training, ACIC chooses to measure
cloud I/O performance with sampled system configura-
tions using synthetic benchmarks created via IOR [15].
IOR is a flexible and expressive parallel I/O benchmark
that can be configured to mimic different applications’
I/O behavior. Also, its open-source nature allows easy
extension to test additional I/O features when the need
arises.

Currently ACIC considers the following I/O charac-
teristics parameters in creating IOR test cases. Note that
among these parameters, 4 parameters are unique for

parallel applications, such as number of processes, number
of I/O processes, collective, and file sharing. The range of
parameters is selected based on the real-world applica-
tions used in our evaluation, and can be expanded with
additional training, without invalidating the collected
data.

• Number of processes: total number of processes
running the application in parallel

• Number of I/O processes: number of processes
performing the I/O operations simultaneously

• I/O interface: POSIX, MPI-IO, or high-level libraries
such as HDF5 and netCDF

• I/O iteration count: number of I/O iterations within
the application execution

• Data size: amount of data each I/O process reads
and writes within each I/O iteration (e.g., the size
of the 3-D array partition assigned to each process)

• Request size: amount of data transferred in each
I/O function call (I/O request size)

• Read and/or write: I/O operation type
• Collective: whether I/O processes adopt collective

I/O [18] to cooperatively read/write shared files
• File sharing: whether the I/O processes access a

single shared file, or per-process private files

Although IOR covers most important aspects of HPC
I/O parameters, it does make certain simplifications. For
example, the request sizes for different variables that a
parallel simulation writes out may not be uniform. In
our future work, we plan to assess the impact of such
simplification on our model prediction accuracy and
investigate ways to allow more detailed characteristics
specification if necessary.

Parameter Name Values
Disk device {EBS, ephemeral}
File system {NFS, PVFS2}
Instance type {cc1.4xlarge, cc2.8xlarge}
I/O server number {1, 2, 4}
Placement {part-time, dedicated}
Stripe size {64KB, 4MB}
Num. of all processes {32, 64, 128, 256}
Num. of I/O processes {32, 64, 128, 256}
I/O interface {POSIX, MPI-IO}
I/O iteration count {1, 10, 100}
Data size {1, 4, 16, 32, 128, 512 (MB)}
Request size {256KB, 4MB, 16MB, 128MB}
Read and/or write {read, write}
Collective {yes, no}
File sharing {share, individual}

TABLE 1: Sample variables affecting performance and
cost. The top 6 variables are cloud I/O system options,
others workload characteristics.

To extract parameters representing application’s I/O
characteristics, one can use existing profiling/tracing
tools [19], [20] to instrument I/O primitives of the appli-
cation, followed by trace collection/analysis. We include
a simple tool for collecting ACIC-relevant application
I/O characteristics encompassing a tracing library and
scripts for parsing and statistically summarizing I/O
traces [16].
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Fig. 3: ACIC architecture.

2.3 Exploration Space and Challenges
Exploration Space Table 1 summarizes the system I/O
configurations and application I/O characteristics con-
sidered in this ACIC prototype. We set the range of
the values according to our real-world application test
cases with different job scales (32 to 256). For each
parameter, we sample its value range in our training. For
example, the compute-node-to-I/O-server ratio typically
varies between 4 : 1 and 64 : 1 on a HPC cluster, which
differs a lot from distributed file systems. Since there are
at most 16 instances in our testbed, we select 1, 2 and 4 as
sampled values of the “I/O server number” parameter.
For continuous (numerical) domain parameters, such as
data size and request size, we select samples from their
value ranges that form evenly spaced vectors in log
space. Such training is used in our study to bootstrap
ACIC’s auto-configuration. Again, this design allows
users to constantly contribute training data points to the
ACIC training database.
Challenges As shown in Table 1, although we have left
out a number of parameters and sampled the numer-
ical parameter space rather sparsely, the concatenated
exploration space combining system configurations and
application characteristics is still daunting. Even consid-
ering that not all sample parameter value combinations
are valid (e.g., NFS does not have stripe size; request
size cannot be greater than data size), the 15 parameter
dimensions create roughly a million valid training data
points.1 In Section 4 we will present how ACIC tackles
this high-dimensional training space challenge.

3 APPROACH OVERVIEW

Figure 3 illustrates the ACIC architecture. Its central
component is a black-box prediction model, which can
be bootstrapped with a limited amount of initial training
data. ACIC takes both the cloud system I/O configura-
tion parameters (such as file system type, storage device
type, number of I/O servers, etc.) and application I/O
characteristics (such as major operation type, read/write
block size, read/write count, etc.). Concatenated to-
gether, these parameters constitute a 15-D exploration
space for ACIC’s training and prediction. To reduce the
time overhead and monetary cost associated with train-
ing, ACIC employs a dimension reducer using Plackett-
Burman (PB) matrices [14], with more details discussed
in Section 4.1.

1. 2 * 2 * 2 * 3 * 2 * 2 * 4 * 4 * 2 * 3 * 6 * 4 * 2 * 2 * 2 = 1,769,472.

Generally, there are several ways to collect the train-
ing data, such as application case studies, benchmarks,
and trace replays. ACIC chooses the IOR [15] syn-
thetic benchmark as it is generic, highly configurable,
and open-source. It carries out the initial training by
running the synthetic IOR benchmarks on the target
cloud system, systematically sampling the concatenated
parameter space across the dimensions selected through
PB matrices. For each training run, ACIC collects the
performance (cost) metric with the candidate cloud I/O
configurations. With the sampled data points fed into
a training database, ACIC can use different machine
learning algorithms to train its prediction model. In
ACIC, we employ both classification and regression trees
(CART) [21] and RankBoost techniques [22].

