
Cache Sharing Management for Performance Fairness in Chip Multiprocessors

Xing Zhou Wenguang Chen Weimin Zheng
Dept. of Computer Science and Technology

Tsinghua University, Beijing, China
zhoux07@mails.tsinghua.edu.cn,{cwg, zwm-dcs}@tsinghua.edu.cn

Abstract

Resource sharing can cause unfair and unpredictable
performance of concurrently executing applications in
Chip-Multiprocessors (CMP). The shared last-level cache is
one of the most important shared resources because off-chip
request latency may take a significant part of total execution
cycles for data intensive applications. Instead of enforcing
ideal performance fairness directly, prior work addressing
fairness issue of cache sharing mainly focuses on the fair-
ness metrics of cache miss numbers or miss rates. How-
ever, because of the variation of cache miss penalty, fair-
ness on cache miss cannot guarantee ideal fairness. Cache
sharing management which directly addresses ideal perfor-
mance fairness is needed for CMP systems.

This paper introduces a model to analyze the perfor-
mance impact of cache sharing, and proposes a mechanism
of cache sharing management to provide performance fair-
ness for concurrently executing applications. The proposed
mechanism monitors the actual penalty of all cache misses
and uses Auxiliary Tag Directory (ATD) to dynamically es-
timate the cache misses with dedicated cache when the ap-
plications are actually running with shared cache. The esti-
mated relative slowdown for each core from dedicated envi-
ronment to shared environment is used to guide cache shar-
ing in order to guarantee performance fairness. The ex-
periment results show that the proposed mechanism always
improves the performance fairness metric, and can provide
no worse throughput than the scenario without any man-
agement mechanism.

1. Introduction

Data intensive applications usually spend a large propor-
tion of total execution cycles on memory accessing because
of the long latency of off-chip requests. The on-chip last
level cache (usually L2 or L3 cache), which is the key com-
ponent to hide off-chip request latency, is typically shared
by multiple cores in a Chip-Multiprocessors(CMP) archi-

tecture. As a result, the sharing of last level cache has sig-
nificant impacts on the performance of concurrently exe-
cuting applications on different cores. The technologies of
server consolidation and virtual machine are calling for the
demand of scheduling heterogeneous workloads together.
The different memory accessing characteristics of hetero-
geneous workloads will lead to unfair cache sharing, which
breaks the hardware fairness assumption of the scheduler
and may bring thread starvation, priority inversion and other
problems to operating system’s process scheduler [6].

Prior work has noticed the problem of unfair cache shar-
ing and the consequential result of unfair performance. [6]
proposed a cache partitioning mechanism to enhance fair-
ness of cache sharing. Although intuitively the ideal fair-
ness of cache sharing should be equal slowdowns relative to
running with a dedicated cache for all co-scheduled appli-
cations, [6] uses the equal increment of cache miss numbers
or miss rates as fairness metrics, because [6] points out that
ideal fairness is hard to measure and cache miss fairness are
usually highly correlates with the ideal fairness.

The mechanism proposed in [6] is an improvement over
unmanaged caches. However, because the cache miss fair-
ness is not identical to ideal fairness, the improvement on
cache miss fairness can not guarantee the same degree of
ideal fairness improvement, and enforcing fairness on cache
miss does not necessarily lead to the situation of ideal fair-
ness. To explain the above results, we should note that the
correlation between cache miss fairness and ideal fairness
(performance) actually depends on two factors: (1) The
performance sensitivity of each application to cache misses
varies, as applications spend differing fractions of execution
time stalled on cache misses. The performance of those ap-
plications with a large fraction of execution cycles stalled
on misses will be more sensitive in cache miss varies. This
fraction are diverse; for example, data centric applications
will spend much more cycles on memory access (stalled
by cache misses) than computation oriented applications.
(2) The stalls arising from each miss vary as a function of
Memory Level Parallelism (MLP) [13][2] and ILP. Clus-
tered cache misses’ latency cycles overlapped with recent

misses, and the average penalty of each cache miss can be
reduced. So the actual penalty of each cache miss is smaller
than memory access latency and may vary according to dif-
ferent memory access characteristics. Besides, computation
operation cycles and memory access latency cycles may
overlap, which can also reduce the actual penalty of cache
misses.

Thus, in order to enforcing ideal fairness on cache shar-
ing, we must firstly build an analytic model to account for
the performance impact of cache sharing. The analytic
model should be able to help to divide applications’ whole
execution cycles into ”private part”, which is not related to
cache sharing, and ”vulnerable part”, which is susceptibleto
additional cache misses caused by cache sharing. Then, ac-
cording to the analytic performance model we can develop
a mechanism to provide a reference point for ideal fairness
metric by measuring or estimating the application’s perfor-
mance in a dedicated cache when it is actually running in a
shared cache.

This paper makes two contributions: (1) we proposes
a model to analyze the performance impact of cache shar-
ing for CMP, considering not only additional cache misses
caused by cache interference of concurrent workloads, but
also the variation of the actual penalty for each cache miss.
(2) To the best of our knowledge, this paper proposes
the first mechanism that partitions shared cache and en-
forces fairness for the goal of ideal performance fairness.
This mechanism is dynamic and adaptive, no static pro-
file needed. The proposed mechanism always improves
the performance fairness metric, and can provide no worse
throughput than the cache without any management mech-
anism.

