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AIPerf: Automated Machine Learning as an AI-HPC Benchmark
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Abstract: The plethora of complex Artificial Intelligence (AI) algorithms and available High-Performance Computing

(HPC) power stimulates the expeditious development of AI components with heterogeneous designs. Consequently,

the need for cross-stack performance benchmarking of AI-HPC systems has rapidly emerged. In particular, the de

facto HPC benchmark, LINPACK, cannot reflect the AI computing power and input/output performance without a

representative workload. Current popular AI benchmarks, such as MLPerf, have a fixed problem size and therefore

limited scalability. To address these issues, we propose an end-to-end benchmark suite utilizing automated machine

learning, which not only represents real AI scenarios, but also is auto-adaptively scalable to various scales of

machines. We implement the algorithms in a highly parallel and flexible way to ensure the efficiency and optimization

potential on diverse systems with customizable configurations. We utilize Operations Per Second (OPS), which is

measured in an analytical and systematic approach, as a major metric to quantify the AI performance. We perform

evaluations on various systems to ensure the benchmark’s stability and scalability, from 4 nodes with 32 NVIDIA

Tesla T4 (56.1 Tera-OPS measured) up to 512 nodes with 4096 Huawei Ascend 910 (194.53 Peta-OPS measured),

and the results show near-linear weak scalability. With a flexible workload and single metric, AIPerf can easily scale

on and rank AI-HPC, providing a powerful benchmark suite for the coming supercomputing era.
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1 Introduction

Artificial Intelligence (AI), Machine Learning (ML),
and Deep Learning (DL) have drawn tremendous
attention in recent years. DL requires a training
process[1], which is essentially a multidimensional
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fitting, automatically adjusting the weights (parameters)
of a neural network. As learnable data grow at
an unprecedented rate, High-Performance Computing
(HPC) machines are needed in large AI models to
harness big data and extract complex abstractions[2].
Hybrid HPC models with AI surrogates reveal a
collection of unique and novel opportunities for scientific
breakthroughs and unforeseeable discoveries[3], business
innovations, and other societal benefits. The increase
in algorithmic advances of AI algorithms, available
computing power, and data collections, as well as the
demand for scalable and data-driven solutions, stimulate
the convergence of AI and HPC machines[4]. However,
the convergence[5] still faces multiple challenges, such as
the effective and parallel implementation of algorithms
on large-scale clusters, high bandwidth, and low
latency communications between distributed workers,
and high-speed interconnections to the Network File
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System (NFS). HPC systems need to incorporate the
support for various AI workloads on top of inconsistent
accelerators and software frameworks for an AI-HPC
adaption. Consequently, the need for an open and reliable
benchmark suite to comprehensively evaluate the cross-
stack performance of heterogeneous AI-HPC systems
rapidly emerges, as shown in Fig. 1.

There are three major challenges in AI-HPC
benchmarking. First, the benchmark workload needs to
represent real problems running on AI-HPC, regarding
hardware utilization, setup cost, and computing patterns.
Second, the benchmark workload should preferably be
auto-adaptive to various scales of machines without
extra human effort. Third, a simple system metric on
AI performance needs to be defined, and an approach to
measure it needs to be designed. However, current HPC
and AI benchmarks do not address these challenges. In
particular, the de facto HPC benchmark, LINPACK, does
not measure the cross-stack performance on AI without
a representative workload. Furthermore, popular AI
benchmarks, such as MLPerf[6], have representative AI
workloads, but they have a fixed workload size and are
often used to benchmark small systems. Moreover, they
do not automatically scale with machines and require
considerable human effort for tuning. This feature is
fallacious because the increased computing power tends
to be utilized to attack larger problems, instead of the
same problem with less time. The fixed problems can
not adapt to different scales of machines automatically,
either.

Automated Machine Learning (AutoML) can search
and optimize AI models more automatically and is
receiving increasing attention in the AI community.
As a representative AI application, AutoML basically
contains all the critical components, regarding
primary computing operations (e.g., sparse matrix
multiplication), calculation precision (in FP-32 or lower),

Fig. 1 Convergence of AI and HPC with the growth of
models, machines, data, and potential tasks. The benchmark
should cover the system heterogeneity and reflect the cross-
stack performance.

and workflow in real AI scenarios. More importantly,
AutoML can be implemented in a flexible style so that
it automatically scales with the number of machines.
Moreover, the pseudo-random generated architecture
and extreme computational cost would address the
evolving and diverse architectural designs in AI research
and fully push the system limits in benchmarking.
Considering all the advantages, AutoML is a desired
workload, and we choose it to tackle the first two
challenges. For the third challenge, we learn from
the success of LINPACK and Top500, and utilize
Operations Per Second (OPS) as our benchmark score
to quantitatively measure the AI computing power. The
OPS is measured in an analytical and systematic method
to account for training and inference processes. With the
auto-adaptive workload and single metric measurement,
our benchmark can easily rank various sizes of machines
from small clusters to large AI-HPC.

