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Abstract—Graphics Processing Units (GPUs) are widely used
to accelerate data-intensive applications. To improve the per-
formance of data-intensive applications, higher GPU memory
bandwidth is desirable. Traditional GDDR memories achieve
higher bandwidth by increasing frequency, which leads to ex-
cessive power consumption. Recently, a new memory technology
called high-bandwidth memory (HBM) based on 3D die-stacking
technology has been used in the latest generation of GPUs, which
can provide both high bandwidth and low power consumption
with in-package stacked DRAM memory. However, the capacity
of integrated in-packaged stacked memory is limited (e.g. only
4GB for the state-of-the-art HBM-enabled GPU, AMD Radeon
Fury X). In this paper, we implement two representative data-
intensive applications, convolutional neural network (CNN) and
breadth-first search (BFS) on an HBM-enabled GPU to evaluate
the improvement brought by the adoption of the HBM, and
investigate techniques to fully unleash the benefits of such HBM-
enabled GPU. Based on the evaluation results, we first propose a
software pipeline to alleviate the capacity limitation of the HBM
for CNN. We then design two programming techniques to im-
prove the utilization of memory bandwidth for BFS application.
Experiment results demonstrate that our pipelined CNN training
achieves a 1.63x speedup on an HBM enabled GPU compared
with the best high-performance GPU in market, and the two
optimization techniques for the BFS algorithm make it at most
24.5x(9.8x and 2.5x for each technique, respectively) faster than
conventional implementations.

I. INTRODUCTION

Data-intensive applications process huge amount of data

typically terabytes or petabytes in size [4]. Therefore, ac-

celerating data-intensive applications has attracted many re-

searchers from both academia and industry [2][3][5]. Neural

network training and graph traversal are two of the most

significant data-intensive applications used in data centers.

For example, the prediction of attacking in network security

systems is implemented based on neural networks and the rules

are updated by graph traversal [11]. Therefore, there is a strong

motivation to accelerate neural networks and graph traversal

while reducing the computing power for data centers.

GPUs have been widely adopted in data centers to accelerate

both neural network training and graph traversal for their high

data throughput [3][12]. However, the downside of GPUs is

its high power consumption comparing with other solutions

such as FPGAs and ASICs. A large fraction of the power

consumption of the GPUs is caused by their off-chip GDDR5
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memories [13]. For the performance optimization of memory-

bound data-intensive applications such as neural networks and

graph traversal, improving the memory bandwidth by increas-

ing the memory frequency will make the power consumption

even worse. To boost memory bandwidth while addressing

the power impact, AMD released the first generation of High

Bandwidth Memory (HBM) [7] enabled GPUs. HBM is a

new type of stacked DRAM memory that vertically integrates

multiple memory dies. In the HBM-enabled AMD GPU, there

are four stacks of memory chips sitting around the GPU

chip, comprising of 4GB off-chip in-package global memory.

The adoption of HBM not only increases the bandwidth of

the device memory but also improves the power efficiency

compared with traditional GDDR5 technology.

Fig. 1: The Architecture of HBM enabled GPU
However, the capacity of integrated in-package 3D memory

is limited, due to technology and thermal challenges. Even

though the industry is striving to integrate a much larger

capacity of in-package memory in the future (for example,

the future HBM2.0 standard may enable 32GB of in-package

memory stacking [9]), currently, the users of the first genera-

tion HBM-enabled GPU have to address the capacity limitation

for data-intensive applications. On the other hand, the number

of compute units are dramatically increased on HBM enabled

GPUs to exploit the wider width of the memory interface,

which leads to severe load imbalance for applications with

irregular memory access patterns. In conclusion, we need to

solve the capacity bottleneck and the load imbalance issue of

the HBM enabled GPU to unlock its high bandwidth benefit

for the data-intensive applications.
In this paper, we evaluate the performance of an HBM

enabled GPU comparing with state-of-the-art GPUs with

GDDR5 memories for the cyber attack dectection task in a

data center, in which (1) convolutional neural network training
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and (2) breadth-first search are the most time-consuming

algorithms. Based on evaluation results, we propose a software

pipeline to reduce the memory usage to alleviate the memory

capacity bottleneck for CNN training and two optimization

techniques for better load balance of the BFS algorithm.