The rest of the paper is organized as follows. Section 2
gives a definition of ideal fairness as well as cache miss fair-
ness which is used in prior work. Section 3 introduces an
accurate model, which connects cache miss rate and overall
performance, to estimated the performance impact of cache
sharing. In Section 4, the hardware mechanism of enforc-
ing fairness on shared cache in a typical CMP architecture
is described in detail. Section 5 describes the experiment
methodology and discusses experiment results. Section 6
introduces related work briefly and Section 7 gives a con-
clusion.

2. Defining Performance Fairness

We defineperformance fairness, which is the ideal fair-
ness discussed above, as identical slowdown for each con-
current workload running with shared cache compared to
running with separate, dedicated caches, which is calledex-
ecution time fairnessin [6]. Let T ded

i denotes the execution
time (count of execution cycles) of workloadi with ded-
icated cache andT shr

i for the execution time with shared

cache, thenperformance fairnessis achieved when:

T shr
i

T ded
i

=
T shr

j

T ded
j

(1)

for every pair of concurrent workloadsi andj. T ded
i and

T shr
i can be replaced byCPIded

i andCPIshr
i for a certain

slice of running instructions, and then Equation 1 can be
transformed to:

CPIshr
i

CPIded
i

=
CPIshr

j

CPIded
j

(2)

Actually CPIshr
i

CPIded
i

is the slowdown of workloadi running

with shared cache compared to dedicated cache. And we
define performance fairness metric of a pair of concurrently
running workloadsi andj under a certain cache partition as
Mperf :

Mperf =
∑

i

∑

j

∣

∣

∣

∣

∣

CPIshr
i

CPIded
i

−
CPIshr

j

CPIded
j

∣

∣

∣

∣

∣

(3)

Intuitively, Mperf is the sum of the slowdown difference
between every two co-scheduled workloads. The smaller
Mperf is, the smaller the slowdown difference among all co-
scheduled workloads, thus the better the performance fair-
ness. IfMperf equals zero, perfect performance fairness is
achieved.

For the purpose of comparison, we also define thatcache
miss fairnessis achieved when:

MPKI
shr
i

MPKI
ded
i

=
MPKI

shr
j

MPKI
ded
j

(4)

for every pair of concurrent workloadsi and j, in which
MPKI

shr
i andMPKI

ded
i denote the miss count per thou-

sand instructions when workloadi running with dedicated
cache and shared cache. Cache miss fairness metric is de-
fined as:

Mmiss =
∑

i

∑

j

∣

∣

∣

∣

∣

MPKI
shr
i

MPKI
ded
i

−
MPKI

shr
j

MPKI
ded
j

∣

∣

∣

∣

∣

(5)

Similar toMperf , the smallerMmiss is, the better the cache
miss fairness, and perfect cache miss fairness is achieved
whenMmiss equals zero.

Mmiss is the same asM3 in [6] and FM3 in [7]. [6]
proposed five fairness metrics, butM2 has been shown to
have a poor correlation with performance fairness;M1 and
M3 contribute the most highly correlation with performance
fairness for most cases. If the workload runs the same
count of instructions with dedicated cache and shared cache,
Mmiss is the same asM1, too. SoMmiss is representative
enough.

3. Modeling Performance Impact of Cache
Sharing

We use a typical CMP architecture configuration for fol-
lowing analysis:N cores on chip; each core has private L1
instruction cache and data cache; unified on-chip L2 cache
shared by all on-chip cores is the last level cache, and a
miss in L2 cache will issue an off-chip request. All caches
are set-associated.

To model performance impact of cache sharing, the cy-
cles consumed during application’s running time can be cat-
egorized into two classes:private operation cycles(Tpri)
andvulnerable operation cycles(Tvul). Intuitively, private
operation cycles are the part of execution cycles which only
depends on the characteristics of the workload. Vulnera-
ble operation cycles are sensitive to different co-schedulers
on other cores and may varies diversely because of resource
sharing. Private operation cycles are consumed by those op-
erations which only need private resources of the core, such
as computation time, the latency of fetching instruction and
data from private L1 cache. A L2 request is a hybrid op-
eration. The tag looking up latency is accounted in private
operation cycles for it is constant no matter whether this
request misses or not. However, if the L2 cache misses,
the cycles of off-chip request latency are vulnerable opera-
tion cycles because this cache miss may be caused by cache
sharing and the off-chip request is extra cycles.

However, the whole execution cycles is not simply equal
to the sum ofTpri andTvul because there are overlap cy-
cles of private operations and vulnerable operations. For
example, in an out-of-order processor, even if a instruction
is stalled by a L2 cache miss, other instructions in the sched-
ule windows still can enter pipeline if there is no data de-
pendence. As a result, theoverlap cycles(Tovl) must be
introduced, then:

T = Tpri + Tvul − Tovl (6)

The example in Figure 1 illustrates Equation 6.P i p e l i n eL 1 M i s sL 2 M i s s A B
Figure 1. Illustration of Equation 6. The hori-
zontal axis represents time (cycles) elapsed.