In summary, our main contributions are in the
following:

� We propose AutoML as a representative and auto-
adaptive workload to establish an end-to-end benchmark
suite for AI-HPC.

� Our implementation is highly parallel and
customizable to keep the optimization potential on
diverse systems.

� We propose an analytical and speedy approach to
calculate the operation rate of neural networks with
different architectures.

� We evaluate our benchmark on various systems to
ensure the benchmark’s scalability and stability.

The rest of this paper is organized as follows.
In Section 2, we review the existing HPC and AI
benchmarks and point out their downsides for AI-HPC
benchmarking. In Section 3, we briefly review AutoML
and the popular frameworks for AI. In Section 4, we
describe the details of our algorithms, implementations,
and measurements. In Section 5, we evaluate our
benchmark on different scales of machines. In Section 6,
we summarize our work. The source code, specifications,
and detailed procedures are publicly accessible on
GitHub.

2 Related Work

2.1 HPC benchmarks

LINPACK is a popular HPC benchmark nowadays. It
is essentially an algebra library that solves a dense
system of linear equations, that is the heart of many
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computational science problems. However, LINPACK is
not suitable for benchmarking AI-HPC for three reasons:
First, the problem size is usually manually decided and
cannot be automatically scaled based on tested machines.
Second, LINPACK provides little information about
the setup cost and input/output (I/O) ability, which are
critical data-intensive applications like AI. This concern
is problematic because most algorithms perform more
data motions than arithmetic[7]. Third, the calculation
is performed in FP-64, whereas most AI applications
typically only require FP-32 or even FP-16. HPL-AI
mixed-precision benchmark[8] was developed based on
LINPACK to highlight the third issue, but it still suffers
from the other two issues. Other HPC benchmarks,
including NASA Parallel Benchmarks, SLALOM[9], and
HINT[7], do not utilize workloads that can represent real
AI scenarios and therefore share the same problems as
LINPACK. Although we cannot use the existing HPC
benchmarks for AI-HPC, they still inspire us in the
benchmark design. For example, the biggest challenge
in benchmarking is to create a single workload that
can capture all the features of real applications and be
auto-adaptive without a fixed problem size. Moreover,
further performance optimization with customizable
configuration is encouraged, as long as the user does
not specialize the program to input data. Lastly, a single
number metric is preferred for easy comparison and
ranking.

2.2 AI benchmarks

A fair and inclusive comparison of machine computing
power on AI applications is not trivial. As the opposite
of monoculture, the system’s heterogeneity, and the
variety of AI workloads, as well as the stochastic
nature of approaches, make the benchmarking
complicated. Previous AI benchmarks attempt to
highlight the challenges by incorporating different
hardware systems[10–14], software frameworks[15]

or AI algorithms[16–19]. More recently, end-to-end
benchmarks[6, 20–23] were developed to simultaneously
evaluate hardware systems and AI algorithms.
MLPerf[6], the arguably most accepted AI benchmark
so far, uses time-to-accuracy to measure the co-
performance of hardware and software. This metric
is an indirect quantification of the computing ability
compared to OPS, which is our metric. Because
MLPerf is composed of multiple micro-tasks, each
one would result in a different measurement. Although
this approach makes the benchmark more accurate

on various applications, it also makes the comparison
and ranking more difficult. Moreover, the limited
workloads in MLPerf have insufficient scalability
with fixed problem size. Other AI benchmarks have
similar drawbacks as MLPerf. Overall, the existing AI
benchmarks are not suitable as AI-HPC benchmarks
because of the following reasons:

� Existing AI benchmarks have a fixed problem size
and therefore limited scalability.

� Existing AI benchmarks do not provide a single and
direct measurement to quantify performance.

