
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
G
O
*

Ar
t ifact *

A
E
C

FinePar: Irregularity-Aware Fine-Grained
Workload Partitioning on Integrated Architectures

Feng Zhang�, Bo Wu?, Jidong Zhai�, Bingsheng He+, Wenguang Chen�

�Tsinghua University, China
?Colorado School of Mines, USA

+National University of Singapore, Singapore
feng-zhang12@mails.tsinghua.edu.cn, bwu@mines.edu, zhaijidong@tsinghua.edu.cn,

hebs@comp.nus.edu.sg, cwg@tsinghua.edu.cn

Abstract
The integrated architecture that features both CPU and GPU
on the same die is an emerging and promising architecture
for fine-grained CPU-GPU collaboration. However, the in-
tegration also brings forward several programming and sys-
tem optimization challenges, especially for irregular appli-
cations. The complex interplay between heterogeneity and
irregularity leads to very low processor utilization of run-
ning irregular applications on integrated architectures. Fur-
thermore, fine-grained co-processing on the CPU and GPU
is still an open problem. Particularly, in this paper, we show
that the previous workload partitioning for CPU-GPU co-
processing is far from ideal in terms of resource utiliza-
tion and performance. To solve this problem, we propose a
system software named FinePar, which considers architec-
tural differences of the CPU and GPU and leverages fine-
grained collaboration enabled by integrated architectures.
Through irregularity-aware performance modeling and on-
line auto-tuning, FinePar partitions irregular workloads and
achieves both device-level and thread-level load balance. We
evaluate FinePar with 8 irregular applications on an AMD
integrated architecture and compare it with state-of-the-art
partitioning approaches. Results show that FinePar demon-
strates better resource utilization and achieves an average of
1.38X speedup over the optimal coarse-grained partitioning
method.

1. Introduction
In recent years, GPUs have made big strides in throughput-
oriented computing thanks to the massively parallel architec-
ture. Moreover, integrated architectures coupling the CPU
and GPU on the same die show great promise to bring the
synergy of CPU and GPU to a significantly higher level.
The CPU and GPU share the same physical memory, which
eliminates the data transfer bottleneck via PCI-e bus in the
discrete architecture and eases heterogeneous programming.
Therefore, chip vendors have started to release integrated
architectures, exemplified by AMD’s Accelerated Process-

ing Units (APUs), Intel’s Ivy Bridge processor, and Nvidia’s
Denver architecture.

Integrated architectures have enabled a series of per-
formance optimization opportunities over discrete architec-
tures. First, shared memory makes it possible for different
devices to access the same memory space simultaneously.
Some integrated architectures have shared cache and em-
bedded DRAM [2], which makes the communication be-
tween devices more efficient. Second, the co-processing be-
tween the CPU and the GPU can be made more fine-grained.
The fine-grained cooperation needs to consider architectural
differences between the CPU and GPU for optimal perfor-
mance. Specifically, the GPU has a large number of pro-
cessing cores but adopts a lockstep execution model, which
forces the threads in the same SIMD (Single Instruction
Multiple Data) group to always execute the same instruc-
tion. Hence, load imbalance among these threads greatly
devastates performance because the performance is limited
by the slowest thread. In contrast, the CPU has fewer, yet
more powerful cores, and its threading model is more flexi-
ble.

Previous work tried to leverage the integrated architecture
to accelerate irregular applications [5, 9, 10, 13, 16, 18, 28,
30, 39, 40]. However, the interplay between heterogeneity
and irregularity in integrated architectures poses severe tech-
nical challenges in the effectiveness of workload partition-
ing, which existing studies do not well address. First, many
previous studies[5, 13, 18, 30, 39, 40] only perform coarse-
grained workload partitioning, without considering the fine-
grained collaboration between the CPU and GPU. For exam-
ple, Delorme et al. [13] and Pandit et al. [30] break the work-
load into many jobs. Each job typically operates on adjacent
data and is processed by a work-group (in OpenCL [33] ter-
minology). The work-groups running on the GPU process
the jobs from the beginning to the end, while those on the
CPU process the jobs in the reverse direction. A runtime
makes sure that the whole workload is processed with good
load balance. Kaleem et al. [18] addressed more complicated

978-1-5090-4931-8/17$15.00 c© 2017 IEEE CGO 2017, Austin, USA27



applications and dynamically assigned the jobs to processors
through lightweight online profiling. Second, although some
studies [9, 10, 16, 28] use fine-grained workload partition-
ing, they are applied to specific applications only such as
hash join in databases [16] and MapReduce [9]. They do not
necessarily offer an automatic or general solution to irregu-
lar applications such as graph processing.

In this study, we find that even if such coarse-grained
workload partitioning approaches provide optimal load bal-
ance between the CPU and GPU, the computational re-
sources may still be under-utilized. For instance, in sparse
matrix vector multiplication (SpMV), a job involves the pro-
cessing of tens or hundreds of adjacent rows. The numbers
of non-zero elements in those rows may vary significantly.
As a result, if a group of SIMD threads on the GPU pro-
cess this job, the thread that processes the row with the
most non-zero elements slows down all the other threads.
Coarse-grained partitioning groups adjacent data (e.g., ad-
jacent rows in SpMV) as a unit for partitioning and hence
ignores the irregularity inside each unit. The shared memory
on integrated architectures provides an opportunity for the
CPU and GPU to co-process data in a fine-grained manner
to tackle the problem of resource underutilization.

To fully exploit the benefits of integrated architectures,
we propose a fine-grained workload partitioning framework
for irregular applications, called FinePar. The basic idea is
that we automatically identify the irregular data that intro-
duces load imbalance for GPU threads and assign them to
the CPU, while the GPU processes the remaining relatively
regular data and enjoys higher performance. To realize this
idea, we need to tackle multiple technical issues. First, the
partitioning should be transparent to avoid tedious program-
ming burden on users. Second, the framework should intro-
duce no offline pre-processing for practical use, as the input
data is typically unavailable until runtime. Third, the parti-
tioning should introduce the minimum runtime overhead.

Our framework employs the following key techniques:
1) We design a program transformation to automatically
transform the given OpenCL program to enable fine-grained
partitioning; 2) We build performance models to predict the
performance of the CPU and GPU given any specific fine-
grained partitioning; 3) We design an auto-tuner to guide
the fine-grained workload partitioning for load balancing
between the CPU and GPU.

As case studies, we focus on sparse matrix and graph
processing applications. We evaluate FinePar with 8 ir-
regular applications on 6 input matrices and compare it
with 4 state-of-the-art workload partitioning methods on an
AMD A10-7850K APU. Results show that FinePar demon-
strates better resource utilization and achieves an average
of 1.38X speedup over the optimal coarse-grained partition-
ing method. Meanwhile, FinePar is very lightweight, only
introducing less than 6% space overhead and 0.2% time
overhead.