In this example, during the execution time ofT , two L2
cache misses occur. After the first miss, the instruction win-
dow still has instructions with no data dependence on this
miss, so the pipeline is not stalled yet until the second miss
occurs. The computation time of pipeline is certainly part of
Tpri, and the off-chip request latency of L2 misses isTvul.
Note that when L1 misses occur, the L1 request latency (tag
looking up latency in L2 cache), such as slice A and slice B
in the figure, is part ofTpri; however, it ends up as an L2
miss, the latency of off-chip request does not belong toTpri

any more. Tovl is formed by those cycles whenTpri and
Tvul overlap.

Because the vulnerable operation cycles are mainly the
cycles of off-chip request latency,Tvul can be approximated
by the total penalty of off-chip requests. Average MLP is
needed to consider to estimate the average penalty of each
cache miss. We derive the average MLP definition in [2] as
the average number of useful outstanding off-chip requests
when there is at least one outstanding off-chip requests, de-
noted byMLPavg. We have the following equation:

Tvul =

Nmiss
∑

i=1

Miss Penaltyi

= Nmiss ∗
Miss Latency

MLPavg

(7)

Then Equation 6 can be:

T = Tpri − Tovl + Nmiss ∗
Miss Latency

MLPavg

(8)

In Equation 8 the latency of off-chip request
(Miss Latency) can be treated as a constant (ignor-
ing other factors such as bus congestion). Equation 6 and
8 shows that the total execution time of an application
including three parts:Tpri is the inherit part that does not
change for cache sharing.Tovl and Tvul are related to
cache sharing; they are the cause of unfair performance
and the part of execution time that cache partition mech-
anisms want to adjust. According Equation 8, if we can
get the parameters ofTovl, Nmiss and MLPavg through
hardware profiler, the total execution time can be estimated
dynamically.

4 Hardware Mechanism

The necessary hardware support includes two interde-
pendent parts: cache partition mechanism and hardware
profiler. Figure 2 shows how it works. The hardware pro-
filer gather the statistics of each core’s pipeline, each private
L1 instruction cache and data cache, and unified L2 cache
during last period. At the end of period, cache partition de-
cision is made and the cache partition mechanism applies
the decided partition to cache.

U n i f i e d L 2 C a c h e
C o r e 1 C o r e NL 1 D / L 1 I L 1 D / L 1 IPro file r C a c h e P a r t i t i o n M e c h a n i s m

Pro file r
Figure 2. Hardware Framework

4.1 Cache Partition Mechanism

The cache partition mechanism is the simpler part. As-
suming there areN cores on chip sharing L2 cache, we
add log

2
N bits for each cache block to mark which core

this cache block belongs to. And each core has a bit of
overAlloc flag to indicate whether this core has been allo-
cated too much cache space or not. When a cache miss from
core i occurred, firstly found the correct cache set; if the
overAlloc flag of corei shows that corei is not over allo-
cated, use original cache replacement policy to find a victim
cache block, and change the mark bits of this cache block
as belonging to corei; if the overAlloc flag shows that core
i has been allocated too much cache space, randomly se-
lect one cache block with mark of corei as victim cache
block. This mechanism guarantees over allocated cores can
not gain more cache lines, and the additional cache block
will be gradually taken by other under allocated cores, and
the partition target set byoverAlloc flag of each cores. A
special situation is that though the register of corei shows
over allocated, there is no cache block marked as belonging
to corei, we still allocate a cache line for corei.

� ! " #
Figure 3. Cache Partition Mechanism

4.2 Hardware Profiler

The hardware profiler is more complex. To achieve per-
formance fairness for a shared cache CMP, identical slow-

downs compared to running with dedicated cache is the
ideal goal. The key problem is to estimate the cycles needed
by the workload with dedicated cache when it is actually
running with a shared cache.T shr

i andT ded
i or CPIshr

i

andCPIded
i for each corei are need to evaluateMperf de-

fined in Equation 3. The job of hardware profiler is to profile
necessary runtime or statistical parameters when the appli-
cations are executing concurrently, and use Equation 6 and
Equation 8 to dynamically estimate the situation if running
with dedicated cache.

According to Equation 6 and Equation 8:

T shr = T shr
pri − T shr

ovl + T shr
vul (9)

T ded = T ded
pri − T ded

ovl + Nded
miss ∗

Miss Latency

MLP ded
avg

(10)

According to the definition ofTpri we can getT shr
pri =

T ded
pri = Tpri. So in order to enforce performance fairness,

T shr , T shr
ovl and T shr

vul should be profiled in shared mode,
and thenTpri can be calculated; at the same time,T ded

ovl ,
Nded

miss andMLP ded
avg need to be estimated, and finally we

gainT ded and be able to evaluateMperf . The data flow for
analysis is showed in Figure 4.

T shr , T shr
ovl , T shr

vul −→ Tpri

ց ց
T shr −→ Mperf ←− T ded

ր
T ded

ovl , Nded
miss , MLP ded

avg

Figure 4. Data Flow for Analysis

If we only want to enforce cache miss fairness defined
by Equation 4, things are much simpler: onlyN shr

miss and
Nded

miss are needed, thenMmiss defined by Equation 5 can
be evaluated.

4.2.1 Profiling parameters for shared cache

The profiler calculate statistics in everyPT cycles (profil-
ing period), thenT shr = PT . To getT shr

vul , we add alog2N
bits flag to each entry of L2 MSHR (Miss Status Holding
Register) to identify which core causes this miss; then mon-
itor the count of entries with the specified flag to see if there
is request of this core in MSHR. At the beginning of profil-
ing period,T shr

vul is initialized to zero. If MSHR has at least
one entry for this core,T shr

vul should be increased because
there is at least one off-chip request on this cycle.