3 Background

3.1 AutoML

The development of AI solutions has mostly relied on a
complex model design, which heavily involves human
expertise and is extremely time-consuming. To explore
the architecture space more efficiently and optimize
the model automatically, AutoML[24] has emerged as
the AI model complexity has exponentially increased
in recent years. Surprising as it may seem, AutoML
is already mature enough to rival human experts to
make a real impact on AI research. Overall, AutoML
is inherently computing intensive, highly scalable, and
representative of AI-like workflows. Considering all the
unique advantages, we chose AutoML as our benchmark
workload. As shown in Fig. 2, AutoML contains
various parts[25]: The first part is data preparation,
which involves data collection and data cleaning. The
second part is feature engineering, including feature
selection, feature construction, and feature extraction.
Although data and features lay the foundations of AI
performance, they depend on the application scenarios
and are irrelevant to the machine computing power and
are therefore not considered in our benchmark. The third
part is to generate the neural architecture and optimal
configuration (referred to as hyperparameters), which
can have a significant impact on the performance. The

Fig. 2 Overview of AutoML. We limit our attention to the
model generation in this study.
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two main approaches for model generation are experts’
manual design and the automated Neural Architecture
Search (NAS)[26]. Without human intervention, NAS
has the potential to generate novel architectures beyond
imagination and can significantly boost performance.
HyperParameter Optimization (HPO)[27] is essentially
the optimization of the loss function over the complex
configuration space. NAS and HPO can be implemented
in a parallel manner to fully utilize the distributed
resources. Finally, model evaluation measures the
performance once the candidate model is generated.
The simplest method is to conduct the inference on
the test dataset for enough epochs. This is prohibitively
expensive because there are numerous configurations for
each neural architecture. In this study, we use warm-up
and early stopping strategies[28] that stop the training
once the validation loss flats. This method can allow
quick measurements to a certain degree of accuracy.

3.2 Frameworks

(1) DL frameworks: DL frameworks provide a
user-friendly application programming interface and
transform programs in high-level languages into
an internal representation of certain functionalities.
The low-level efficient libraries, e.g., cuDNN, are
invoked to execute primary operations, such as
matrix multiplication. Multiple solutions with desired
performance exist[29]; therefore, implementation and
customized setups vary while maintaining similar results.
The difference is critical as the training process is
stochastic and approximate intrinsically. An open-source
framework with enough community support would be a
decent candidate for building the benchmark. According
to GitHub, the most popular DL frameworks are
TensorFlow[30], Keras[31], and PyTorch[32]. TensorFlow
is an open-source library for low-level numerical
calculation with static computational graphs, where
operations are written as high-performance C++ binaries
with high-level Python abstractions. Keras is a high-
level library wrapper that is built on top of frameworks,
such as TensorFlow, and provides off-the-shelf but often
inflexible models. PyTorch utilizes dynamic computation
graphs that are modifiable at runtime, but the “Pythonic”
nature makes it less efficient for benchmarking purposes.
After carefully comparing different frameworks[33, 34],
we choose TensorFlow in our benchmark evaluation for
the following reasons:

� TensorFlow is so far the most popular open-source
DL framework with a large and active community

supported from Google.
� TensorFlow is efficient, user-friendly, and easy

to debug (with TensorBoard) regarding the numerical
computations for research and deployment.

� TensorFlow supports various systems with high
performance and scalability.

(2) AutoML frameworks: Various works have been
done to develop user-friendly AutoML frameworks[35, 36],
including Neural Network Intelligence (NNI), tree-based
pipeline optimization tool, and auto-sklearn. NNI is
a popular open-source toolkit that automates the DL
model design process. One key feature is the rich
collection of algorithms to generate neural architectures
and optimizing hyperparameters, as well as a simple
interface for more user-defined algorithms. Other
frameworks focus on the AutoML pipeline optimization,
especially data preprocessing and feature engineering,
which is irrelevant for benchmarking the computing
power. Therefore, we choose to build our own
benchmark suite on top of NNI.

4 Methodology

4.1 NAS

Notable successes of neural architecture designs[37–42]