Given a target parallel application, users can either
directly provide values of relevant I/O characteristics,
or use a simple profiling tool (included as part of ACIC)
to extract such application-specific parameters. Both ap-
proaches are feasible, as HPC applications, especially
parallel simulations, are known to have periodic, rela-
tively well-defined I/O behavior [15]. Based on the user-
specified optimization goal, currently either the perfor-
mance (application execution time) or the monetary cost
of execution, ACIC outputs the predicted optimal I/O
configuration. Since current cloud providers normally
charge users according to usage time regardless of the
system load, we take the final performance and cost as
our optimization objective. Note that the monetary cost
of a certain application execution is not proportional to
the execution time here, as I/O servers can be placed at
dedicated instances or part-time ones.

One major advantage of ACIC is its reusability. It is
worth pointing out that even with its dimension reducer,
the initial training of ACIC may cost dozens to hundreds
of hours (and dollars). However, we argue that such
expense is reasonable considering that the application-
independent IOR training results can be reused. There-
fore, the training cost is to be amortized over many
different applications and different executions of the
same applications.

Another chief advantage of ACIC is its expandability.
First, it benefits from continuous, incremental training.
With more user-contributed IOR training data points,
ACIC achieves higher prediction accuracy. This allows it
to bootstrap with sparse sampling in its initial training.
The additional training may even come at no extra
monetary cost, as public clouds like Amazon EC2 typi-
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cally charge users at a hourly billing granularity. Users
can fit one or more short IOR training runs into the
”residual” time allocation, after completing their applica-
tion runs. Second, with continuous, incremental training,
the ACIC training database can effortlessly deal with
cloud hardware/software upgrades with common data
aging methods. Third, ACIC can easily handle new I/O
configurations or characteristic parameters by adding
more dimensions into its prediction model, though the
open-source IOR benchmark may need to be expanded
if an application has I/O features that it does not test.

Finally, although the training and prediction are cloud-
dependent, ACIC makes no assumptions on the cloud
I/O configurations or application I/O characteristics and
can be applied to any platform-application combina-
tions.

4 PERFORMANCE/COST PREDICTION

4.1 Exploration Space Reduction
To tackle the aforementioned high-dimensional pa-

rameter space, ACIC employs a statistical technique,
called Plackett and Burman (PB) design [14]. We choose
PB design for exploration space reduction from a large
number of dimensional reduction techniques due to the
following reasons.

First, PB design is an important type of fractional
factorial experiment designs and is good at identifying
or screening important parameters (factors) when the
number of factors is too large to evaluate higher-order
effects [23]. Based on the previous study [24], due to
“sparsity of effects” principle, the system performance is
normally dominated by the main effects and their low-
order interactions. Therefore, PB design is more suitable
for analyzing the importance of various parameters on
clouds. Second, PB design makes it feasible to enable a
fast (though less accurate) training to bootstrap the ACIC
prediction. For N parameters design, it only require N ′

runs, where N ′ is the smallest multiple of 4 above to N .
For example, if N = 7, then N ′ = 8. Its computational
complexity is much lower than the full factorial design
(O(N)) vs. O(2N )), such as ANOVA [25]. Third, PB
design allows us to provide a crowdsourcing service
model in ACIC. With the ranking order of parameters,
we can explore the most influential parameters first and
gradually expand our training data collection to the
lower ranked dimensions for more accurate prediction.

A complete PB design includes the following steps.
(1) Building the PB design matrix: The value of each
element in the PB design matrix is either “+1” or “-1”,
where “+1” denotes the parameter’s high value and “-
1” denotes the parameter’s low value. The first row of
the PB matrix is given in [14]. The next N ′ − 2 rows
are generated through performing a circular right shift
on the preceding row and the last row of the matrix is a
row of minus one. (2) Selecting the parameter’s low and
high values: The high or low value for each parameter
represents a value that is the highest or the lowest of

normal values for that parameter. However, the high and
low values are not only restricted to numerical values.
(3) Performing the experiments using the acquired PB
matrix: For each run, the value of each parameter is set
according to one row of the PB matrix. After the N ′ runs
are completed, the performance for each run is collected.
(4) Calculating the effect for each parameter: The effect
of each parameter is calculated by multiplying the values
in the PB matrix by the collected performance for each
run and summing the products across all rows. The sign
of the effect is meaningless and we rank the parameters
according to the absolute value of the effect.

Row The PB Design Matrix Perf.
A B C D E F G

1 +1 +1 +1 -1 +1 -1 -1 19
2 -1 +1 +1 +1 -1 +1 -1 12
3 -1 -1 +1 +1 +1 -1 +1 22
4 +1 -1 -1 +1 +1 +1 -1 13
5 -1 +1 -1 -1 +1 +1 +1 50
6 +1 -1 +1 -1 -1 +1 +1 35
7 +1 +1 -1 +1 -1 -1 +1 18
8 -1 -1 -1 -1 -1 -1 -1 80
9 -1 -1 -1 +1 -1 +1 +1 10
10 +1 -1 -1 -1 +1 -1 +1 20
11 +1 +1 -1 -1 -1 +1 -1 6
12 -1 +1 +1 -1 -1 -1 +1 30
13 +1 -1 +1 +1 -1 -1 -1 17
14 -1 +1 -1 +1 +1 -1 -1 43
15 -1 -1 +1 -1 +1 +1 -1 16
16 +1 +1 +1 +1 +1 +1 +1 26

Effect -109 -9 -63 -95 1 -81 5
Rank 1 5 4 2 7 3 6

TABLE 2: The PB design matrix with foldover (N = 7).