System 
DRAM

CPU
core

…

CPU

CPU
core

CPU
core

GPU
core

…

GPU

GPU
core

GPU
core

Figure 1. A general view of the integrated architecture.

In summary, we make the following contributions in this
work:

• We propose a fine-grained workload partitioning that
takes advantage of the special features of integrated ar-
chitectures.

• We propose irregularity-aware performance modeling
that takes architectural differences between the CPU and
GPU into consideration.

• We integrate those techniques into the software frame-
work, called FinePar, which automatically partitions the
workload for irregular applications with well controlled
space and time overhead.

• We evaluate FinePar on a set of irregular applications
and inputs to demonstrate its benefit over state-of-the-art
partitioning approaches.

2. Background and Motivation
2.1 Integrated Architecture and Execution Models
We focus on the architecture that integrates both the CPU
and GPU on the same chip as illustrated in Figure 1. The
most beneficial feature of such architecture is the shared
physical memory accessible to both the CPU and GPU,
which enables fine-grained collaboration between the two
processors. Unlike in discrete architectures, the program
running on integrated architectures can leverage both de-
vices to accelerate the processing of data in shared memory.

A commonly used programming model for general-
purpose computing on integrated architectures is OpenCL,
as it is supported by both the CPU and GPU. The main com-
putation of an OpenCL program happens in the kernel func-
tion. When a kernel is launched on a device, the OpenCL
runtime creates a computation domain of many work-items
(i.e., threads), each executing the same kernel function. The
computation domain is composed of many work-groups; the
work-items belonging to the same work-group can synchro-
nize with each other.

The execution models on the CPU and GPU are different.
When a work-group runs on the GPU, its work-items are
grouped into wavefronts, each of which runs on the SIMD
unit in lockstep. The CPU, on the other hand, creates a thread
to perform computation for the whole work-group. When the
workload of the work-group is regular, meaning that each
item processes the same amount of data, the performance

28



CPU

…

…
row 2time row 3row 1

thread 0

thread 1

row 0

Row Size

row 0 6

row 1 2

row 2 2

row 3 2

row 2
time

row 3

row 1

row 0

GPU

thread 0

thread 1

thread 2

thread 3

row 0 1 1 0 1 0 0 1 1 1

row 1 1 0 0 0 1 0 0 0 0

row 2 0 0 0 1 0 0 1 0 0

row 3 0 1 0 0 0 1 0 0 0

Row Size

row 0 6

row 1 2

row 2 2

row 3 2

(a) matrix (b) GPU execution (c) CPU execution

Figure 2. An example to demonstrate the performance features of the CPU and GPU to execute irregular application.

 0

 20

 40

 60

 80

 100

 0  2000  4000

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 (%
)

Variance

(a) GPU performance trend

 0

 20

 40

 60

 80

 100

 0  2000  4000

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 (%
)

Variance

(b) CPU performance trend

Figure 3. The normalized performance of the CPU and
GPU given input matrices with different degrees of irreg-
ularity.

of the GPU is typically several times larger than that of the
CPU because of the efficiency of SIMD execution.

The GPU’s performance, however, may degrade signif-
icantly when processing irregular applications. We explain
the reason through an example depicted in Figure 2. The
kernel function performs SpMV with each work-item pro-
cessing one row. We assume the matrix is stored in CSR
(Compressed Sparse Row) format.

Sparse matrices typically have rather irregular distribu-
tion of the non-zero elements. As shown in Figure 2 (a),
the first row contains six non-zero elements, while the other
three rows only contain two. Figure 2 (b) shows the execu-
tion on the GPU. The kernel launch creates four work-items
in a wavefront to process the data. The consequence is that
the last three work-items need to wait for the first work-item
to finish processing all the non-zero elements, wasting 50%
of the computational resources. As shown in Figure 2 (c), if
a two-core CPU processes the same data, it may create two
threads, with the first to process the first row and the second
to process the other rows. The CPU threads do not need to
wait for each other, as they do not execute in the lockstep
fashion.

To demonstrate the sensitivity to irregularity for the CPU
and GPU on real-world workloads, we run SpMV on the
CPU and GPU using 80 different sparse matrices. For each
matrix, we treat the number of non-zero elements in a row as
a random variable and calculate its variance. Figure 3 shows
the performance trend when the variance of input matrices
increases. We quantify performance as the number of non-
zero elements processed per second. After normalization
over the input that yields the best performance, we observe
that the GPU’s performance drops quickly with the increase
of variance, while the CPU’s performance trend does not
demonstrate a clear impact from the variance.

2.2 Understanding the Inefficiency of Coarse-Grained
Workload Partitioning

Previous work [5, 18, 30, 39, 40] all leverages some form
of coarse-grained partitioning to optimize load balance be-
tween the CPU and GPU. In the context of sparse matrix
processing using OpenCL, those approaches group many
adjacent rows as a task to assign to a work group, which
serves as a unit for workload partitioning. We show in Fig-
ure 4 that even if coarse-grained partitioning achieves opti-
mal load balance, the computational resources may still get
under-utilized. The input graph has 8 vertices with varied
out-going degrees. Represented as an adjacency matrix, the
irregular structure leads to different numbers of non-zero el-
ements in the rows. We assume that two threads run on the
CPU and a wavefront of four threads runs on the GPU. We
further assume that a CPU thread is 1.5X more powerful than
a GPU core, meaning that a GPU thread needs 50% extra
time to process the same number of non-zero elements com-
pared to a CPU thread.

If we want to achieve load balance between the CPU
and GPU, we can group the first four rows as a job to
allocate to the CPU (shown as coarse-grained partitioning),
with the remaining four rows to form a job for the GPU to
process. As Figure 4 shows, the slowest CPU thread (the first
one) finishes at the same time as the slowest GPU thread
(the first one). However, the other three GPU threads are
seriously under-utilized due to the lockstep execution model.
Hence, we conclude that coarse-grained partitioning has two
pitfalls. First, it does not consider the irregularity of the
data input (in this case demonstrated by the non-uniform
distribution of the non-zero elements). Second, it does not
fully exploit the capability of the integrated architecture to
enable fine-grained collaboration between the CPU and GPU
(demonstrated by only grouping adjacent rows into jobs).

Figure 4 also demonstrates the performance gain from
fine-grained partitioning. The new partitioning assigns rows
0 and 4 to the CPU threads and the remaining rows to the
GPU. Note that the processing time of row 3 on the CPU
is two thirds of that on the GPU due to the CPU’s faster
single-core performance. For the same reason, the execution
time of rows 1, 2, and 3 is lengthened by 50% on the GPU.
As in coarse-grained partitioning, the load balance remains
optimal because the CPU and GPU finish processing at the
same time. However, fine-grained partitioning improves the
overall performance by 1.5X through better utilization of the
GPU resources.