To decide whether a cycle of the whole execution time
belongs toT shr

ovl , three conditions should be considered: (1)
whether the pipeline is stalled in this cycle; (2) whether
there is at least an L1 request in this cycle; (3) whether there

Algorithm 1 : CalculatingT shr
vul

/* at the beginning of each profiler period */
T shr

vul = 0;

/* for each cycle*/
if L2 MSHR has entries for this corethen

T shr
vul + +;

is at least an L2 request for this core in this cycle. Condi-
tion (2) only means the on-chip request; if the L1 request
ends up to be an L2 miss, the off-chip latency cycles is not
condition (2) (referring the example showed in Figure 1).
Condition (1) can be easily got by monitoring the status of
pipeline and condition (3) by monitoring the whether the
L2 MSHR has entries for this core. To decide condition
(2), we add a timer for each L1 cache, including instruction
cache and data cache. LetL2 LAT denotes the lookup la-
tency of L2 (L2 LAT is always a fixed value). If this L1
cache misses and issues a request to L2, the timer is set to
L2 LAT . For each cycle, the timer is decreased by 1. The
condition (2) can be decided by checking whether the timer
is zero or not. Algorithm 2 described the logic in detail.

4.2.2 Profiling and estimating parameters for dedi-
cated cache

The three parameters ofT ded
ovl , Nded

miss andMLP ded
avg shown

in Figure 4 are responsible to the application running with
a dedicated cache. However, because the workload is actu-
ally running with a shared cache, we need special hardware
to help to estimate the situation when it is running with a
dedicated cache. To achieve this, we uses the technology
of Auxiliary Tag Directory (ATD) [13] to attach a virtual
”private” L2 cache to each core. An ATD has the same as-
sociativity as the main tag directory of the shared L2 cache
and uses the same replacement policy. However, an ATD
only contains the tag and other functional bits of each cache
block but do not keep data. We also add an auxiliary MSHR
to each ATD, then an ATD can act just as a private L2 cache.
Each entry in the auxiliary MSHR has a timer to simulate
memory accessing request. When a memory request is is-
sued to an auxiliary MSHR, the timer of the inserted en-
try is set to the round trip cycles of memory accessing la-
tency. For every cycle, all entries’ timers are automatically
decreased by1, A timer’s value equals0 means this mem-
ory request has returned and the request block is ready for
ATD.

Because there is an ATD for each core, the total hardware
cost is substantial. We employ set sampling technology [13]
to reduce the storage cost. The ATD with set sampling only
selects cache set samples in a specified interval, and the be-

Algorithm 2 : CalculatingT shr
ovl

/* at the beginning of each profiler period */
T shr

ovl = 0;

/* for each cycle; for L1I and L1D of this core*/
if L1 miss occurs at this cycle

then timer of this L1=L2 LAT ;
elsetimer of this L1−−;

/* for each cycle*/
if pipeline is not stalled /*(1)*/

then pipelineNotStall=true;
elsepipelineNotStall=false;

if L2 MSHR has entries for this core /*(3)*/
then hasL2Request=tru

elsehasL2Request=false;
if L1I or L1D timer is not zero /*(2)*/

then hasL1Request=true;
elsehasL1Request=false;

if (pipelineNotStallor hasL1Request)
and hasL2Requestthen T shr

ovl + +;

havior of the whole can be approximated by sampled cache
sets. An ATD with large sampling interval requires less
hardware overhead, but gives less accurate statistics. So,
there is a tradeoff between hardware cost and accuracy in
choosing sampling interval.

With an ATD and an auxiliary MSHR, it is possible to
simulate a private L2 cache for each core. When a request
from upper level L1 cache is coming, it is forwarded to the
really L2 cache as well as the attached ATD of the core
which the request sender (L1 cache) belongs to. Then the
ATD respond to this request just as L2 cache does, including
touching MRU bits, replacement, counting miss count and
issue requests to the auxiliary MSHR. SoNded

miss andT ded
ovl

can be gained by the ATD and auxiliary MSHR attached
to each core using similar mechanism which is used to get
N shr

miss andT shr
ovl .

MLP ded
avg can also be gained with the help of auxiliary

MSHR. MLPavg is defined as the average number of use-
ful outstanding off-chip requests when there is at least one
outstanding off-chip requests. Two counterMLP sum and
MLP cycles are used to store the accumulated off-chip
latency and the count of cycles when there is at least one
outstanding off-chip request. The algorithm is described as
follows:

Note thatT ded
ovl andMLP ded

avg are both estimated values
while we can treatNded

miss as accurate value if set sampling
is not employed. Because L2 cache misses have impact on
the pipeline, the relative order of L2 cache misses may be

Algorithm 3 : CalculatingMLP ded
avg

/* at the beginning of each profiler period */
MLP sum = 0;
MLP cycles = 0;

/* for each cycle*/
if auxiliary MSHR is not emptythen

MLP cycles + +;
MLP sum+ =count of auxiliary MSHR entries;

/* at the end of each profiler period */
MLP ded

avg = MLP sum
MLP cycles

;

different between running with shared cache and with ded-
icated cache, which makes the mechanism for calculating
T ded

ovl andMLP ded
avg inaccurate compared to really running

the application with a dedicated cache. However, if the ap-
plication is actually running with dedicated cache, the same
algorithm can used to obtain the accurate MLP by replacing
auxiliary MSHR with main L2 MSHR.

