Cost-effective cloud HPC resource provisioning by building Semi-Elastic virtual clusters

Abstract

Recent studies have found cloud environments increasingly appealing for executing HPC applications, including tightly coupled parallel simulations. While public clouds offer elastic, on-demand resource provisioning and pay-as-you-go pricing, individual users setting up their on-demand virtual clusters may not be able to take full advantage of common cost-saving opportunities, such as reserved instances. In this paper, we propose a Semi-Elastic Cluster (SEC) computing model for organizations to reserve and dynamically resize a virtual cloud-based cluster. We present a set of integrated batch scheduling plus resource scaling strategies uniquely enabled by SEC, as well as an online reserved instance provisioning algorithm based on job history. Our trace-driven simulation results show that such a model has a 61.0% cost saving than individual users acquiring and managing cloud resources without causing longer average job wait time. Meanwhile, the overhead of acquiring/maintaining shared cloud instances is shown to take only a few seconds.

Publication
SC ‘13: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis
Jidong Zhai
Jidong Zhai
Associate Professor
(特别研究员、博士生导师)
Wenguang Chen
Wenguang Chen
Professor
(教授)