29



0

1

2

4

3

5

7

6

0 1 2 3 4 5 6 7

0 1 1 1 1 1 1

1 1 1 1

2 1 1 1

3 1 1 1

4 1 1 1 1 1 1

5 1

6 1

7 1

Adjacency Matrix

Row Size

row 0 6

row 1 3

row 2 3

row 3 3

row 4 6

row 5 1

row 6 1

row 7 1

GPU
row 2

thread 0

thread 1

thread 2

thread 3

thread 0

thread 1 row 4

row 0

time

CPU

row 3

row 5

row 6

row 7

row 1

GPU

row 4

row 5

thread 0

thread 1

thread 2

thread 3

thread 0

thread 1 row 1

row 0

time

CPU

row 6

row 7

row 2

row 3

Row Size

row 0 6

row 1 3

row 2 3

row 3 3

row 4 6

row 5 1

row 6 1

row 7 1

Fine-grained partitioning

Coarse-grained partitioning

Figure 4. An example to show the benefits from fine-grained partitioning.

3. FinePar Framework
3.1 Overview

OpenCL
Program

Transformation 
Engine

Transformed Program for Fine-
Grained Partitioning

Performance 
Modeling

Auto-Tuner

Optimized 
execution 

on APU

Offline Online

Training Data

Input Data

…

Figure 5. The overview of FinePar.

Figure 5 shows the overview of FinePar. To use the sys-
tem, the only job for the user is to feed into FinePar the target
OpenCL program and a set of representative inputs to train
the framework for optimized performance. Once the train-
ing is done, FinePar automatically partitions the given input
during runtime to optimize the utilization of the integrated
architecture.

The FinePar framework consists of three major compo-
nents, transformation engine, performance modeling, and
auto-tuner. The FinePar transformation engine and the per-
formance modeling components are used in the offline stage.
The transformation engine transforms the input OpenCL
program to enable fine-grained partitioning. More specifi-
cally, the transformed code takes a parameter as the irreg-
ularity threshold (to be detailed in Section 3.2). The more
irregular part of the data and the less irregular part are dis-
patched to the CPU and GPU, respectively. The performance
modeling component takes both architecture differences and
data irregularity into consideration. It trains itself with the
provided training data and builds matrix category-specific
performance models for both the CPU and GPU.

The auto-tuner component is active during runtime and
completes two tasks. First, it determines the performance
model to use based on input sampling. Second, it searches
for a partitioning threshold based on the performance model
and input features.

3.2 Code Transformation to Enable Fine-Grained
Partitioning

The goal of the transformation engine is to transform the
input irregular OpenCL program to enable workload parti-
tioning in a fine-grained manner. The FinePar framework
can also target coarse-grained partitioning for performance
comparison. Figure 6 presents the basic ideas of the transfor-
mations using sparse matrix processing as an example. Fig-
ure 6 (a) shows the pseudocode of the original program. The
host code initializes the sparse matrix M , and invokes a ker-
nel function to process it. Each work-item executes the same
kernel function, which processes the corresponding row ac-
cording to its global ID. Note that when launching the ker-
nel, the host code needs to specify whether to use the CPU
or GPU, but not both.

To utilize both the CPU and GPU for coarse-grained
partitioning, the framework only needs to slightly change
the program as shown in Figure 6 (b). FinePar inserts a
function getCoraseGrainedPartitioningThreshold (de-
tailed in Section 4.2), which analyzes the matrix to return a
partitioning parameter Tc. Logically, the framework breaks
the input matrix M with N rows into two parts, with the
CPU processing the first part (i.e., the first Tc rows) and the
GPU processing the second part (i.e., the last N − Tc rows).
The kernel function for the CPU is the same as that in the
original program, but its launch should only create Tc work-
items. The GPU kernel is different from the original kernel
because it should start the processing from the Tcth row with
N−Tc work-items. In the case of coarse-grained partitioning
in Figure 4, the CPU processes the first 4 rows, so the value

30



for Tc is 4. By adding it to the global ID of all work-items of
the GPU kernel, the GPU works on the last four rows.

Figure 6 (c) shows the transformed code for fine-grained
partitioning. The host counts for each row the number of
non-zero elements. If the number is larger than the threshold
Tf returned by getF ineGrainedPartitioningThreshold,
the row is appended to the queue cpuRowMap, indicating
its processing on the CPU. Otherwise, the row should be
processed by the GPU. In the kernel functions, the work-
items running on the CPU and GPU figure out the rows to
work on through the row IDs recorded in cpuRowMap and
gpuRowMap, respectively. Similar as in the transformation
for coarse-grained partitioning, the number of work-items
for each kernel depends on the number of rows it processes.
The function getF ineGrainedPartitioningThreshold
needs sophisticated performance models and the input fea-
tures to determine Tf for both load balance and opti-
mized GPU utilization. For the example shown in Fig-
ure 4, the optimal value for Tf should be 4. Hence, the
values in gpuRowMap are {1, 2, 3, 5, 6, 7}, and the values
in cpuRowMap are {0, 4}.

3.3 Performance Modeling
FinePar uses linear regression to build performance mod-
els because they are lightweight and efficient for online use.
Moreover, the performance models should be automatically
generated and general enough to cover various inputs and
irregular applications. Since the input graphs can be repre-
sented by adjacency matrices, we use non-zero elements pro-
cessed per second as the prediction goal in the performance
models. We build a separate performance model for the CPU
and GPU, respectively, due to their different architectures.

Accurate performance models for irregular applications
are notoriously difficult to build. Particularly in this work,
we address two challenges. First, we need to select several
features that are easy to obtain and have great impact on
performance. Second, the model should be lightweight for
online use. We next describe how the performance modeling
component addresses these challenges.

3.3.1 Feature Selection
We select features that are closely related with the OpenCL
programming model and those that represent irregularity of
the workload. More specifically, we select four features: 1)
the average workload for a work-item (AW ), 2) the variance
of the distribution of non-zero elements across the rows
(VW ), 3) the number of work-items in the computation
domain (NW ), and 4) the size of the whole workload (SW ),
which are explained as follows:

1) Average workload for a single work-item: Work-
items need enough workload to amortize the overhead of
thread creation. We use the mean of the numbers of non-
zero elements in the rows to represent the average workload

main() { //host code
InitializeMatrix(M); // N = M.size;
launchKernel(N); // create N work-items

}
kernel(M) { //device code

rowID = globalID;
processRow(M, rowID);

}

main() { //host code
initializeMatrix(M);          
Tc = getCoraseGrainedPartitioningThreshold(M);
launchCPUKernel(Tc);
launchGPUKernel(N-Tc);

}
kernelCPU(M) { // CPU kernel

rowID = globalID;
processRow(M, rowID);

}
kernelGPU(M) { // GPU kernel

rowID = globalID + Tc;
processRow(M, rowID);

}

main() { //host code
initializeMatrix(M);
Tf = getFineGrainedPartitioningThreshold(M);
for( row in matrix) {

if (row.length >= Tf)
cpuRowMap.append(row.ID);

else // (row.length < Tf)
gpuRowMap.append(row.ID); }

launchCPUKernel(cpuRowMap.size);
launchGPUKernel(gpuRowMap.size);

}
kernelCPU(M) { // CPU kernel

rowID = cpuRowMap[globalID];
processRow(M, rowID);

}
kernelGPU(M) { // GPU kernel

rowID = gpuRowMap[globalID];
processRow(M, rowID);

}

(a) original program

(b) coarse-grained partitioning

(c) fine-grained partitioning

Figure 6. Code transformation for coarse-grained and fine-
grained partitioning.

for a single work-item because the input program uses one
work-item to process a row.