Like in the prior work by Yi et al. [24], we adopted the
improved variation called foldover PB design [25] in ACIC.
Foldover PB design is able to quantify the effects that
not only single parameters have but also two-parameter
interactions have on the final performance. Foldover
PB design adds N ′ additional rows in the matrix. The
signs of the values in these additional rows are the
opposite of the corresponding entries in the original
matrix. Table 2 shows a complete foldover PB design
matrix for 7 parameters (N = 7). For example, the effect
of the parameter A is calculated as follows: EffectA =
(1×19) + (-1×12) + ... + (-1×16) + (1×26) = -109.

Parameter Name Low Value High Value Rank
Data size 1MB 512MB 1

Read and/or write read write 2
I/O server number 1 4 3

Num. of I/O processes 32 256 4
File system NFS PVFS2 5
Stripe size 64KB 4MB 6
Placement part-time dedicated 7

Request size 256KB 128MB 8
I/O interface POSIX MPI-IO 9
Disk device EBS ephemeral 10
Collective no yes 11

Instance type cc1.4xlarge cc2.8xlarge 12
I/O iteration count 1 100 13

Num. of all processes 32 256 14
File sharing Share Individual 15

TABLE 3: The Plackett and Burman values and their
ranking results.

In this proof-of-concept study, we built the ACIC
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foldover PB matrix (N = 15) for the 15-dimensional
exploration space (in Table 1). Table 3 shows the PB
values used in ACIC. We select these values based on the
following rules. For non-binary (numerical) parameter
value ranges, we select a slightly higher or lower value
from all surveyed applications. This is because that
a relatively large range for parameter values ensures
that that parameter will have an effect on the output
performance [24]. For a binary parameter, we use all the
values. We carried out the 32 test runs with IOR on the
cloud storage system configured according to the values
in the PB matrix.

Table 3 shows the relative importance ranking deter-
mined by the PB design. The results show that the
most important three parameters are “data size”, “I/O
operation type”, and “I/O server number”, while the
least important ones are “whether file sharing is on”,
“number of all processes”, and “I/O iteration count”.
Such ranking enables ACIC to explore the most influ-
ential parameters first and make a fast (though less
accurate) training to bootstrap the ACIC prediction. This
way, ACIC populates its training database by sampling
the top-ranked parameters first (adopting default set-
tings for the other parameters), then gradually expands
training data collection to the lower-ranked dimensions.

4.2 Performance/Cost Prediction Models
Given the data points collected from IOR training

runs guided by PB design, ACIC can then employ
different black-box prediction methods. Many machine
learning algorithms can help ACIC learn the mapping
between I/O system/application parameters and the
optimization goal.This problem falls under the general
scope of supervised learning. In current ACIC, we employ
two types of models to assess the feasibility of ACIC’s
reusable training. One is a regression-based model, the
other is ranking-based. Users can flexibly choose one or
both of them to combine their advantages. Meanwhile,
ACIC is implemented in a way that different learning
algorithms can be easily plugged in.

4.2.1 CART-based Prediction Model
The first technique used in ACIC is CART (Clas-

sification and Regression Trees) [21] for its simplicity,
flexibility, and interpretability. It is a regression-based
prediction approach, requiring no knowledge about the
prediction target, with trees built top-down recursively.
At each stop in the recursion, the CART algorithm
determines which predictor parameter in the training
data best splits the current node into leaf nodes, then
continues recursively within each subtree. The optimal
split minimizes the difference (e.g., root mean square)
among the samples in the leaf nodes. The error for each
sample is the difference between it and the average of
all samples in the leaf node. Therefore, each internal
node contains a “best” predictor, while each leaf node
gives a predicted target result. Eventually, the optimal

decision tree is pruned to avoid over-fitting. To make
a prediction, the tree takes a set of parameter values as
input, and outputs the predicted target value dictated by
the destination leaf node as it follows the path dictated
by a sequence of internal nodes.

REQUEST_SIZE<34MB
STD=0.147

Avg=1.9
FILE SYSTEM

PVFS2
STD=0.069

Avg=2.2
DATA_SIZE

NFS
STD=0.202

Avg=1.3
DATA_SIZE

<=24576 KB
STD=0.021

Avg=2.1
DEVICE

>24576 KB
STD=0.066

Avg=2.4

<=24576 KB
STD=0.130

Avg=1.6

>24576 KB
STD=0.054

Avg=0.8

EBS
STD=0.000

Avg=2.0

ephemeral
STD=0.006

Avg=2.2

metric predicted

standard deviation
predicted value

predictor

...

...

Fig. 4: Sample tree built by ACIC using CART.

Figure 4 shows a portion of the tree that models
the I/O operation cost built by ACIC. The light-shaded
nodes are internal nodes while the darker ones are
leaves. Each level of the tree (composed by nodes with
the same depth) examines the value of one dimension
in the parameter space. For internal nodes, the first field
contains the current-level parameter value range (such
as “<=24576KB”), automatically calculated by CART to
guide the decision making given the input parameter.
The second field contains the standard deviation of the
target value of all of its children and the third field
contains the average value. The last field indicates the
next-level parameter for branching its children into two
subtrees. The leaf nodes report the predicted target value
(both average and standard deviation).

Note that CART also arranges the ordering of parame-
ters, by placing the ones it considers more “important” to
decision making higher up (closer to the root). However,
this is not redundant with the PB design generated
ranking, as the former can only create such ranking
based on collected training data, while the latter gives
direction to training data collection itself.