Now the hardware profiler can provide all the parameters
needed to calculateT shr

i and T ded
i for each corei. The

slowdown for corei can be calculated at the end of profiling
period by:

Slowdowni =
T shr

i

T ded
i

(11)

The core which has the least slowdown is selected as being
allocated too much cache space by setting the this core’s
overAllocflag. Through the cache partition mechanism, the
slowdown of each core will be closer and performance fair-
ness will be improved.

4.3 Hardware cost

For each cache line,log
2
N bits are added to indicate

which core this cache line belongs to, in whichN is the
number of cores sharing the cache. In addition, there
should be some monitor circuits in L2 MSHR, L1 cache
and pipeline. For each core, there are 2 additional L1 timers
and 1 auxiliary MSHR, typically 32-entry.

ATDs are the major part of cost. Set sampling can signif-
icantly reduce the storage of ATD. For the configuration of
2-way CMP with 1M, 64 bytes line size, 8-way associative
L2 cache, and sampling for each 16 cache sets, the hardware
cost is:

• For each ATD entry: (24 bits tag)+(4 bits LRU)+(1bit
valid)+(2 bits in-addition)=31 bits

• Number of ATD entries: (1MB L2)/(64 Bytes
block)/(16 cache sets sampling)=1024

Total cost for 1 ATD: 1024*31bit<4KB. The original L2
cost is: 1MB+(24+4+1)*(1M/64B)=1.45MB. So the addi-
tional cost for 2 ATDs of the 2 cores is less than1%:

(2 ∗ 4KB)/1.45MB = 0.005 < 1%

5 Experimental Methodology

5.1 Configuration

The evaluation is performad using Simics [8], which is
a whole system simulator supporting CMPs. The memory
timing model is derived from GEMS [9], which enables de-
tailed cycle-accurate simulation of multiprocessor systems
for Simics.

Table 1 shows the basic parameters of the simulated ar-
chitecture. The simulated CMP cores are out-of-order su-
perscalar processors with private L1 instruction and data
caches, sharing unified L2 cache and all lower levels of
memory hierarchy. All caches are set-associated using
Pseudo LRU policy for replacement decision.

CMP 2 cores on chip, share on-chip L2 cache
Processor 4-issue out-of-order processors
core instruction window size: 64

Re-order buffer size: 128
private Icache and Dcache for each core

L1 cache Icache: 32KB, 64B line-size, 4-way PLRU
Dcache: 32KB, 64B line-size, 4-way PLRU

Unified 1MB, 64B line-size, 8way PLRU
shared 12-cycle hit, 32-entry MSHR
L2 cache shared by all cores on chip
Memory 400-cycle round trip latency

Table 1. Basic configuration of the simulated
architecture

5.2 Metrics

To evaluate the fairness improvement of different
schemes at the baseline of uncontrolled L2 cache sharing
(original Pseudo LRU policy), we define:

F scheme
perf =

M scheme
perf

MPLRU
perf

(12)

F scheme
miss =

M scheme
miss

MPLRU
miss

(13)

M scheme
perf and MPLRU

perf are performance fairness metrics
define by Equation 3;M scheme

miss and MPLRU
miss are cache

miss fairness metrics define by Equation 5. Obviously
FPLRU

perf = 1 and FPLRU
miss = 1. Those metrics are nor-

malized fairness metrics. The smaller the value, the better
the fairness of the scheme. Zero means perfect fairness. If
the baseline already achieves perfect fairness,F scheme

perf and
F scheme

miss would be infinite unless the cache partition scheme
also achieves perfect fairness.

5.3 Benchmarks

We select a set of most memory-intensive benchmarks
from SPEC CPU 2000 benchmark suite, and run them con-
currently in pairs in the simulated dual-core CMP system to
see the benefit of different cache partition schemes, includ-
ing uncontrolled L2 cache sharing using original Pseudo
LRU policy, enforcing cache miss fairness on cache parti-
tioning and enforcing performance fairness on cache par-
titioning. We compare the normalized cache miss fair-
ness metric (F scheme

miss) and normalized performance fairness
metric (F scheme

perf) for all cache partition schemes at the base-
line of uncontrolled L2 cache sharing. For each selected
benchmark, a representative slice of instructions is obtained
using a tool SimPoint [10] for simulation.

To categorize the selected benchmarks, we consider two
features of each benchmark that can affect the correlation
between cache miss fairness and performance fairness: (1)
the portion which vulnerable time took in the whole execu-
tion time, which isTvul/T according to Equation 6; (2) the
average MLP during execution of the benchmark. Work-
loads with high value ofTvul/T are more sensitive to inter-
leaving, while workloads with high average MLP are more
tolerant for last level cache misses. These two factors must
be combined in analysis.