2) Variance of the distribution of non-zero elements:
As explained in Section 2, the irregularity of the workload
may dramatically influence the performance of the GPU. We
use the variance of the distribution of non-zero elements to
quantify the irregularity of the workload.

3) Number of work-items in the computation domain:
This feature plays an important role in the performance of
the GPU, because the GPU needs to create enough threads
to utilize the computational resource. Due to the one-to-one
mapping between the work-items and rows, this feature is
the same as the number of rows in the workload.

4) Size of the whole workload: The amount of data fed
to the processor affects performance because large data size
may lead to better utilization of the memory bandwidth.

31



3.3.2 Addressing Substantial Differences in Matrices
One tricky feature of graph and sparse matrix applications is
their irregular memory access pattern, which affects cache
performance and the main memory bandwidth utilization.
However, the memory access pattern is not captured by
the linear regression model. To illustrate its impact, we run
SpMV on two matrices (M1 and M2) of similar features
as selected for the modeling. The difference between these
two matrices is that M1 is a quasi-diagonal matrix (i.e., its
non-zero elements are close to the diagonal), while M2 is
not. We observe that on both devices, the processing of M1
can be 2X faster than that of M2.

Despite its importance, the memory access pattern de-
pends on the distribution of the non-zero elements and the
interleaved execution of the threads, which is expensive to
profile and hard to model. Hence, to circumvent this prob-
lem, we categorize the training matrices into quasi-diagonal
matrices and non-quasi-diagonal ones, which are referred as
Type 1 and Type 2 matrices, respectively, in the remainder of
the paper. We build different performance models for each
type. Note that we can create more categories to further dif-
ferentiate the matrices, but leave that to future work.

We quantify the closeness of the non-zero elements to the
diagonal in the following way. For each row, we count the
number of non-zero elements whose column is no more than
one eighth of the width of the matrix away from the diago-
nal. We divide the total number of non-zero elements in the
matrix by the sum of such numbers for all rows. If the result
is larger than the threshold Tdiag (0.8 in our experiments),
we categorize the matrix as a Type 1 matrix. Otherwise, we
categorize it as a Type 2 matrix.

3.3.3 Building and Training Linear Regression Models
For each type of matrices, we build a linear regression model
for the CPU and one for the GPU. Given a training matrix
or graph, we choose a value for Tf (the partitioning thresh-
old) from {16, 32, 64, 128, 256, 512, 1024, 2048} and parti-
tion the matrix into CPU and GPU workloads as described
in the fine-grained partitioning approach in Section 3.2. We
then run the partitioned workloads on the CPU and GPU
to collect execution times for the training, which capture
performance degradation due to co-running. Moreover, we
choose to use log(NW ) instead of NW in the model be-
cause GPU can only simultaneously run up to a certain num-
ber of threads. Further increasing the number of threads does
not improve performance. Similarly, we use log(SW ) in-
stead of SW because of the memory bandwidth limit of the
shared physical memory. Equation 1 and Equation 2 show
the performance models for the GPU and CPU, respectively.
The Ci’s (i = 1 · · · 5) are the parameters of the model we
need to train.

To quickly generate training data with various patterns,
we use the graph generator from Graph 500 [26] to generate

all the training data. The generator has 5 parameters: S, A,
B, C, and D. The scale parameter S controls the size of the
generated graph, which has 2S vertices and 2(S+4) edges.
The other 4 parameters control the distribution of non-zero
elements in the adjacency matrix that represents the gener-
ated graph. We refer the readers to [7] for the detailed mean-
ing of these parameters, but note that the sum of the 4 param-
eters should be 1. We set S to be each of {16, 17, 18, 19}. For
each scale parameter S, we randomly generate 20 quadru-
plets. Each quadruplet contains four positive floating-point
numbers whose sum is 1. The largest number is assigned to
A, and the other three are randomly assigned toB,C, andD.
We hence generate 80 matrices of Type 2. We generate Type
1 matrices by placing the non-zero elements in each row of
Type 2 matrices around the diagonal. Note that because Tf
has 8 possible values, the training process needs 1280 runs.

3.4 Online Tuning
Given the input data, the goal of online tuning is to select
the threshold (Tf in Figure 6) for fine-grained partitioning
to achieve the best performance. It consists of two stages:
(1) matrix category detection, and (2) threshold search. The
detection stage determines the matrix category and subse-
quently the performance models to use. The search stage
leverages the performance models to predict performance
given a threshold and search for the optimal threshold.

While we can use the method discussed in Section 3.3 to
determine the category the input belongs to, the overhead is
prohibitive. To be suitable for online use, FinePar samples
a number of rows from the input matrix and only counts
the non-zero elements close to the diagonal for the sampled
rows. For the quantification to determine the category, we
scale down the total number of non-zero elements according
to the sampling ratio. We tried multiple sampling ratios and
found that the sampling ratio 0.001 introduces acceptable
overhead and always categorizes the input matrix as the
offline training phase does.

Threshold search uses the hill climbing algorithm [31] to
search for the optimal threshold. FinePar first chooses an
initial value for Tf such that the ratio between the num-
bers of non-zero elements in the two partitioned workloads
matches the ratio of the peak performance between the CPU
and GPU. It then uses the performance model to estimate the
execution time given Tf , (Tf − step), and (Tf + step) as
the threshold, respectively. If Tf produces the optimal per-
formance, the tuning process terminates. Otherwise, Tf is
assigned one of the two other values, which yields better per-
formance, We empirically choose 64 for the step parameter,
which performs well in the experiments.

4. Experiment
In this section, we evaluate FinePar using a variety of irreg-
ular programs with different types of input matrices.We start
by describing our platform and benchmarks.