With ACIC, we face the problem of performance
reporting mismatch between IOR and the target ap-
plication requesting I/O configuration optimization. It
is unrealistic to assume that the applications can be
modified to report I/O performance in a way consistent
with IOR. We solve this problem by adopting perfor-
mance/cost improvement (over a baseline configuration) as
the predicted target rather than using absolute values.
The idea is similar to the “relative” notion in storage
performance modeling [11]. In our implementation and
experiments, we set the baseline configuration as “single
dedicated NFS server, mounting two EBS disks with a
software RAID-0”, which is indeed the cloud version of
a highly common shared storage setup with small- to
medium-scale clusters [1], [3], [4].
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Algorithm 1: CART-based prediction algorithm.
input: A CART regression tree built based on training data;
input: A parallel application and a user-specified optimization
goal (performance or cost);
output: A recommended cloud I/O configuration;

begin
Collect I/O characteristics for the given parallel application
A, WCA;
Predict the application performance or cost on a baseline
configuration with the CART tree,
PA,base = M(WCA, ICbase);
for ICJ ∈ C do

Predict the application performance or cost on the
candidate configuration, PA,J = M(WCA, ICJ );
Compute the relative improvement against the baseline
configuration RJ = PA,base/PA,J ;

end
Sort all the relative improvement RJ ;
Output the cloud I/O configuration ICJ with the maximal
RJ ;

end

Algorithm 1 presents CART-based prediction algo-
rithm in ACIC. In our cloud storage configuration con-
text, given the target application, ACIC joins the ap-
plication’s I/O characteristics WCA with all candidate
I/O system configurations C, as the input to the CART
model. We skip invalid parameter combinations for per-
formance/cost prediction. As the prediction overhead
is negligible compared to the training data collection
cost, a full exploration of system configuration space is
affordable here. We use PA,J to denote the execution
time or total cost of the parallel application A with an
I/O configuration ICJ , where PA,J = M(WCA, ICJ ). M
is a mapping function of the execution time, or total cost,
of that I/O characteristics and cloud configurations. The
candidate configurations are then sorted by their relative
improvement over the baseline configuration, based on
the CART prediction. ACIC can be configured to report
the top k predicted optimized candidates. When k > 1,
the application user has a better opportunity to identify
an optimal or near-optimal solution, at the cost of more
benchmarking runs trying out the top k configurations.

4.2.2 Ranking-based Prediction Model
To better identify the optimal target configuration with

limited training data, ACIC also employs a representa-
tive Learning-to-Rank technique called RankBoost [22].
RankBoost has been widely used in information retrieval
and data mining, such as web pages ranking and recom-
mendation systems [26].

RankBoost is a ranking-based technique, extending
the boosting algorithm [27]. Giving a partial order or
total order for a set of input objects, it has two main
advantages over regression-based methods. First, instead
of predicting absolute values (such as execution time or
total cost in ACIC) for input objects, it only computes
a ranking list for them. RankBoost has been validated
much more effectively for problems requiring a ranking
order of input objects [22]. Second, pairwise-based Rank-
Boost algorithms convert n training data points into C2

n

pairs, thus resulting in a larger training set than regres-
sion methods (n(n − 1)/2 vs. n), which can effectively
improve prediction accuracy with limited training data.

RankBoost is also a supervised learning task and thus
has training and testing phases. In training, we use
χ to denote the object set to be ranked. Each object
xi of χ is a vector through concatenating application
I/O characteristics WCA and cloud I/O configurations
ICJ after reduction with PB matrices in ACIC, χ =
{xi|xi = (WCA, ICJ ), i ∈ [1, n], A ∈ [1,m], J ∈ [1, k]}.
Each concatenation xi is associated with a response value
yi, which is execution time or total cost in ACIC. So,
the training set can be represented as S = {(xi, yi)}ni=1.
RankBoost will convert it into C2

n concatenation pairs,
(xi, xj), where xi ≺ xj . The ranking order of each
concatenation pair (xi, xj) is defined as, if yi < yj , then
xi ≺ xj .

Like all boosting algorithms [27], RankBoost is an
iterative algorithm. In each iteration, it searches for an
optimal weak learner ht(x) that maximizes the ranking
accuracy of concatenation pairs. A weak learner is a sim-
ple learning model which is defined in RankBoost [22]
as the following functions.

h(x) =

{
1 if fi(x) > θ
0 if fi(x) ≤ θ

(1)

where fi(x) means the ith parameter in the concate-
nation vector x, θ is a threshold value. For example, in
ACIC, a weak learner h(x) maybe h(x) = 1 if I/O server
number > 2 and h(x) = 0 otherwise.

To select optimal weak learners for each iteration,
RankBoost uses a weight distribution Dt (the tth it-
eration distribution) to emphasize those concatenation
pairs that are hard to be ranked. Initially, RankBoost
sets equal weights (1/C2

n) for each concatenation pair,
(xi, xj). In each iteration, if a concatenation pair re-
ceives an incorrect ranking order with the selected weak
learner, its weight will increase according to the formula
in Algorithm 2, so that the next iteration’s weak learner
will focus on correcting this.