High Tvul/T Low Tvul/T
High MLP mcf(55.2%, 1.53) ammp

art(56.5%, 1.82) (29.2%, 1.47)
applu(72.3%, 1,21) gzip(24.1%, 1.26)

Low MLP swim(63.3%, 1.10) apsi(28.5%, 1.08)
equake(47.6%,1.19) vpr(28.3%, 1.28)
sixtrack(39.2%,1.09)

Table 2. Benchmark classification

Table 2 shows the classification of the ten selected
benchmarks based on the values ofTvul/T and aver-
age MLP: mcf, ammp, art, applu, gzip, swim, apsi,
equake, vprand sixtrack. The pair of numbers shown
in parenthesis denotes the benchmark’s values ofTvul/T
and average MLP. These data are collected by running
a single benchmark with dedicated cache of original
Pseudo-LRU replacement policy. The eight benchmarks

are categorized into four classes: high-vulnerability/high-
MLP, high-vulnerability/low-MLP, low-vulnerability/high-
MLP and low-vulnerability/low-MLP.

We pair the benchmarks presented above and running
them concurrently in our simulated system with shared
cache to evaluate fairness metrics of different schemes. Ta-
ble 3 shows the classification parameters when the bench-
marks are running concurrently with shared cache of origi-
nal replacement policy. We can see that although the two
parameters may vary diversely (especially the portion of
cache miss latency), the relationship of parameter values
are kept. That is, if a benchmark from the class of high/high
is running concurrently with another benchmark from the
class of low/low, the first benchmark usually still has a
larger portion of cache miss latency and a larger MLP. So is
other combinations of benchmarks from the rest classes.

Tvul/T Tvul/T MLP MLP
App1 App2 App1 App2

gzpi+mcf 32.0% 82.7% 1.28 1.36
gzip+art 26.7% 62.2% 1.16 1.83
apsi+art 36.1% 61.9% 1.19 1.78
swim+apsi 87.1% 31.1% 1.07 1.10
vpr+applu 31.2% 78.1% 1.31 1.04
ammp+applu 44.0% 86.7% 1.45 1.17
mcf+swim 83.8% 67.8% 1.30 1.02
swim+art 85.0% 73.6% 1.19 1.87
equake+mcf 55.0% 68.8% 1.16 1.57
ammp+sixtrack 40.0% 41.6% 1.50 1.09
equake+sixtrack 64.6% 48.2% 1.19 1.07

Table 3. Benchmark pairs and parameters
when running concurrently.

5.4 Results and Analysis

5.4.1 Model Accuracy Verification

Before evaluating fairness metrics, we need to verify how
accurate the model described in above sections could be.
In this verification experiment, we ran benchmarks for two
passes. For the first pass, we used the hardware configura-
tion in Table 1, but only applied profiler component of the
hardware mechanism to the shared L2 cache; the cache re-
placement policy is not modified. We ran the benchmark
pairs in Table 3 in the share cache configuration and get
necessary statistics for estimating the benchmarks’ perfor-
mance (IPC′) when running with dedicated cache. In the
second pass, we ran these benchmarks again in identical
hardware except using dedicated L2 cache for each core (the
dedicated cache has the same configurations as the shared

�� � �� � �� � �
� � � � � � � �� 	
 ��
 � �� � �� � �� � �

� � � � � � � �� � �� 	
 � �� � �� � �� � �
� � � � � � � �� � �� � �

�� � �� � �� � �
� � � � � � � �� �
 �� � �
 �� � �� � �� � �

� � � � � � � �� � � � �� � � �� � �� � �� � �
� � � � � � � �� � � �� � � � �

�� � �� � �� � �
� � � � � � � �� � � � �� � �� � �� � �

� � � � � � � �� � � �� � � � � � �� � �� � �� � �
� � � � � � � ��
 �� �
 �

�� � �� � �� � �
� � � � � � � �� �
 �� � � �� � �� � �� � �

� � � � � � � �� � � � � ��
 � �� � �� � �� � �
� � � � � � � �� � � � � ��
 � � � �
 �

�� � �� � �� � �
� � � � � � � �

� � � � � � � �� � �� � �� � �
� � � � � � � �

� � �
Figure 5. Verifying accuracy of the model. Y
axis represents the relative error (E defined
in Equation 14). X axis represents the interval
of the set sampling in ATD; interval 1 means
do not use set sampling (sample every tag
set in ATD).

cache). In this pass of running, we can get the the bench-
marks’ actual (IPC) performance when running with ded-
icated cache. Then we can compareIPC′ andIPC, and
get therelative error:

E =

∣

∣

∣

∣

1−
IPC′

IPC

∣

∣

∣

∣

(14)

To review the effect of employing set sampling technol-
ogy on ATD, we compared the estimating error of differ-
ent sampling interval. From Figure 5 we can see that, if
do not use set sampling in ATD (sampling interval1), the
averageE is 4.7% and maxE is 10.9% (equakerunning
with sixtrack). As the sampling interval increasing,E in-
creases as well. When sampling ATD set with interval16,
the averageE is 6.7% and maxE is 13.3% (art running
with gzip), which is still accurate enough. So the following
experiments used interval16 for set sampling in ATD.

5.4.2 Evaluation of fairness metrics

We useF scheme
perf and F scheme

miss described in Section 4.2
to measure the fairness improvement for two cache parti-
tion schemes: the scheme that enforces cache miss fairness
(SECF) and the scheme that enforces performance fairness
(SEPF). The baseline is uncontrolled cache sharing using
originally Pseudo LRU policy, which is widely used in pro-
duction processors.