32



performanceGPU = C1GPU ×AWGPU + C2GPU × VWGPU + C3GPU × log(NWGPU ) + C4GPU × log(SWGPU ) + C5GPU (1)

performanceCPU = C1CPU ×AWCPU + C2CPU × VWCPU + C3CPU × log(NWCPU ) + C4CPU × log(SWCPU ) + C5CPU (2)

4.1 Experiment Setup
Platform We perform all of our experiments on AMD’s A-
Series APU A10-7850K (code named “Kaveri”) [6]. This
chip has a CPU with 4 processor cores operating at a fre-
quency of 3.7 GHz, as well as an integrated GPU with
8 computing units. The peak performance of the GPU is
737.28 GFlops/s while the peak performance of the CPU is
118.4 GFlops/s. The system is equipped with 32 GB mem-
ory. The operating system is Ubuntu 14.04.1 LTS Linux (ker-
nel version 3.13.0-32-generic). We use GCC (version 4.8.2)
with O3 optimization level for compilation.
Benchmarks We select 5 programs from the GraphBIG
benchmark suite [27], the Rodinia benchmark suite [8], and
the SHOC benchmark suite [11]. Breath-First Search (BFS)
is from the Rodinia benchmark suite. Connected Compo-
nent (CC) and Graph Coloring (GC) are from the Graph-
BIG benchmark suite. Sparse Matrix-Vector Multiplication
using Compressed Row Format (SpMV-CSR) and Sparse
Matrix-Vector Multiplication using Ellpack Format (SpMV-
ELL) are from the SHOC benchmark suite. Since AMD’s
current integrated architectures do not support atomic oper-
ations between the CPU and GPU, we only choose programs
without using atomic operations. We also implement 3 well-
known algorithms in OpenCL, Page Rank [29], Hyperlink-
Induced Topic Search (HITS) [19], and Random Walk with
Restart (RWR) [35], which brings the total number of eval-
uated benchmarks to 8.

Name Dimension NNZ µ σ MAX
scale20 1.05M 31.35M 29.90 258.04 66546
circuit5M 5.56M 59.52M 10.71 1356.62 1290501
eu-2005 0.86M 19.24M 22.30 29.33 6985
in-2004 1.38M 16.92M 12.23 37.23 7753
FullChip 2.99M 26.62M 8.91 1806.80 2312481
web-BerkStan 0.69M 7.60M 11.09 16.36 249

Table 1. Matrices used in our experiments. Dimension: the
dimensions of matrices. NNZ: the number of total non-zero
elements. µ: the average number of non-zero elements per
row. σ: variance of the number of non-zero elements per row.
MAX: the maximum number of non-zero elements per row.

Input Matrices We evaluate FinePar using 6 sparse matri-
ces listed in Table 1, which are different from the training
set. Specifically, the matrix of scale20 is generated by the
generator of Graph 500 [26]. We use 3 large sparse ma-
trices from [34], circuit5M, eu-2005, and in-2004. These
sparse matrices are widely used in previous studies, such
as [4, 15, 25, 36, 38], which are available in the Univer-
sity of Florida Sparse Matrix Collections [12]. We also
use a matrix, FullChip, from the same collection. Since the

ELL format introduces significant space overhead, our plat-
form can only execute SpMV-ELL with a small web graph,
web-BerkStan, which is available from [12, 22].

4.2 Performance of FinePar

Method Descriptions
Single-Device [5] Choose CPU or GPU that yields the best performance
Adaptive [18] Partition workload based on online profiling
Dynamic [30] Both GPU and CPU execute the workload from opposite directions
Coarse-grained Oracle [40] Coarse-grained workload partitioning with optimal load balance
FinePar Fine-grained workload partitioning based on Linear Regression

Table 2. Summary of different partitioning methods.

We compare our method with 4 state-of-the-art work-
load partitioning methods on heterogeneous platforms listed
in Table 2. The Single-Device method [5] uses the device
from the CPU and GPU that produces better performance.
The adaptive method [18] calculates a performance ratio be-
tween CPU and GPU through executing partial workload
and then partitions the workload using this ratio. The dy-
namic method [30] uses both GPU and CPU to execute
the workload simultaneously, while the GPU executes the
workload from the beginning to the end and the CPU exe-
cutes in the opposite direction, which can achieve a dynamic
load balance. The coarse-grained oracle method [39, 40] per-
forms workload partitioning from 0 to 100% and selects the
best partitioning ratio.

Figure 7 shows the performance results for different
partitioning methods. We use Single-device as the base-
line. Speedup is defined as the baseline’s execution time
divided by the corresponding method’s execution time. In
general, FinePar achieves consistent performance improve-
ment for most of the evaluated programs and is much bet-
ter than the other partitioning methods. The average per-
formance speedup is 1.53X over the single-device method.
For the FullChip matrix, the performance speedup is up
to 2.31X. The average speedup is 0.87X for the adaptive
method, 0.70X for the dynamic method, and 1.11X for the
coarse-grained oracle method. FinePar achieves an average
of 1.38X speedup over the coarse-grained oracle method.

In Figure 7, we can see that not all the partitioning meth-
ods can achieve consistent performance improvement over
the optimal single device method. The adaptive method cal-
culates a partitioning ratio with a light-weight sampling
method, but this ratio sometimes cannot reflect the most
balanced partitioning point for some inputs, such as scale20
and circuit5M. The coarse-grained oracle method presents
the upper limit of the adaptive results. However, for most
irregular inputs, it only brings very little performance im-
provement over the single device method. For the dynamic

33



 0

 0.5

 1

 1.5

 2

BFS
CC GC HITS

PageRank

SpMVCSR

RWR

Sp
ee

du
p

Adaptive
Dynamic

Coarse-grainedOracle
FinePar

(a) scale20

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

BFS
CC GC HITS

PageRank

SpMVCSR

RWR

Sp
ee

du
p

Adaptive
Dynamic

Coarse-grainedOracle
FinePar

(b) circuit5M

 0

 0.5

 1

 1.5

 2

 2.5

BFS
CC GC HITS

PageRank

SpMVCSR

RWR

Sp
ee

du
p

Adaptive
Dynamic

Coarse-grainedOracle
FinePar

(c) eu-2005

 0

 0.5

 1

 1.5

 2

 2.5

 3

BFS
CC GC HITS

PageRank

SpMVCSR

RWR

Sp
ee

du
p

Adaptive
Dynamic

Coarse-grainedOracle
FinePar

(d) in-2004

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

BFS
CC GC HITS

PageRank

SpMVCSR

RWR

Sp
ee

du
p

Adaptive
Dynamic

Coarse-grainedOracle
FinePar

(e) FullChip

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

BFS
CC GC HITS

PageRank

SpMVCSR

RWR
SpMVELL

Sp
ee

du
p

Adaptive
Dynamic

Coarse-grainedOracle
FinePar

(f) webberk

Figure 7. Performance results of different partitioning methods. The base line is the optimal single device result, GPU- or
CPU- only version.

method, it can achieve good load balance for most programs,
but it incurs large runtime overhead for checking whether
CPU and GPU execute to the same point.

In particular, our method has performance degradation for
BFS with scale20 and webberk. This is because for BFS, the
workloads across iterations change dramatically depending
on the graph topology. Currently, our performance model
cannot handle such dynamic behavior.

4.3 Result Analysis of FinePar
In general, FinePar partitions an irregular workload into two
parts, the relatively regular part allocated to the GPU and
the more irregular part allocated to the CPU. By considering
the architectural differences between two devices, we can
effectively improve the performance of irregular programs.
In this section, we give detailed analysis about our fine-
grained partitioning.