in the past few years have drawn enormous attention
in the AI research community. The manual design
of neural architecture requires tremendous human
effort, sometimes even domain knowledge in an
ad-hoc fashion. By contrast, the architectures are
automatically generated by selecting and combining
primary operations (e.g., convolution) with NAS
approaches that can be categorized into three abstraction
levels[26]: search space, search strategy, and performance
estimation strategy. The major search strategies
(algorithms)[25] include random search[27], reinforcement
learning[43], evolutionary[44], Bayesian optimization[45],
and gradient-based method[46]. Research around NAS
is typically exploring three dimensions of abstractions
simultaneously using various algorithms to search for
different combinations of building blocks. In the spirit of
transfer learning and knowledge inheritance, Ref. [47]
proposed network transformation that transforms a pre-
trained parent network to a more complex child network
while preserving the input and output consistency.
The knowledge represented by the neural architecture
is transformed from the parent network to the
child network. Reference [48] first dubbed “network
morphism” that can perform multiple transformation
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operations including width, depth, kernel size, and
skip operation. Reference [49] proposed an open-
source framework (Auto-Keras), which is part of NNI,
to perform network morphing guided by Bayesian
optimization. Although every method has its own
advantages, we choose the implementation in Ref. [48]
as our baseline for developing the benchmark. We
choose residual network (ResNet-50) as the initial
model[37], because ResNet-50 is one of the de facto
showcase models in the current DL community and
contains basically all the AI-related computation
primitives. We modify the morphism so that each
transformation step adds a block (convolutional layer,
batch normalization[50], and activation function all
together) instead of just one layer. In addition, we adapt
this implementation to suit benchmarking in a parallel
and distributed way, which is explained later.

4.2 HPO

HPO problems can be viewed as the identification
of optimal model configurations of all related
hyperparameters. Similar to NAS, HPO has three
abstractions[24]: search space, search approach,
and evaluation method. Various search approaches
can be applied to select the best hyperparameter
combinations, including grid search[51], random
search[27], Bayesian optimization[52], and heuristic
search, such as evolutionary[44]. In our case, the
search space is defined by the hyperparameters that
are more directly related to the computational cost,
including the batch size and kernel size, to reduce
the randomness for benchmarking purposes. We use
the stochastic gradient descent with momentum[53] as
the optimizer because it requires less memory and is
more efficient. We evaluated different optimization
approaches and then compared the validation accuracy
on the test dataset. The results of multiple experiments
on CIFAR10 show that Bayesian optimization (in

our case, tree-structured Parzen estimator) slightly
outperforms other methods. Similar to NAS, we use this
fixed algorithm to simultaneously optimize the batch
size and kernel size. In our benchmark workflow, the
HPO is separately performed after the NAS process on
each worker.

4.3 Workflow

As mentioned, we choose NNI (V1.5) as a baseline
to adapt to our benchmark suite. The original NNI
framework is implemented with a “primary-replica”
architecture and performs the NAS and HPO on
the primary node, which is the bottleneck on large
clusters. Moreover, not all operations in AutoML run
on AI accelerators, such as model generation and
data movement. Consequently, the AI accelerator idles
because of the potential bottleneck on the CPU or disk
I/O. In addition, the model generation is time-consuming
and can be implemented with thread parallelism on
CPUs. To address these problems and fully appreciate
all computing resources in a balanced way, we need to
effectively distribute the computations and use proper
parallelism[54] on the CPU and AI accelerator. Therefore,
we modify the NNI framework in various aspects,
as shown in Fig. 3, including performing the model
generation and training on replica nodes asynchronously,
utilizing replica nodes’ CPUs parallelly to generate new
architectures, and performing training parallelly with
all available AI accelerators on each replica node. We
utilize data parallelism with a synchronous all-reduce
strategy, so that all AI accelerators can train on different
partitions of data and results in individual gradients,
which are then aggregated all together at each step. We
summarize our benchmark workflow as follows:

� User accesses the primary node through Secure
SHell (SSH), collects information about replica nodes,
and creates a Simple Linux Utility for Resource
Management (SLURM) configuration script.

Fig. 3 Schematic diagram of the benchmark workflow.
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� The primary node dispatches workloads with
SLURM to replica nodes corresponding to the requested
and available resources parallelly and asynchronously.

� The replica nodes receive the workloads and
perform architecture searching and model training
parallelly. The CPUs on replica nodes search for new
architectures based on the current historical model
list, which contains detailed model information and
accuracy on the test dataset, and then store the candidate
architecture in the NFS for later training.

� The AI accelerators on replica nodes load the
candidate architecture and data, utilize data parallelism
to train along with HPO, and then store the results in the
historical model list.

� The running terminates once the condition is
satisfied (e.g., reaching user-defined time). The final
results are calculated based on the recorded metrics and
then reported.

4.4 Measurement

At present, Floating-point Operations Per Second
(FLOPS) or OPS is the most cited performance metric
to reflect the overall computing ability of HPC. Our
benchmark utilizes OPS as the major metric (score) to
directly describe the computing power of AI accelerators.
Because the processing time can be easily recorded,
we only need to count the total operations, and all
computations are required to be conducted with the
floating points of at least FP-16 precision. Toolkits,
such as NVIDIA profiling tools (nvprof), can record
the executed operation count through a kernel replay,
which is exceptionally slow. This method is also
limited to NVIDIA hardware and is not suitable for
various platforms. Inspired by LINPACK, we treat
the operation counting as a mathematical problem,
to calculate the operation count needed to finish the
complex computation in the training and validation
processes without any optimization. For a given dataset
and model with specific hyperparameters, the theoretical
operation needed to finish the training or validation is
predetermined. If the hardware or software has any
special optimization, then the operation count is reduced
or the execution is faster, eventually resulting in a higher
OPS.