(a) Cache miss fairness metric (F scheme
miss)

(b) Performance fairness metric (F scheme
perf)

Figure 6. Comparing fairness metrics of se-
lected benchmark pairs with uncontrolled
Pseudo LRU and the two cache partition
schemes. Note that shorter bar means bet-
ter fairness

Figure 6 shows the experiment results of cache miss
fairness metric (F scheme

miss) and performance fairness metric
(F scheme

perf). For each benchmark pair, the two benchmarks
are executed concurrently for three passes: in the first pass,
shared L2 cache uses original, uncontrolled Pseudo LRU
replacement policy; in the second and third pass, cache par-
tition schemes of enforcing cache miss fairness (SECF) and
enforcing performance fairness (SEPF) are used. The two
fairness metrics of (F scheme

miss) and (F scheme
perf) are measured

for each pass of execution.
In Figure 6 (a), we can see that when using SECF to en-

Figure 7. Comparing throughput of selected
benchmark pairs with uncontrolled Pseudo
LRU and the two cache partition schemes.
Note that taller bar means higher throughput.

force cache miss fairness on shared cache, cache miss fair-
ness metric (F scheme

miss) is improved significantly compared
to uncontrolled Pseudo LRU replacement policy (note that
shorter bar means better fairness). However, when using
SEPF to enforce performance miss fairness on shared cache,
though there is still cache miss fairness metric (F scheme

miss)
improvement compared to uncontrolled cache for most
benchmarks,F scheme

miss is not improved as much as SECF.
Even there are benchmark pairs which show worse cache
miss fairness than uncontrolled Pseudo LRU cache when
using SEPF(ammp+equakeand equake+mcf). On average,
SECF gains a cache miss fairness improvement ofF scheme

miss

= 0.14, while SEPF gains an improvement ofF scheme
miss =

0.45.

Figure 6 (b) shows the performance fairness metric
(F scheme

perf) when using different cache partition schemes.
The result is different from the result of cache miss
fairness metric. Although SECF always shows better
F scheme

miss than the SEPF, it fails to gain a better perfor-
mance fairness metric (F scheme

perf) than SEPF. Whats more,
there are three benchmark pairs suffer great performance
fairness degradation when using SECF to enforce cache
miss fairness: swim+art (3.87), equake+mcf (18.3) and
equake+sixtrack(3.32), which means that SECF may make
the problem of unfair performance of concurrent workloads
even worse in some cases. In contrast, although SEPF got
poorF scheme

miss for ammp+equake and equake+mcf, it ends
up that SEPF gains better performance fairness in these
benchmark pairs compared to SECF. On average, SECF
gains a performance fairness improvement ofF scheme

perf =
1.04, while SEPF gains an improvement ofF scheme

perf = 0.41.

From the comparison of the results showed in Figure 6
(a) and Figure 6 (b), we can get a deeper insight into the cor-
relation between cache miss fairness and performance fair-

ness. Merely enforcing cache miss fairness on concurrent
workloads can improve performance fairness in most cases,
but can not guarantee ideal performance fairness and some-
times may suffer performance fairness instead of improving
it, especially when the co-scheduled workloads have differ-
ent features. For example, when benchmarks of type 4 (low-
vulnerability/low-MLP) are running with benchmarks with
type 1 (high-vulnerability/high-MLP) such as benchmark
pairs of gzip+mcf, gzip+art and apsi+art, SECF gains a
much poorer performance fairness than SEPF; when bench-
marks of type 2 (high-vulnerability/low-MLP) are running
with benchmarks with type 1(high-vulnerability/high-MLP)
such as benchmark pairs ofswim+art, equake+mcf and
equake+sixtrack, SECF even suffers performance fairness
a lot. The reason is that when a low-MLP workload is run-
ning concurrently with another high-MLP workload, more
shared cache resource should be allocated to low-MLP
workload to guarantee the whole performance fairness be-
cause low-MLP workload has a relatively larger cache miss
penalty and enforcing cache miss fairness can not guarantee
performance fairness. And if both of the concurrently run-
ning workloads are highly sensitive to cache interference
(type 1 benchmarks running with type 2 benchmarks), the
degradation of performance will be more obvious when us-
ing SECF to enforcing cache miss fairness. By taking more
factors into account, SEPF can achieve better performance
fairness in most cases.

Figure 7 shows the throughput of selected benchmark
pairs with uncontrolled Pseudo LRU and the two cache par-
tition schemes. We use fair speedup defined in Equation
14 to measure the throughput of concurrent running bench-
mark pairs. Note that taller bar in the figure means higher
throughput. We can see that SEPF gains a competitive
throughput for most benchmark pairs. And forgzip+mcf,
ammp+applu and swim+mcf, SEPF can provider higher
throughput than original Pseudo LRU and SECF. On av-
erage, SECF gains a fair speedup of1.04 while SEPF gains
a fair speedup of1.07 on the base line of original Pseudo
LRU replacement policy.

6 Related Work

Prior work has noticed the impact of cache sharing for
concurrently running threads. [15] proposed to use hard-
ware counters to estimate the cache miss-rate as a function
of cache size, which can be used to optimize cache parti-
tion to minimum overall miss rate. [13] designed a runtime
mechanism that partitions a shared cache according to the
cache utility of concurrent running multiple applications.
[15] and [13] both focused on optimization of overall miss
rate. [6] pointed out the necessity of enforce fairness for
co-scheduled workloads. [6] defined a set of fairness met-
ric for cache sharing and proposed both static strategy and

dynamic mechanism to improve fairness. [4] proposed a
framework to provide QoS for resources including shared
caches. [14] designed architectural support for OS to man-
age shared caches.