Algorithm 2: RankBoost training algorithm used in
ACIC.

input: Training data S = {(xi, yi)}ni=1 and iteration number T ;
output: A ranking function F (x);
initialize: ∀(xi, xj) ∈ χ× χ, set D1(xi, xj) = 1/C2

n;

begin
for t = 1 to T do

Search for the optimal weak learner ht(x) based on
weighted distribution Dt in training data S;
Choose step size αt;
// αt is set according to the error of ht(x) [22];
Update distribution weights: ∀(xi, xj) ∈ χ× χ,
Dt+1(xi, xj) = Dt(xi, xj) expαt(ht(xi)− ht(xj))/Zt.
// Zt is a normalization factor;

end
Output the final ranking function: F (x) =

∑T
t=1(αtht(x)).

end

Finally, RankBoost outputs a ranking model F by
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linearly combining the weak rankers from each iteration,
F (x) =

∑T
t=1 αtht(x), where ht(x) is the weak learner

selected during each iteration, αt is computed according
to the training error of ht(x) [22], and T is the number
of iterations. Figure 5 shows the statistics of RankBoost
training for 300 iterations in ACIC. The training error
of ht(x) changes little after 100 iterations. So, we set
T = 200 in ACIC. Algorithm 2 presents the workflow
of RankBoost used in ACIC.
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Fig. 5: Statistics of RankBoost training in ACIC.

In testing, for a given target application, we input
all concatenations of the application’s I/O characteris-
tics with candidate cloud I/O configurations into F (x).
Then, an optimal cloud I/O configuration with the max-
imum value of F (x) is output.

5 EVALUATION

5.1 Experiment Setup
Platform: All our experiments are performed on Ama-

zon EC2 Cluster Computing Instances (CCIs), with node
type cc2.8xlarge [2]. Each such instance has two 8-core
Intel Xeon processors and 60.5GB of memory. The CCIs
are inter-connected with 10-Gigabit Ethernet. Regarding
OS and system software, we use the Amazon Linux OS
201202, Intel compiler 11.1.072 and Intel MPI 4.0.1. The
compiler optimization level is O3.
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Fig. 6: Cumulative distribution functions (CDF) of band-
width and total cost for training samples.

Training Data: According to the PB design experimen-
tal results, the first 10 parameters listed in Table 3 are
used in our training. We collect about 10K data points
from EC2 platform. In order to show the distribution
of training samples, we draw the cumulative distribu-
tion curves for bandwidth and total cost in Figure 6.

The bandwidth of training samples generated with IOR
benchmark is from 2MB/sec to about 3GB/sec. The
corresponding total cost for each run is from a few cents
to about $10.

Applications: It is highly time and money consuming
to run I/O-intensive parallel applications to evaluate
ACIC. This is not due to ACIC’s own overhead, but
the fact that we perform exhaustive evaluation of all
candidate configuration settings to evaluate its optimiza-
tion effectiveness. In addition, we run each experiment
several times, with cache content cleared in between.
Given such time/cost constraints, we select four repre-
sentative applications with different I/O characteristics,
from different scientific computing domains.

Name Field CPU Comm. R/W API
BTIO Physics H H W MPI-IO
FLASHIO Astro L L W MPI-IO
mpiBLAST Biology M M R POSIX
MADbench2 Cosmology L M RW MPI-IO

TABLE 4: Test applications’ resource usage and I/O type
(H=High, M=Medium, L=Low, R=Read, W=Write).

Table 4 shows their major I/O characteristics and
computation/communication intensity levels. BTIO is
an I/O-enabled version of the BT benchmark in NPB
suite [28]. The problem size used in our experiment is
class C, with collective I/O turned on. FLASHIO is an
I/O kernel derived from the full parallel FLASH simu-
lation, a modular adaptive mesh astrophysics code [29].
mpiBLAST [30] is a parallel implementation of the NCBI
BLAST tool, for protein or DNA sequence search. In
our tests, the 84GB wgs database is partitioned into 32
segments and there are around 1K query sequences sam-
pled from itself. MADBench2 is a “stripped-down” ver-
sion of the MADspec code, used in analyzing the Cosmic
Microwave Background (CMB) radiation datasets [31]. In
our experiments, the output file is up to 32GB, accessed
four times throughout the execution.

Application NP Device P/D FS IOS SS
Optimal Performance Configurations

BTIO 64 EBS P NFS 1 NA
256 eph. P PVFS2 4 4MB

FLASHIO 64 eph. D NFS 1 NA
256 eph. P NFS 1 NA

mpiBLAST
32 eph. P PVFS2 4 64KB
64 eph. D PVFS2 4 4MB
128 eph. D PVFS2 4 4MB

MADbench2 64 eph. D PVFS2 4 4MB
256 EBS D PVFS2 4 4MB

Optimal Cost Configurations

BTIO 64 EBS P NFS 1 NA
256 eph. P PVFS2 4 4MB

FLASHIO 64 EBS P NFS 1 NA
256 eph. P NFS 1 NA

mpiBLAST
32 eph. P PVFS2 4 64KB
64 eph. P PVFS2 4 4MB
128 eph. P PVFS2 4 4MB

MADbench2 64 EBS P PVFS2 4 4MB
256 eph. P PVFS2 4 64KB

TABLE 5: Optimal performance and cost configurations
for different applications with different scales. Column
names: NP - Number of I/O processes; Device - Disk device; P/D - I/O
server placement, part-time (P) or dedicated (D); FS - File system; IOS
- Number of I/O servers; SS - Stripe size for PVFS2; eph. - ephemeral.
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Fig. 7: Total execution time of test applications. In each set of application run, the black dot (the CART-based
model) and the red dot (the Ranking-based model) indicate the ACIC predicted best configuration’s performance
and the gray circles indicate performance of all candidate configurations. The solid (red) line marks the median
(M) performance among all configuration candidates, while the dashed (black) line marks the performance of the
baseline (B) I/O configuration. Speedup ratios achieved by ACIC over the median and baseline performance are
shown at the top of each figure (C means CART, R means Ranking, M means median, B means baseline).
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Fig. 8: Total cost of running the test applications. Cost saving percentages are listed at the top of each figure.