To analytically calculate the operation count, we
need to understand the training and validation processes.
DL libraries, such as TensorFlow, use computational
graphs to represent the computations and guide the
workflow. A computational graph is a directed acyclic

graph where nodes represent variables or operations and
edges represent function arguments (data dependency).
Each computation is essentially a node, so that
variables feed values into operations and operations
feed the outputs into other operations. Computational
graphs can compose complex models with simple
functions and enable automatic differentiation to train
the neural networks. Backpropagation[55] is a reverse-
mode automatic differentiation[56], which efficiently and
recursively applies the chain rule to compute gradients
of inputs and parameters and other intermediates along
with computational graphs. As shown in Algorithm 1,
backpropagation has two parts: Forward Pass (FP)
that computes the results of operations and saves
intermediate values needed for gradient computation
in the memory, and Backward Pass (BP) that applies the
chain rule to compute the gradients of the loss function
with respect to the inputs (multiply Jacobian matrices by
gradients).

The total operation count is the sum of that in FP and
BP, which includes operations to calculate the gradients
and the operations to update the parameters with gradient
descent. Most computations in neural networks are
matrix multiplication, whose ininer products y D

wŒ0� � xŒ0� C wŒ1� � xŒ1� C � � � C wŒn � 1� � xŒn � 1�

have n Multiply-ACcumulate (MAC) operations and
correspond to roughly 2n operations. The gradient
descent procedure can be described as repeat �i D

�i C ˛
dL

d�i

, where �i and ˛ are the weight and learning

rate, respectively, until convergence, so the operation
needed is equivalent to one MAC for one parameter

Algorithm 1 Backpropagation[55]

FP:
1. Define the computational graph where each node represents

a variable (parameters and intermediates).
2. Visit each node in a topological order to compute the

variables with corresponding operations and store the
values at the nodes.

BP:

3. Initialize the loss gradients
dL

dy
and all local partial

derivatives
dy

dxi

.

4. Visit each node in a reverse topological order to compute
the loss gradients with respect to local variables with chain

rule:
dL

dxi

D
dL

dy
�

dy

dxi

.

5. Return
dL

dxi

for all variables.
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in one BP. We break down the original and morphed
models into several components (layers) and analytically
compute the operation count needed of each layer in
the FP, as listed in Table 1. For the convolutional layer,
the input image dimension is Hi �Wi �Ci , the output
dimension is Ho �Wo �Co, and the kernel (filter) size
is K �K. For the dense layer, the input is Ci and the
output is Co. Following the convention in Ref. [57],
the operation weight of MAC is 2, the weight of add/
subtract/multiply/comparison is 1, the weight of divide
(div for short)/sqrt is 4, and the weight of the special
operation, such as exponential (exp for short), is 8. The
operation count is only an approximation. The detailed
descriptions of each layer are presented in Refs. [37,50].

The analytical method of the computing operation is
more complicated in the BP process. The convolution

in FP can be described as Oij D

k�1P
mD1

k�1P
nD1

X.i � m; j �

n/F.m; n/, where Oij is the output, X .i � m; j �

n/ is the input, and F.m; n/ is the filter (kernel). The

partial derivatives of local parameters .
@O

@F
/ and local

intermediates .
@O

@X
/ can be easily derived and are used

in the gradient calculation. Applying the chain rule, we
have the parameters’ and intermediates’ gradients by
multiplying the loss gradients with the local gradients,8̂̂<̂

:̂
@L

@Fi

D

mP
kD1

@L

@Ok

�
@Ok

@Fi

;

@L

@Xi

D

mP
kD1

@L

@Ok

�
@Ok

@Xi

(1)

By substituting the derivatives .
@O

@F
and

@O

@X
/, we can

express the backpropagation,8̂̂<̂
:̂

@L

@F
DConvolution

�
Input X; Loss gradient

@L

@O

�
;

@L

@X
DFull Convolution

�
Flipped F; Loss gradient

@L

@O

�
(2)

Therefore, the total operation count needed to

Table 1 Analytical operation count of each layer (per image)
in the FP.