Some researches indicates that decreasing in cache miss
rate does not necessarily lead to performance improvement.
[12] indicated that not every cache miss has an equal penalty
because of the existing of MLP. By taking MLP related cost
of each cache miss into account, [12] modified the standard
LRU replacement policy and higher performance guaran-
teed. [2] analyzed the microarchitecture impact on MLP
and developed a detailed model to relating MLP to overall
performance.

There are researches of performance models for other ar-
chitectures. [3] proposed a cycle accounting architecturefor
SMT processors to estimate the performance of each co-
scheduled thread had they ran alone. [5] proposed a perfor-
mance model for superscalar processors.

7 Conclusion

Uncontrolled sharing usually leads to unfair perfor-
mance of concurrent workloads. That is, some workloads
suffer a much more significant slowdown than other work-
loads. This phenomenon brings more problems such as
priority inversion and thread starvation to operating sys-
tem’s process scheduler. Instead of enforcing ideal perfor-
mance fairness directly, prior work addressing fairness is-
sue of cache sharing mainly focuses on the fairness metrics
of cache miss numbers or miss rates. However, because of
the variation of cache miss penalty, fairness on cache miss
cannot guarantee ideal fairness. Cache sharing manage-
ment which directly addresses ideal performance fairness
is needed for CMP systems.

This paper proposed the concept of performance fairness
metric. We built a detailed model to analyze the perfor-
mance impact of cache sharing. Guided by this model, we
designed a hardware mechanism to enforcing performance
fairness on shared cache. The hardware mechanism pro-
posed in this paper is adaptive and hardware efficient. For
comparison, the concept of cache miss fairness metric and
a hardware mechanism to enforcing cache miss fairness are
also introduced. We implemented these two cache partition
schemes in a simulator. The experiment results showed that
the proposed mechanism always improves the performance
fairness metric, and can provide no worse throughput than
the scenario without any management mechanism.

References

[1] J. Chang and G. S. Sohi. Cooperative cache partitioning for
chip multiprocessors. InICS ’07: Proceedings of the 21st

annual international conference on Supercomputing, pages
242–252, New York, NY, USA, 2007. ACM.

[2] Y. Chou, B. Fahs, and S. G. Abraham. Microarchitecture
optimizations for exploiting memory-level parallelism. In
ISCA, pages 76–89, 2004.

[3] S. Eyerman and L. Eeckhout. Per-thread cycle account-
ing in smt processors. InASPLOS ’09: Proceeding of the
14th international conference on Architectural support for
programming languages and operating systems, pages 133–
144, New York, NY, USA, 2009. ACM.

[4] F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A framework for
providing quality of service in chip multi-processors. InMI-
CRO, pages 343–355, 2007.

[5] T. S. Karkhanis and J. E. Smith. A first-order superscalar
processor model. InISCA ’04: Proceedings of the 31st
annual international symposium on Computer architecture,
page 338, Washington, DC, USA, 2004. IEEE Computer So-
ciety.

[6] S. Kim, D. Ch, and Y. Solihin. Fair cache sharing and parti-
tioning in a chip multiprocessor architecture. InIEEE PACT,
pages 111–122, 2004.

[7] J. Lin, Q. Lu, X. Ding, Z. Zhang, and X. Zhang. Gain-
ing insights into multi-core cache partitioning: Bridgingthe
gap between simulation and real systems. InIn HPCA ’08:
Proceedings of the 14th International Symposium on High-
Performance Computer Architecture, 2008.

[8] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt,
B. Werner, and B. Werner. Simics: A full system simula-
tion platform.Computer, 35(2):50–58, 2002.

[9] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and
D. A. Wood. Multifacets general execution-driven multipro-
cessor simulator (gems) toolset.SIGARCH Comput. Archit.
News, 33:2005, 2005.

[10] E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sherwood,
and B. Calder. Using simpoint for accurate and efficient
simulation. InACM SIGMETRICS Performance Evaluation
Review, pages 318–319, 2003.

[11] M. Qureshi. Adaptive spill-receive for robust high-
performance caching in cmps. InHigh Performance Com-
puter Architecture, 2009. HPCA 2009. IEEE 15th Interna-
tional Symposium on, pages 45–54, Feb. 2009.

[12] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A
case for mlp-aware cache replacement. InISCA-33, pages
167–178, 2006.

[13] M. K. Qureshi and Y. N. Patt. Utility-based cache parti-
tioning: A low-overhead, high-performance, runtime mech-
anism to partition shared caches. InMICRO-39, pages 423–
432, 2006.

[14] N. Rafique, W.-T. Lim, and M. Thottethodi. Architectural
support for operating system-driven cmp cache manage-
ment. InPACT ’06: Proceedings of the 15th international
conference on Parallel architectures and compilation tech-
niques, pages 2–12, New York, NY, USA, 2006. ACM.

[15] G. E. Suh, S. Devadas, and L. Rudolph. A new memory
monitoring scheme for memory-aware scheduling and par-
titioning. In HPCA ’02: Proceedings of the 14th Interna-
tional Symposium on High-Performance Computer Archi-
tecture, pages 117–128, 2002.