5.2 Optimal I/O Configurations

To evaluate ACIC, we need to actually measure the
above applications’ performance (depicted with total
execution time) and monetary cost running on EC2,
using each of the candidate I/O configurations. Table 5
shows the optimal I/O configurations we found, with
performance (overall execution time) and total cost as
the optimization goal. The results for performance opti-
mization showcase the lack of one-size-fits-all I/O con-
figurations, with 7 unique optimal I/O configurations for
9 application runs. This means that even for the same ap-
plication, different job sizes (numbers of processes) will
call for different I/O system settings. Taking mpiBLAST
as an example, the optimal performance configuration
for 32-process runs adopts part-time I/O servers, while
the one for 128-process runs adopts dedicated. One pos-
sible reason is that with a smaller number of processes,
the locality effect brought by the part-time I/O servers
outweighs other I/O system options. This is less likely to

happen on today’s in-house clusters, whose interconnect
often use dedicated high performance network like In-
finiBand. Even with a moderate 5-D configuration space,
it is hard for users to manually explore the impact of
parameter values and their interplay, as demonstrated
in our user study (Section 6). The configuration results
for cost optimization show similar behavior and in many
cases the best configuration for cost does not agree with
that for performance optimization.

5.3 ACIC Auto-Configuration Effectiveness
Figure 7 and Figure 8 show the execution time and cost

distribution respectively, for the evaluated 9 application
executions. The monetary cost for each execution is:

cost = execution time×num instances×unit price (2)

As mentioned earlier, we exhaustively tested all can-
didate configurations, each indicated by a gray cir-
cle, whose vertical span depicts the range of perfor-
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mance/cost measurement for the entire configuration
space. The lowest dot in each figure is the measured
optimal configuration. The black and the red points
highlight the target measurement achieved under the
ACIC recommended I/O configuration with the CART-
based model and the Ranking-based model. Note that
some gray circles may be covered by the black point. For
example, in Figure 7b, some gray circles are covered by
the black point, so the solid (red) line does not seem to be
at the median. When ACIC gives several configurations
as co-champions, we report the median results using
these configurations. For each application setting, the
solid (red) line indicates the median performing I/O
configuration’s position among the gray circles and the
dashed (black) line marks the performance of the base-
line I/O configuration. As described Section 4.2.1, the
baseline we used is “dedicated NFS server mounting
two EBS disks with a software RAID-0”, a configuration
similar to the baseline setup of many small- to medium-
sized in-house clusters.

First, these figures clearly demonstrate the potentially
large difference, caused by different I/O system config-
urations, in overall execution time (not total I/O time) and
monetary cost of running data-intensive applications in
the cloud. More specifically, we see the performance
difference ranging between 1.4× and 10.5×, and cost
difference between 2.2× and 10.5×. Second, at a glimpse,
ACIC is able to identify near-optimal I/O configurations
in almost all situations, as the black and red points are
located near the bottom of the gray “spectrum”. At the
top of each chart, we note the improvement achieved
by the ACIC-recommended configuration over the me-
dian (“M”/solid line) and the baseline configuration
(“B”/dashed line). For performance, we used speedup,
calculated as:

speed up =
timebaseline/median

timeACIC
. (3)

For cost, we report

cost saving =
costbaseline/median − costACIC

costbaseline/median
× 100%

(4)
In all cases, the ACIC-recommended configuration

outperforms the median configuration, by a factor of 1.1-
3.2 for both the CART-based model and the Ranking-
based model in execution time, while delivering a cost
saving of 14%-67%. It also beats the baseline configura-
tion most of the time. There is an exception of FLASHIO
using 64 processes, where the baseline configuration
happens to be near-optimal itself. Moreover, the absolute
values of execution time (and hence cost) are relatively
small, leading to a substantial negative cost saving in
this case.

Figure 9 presents the performance comparison for the
CART-based prediction model and the Ranking-based
model over the median (M) and baseline (B) perfor-
mance. The Ranking-based model presents better perfor-
mance than the CART-based for most of the programs.

Fig. 9: Performance comparison for the CART-based
model and the Ranking-based model (M means over
the median performance, B means over the baseline
performance).

The Ranking-based model is almost able to identify
near-optimal I/O configurations in all situations as well
as with smaller co-champions. For instance, the CART-
based method fails to identify optimal configurations
for FLASHIO and mpiBLAST. In the prediction of the
total cost, the Ranking-based model presents consistent
results with the CART-based.

Since the Ranking-based model converts a limited
training data points into a much larger training set than
the CART-based model (n(n− 1)/2 vs. n), the Ranking-
based model usually can obtain much higher predic-
tion accuracy with limited training data. In general,
the Ranking-based model is more suitable for problems
requiring a ranking order for input objects. However, the
CART-based model can give a prediction of execution
time or total cost for a given application-platform combi-
nation. The CART tree acquired with the training set can
also help users to understand the relative importance of
input parameters. Users can flexibly choose one model
or both of them to combine their advantages in ACIC.