Layer Operation count in the FP
Convolutional MACDK�K�Ci �Ho�Wo�Co

Dense MAC D Ci � Co

Batch normalization MACDaddDdivDHi �Wi �Ci

ReLU comparison D Ho � Wo � Co

Add add D Ho � Wo � Co

Max-pooling comparisonDK�K�Ho�Wo�Co

Global-pooling add D Hi � Wi � Ci I div D Ci

Softmax exp D add D div D Co

calculate all gradients is roughly twice as that in FP.
The total parameter in the convolution layer (without
bias) is K � K � Ci � Co, so the operation needed to
update all parameters with the gradient descent method
is 2 � K � K � Ci � Co. Considering all steps, we can
have the total operation count in BP, as shown in Table 2.
Because K, Ci , and Co are typically small values in
the convolutional layers, the total operations in BP are
roughly twice that of FP.

For the dense layer Y D W TX C B , where W

and B are weight and bias, respectively, the
intermediates gradients can be obtained by multiplying

the loss gradients (
@L

@Y
/ with the Jacobian matrices of

intermediates .
@Y

@X
/. Similarly, the weights’ gradients

are
@L

@W
D

@L

@Y
�

@Y

@W
. In both cases, the operation

count needed is the same as that in FP. The bias

gradient is
@L

@B
D

@L

@Y
�

@Y

@B
D

@L

@Y
since

@Y

@B
D 1,

therefore resulting in no extra operation. The total
parameter in a dense layer (with bias) is .Ci C 1/ �

CO , and the total count operation needed in the BP
of the dense layer is shown in Table 2. Unlike the
convolutional layer, the operation count of the dense
layer in BP is more than tripled of that in FP (as shown
in Table 3). The operation in the BP of the other layers,
including batch normalization, activation function
(ReLU), element-wise addition layer, max-pooling,
global-pooling, and softmax layer, are all ignorable for
practical purposes. We confirmed our analytical method
by comparing the results of ResNet-50 on ImageNet[58]

Table 2 Analytical operation count of each layer (per image)
in the BP.

Layer Operation count in the BP
Convolutional MACD2�.K�K�Ci �Ho�Wo�Co/C

.K�K�Ci �Co/

Dense MAC D 2 � Ci � Co C .Ci C 1/ � Co

Table 3 Analytical operation count of each layer (per image)
in the FP and BP together.

Layer FP BP BP/FP Total
Convolutional 7.71�109 1.52�1010 1.9755 2.29�1010

Dense 4.10�106 1.23�107 3.0005 1.64�107

Batch normalization 7.41�107 1.91�103 0.000 03 7.41�107

ReLU 9.08�106 0 0 9.08�106

Max-pooling 1.81�106 0 0 1.81�106

Average-pooling 1.00�105 0 0 1.00�105

Add 5.52�106 0 0 5.52�106

Softmax 2.10�104 0 0 2.10�104

Total 7.81�109 1.52�1010 1.9531 2.31�1010
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with a TensorFlow profiler (only computing operation
in the FP) and NVIDIA profiling tools (computing
operation in FP and BP). In our analytical method, we
did not consider any hardware or software optimization
that would result in such an effect. The operation count
from this analytical approach is only related to the neural
architecture, hyperparameter configuration, and data
(e.g., image resolution). The optimizations that result
in less operation count will speed up the training or
validation processes and therefore higher final OPS.
The details of other verifications of our OPS measure
approach are elaborated in the Appendix.

The quantitative measurement of AI-HPC is not trivial,
sometimes even conflicting, due to the diversity of
workloads and metrics. One single metric, such as OPS,
may not be sufficient to reflect the AI-HPC computation
capabilities considering the hardware and software. For
example, the data parallelism algorithm that is frequently
applied in distributed ML will speed up the whole
process at the cost of lower average AI accelerator
utilization and OPS. Although one can separately
present all relevant metrics, we intend to provide
a metric to informatively characterize the system’s
overall performance. In general, an efficient AI-HPC
would perform more computation and result in higher
accuracy in less time. The empirical results[29] show
that the accuracy on the validation dataset monotonically
increases and then plateaus over time. In other words, the
error (1-accuracy) decreases slowly over time. We would
like to compensate for this effect with an increasing
changing rate of the metric. Therefore, the absolute value
of the partial derivative of the metric with respect to the
error should increase with decreasing error. Furthermore,
the partial derivative of the metric with respect to OPS
should be independent of OPS to make the computation
contribute to the metric uniformly. We use this metric as
a regulated score in our benchmark to quantitatively
measure the cross-stack performance of an AI-HPC,
besides the OPS. According to the above conditions,
we design our regulated score as

regulated score D � ln.error/ � OPS (3)

where error2.0; 1/ and the negative sign keeps ln.error/
positive. Consequently, the regulated score increases
faster with lower error and linearly increases with OPS.
For AI systems at the same machine scale but with
different software optimizations, the regulated score
can reflect the hardware and software co-performance.
Therefore, we also provide it as a complementary result.