Matrix GPU CPU GPU/CPU
Name Variance Variance Variance Workload Ratio
scale20 258.04 56.57 2496.13 1.36
circuit5M 1356.62 0.50 5416.37 0.78
eu-2005 29.33 15.38 71.18 2.92
in-2004 37.23 13.28 175.70 2.93
FullChip 1806.80 2.74 26307.03 3.80
web-BerkStan 16.36 6.73 29.49 1.64

Table 3. Mitigating the irregularity of the input matrices by
FinePar.

Our method largely benefits from mitigating the irregu-
larity of the GPU workload. Table 3 shows the changes af-

ter performing fine-grained partitioning in FinePar for dif-
ferent matrices. We use the variance of the number of non-
zero elements per row to describe the matrix irregularity.
The Matrix Variance column represents the variance of the
original matrix before partitioning. The GPU Variance and
CPU Variance columns represent the variances for the GPU
workload and the CPU workload, respectively, after parti-
tioning. The GPU/CPU Workload Ratio column shows the
size of the GPU workload divided by the size of the CPU
workload.

After transformation by FinePar, the variance for the
GPU workload is significantly reduced, while the variance
for the CPU workload is increased. For instance, for the
matrices of circuit5M and FullChip, the original matrices
have very high irregularity with variances of 1356.62 and
1806.80, respectively, but after fine-grained partitioning, the
irregularity of GPU workloads has been significantly re-
duced (with the variances of 0.50 and 2.74). In contrast, the
traditional coarse-grained partitioning does not realize such
input irregularity and only considers the load balance. More-
over, the GPU/CPU Workload Ratio column shows that the
workload partitioning ratios vary greatly across inputs.

From the aspect of matrix variance, we classify the per-
formance results in Figure 7 into three categories. First, the
matrices of circuit5M and FullChip have the largest irreg-
ularity and their irregularity can be significantly decreased
after fine-grained partitioning. FinePar can get very high per-
formance improvements for these inputs. Second, the matri-
ces of eu-2005, web-BerkStan, and in-2004 have the mod-

34



erate irregularity and there is no significant irregularity dif-
ference between CPU and GPU after the fined-grained par-
titioning. However, FinePar can also produce moderate per-
formance improvement for these inputs. Third, for scale20,
its irregularity is uniformly distributed in the whole matrix,
so it is difficult to greatly reduce its irregularity. Table 3
shows that the GPU workload still has a variance of 56.57 af-
ter fine-grained partitioning. Consequently, the performance
improvement is limited for this matrix.

4.4 Accuracy of Performance Models

Type Device C1 C2 C3 C4 C5 r2
Type 1 CPU -0.05 0.03 -283.83 605.24 -2165.00 0.81

GPU 19.03 -5.11 2752.44 244.77 -16924.91 0.93
Type 2 CPU -0.05 0.07 14.42 13.26 122.77 0.50

GPU -2.24 0.88 413.11 79.54 -2661.51 0.69

Table 4. Estimated parameters of performance models.
Type 1: non-zero elements around the diagonal. Type 2: non-
zero elements not around the diagonal. r2 is the coefficient
of determination.

Table 4 shows the trained parameters of the performance
models from our offline training. We use a statistical met-
ric, called coefficient of determination [3], to analyze the ac-
curacy the predicted performance model. The values of r2
range from 0 to 1. The larger this value is, the better the
predicted result is. For the type 1 matrices, the values of r2
are close to 1, which means that our performance model has
very high accuracy. For the type 2 matrices, the values of r2
are not very large, because the type 2 matrices have a great
diversity of sparsity patterns and it is hard to provide an ac-
curate performance model for prediction.

To understand the importance of the features in the mod-
els for different devices and types of matrices, we provide
their correlation coefficients [1] in Table 5. We list main
findings below. (1) The average workload for a work-item
(AW) is critical for the GPU, because the GPU has a large
number of hardware threads which are more sensitive to
the average workload for a work-item. (2) The variance of
workload (VW) is also much more important for the GPU.
This is because the GPU uses the lockstep execution model
as mentioned in Section 2. (3) The number of work-items
(NW) is more important for the GPU, because work-items
are mapped to hardware threads and the GPU performance
is more dependent on available parallelism. (4) The work-
load size (SW) is much more important for the CPU, because
the CPU has very few hardware threads compared with the
GPU and its performance is more dependent on the input
workload size.

To demonstrate the effectiveness of our performance
model, we enumerate all possible fine-grained partitioning
thresholds and obtain the maximum performance improve-
ment for each input matrix across all benchmarks. Figure 8
shows the comparison between the improvement by FinePar
and the optimal performance improvement (named Oracle).

Type Device AW VW NW SW
Type 1 GPU 0.88 0.52 0.85 0.15

CPU 0.08 0.18 0.77 0.49
Type 2 GPU 0.64 0.75 0.75 0.28

CPU 0.33 0.03 0.50 0.45

Table 5. Correlation coefficient of the features in the perfor-
mance model of FinePar.

 0
 10
 20
 30
 40
 50
 60
 70
 80

scale20

eu-2005

in-2004

circuit5M

web-BerkStan

FullChip

avg

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t (

%
)

FinePar
Oracle

Figure 8. Performance improvement between FinePar and
the optimal partition.

For most of the input matrices, FinePar demonstrates very
high consistency with the optimal performance. The optimal
performance improvement for the proposed fine-grained par-
titioning approach is 32% on average while FinePar achieves
an average of 30% performance improvement.

4.5 Performance Overhead Analysis
4.5.1 Time Overhead
Before kernel computation, the evaluated programs perform
I/O operations and data initialization. FinePar adds runtime
overhead to this pre-kernel processing phase from two as-
pects. First, it randomly samples a number of rows from
the input matrix to estimate its type. Second, it chooses a
suitable performance model and searches for the partition-
ing threshold.

Table 6 shows the runtime overhead of FinePar compared
to the original pre-kernel processing time for each program
for the matrix web-BerkStan. The other matrices have sim-
ilar performance overhead. We observe that FinePar’s over-
head only accounts for less than 0.2% of the pre-kernel pro-
cessing time, which is negligible.

Program I/O(%) Initialization(%) FinePar(%)
BFS 74.67 25.25 0.08
ConnectedComp 31.27 68.70 0.03
GraphColoring 58.91 41.05 0.04
HITS 52.36 47.51 0.13
PageRank 55.22 44.73 0.05
SpMV-CSR 75.00 24.90 0.10
RWR 71.78 28.08 0.14
SpMV-ELL 15.53 84.44 0.03

Table 6. The time overhead of FinePar.