(a) Execution time (over baseline)

(b) Total cost (over baseline)

Fig. 10: Accuracy enhancement from examining top-
k ACIC recommendations using the Ranking-based
method.
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Next, we examine the potential difference made by
verifying a larger ACIC recommendation set, an optional
effort users can make by running their applications with
not one, but the top-k recommendations. As mentioned
earlier, users may have “residual resource” left from
their hourly cloud instance rentals and can piggy-back
verification runs at no extra cost. Figure 10 shows the
execution time and cost improvement achieved by the
best configuration among the top 1, 3, 4, and 5 recom-
mendations and eventually all I/O configurations (the
true optimal) using the Ranking-based model (Due to
space limit, we omit the results for the CART-based
model which shows similar behavior). The results reveal
that actually the top recommendation (median if there
are co-champions) works fairly well, though considering
more top candidates does help with several cases (eg.
64-process FLASHIO). In particular, in almost all cases,
little further gain can be achieved by checking beyond
the top 3 recommendations.

5.4 Training Cost Analysis

The ACIC overhead includes three types of cost,
caused by its profiling, training data collection, the ac-
tual prediction. Among them, the most significant item
is definitely the training data collection through IOR
runs on the cloud, which incurs time overhead larger
than the other two by orders of magnitude, and could
be expensive money wise. More training data points,
however, typically lead to higher prediction accuracy. To
investigate this tradeoff, we experimented with CART-
based prediction using different numbers of configura-
tion parameters (dimensions), as guided by PB design
results.
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Fig. 11: Impact on prediction performance using different
numbers of top ranking model parameters.

Figure 11 presents the results of this sensitivity study
using four sample runs, one for each application. The
x axis indicates the number of top ranking parameters
used in model training as ordered by PB matrices. For
each parameter count, the y axis on the left measures the
performance of the ACIC top recommendation in terms
of cost saving under the baseline, while the y axis on
the right measures the cost of training data collection.
Note that the left axis is linear scale and the right is log

scale. When using 10 parameters, the total training data
collection cost is around $1K.

The results here show that we can still achieve con-
siderable cloud application execution cost saving, with
only the top 7 parameters (which requires a training
data collection cost of only $108). Meanwhile, we do
observe higher optimization effectiveness when con-
sidering more parameters (by collecting more training
data points), though the gain appears to be heavily
application-dependent. As expected, the estimated train-
ing data collection cost continues to grow exponentially
beyond 10 parameters, reaching $100K when exploring
the full 15-D space. Due to time/funding constraints, we
did not perform more training than the top 10 dimen-
sions, and do not expect such additional exploration will
bring significant gain, as shown in Figure 10.

5.5 Comparison with PB Space Walking
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Fig. 12: Comparing alternative prediction approaches.
Finally, we compare the auto-configuration capability

of the CART-based and the PB-guided space walking
prediction [17], again in terms of cost saving over the
baseline configuration. Here we compare three predic-
tion methodologies. The first is random walk, which
randomly selects the ordering of the I/O configuration
parameters in its dimension-by-dimension training and
prediction. For this approach, we report the average
results from 10 predictions with different random pa-
rameter orderings, with the y error bars depicting the
range of cost saving distribution. The second is the PB-
guided walk method [17]. The third is the CART-based
prediction.

Figure 12 shows the CART-based prediction delivers
the best optimization results consistently. The PB-guided
space walking closely follows in most cases, benefit-
ing from the guidance of PB designs and application-
specific training. The random walking approach, on the
other hand, generates significantly inferior as well as
less predictable optimization performance in half of the
cases. The results confirm that PB-guided walking is an
appealing approach when the ACIC training database
has not been sufficiently populated.

5.6 Observations From Training Experience
In addition to releasing our ACIC tool, here we share

the major observations based on our extensive initial
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Fig. 13: Observations from training data.

training with roughly 10K data points from EC2. The
distribution for different training data is shown with
boxplots in Figure 13.

1) It is more cost-effective to use part-time than dedi-
cated I/O servers for applications with I/O aggre-
gators, where each communication group has a root
process that collects data and writes them locally.
In particular, data locality can be much enhanced
when placing the part-time I/O servers on the same
physical instances as the aggregators. However, as
shown in Figure 13a, there is no significant differ-
ence between these two placement strategies.

2) As shown in Figure 13b, for parallel file system like
PVFS2, having more I/O servers can improve per-
formance of time perspective significantly. Across all
four applications, we found few cases where one
PVFS2 I/O server performs better than four ones.
In Figure 13c, EBS disks usually perform better than
ephemeral disks when there are more than one I/O
servers deployed.

3) As shown in Figure 13d, PVFS works better than
NFS in most cases, but NFS works better for ap-
plications performing small amounts of I/O using
POSIX API on EC2 platform.

4) It is important to tolerate server connection failures
on a cloud platform for production runs. We expe-
rienced lost connections to the I/O server, causing
data corruption, in around 1h of experiments dur-
ing training.

6 USER STUDY

To further verify ACIC’s benefit on automated I/O
configuration optimization, we performed a small-scale
subject study. We used one of our test applications,
mpiBLAST, as we obtained consent from one of its
core developers [30] (“Dev”), plus one of its skilled

users [32] (“User”), to participate in our evaluation. It
is challenging to do a larger study due to the difficulty
in finding (expert) users/developers of I/O-intensive
parallel applications, simultaneously with cloud execu-
tion experience and time to participate. We provided
the participants with sufficient information regarding the
executions (such as input and job scale) and the platform
(such as pricing policy and device performance). Based
on their knowledge and experience, the participants
each gave the optimal configurations manually selected.
E.g., the user gave a configuration of “Eph.-P-NFS-1-
4MB” for cost minimization of 32-process runs, while
the developer gave a configuration of “Eph.-D-PVFS2-2-
4MB” for performance optimization of 64-process runs.