Experiment results demonstrate that the HBM enabled GPU

can achieve better performance than the baseline after applying

our proposed techniques.

II. EVALUATION AND OPTIMIZATION METHODS

In this section, we first evaluate the two data-intensive

applications on the HBM-enabled GPUs and then present our

optimization methods to improve the performance for them,

respectively.

A. Shrinking the Memory Footprint of CNN Training

1) Memory Capacity bottleneck: For CNN evaluation, we

use Caffe [8] as our software platform. We first train the

AlexNet [10] on the HBM enabled GPU. We observed that

the AlexNet training is fast when the mini-batch size is 128.

But for a larger mini-batch, for example, the default size 256,

the network training becomes extremely slow. This is because

the subscribed memory footprint of the network training is

beyond the capacity of the HBM. OpenCL will automatically

allocate memory buffers on CPU main memory if GPU has

run out of the off-chip DRAM resource. The GPU reads and

writes the buffers located on the CPU main memory via PCIE,

of which the bandwidth is much smaller than the bandwidth

of the HBM. To maintain the performance of the training, we

should prevent the OpenCL runtime allocating OpenCL buffer

objects on the CPU side by reducing the global memory usage.

2) Reducing the Global Memory Usage: The 4GB capacity

of current HBM is not sufficient for the default AlexNet

training, not to mention even larger networks such as VGG-

16. In the original Caffe implementation, all memory buffer

objects are allocated in the initialization phase and remain

in the global memory during the whole training process.

However, the layer structure of neural networks gives us a

hint that not all neurons and connections are required by the

compute units simultaneously. In fact, the data dependency in

the back propagation algorithm requires only the output of

one layer when processing the subsequent layer. Additionally,

we observe that the training time of each convolution layer

is no less than the time required to transfer the data block

between CPU and GPU memory. Therefore, we can hide the

data transfer with computation since the transfer is handled by

the DMA. Thus we propose a software pipeline with a double-

buffer to hide the memory transfer latency. In this approach,

the memory prefetching, execution and data write-back of all

layers are mapped to the same memory buffers respectively,

which forms a three-stage pipeline with three buffers.

Figure 2 shows the time line of the workflow of the two

command queues in OpenCL. When Layer i is being trained

in compute units, the DMA copies the data of Layer i − 1
from the GPU to the CPU and copies the data of Layer i+ 1
from the CPU to the GPU. At the time when the data of

Layer i+1 is ready, Command Queue 2 generates an event to
notify Command Queue 1 to continue training Layer i+1. At

Save layer[i-1]

Command Queue 1 Command Queue 2

Load layer[i+1]

Train layer[i-1]
Save layer[i-2]

Load layer[i]

Save layer[i]

Load layer[i+2]

SendEvent

WaitForEvent

Train layer[i]

SendEvent

WaitForEvent

Train layer[i+1]

SendEvent

WaitForEvent

SendEvent

WaitForEvent

Fig. 2: Synchronization and Communication for Parallel Ker-

nels in the Pipeline

the end of the processing of Layer i+ 1, Command Queue 1

generates another event to inform Command Queue 2 to start

data transfer. During runtime, the communication overhead

is negligible. Therefore, the global memory requirement is

reduced to the size of the double-buffer for the layers where

the pipeline is applied. And as long as the computation time

is longer than the communication time, the total training time

will remain the same as the original implementation.

B. Tackling the load imbalance issue in Breadth-First Search

As the HBM enabled GPU has higher global memory

bandwidth, vendors have put more compute units on the chip

to take advantage of the high bandwidth memory. However,

the increase of computing resources makes the impact of the

load imbalance issue even higher as more compute units will

be idle. Therefore, the load imbalance has to be solved to

make full use of the HBM enabled GPU.

Fig. 3: The time line of the thread-centric scheme. The entries

denote visits from the vertex on the left to the vertex on the

right.

To deal with this load imbalance issue, we apply a warp-

centric policy [6] instead of the traditional thread-centric

implementation (3). The warp-centric task-thread mapping

avoids divergence by assigning the search task of one vertex

to one warp instead of one thread. One benefit from the warp-

centric strategy is that the search task of one vertex can be

parallelized. An additional trick is that after checking the

vertex status in the Single Instruction Single Data (SISD)

phase, the warp determines whether to continue processing

in Single Instruction Multiple Threads (SIMT) or turn to the

next vertex depending on the condition of the vertex status.