35



4.5.2 Space Overhead
The APU has two separate main memory data paths to the
CPU and GPU. To accurately evaluate and compare different
partitioning approaches, we allocate two copies for read-
only data for the two data paths to reduce the interference
due to bus contention. For a graph with n vertices and m
edges. The needed storage space for read-only data is:

Sizetotal = (m + n)× sizeof (int)× 2 (3)

FinePar creates a bit vector of n bits, named gpuRowMap,
to inform the GPU the rows it should process. The bit vector
reduces storage space and improves memory coalescing for
the GPU. Since the GPU typically processes much more
rows than the CPU does, FinePar only uses a regular integer
array of size n for the CPU. Hence, the space overhead
incurred by FinePar is:

SizeFinePar = n/8 + n × sizeof (int) (4)

Matrix Original (Bytes) Extra Allocation (Bytes) Space Overhead(%)
scale20 259M 4M 1.67
circuit5M 521M 23M 4.40
eu-2005 161M 4M 2.21
in-2004 146M 6M 3.90
web-BerkStan 66M 3M 5.17
FullChip 237M 12M 5.20

Table 7. The space overhead of FinePar.

Table 7 shows the extra space overhead introduced by
FinePar. The column named “Original (Bytes)” shows the
original size for each matrix. The column named “Extra
Allocation (Bytes)” shows the size incurred by FinePar. The
last column shows FinePar’s space overhead normalized to
the original size. For all the inputs, our method introduces
little space overhead (less than 6%).

5. Related Work
5.1 Workload Partitioning
Heterogeneous architectures introduce non-trivial challenges
for workload partitioning due to the drastically different
architectures between the CPU and GPU. Lee et al. [21]
proposed SKMD (Single Kernel Multiple Devices), which
transparently orchestrates multiple devices to execute the
same OpenCL kernel on systems with discrete GPUs. The
partitioner of SKMD considered data transfer overhead and
performance variation across devices. Pandit et al. [30] pro-
posed a dynamic workload partitioning approach to balanc-
ing the workload between the CPU and the discrete GPU.
Huchant et al. [17] proposed compiler and runtime tech-
niques to automatically partition work groups of the same
OpenCL program to multiple CPUs and GPUs. Their evalu-
ation on an N-body application with two heterogeneous sys-
tems demonstrated good load balance across devices. Those
approaches all leveraged some form of coarse-grained par-
titioning, which was shown to be ineffective for irregular
applications on integrated architectures.

5.2 Optimizing Irregular Applications
Most recent efforts in optimizing irregular applications in
heterogeneous architectures were focused on GPUs. Several
new storage formats were proposed to optimize sparse ma-
trix applications [4, 32, 34, 38]. Sedaghati et al. [32] charac-
terized sparsity features of many sparse matrices and built a
model to automatically select the most suitable format dur-
ing runtime. Ashari et al. [4] represented graph algorithms
in SpMV and optimized load balance among GPU threads
by reordering the rows in the sparse matrix. In comparison,
FinePar targets integrated architectures with both CPU and
GPU, and hence considers the architecture differences.

5.3 Performance Modeling
There exists some work on building performance models for
sparse matrix applications. Li et al. [24] proposed probabilis-
tic models for SpMV. Li et al. [23] used a machine learning-
based model to auto-tune matrix format for SpMV. Some
machine learning based models were proposed for optimiza-
tion. Leather et al. [20] provided automatic feature genera-
tion for optimizing compilation. Wang el al. [37] provided a
machine learning based prediction for better mapping. Those
performance models focused on one device, while FinePar
builds performance models for both the CPU and GPU that
take into consideration architecture differences and input
features. Gharaibeh et al. [14] proposed performance models
to partition graph workload for the CPU and GPU for load
balance, but did not consider architecture differences.

6. Conclusion
In this paper, we identified the pitfall of coarse-grained
workload partitioning for irregular applications on integrated
architectures. To deal with the problem, we developed a
compilation and runtime system named FinePar to achieve
fine-grained partitioning. FinePar automatically transforms
the input irregular kernel to use both the CPU and GPU,
and builds irregularity-aware performance models for par-
titioning the workload during runtime through auto-tuning.
Experimental results on six graphs and eight applications
demonstrated 1.38X performance speedup over the optimal
coarse-grained partitioning.

Acknowledgements
This work is partially supported by National Key Research
and Development Program of China 2016YFB0200100,
NSFC Project 61472201, Tsinghua University Initiative Sci-
entific Research Program, Huawei Innovation Research Pro-
gram (HIRP), Tsinghua-Tencent Joint Laboratory for Inter-
net Innovation Technology. Bingsheng’s research is partly
supported by an MoE AcRF Tier 1 grant (T1 251RES1610)
from Singapore. Bo’s research is partly supported by the Na-
tional Science Foundation (NSF) under Grant No. 1464216
and No. 1618912. Jidong Zhai is the corresponding author
(Email: zhaijidong@tsinghua.edu.cn).

36



References
[1] CORREL function. https://support.office.com/

en-us/article/.

[2] The Compute Architecture of Intel Processor Graph-
ics Gen7.5. https://software.intel.com/

sites/default/files/managed/4f/e0/Compute_

Architecture_of_Intel_Processor_Graphics_

Gen7dot5_Aug4_2014.pdf.

[3] L. S. Aiken, S. G. West, and S. C. Pitts. Multiple linear
regression. Handbook of psychology, 2003.

[4] A. Ashari, N. Sedaghati, J. Eisenlohr, S. Parthasarath, and
P. Sadayappan. Fast sparse matrix-vector multiplication on
GPUs for graph applications. In High Performance Comput-
ing, Networking, Storage and Analysis, SC14: International
Conference for, pages 781–792. IEEE, 2014.

[5] R. Barik, R. Kaleem, D. Majeti, B. T. Lewis, T. Shpeisman,
C. Hu, Y. Ni, and A.-R. Adl-Tabatabai. Efficient mapping of
irregular C++ applications to integrated GPUs. In Proceed-
ings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization, page 33. ACM, 2014.

[6] D. Bouvier and B. Sander. Applying AMDs Kaveri APU for
heterogeneous computing. In Hot Chips: A Symposium on
High Performance Chips (HC26), 2014.

[7] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A Re-
cursive Model for Graph Mining. In SDM, volume 4, pages
442–446. SIAM, 2004.

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-
H. Lee, and K. Skadron. Rodinia: A benchmark suite for
heterogeneous computing. In Workload Characterization,
2009. IISWC 2009. IEEE International Symposium on, pages
44–54. IEEE, 2009.

[9] L. Chen, X. Huo, and G. Agrawal. Accelerating MapReduce
on a coupled CPU-GPU architecture. In Proceedings of the
International Conference on High Performance Computing,
Networking, Storage and Analysis, page 25. IEEE Computer
Society Press, 2012.

[10] M. Daga, M. Nutter, and M. Meswani. Efficient breadth-
first search on a heterogeneous processor. In Big Data (Big
Data), 2014 IEEE International Conference on, pages 373–
382. IEEE, 2014.

[11] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter. The scalable het-
erogeneous computing (shoc) benchmark suite. In Proceed-
ings of the 3rd Workshop on General-Purpose Computation
on Graphics Processing Units, pages 63–74. ACM, 2010.