4.5 Fixed and customizable configuration

There are several rules in our benchmark for a
fair comparison across various platforms. Using a
“pencil-and-paper” manner[59], our benchmark also has
customizable configurations that allow users to optimize
the performance. First, the benchmark should run on
a “primary-replica” architecture. The primary node is
deployed on a strong server without any AI accelerator
to dispatch tasks and collect all results from the replica
nodes. The replica node is composed of one or multiple
servers equipped with AI accelerator(s) and can be
deployed with or without a container environment. The
scale-up (multiple AI accelerators on each replica node)
and scale-out (one AI accelerator on each replica node)
configurations are supported. Second, the algorithms and
search space used for AutoML are fixed, i.e., network
morphism for NAS and Bayesian optimization for HPO,
with the aforementioned operations and hyperparameters.
The HPO only starts at the fourth round of training
on each replica node, because the earlier rounds are
trained insufficiently, which is also referred to as the
warm-up process in this paper. A predicted accuracy,
instead of the actual one, is used in the warm-up process.
There is also a maximum limit on epoch and patience,
which is the number of epochs to wait before an early
stop if there is no progress on the validation dataset.
Third, the dataset is fixed to be ImageNet, which has
1 281 167 and 50 000 224�224 RGB images for training
and validation, respectively. We kept the back-end DL
framework and most hyperparameters open to further
optimization. This method would partially relieve the
performance dependency on manual designs and be more
independent of the software part of the system. The data
can be formatted in different ways corresponding to
the DL framework. For example, the data loading with
TFRecord is more efficient for TensorFlow. Fourth, our
benchmark requires the minimum precision to be FP-16
and the maximum error to be 30%. A cumulative value
of OPS was calculated at each timestamp (0.1-hour step),
and the final value was considered as the score. The
summarized configurations are shown in Table 4.

5 Evaluation

5.1 Setup

In our preliminary test, we verified our benchmark
design (regarding algorithm and implementation) on our
local machine with four NVIDIA 1080Ti GPUs based on
the CIFAR10 dataset. The formal evaluation presented
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Table 4 Fixed and customizable configuration.
Configuration Fixed and customizable setup

Server arrangement Fixed: primary-replica
NAS method Fixed: network morphism
HPO method Fixed: Bayesian optimization

Dataset Fixed: ImageNet
DL framework Default: TensorFlow

Initial architecture Fixed: ResNet-50
Initial weight Default: method in Ref. [60]

Batch size Default: 448

Optimizer Default: gradient
descent with momentum

Learning rate Default: 0.1 with linear decay
Loss function Default: categorical cross entropy

Maximum epoch Default: 60
Parallelism Default: synchronous all-reduce

Parallel data transformation Default: 48
Minimum precision Fixed: FP-16

Maximum error Fixed: 30%

here was performed on two large clusters: GPU
(NVIDIA V100) cluster and NPU (Huawei Ascend910)
cluster. Both of them consist of multiple servers, each
with two CPUs and eight AI accelerators (see Table 5
for hardware specifications). As a modern practice in AI
research, we perform the evaluation in containers with
the allocated resources and pre-assigned services for
the consistency of the testing environment. We utilize
Kubernetes to deploy the docker containers that wrap
in all the dependencies, including the operating system,
libraries, and workload codes, to provide the running
environment. We use each physical server with the same
hardware specifications as either a primary or a replica
node for simplicity. The detailed information of the
evaluation environment is shown in Table 6.

5.2 Performance

We run the benchmark on various scales of machines
from 10 replica nodes with 80 GPUs up to 512 replica
nodes with 4096 NPUs. All the intermediate results,
including the generated architectures, hyperparameter
configurations, accuracy at each epoch, and timestamps,

Table 5 Hardware specifications of the two evaluated
systems.

Component GPU cluster NPU cluster
Processor Intel skylake 6151 Huawei Kunpeng 920

Memory 2667 MHz
DDR4 512 GB

2933 MT/s
DDR4 2048 GB

Al accelerator NVIDIA V100 Huawei Ascend910
Storage NVMe 5 TB NVMe 5 TB

Ethernet network InfiniBand 100 Gb/s InfiniBand 100 Gb/s

Table 6 Evaluation environments of the two evaluated
systems.