-20

 0

 20

 40

 60

 80

 100

32 64 128 32 64 128

Im
p
ro

v
e
m

e
n
t 

o
v
e

r 
b
a

s
e

lin
e

 (
%

)

 

User User3 Dev Dev3 ACIC

CostTime

Fig. 14: Comparing manual configurations with ACIC.
Figure 14 shows the improvement of ACIC’s pre-

dicted configuration and the manually selected ones.
Across all execution scales and both optimization goals,
ACIC consistently provides better suggestion than the
experienced human participants, beating the user by
an average of 37.43% and the developer by 17.8%. In
addition, both developer and user agree with each other
in three out of the six test groups, confirming the impact
of common knowledge. However, in two of the rest three
test groups, their selections generate highly contrasting
results, indicating the limitation and unreliability of
manual configurations. We also invited them to give
3 configurations for each test group provided with the
insights in Section 5.6, and then compared the ACIC with
the top-3 manual configurations (denoted as ”Dev3” and
”User3”). While the execution time of the top-3 manual
configurations by the developer can match the ACIC
performance, the manual top-3 configurations visibly lag
behind ACIC (36% for user and 17% for developer on
average).

7 RELATED WORK

Parameter space reduction: There are many dimen-
sional reduction techniques, such as Principal Com-
ponent Analysis (PCA) [33] and factor analysis [34].
PCA reduces the data dimension through finding a
few orthogonal linear combinations of the original vari-
ables. Factor analysis investigates variable relationships
by collapsing a large number of variables into a few
interpretable underlying factors. However, the above
techniques need a large number of input data to perform
dimension reduction. In contrast, PB design [14] can
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identify the importance of a number of independent
parameters with a limited number of experiments. It
has been applied to computer system’s analysis. For
example, Yi et al. [24] employed it to identify key pro-
cessor parameters for massive simulations. The novelty
in this paper, however, lies in the combination of PB-
based space reduction with multiple machine learning
approaches to enable cost-effective, reusable model train-
ing for black-box performance/cost prediction.

Machine learning algorithms: Learning-based perfor-
mance analysis has long been explored [35], [36]. For
example, Joshi [35] employed machine learning tech-
niques to search the application behavior space to au-
tomatically construct benchmarks for evaluating a com-
puter architecture design. Hassan et al. [36] applied both
regularized regression and random forests in mining
bioprocess data and also compared them with multiple
linear regression. Actually, CART models have also been
used as attribute filters to prune the similarity search
space [37]. However, ACIC’s originality lies in the cost-
saving mechanisms that make such approaches afford-
able on clouds.

Cloud system configuration: Recently several ap-
proaches have been developed to optimize cloud plat-
form configurations [1], [38], [39]. For instance, Gideon et
al. [1] study the impact of different data sharing options
for scientific workflows on Amazon EC2. Herodotou et
al. [38] propose a system, Elastisizer, which can select the
proper cluster size and instance types for MapReduce
workloads running in the cloud. DOT [39] is a model
analyzing large data analytic software and offering opti-
mization guidelines. Most of these efforts assume certain
knowledge on the application/middleware internals,
while ACIC is based on black-box prediction and can as-
sist many applications with diverse I/O behaviors. Also,
ACIC offers the flexibility and expandability that allow
it to work across cloud platforms and across hardware
updates. The recently proposed Scalia [40] is a cloud
storage brokerage solution that focuses on cross-cloud
optimization and estimates cost using longer-term access
statistics. In contrast, ACIC, while capable of multi-
cloud optimization, is designed specifically to address
the high-dimensional space optimization problem for
individual application.

Storage provisioning tools: There are tools aiming
at reducing the human effects involved in storage sys-
tem provisioning and management. For instance, MIN-
ERVA [8] and Hippodrome [9] perform automatic block-
level cluster storage tuning. Wang et al. [41] used CART
models to predict storage device performance. scc [42]
automates cluster storage configuration based on for-
mal specifications of application behavior and hardware
properties. Our work complements such prior work
by addressing the unique storage system configuration
space opened up by cloud and the training cost challenge
brought by the high-dimensional configuration space.

Prediction models: Many studies exist on perfor-
mance modeling for I/O systems [43], [44]. For in-

stance, Nikolaus et al. [43] demonstrated that the Pal-
ladio Component Model can predict the performance
of industry workload with system using virtual storage.
Eno Thereska et al. [44] proposed a robust performance
model, called IRONModel, to localize system-model in-
consistencies. Osogami et al. [45] optimized web system
performance by heuristically searching the configuration
space to automatically predict the performance based on
the model measured similar configurations. In addition,
Pesto [10] is a unified storage performance management
system that automatically constructs approximate black-
box performance models of storage devices. Compared
to these studies, our work focuses on the unique high-
dimensional black-box modeling of cloud performance
and the associated training cost challenge.

8 CONCLUSIONS

In this paper, we demonstrate that cloud I/O sys-
tem configurations have considerable impacts on both
the performance and cost efficiency of I/O intensive
parallel applications. We further propose ACIC, an au-
tomatic cloud I/O system configuration tool for par-
allel applications. ACIC combines several statistical
and machine learning techniques to enable application-
dependent, incremental model training and black-box
performance/cost prediction. In particular, we have
found that the PB design approach, which effectively
trims the parameter exploration space and reduces the
high-dimensional model training to a feasible task,
works well in conjunction with regression tree, learning-
to-rank, and space walking. Our evaluation results
demonstrate that accurate I/O configuration can be pre-
dicted with a significantly reduced exploration dimen-
sion, without requesting users to perform application-
specific manual tuning or benchmarking.
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