[12] T. A. Davis and Y. Hu. The University of Florida sparse ma-
trix collection. ACM Transactions on Mathematical Software
(TOMS), 38(1):1, 2011.

[13] M. C. Delorme, T. S. Abdelrahman, and C. Zhao. Parallel
radix sort on the AMD fusion accelerated processing unit. In
Parallel Processing (ICPP), 2013 42nd International Confer-
ence on, pages 339–348. IEEE, 2013.

[14] A. Gharaibeh, L. Beltrão Costa, E. Santos-Neto, and M. Ri-
peanu. A yoke of oxen and a thousand chickens for heavy
lifting graph processing. In Proceedings of the 21st Interna-
tional Conference on Parallel Architectures and Compilation

Techniques, PACT ’12, pages 345–354, 2012. ISBN 978-1-
4503-1182-3.

[15] J. L. Greathouse and M. Daga. Efficient sparse matrix-
vector multiplication on GPUs using the CSR storage format.
In High Performance Computing, Networking, Storage and
Analysis, SC14: International Conference for, pages 769–780.
IEEE, 2014.

[16] J. He, M. Lu, and B. He. Revisiting Co-processing for Hash
Joins on the Coupled CPU-GPU Architecture. VLDB’13, 6
(10):889–900, 2013.

[17] P. Huchant, M. C. Counilh, and D. Barthou. Automatic opencl
task adaptation for heterogeneous architectures. In Euro-Par
2016: Parallel Processing - 22nd International Conference
on Parallel and Distributed Computing, Grenoble, France,
August 24-26, 2016, Proceedings, pages 684–696, 2016.

[18] R. Kaleem, R. Barik, T. Shpeisman, B. T. Lewis, C. Hu, and
K. Pingali. Adaptive heterogeneous scheduling for integrated
GPUs. In Proceedings of the 23rd international conference on
Parallel architectures and compilation, pages 151–162. ACM,
2014.

[19] J. M. Kleinberg. Authoritative sources in a hyperlinked envi-
ronment. Journal of the ACM (JACM), 46(5):604–632, 1999.

[20] H. Leather, E. Bonilla, and M. O’Boyle. Automatic feature
generation for machine learning based optimizing compila-
tion. In Code Generation and Optimization, 2009. CGO 2009.
International Symposium on, pages 81–91. IEEE, 2009.

[21] J. Lee, M. Samadi, Y. Park, and S. Mahlke. Transparent cpu-
gpu collaboration for data-parallel kernels on heterogeneous
systems. In Proceedings of the 22Nd International Conference
on Parallel Architectures and Compilation Techniques, PACT
’13, pages 245–256, 2013. ISBN 978-1-4799-1021-2.

[22] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large
network dataset collection. http://snap.stanford.edu/

data, June 2014.

[23] J. Li, G. Tan, M. Chen, and N. Sun. SMAT: an input adaptive
auto-tuner for sparse matrix-vector multiplication. In ACM
SIGPLAN Notices, volume 48, pages 117–126. ACM, 2013.

[24] K. Li, W. Yang, and K. Li. Performance analysis and op-
timization for spmv on GPU using probabilistic modeling.
IEEE Trans. Parallel Distrib. Syst., 26(1):196–205, 2015.

[25] W. Liu and B. Vinter. CSR5: An efficient storage format
for cross-platform sparse matrix-vector multiplication. In
Proceedings of the 29th ACM on International Conference on
Supercomputing, pages 339–350. ACM, 2015.

[26] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang.
Introducing the Graph 500. Cray Users Group (CUG), 2010.

[27] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin. Graph-
BIG: Understanding graph computing in the context of indus-
trial solutions. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and
Analysis, page 69. ACM, 2015.

[28] K. Nilakant and E. Yoneki. On the Efficacy of APUs for Het-
erogeneous Graph Computation. In Proc. 4th Workshop on
Systems for Future Multicore Architectures (SFMA), Amster-
dam, Netherlands, pages 2–7, 2014.

37



[29] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageR-
ank citation ranking: bringing order to the web. 1999.

[30] P. Pandit and R. Govindarajan. Fluidic kernels: Cooperative
execution of OpenCL programs on multiple heterogeneous
devices. In Proceedings of Annual IEEE/ACM International
Symposium on Code Generation and Optimization, page 273.
ACM, 2014.

[31] S. Russell, P. Norvig, and A. Intelligence. A modern approach.
Artificial Intelligence. Prentice-Hall, Egnlewood Cliffs, 25:27,
1995.

[32] N. Sedaghati, T. Mu, L.-N. Pouchet, S. Parthasarathy, and
P. Sadayappan. Automatic selection of sparse matrix repre-
sentation on gpus. In Proceedings of the 29th ACM on Inter-
national Conference on Supercomputing, ICS ’15, pages 99–
108, 2015. ISBN 978-1-4503-3559-1.

[33] J. E. Stone, D. Gohara, and G. Shi. OpenCL: A parallel
programming standard for heterogeneous computing systems.
Computing in science & engineering, 12(3):66, 2010.

[34] B.-Y. Su and K. Keutzer. clSpMV: A cross-platform OpenCL
SpMV framework on GPUs. In Proceedings of the 26th ACM
international conference on Supercomputing, pages 353–364.
ACM, 2012.

[35] H. Tong, C. Faloutsos, and J.-Y. Pan. Random walk with
restart: fast solutions and applications. Knowledge and In-

formation Systems, 14(3):327–346, 2008.

[36] H. Wang, W. Liu, K. Hou, and W.-c. Feng. Parallel transpo-
sition of sparse data structures. In Proceedings of the 2016
International Conference on Supercomputing, page 33. ACM,
2016.

[37] Z. Wang, G. Tournavitis, B. Franke, and M. F. O’boyle. In-
tegrating profile-driven parallelism detection and machine-
learning-based mapping. ACM Transactions on Architecture
and Code Optimization (TACO), 11(1):2, 2014.

[38] S. Yan, C. Li, Y. Zhang, and H. Zhou. yaSpMV: Yet another
SpMV framework on GPUs. In ACM SIGPLAN Notices,
volume 49, pages 107–118. ACM, 2014.

[39] F. Zhang, J. Zhai, W. Chen, B. He, and S. Zhang. To
Co-Run, or Not To Co-Run: A Performance Study on Inte-
grated Architectures. In Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS),
2015 IEEE 23rd International Symposium on, pages 89–92.
IEEE, 2015.

[40] F. Zhang, J. Zhai, B. He, S. Zhang, and W. Chen. Under-
standing co-running behaviors on integrated CPU/GPU ar-
chitectures. IEEE Trans. Parallel Distrib. Syst., pages 1–1,
2016. doi: 10.1109/tpds.2016.2586074. URL http://dx.

doi.org/10.1109/TPDS.2016.2586074.

38