The warp-centric searching process is illustrated in Figure 4.
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Compared with the thread-centric scheme, the warp-centric

reduces the total clock cycles by 36% in this case.

Fig. 4: The time line of the warp-centric scheme. The entries

denote visits from the vertex on the left to the vertex on the

right.

To further improve the performance of the BFS, we then

exploit the idea proposed in [1] and design a bottom-up

approach to traversing the graph on the HBM enabled GPU.

It is an optimization especially advantageous for low-diameter

scale-free graphs. The bottom-up BFS focuses on all unvisited

vertices in lieu of dealing with the current frontier nodes.

The bottom-up approach also traverses the adjacency list, but

once in the list we find a neighbor in the current frontier,

the traversal can stop in the middle and the unvisited vertex

is identified present in the next frontier. For the bottom-up

algorithm, it only has an upper bound-the neighbor edges of

all currently unvisited vertices. Fortunately, the actual amount

of access is expected to be much smaller, with many skipped

queries. The bottom-up significantly reduces the randomness

in memory accesses and thus achieves higher bandwidth on

the HBM.

III. EXPERIMENTAL RESULTS

In this section, we first describe the evaluation setup and

then present the performance results of the proposed methods.

A. Experimental Methodology

Our experimental platform is a workstatioin with a six-

core Intel Xeon E5-2603 CPU with 32GB main memory, and

an AMD Radeon Fury X GPU. We also choose another two

GPUs as the performance baseline: (1) AMD FirePro W7100

employs the same architecture as the Fury X GPU but it uses

GDDR5 as the off-chip memory, and (2) NVIDIA Tesla K40

is the latest high-end GPU for general purpose computing

in market. W7100 can be seen as a Fury X GPU without

the HBM. K40 stands for the contemporary high-performance

GPGPU, which is used to demonstrate how much benefit we

can get from the HBM enabled GPU. The operating system

is CentOS 6.5 and the compiler we use is GCC 4.4.7. The

machine is installed with AMD OpenCL SDK 3.0 and CUDA

7.5.

B. Shrinking the memory footprint of CNNs

Figure 5 shows the execution time of forward propagation

and backward propagation on different GPUs, respectively. We

can observe that the straightforward implementation of CNN

forward propagation and backward propagation on Fury X

suffers significant performance drop. Even comparing with the

W7100, which has fewer compute units and the same architec-

ture as the Fury X, the performance is much lower. We further

studied the underlying reason of this abnormal performance

and found that the total memory requirement is beyond 4GB

for AlexNet training. OpenCL automatically allocates memory

buffer objects on the CPU host memory when the system

is out of GPU device memory. Therefore, the compute units

has to stall to fetch data from the CPU-end memory objects,

which results in extremely low occupancy of GPU compute

units. For HBM-enabled memory the situation is even worse

because the large number of compute units on chip will cause

severe PCIe congestion, which in turn downgrades the overall

performance. To eliminate the long-latency data fetching, we

applied the pipeline technique described in Section II-A2 to

all convolution layers. One thing worth mentioning is that

the pipelining is designed for shrinking the memory usage

rather than improving the performance. By doing this, the total

data requirement is reduced from 4.35GB to 3.52GB. After

reducing the global memory usage, Fury X outperforms K40

with a speedup of 1.63x.

Fig. 5: Training Time of one Iteration

Although the data swapping overhead is carefully covered

by computation, we found that the pipelined training is still

18% slower (mini-batch size: 256) compared with the un-

pipelined implementation on the W7100 GPU, which has

enough device memory space to hold all data and parameters

on chip. Note that the pipelining scheme is not designed for the

ideal situation that the device memory is large enough to hold

all memory buffer objects. As our goal is to reduce the memory

usage to eliminate the direct access from the GPU to CPU-end

memory, we did not use aggressive strategies to minimize the

memory usage in practise. For example, the computation of

fully connected layers is simpler than convolution layers and

thus it cannot completely hide the memory transfer. So we did

not apply the pipeline to higher fully connected layers, since

it can alleviate the performance overhead while keeping the

memory usage less than the size of the device memory space.