Component CPU cluster NPU cluster
30 CPU cores 191 CPU cores

Allocated resource 128 GB memory 512 GB memory
8 NVIDIA V100 8 Huawei Ascend910

Environment

Ubuntu 16.04 Ubuntu 18.04
docker 18.09 docker 19.03

SLURM 15.08 SLURM 17.11
TensorFlow V2.2 MindSpore V1.0

CUDA V10.1 CANN V20.1
Python 3.5 Python 3.7

are recorded in log files. Once the benchmarking
process is finished, we run the data analysis toolkit
to calculate the score along with other complementary
results utilizing all the recorded information and then
create a report.

In this study, we limit our evaluation to two major
characteristics of the benchmark: stability and scalability.
As for the stability characteristic, within the pre-assigned
hours on various types and scales of AI accelerators,
the cumulative OPS was calculated and is shown in
Fig. 4 as the score. In both clusters, the cumulative
OPS converges and increases steadily. The regulated
score in Fig. 4 also converges because it is essentially

Fig. 4 Benchmark scores and regulated scores (both in Peta-
OPS) over time of evaluations with different scales of cluster
nodes.
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just the OPS multiplied with the model performance as a
coefficient. The regulated score has a similar behavior as
the score. The results show the robustness and stability
of our benchmark.

To ensure stability, we also monitored the GPU
performance during the benchmarking process. We used
the NVIDIA System Management Interface (nvidia-smi)
to track the GPU utilization to show the percentage of
time during which one or more kernels are occupied,
along with the GPU memory utilization during the
same time period. We developed a toolkit to extract
real-time information with a 30 s sampling interval
during the entire running time. As shown in Fig. 5, the
GPU utilization and memory occupancy are both high
during the training phase with the default benchmark
configuration (for NVIDIA V100). As described in
Section 4, the job size increases when the number
of processing units increases. Hence, as for the
scalability characteristic, the weak scaling test was
performed, and the results are shown in Fig. 6. The
benchmark shows a near-linear weak scalability on
the two evaluated systems, which implies that our

Fig. 5 GPU utilization and their memory utilization of
evaluations with different scales of machines measured by
NVIDIA profiling tool. The average values are shown in
the labels. The utilization drops during the inter-phase
between the training stages come from the data loading and
computational graph compilation.

Fig. 6 Sustained performance (in Peta-OPS) of AIPerf
over different numbers of AI accelerators. The benchmark
shows near-linear weak scalability on systems from dozens to
thousands of GPUs or NPUs.

benchmark can evaluate even bigger systems, such as
future exascale supercomputers. Due to the optimization
of the benchmark configurations and system fluctuation,
super-linear effect appears occasionally.

6 Conclusion

The rise of the convergence of AI and HPC reveals new
challenges state-of-the-art in benchmarking and future
large-scale clusters for AI purposes. Here, we review the
current HPC and AI benchmarks and explain why they
do not address all the challenges. We choose AutoML,
a highly scalable and representative AI application,
as our benchmark workload and implemented the
algorithms in a highly parallel manner. We also propose
an analytical approach that is independent of DL
frameworks and other software implementations to
estimate the computation operation rate during training
and validation processes. We utilize this rate as the
benchmark score to construct the benchmark score to
quantitatively measure the machine computing power
on AI applications. We evaluate the benchmark on
different types and scales of systems with a large dataset
and verify the benchmark’s stability and scalability.
Moreover, the simple metric design allows us to easily
compare and rank machines from small clusters to large
AI-HPC.

Appendix: OPS calculation

We compare our analytical approach of computing
operations with the TensorFlow profiler (tf.profiler) and
NVIDIA profiling tool (nvprof). The tf.profiler can
only count operations in the FP. The nvprof can trace
GPU activities and use the kernel replay to ensure all
requested profile data, including the counts of addition,
multiplication, MAC, and special operation. The
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profiling process with nvprof is prohibitively expensive,
so we need an approach to speed up the process.

Fortunately, we can utilize the iterative nature of DL
computation and sample the profiling process based
on a small partition of data. This method only gives
an approximation, because the operations vary with
the hyperparameter configurations. Table A1 shows the
operations of ResNet-50 layers on ImageNet with the
three approaches. The operations in BP are consistent
between our analytical approach and nvprof, and the
operations in FP are consistent among all the three
approaches.
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