C. Breadth-First Search Optimization

We evaluate the performance of the proposed methods

for the BFS optimization on Graph 500 benchmark. The

evaluation metric is the number of edges traversed per second,

which is usually referred to Traversed Edges Per Second

(TEPS). The TEPS metric is proportional to the throughput

of the BFS algorithm. Input graphs are randomly generated

by Graph500 implementation.

We first evaluate the performance of our warp-centric imple-

mentation. Although the warp-centric method maps one single

2017 Design, Automation and Test in Europe (DATE) 1247



vertex to a warp, the warp size here is not necessarily the same

as the hardware configuration (64 for AMD GPUs and 32 for

NVIDIA GPUs) when it comes to implementation. As one

vertex may have less than 64 neighbors, mapping it to one

single hardware warp will result in resource under-utilization.

Meanwhile, mapping more than one vertex to one hardware

warp will lead to divergence and workload imbalance. In the

first phase of evaluation, we swept the number of vertices

mapped into one hardware warp and found out that mapping

two vertices achieves the best performance.

Experiments show that, without the warp-centric method,

the Fury X and the W7100 have no distinguishable differ-

ence in performance. Although the underlying HBM provides

higher bandwidth, BFS cannot take advantage of it because of

uncoalesced access pattern. However, after warp mapping, the

Fury X achieves a speedup from 6.4x to 9.8x. This technique

works as well for the W7100, but with a less significant

speedup. Finally, the Fury X outperforms the W7100 by 1.5

times faster. This result demonstrates that the load imbalance

issue has a higher impact on the HBM enabled GPU than

traditional GPUs with GDDR5, and that our warp-centric

method can unlock the benefit brought by the high bandwidth

memory.

Based on the warp-centric implementation, we build another

traversal program with the bottom-up strategy described in

Section II. For example, Level 0 means the search from the

source vertex and Level 1 means the search from the vertices

visited by Level 0. For Level 0 and Level 1, the bottom-up

implementations outperform the top-down solutions because

the frontiers in these two layers connect to a large proportion

of the graph and thus the top-down implementation has to

traverse many edges which are invalid for the next round.

While in such scenarios, the bottom-up scheme proves to be

efficient because the skip condition is frequently satisfied.

Fig. 6: Performance of Mixed Direction Approach

At last, by carefully switching directions between the top-

down and the bottom-up schemes in different search levels, we

can obtain the minimum execution time for each iteration, as

shown in Figure 6. For the Fury X, the overall performance

is 2.5 times faster than the previous top-down only imple-

mentation with warp-centric optimization. On the contrary,

the W7100 benefits less from it, while speedup is only 1.7.

The result implies a conclusion similar to that in Section II,

that is, we have to tackle the load imbalance issue to make

full use of the HBM enabled GPU. The evaluation results

also suggest GPU architects introduce thread renaming and

warp-level early exit mechanisms to further exploit the high

bandwidth memory.

IV. CONCLUSIONS

HBM-enabled GPUs offer high memory bandwidth and low

power consumption. However, the memory capacity that can

be integrated inside the package is limited. Therefore, extra

software techniques are required to efficiently implement neu-

ral networks and graph algorithms by exploiting the memory

bandwidth benefit and address the capacity bottleneck. In this

paper, we implement AlexNet and BFS on an HBM-enabled

GPU to evaluate the performance gain brought by the in-

package 3D stacking memory. The evaluation results show

that AlexNet training encounters lack of memory capacity and

BFS suffers low utilization of memory bandwidth and load

imbalance. We then propose a software pipeline to reduce the

memory usage of AlexNet training and apply two techniques,

warp-centric method and search direction optimization for

BFS. Experiment results demonstrate that our pipelined CNN

training achieves a 1.63x speedup on an HBM enabled GPU

compared with the best high-performance GPU in market.

For the BFS algorithm, the warp-centric design achieves a

speedup from 6.4x to 9.8x over the traditional thread-centric

implementation, and the direction optimization provides an

extra 2.5x speedup based on the warp-centric implementation.
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