
CprFS: A User-level File System to Support Consistent File
States for Checkpoint and Restart

Ruini Xue
High Performance Computing

Institution
Tsinghua University

Beijing 100084, China
xrn05@mails.tsinghua.edu.cn

Wenguang Chen
High Performance Computing

Institution
Tsinghua University

Beijing 100084, China
cwg@tsinghua.edu.cn

Weimin Zheng
High Performance Computing

Institution
Tsinghua University

Beijing 100084, China
zwm-dcs@tsinghua.edu.cn

ABSTRACT

Checkpoint and Restart (CPR) is becoming critical to large
scale parallel computers, whose Mean Time Between Fail-
ures (MTBF) may be much shorter than the execution times
of the applications. The CPR mechanism should be able to
store and recover the states of virtual memory, communica-
tion and files for the applications in a consistent way.

However, many CPR tools ignore file states, which may
cause errors for applications with file operations on recovery.
Some CPR tools adopt library-based approaches or kernel-
level file systems to deal with file states, but they only sup-
port limited types of file operations which are not sufficient
for some applications. Moreover, many library-based ap-
proaches are not transparent to user applications because
they wrap file APIs. Kernel-level file systems are difficult to
deploy in production systems due to unnecessary overhead
they may introduce to applications that do not need CPR.

In this paper we propose a user-level file system, CprFS, to
address these problems. As a file system, CprFS can guar-
antee transparency to user applications, and is convenient
to support arbitrary file operations. It can be deployed on
applications’ demand to avoid intervention with other appli-
cations. Experimental results show that CprFS introduces
acceptable overhead and has little impact on checkpointing
systems.

Categories and Subject Descriptors

D.4.3 [OPERATING SYSTEMS]: File Systems Manage-
ment; D.4.5 [OPERATING SYSTEMS]: Reliability

General Terms

Design, Reliability, Experimentation

Keywords

checkpoint and restart, file checkpointing, fault tolerance,
parallel computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’08, June 7–12, 2008, Island of Kos, Aegean Sea, Greece.
Copyright 2008 ACM 978-1-60558-158-3/08/06 ...$5.00.

1. INTRODUCTION
The need for fault tolerance in large-scale parallel com-

puters is becoming critical. Some scientific computing ap-
plications may run for days, weeks or even longer. However,
because of the extraordinarily large component count of such
machines — for instance, the latest IBM’s BlueGene/L has
106,496 nodes (212,992 processors) — their MTBF may be
much shorter than the execution times of the applications
running on them. The absence of some mechanism for fault
tolerance in such systems is catastrophic for the running ap-
plication.

Checkpoint and Restart is a straightforward solution for
providing fault tolerance: the state of the computation is
saved periodically on stable storage. The saved state is
called a checkpoint. When a failure is detected, the lat-
est checkpoint is loaded and computation is restarted from
the saved state.

Generally, checkpointing can be decomposed into two steps:
(1) saving virtual memory (heap, stack, registers etc.) and
communication states (sockets, pipes etc.), namely memory
checkpointing ; (2) handling files states, namely file check-
pointing. To successfully restart a process, these states should
be restored consistently[25]. Many CPR tools address the
consistency of virtual memory[20, 29] and communication[22,
1, 9, 5], while they ignore file states. This can lead to obvious
errors as illustrated in Figure 1. Checkpoint i was taken in
line 2, and an error occurred after a write to example in line
7. Then the application restarted from checkpoint i, but
buf read in line 3 is the new value written in the aborted
run in line 7 which is not the expected data.

1 fd = open("example", O_RDWR);
2 checkpoint i
3 read(fd, buf, len);
4 /* use buf */
5 /* set buf to new value */
6 lseek(fd, 0, SEEK_SET);
7 write(fd, buf, len);
8 fsync(fd);
9 /* Error occurs! */

10 /* restart from checkpoint i */

Figure 1: Inconsistency error if data files are not handled.

Some studies have been conducted on file checkpointing
with library-based approach, however they have several lim-
itations:

• The supported file access patterns are simple[13, 19].

114

1 checkpointing i
2 fd = open("example", O_WRONLY | O_APPEND);
3 write(fd, buf, len);
4 close(fd);
5 /* Error occurs! */
6 /* restart from checkpoint i */
7 ...
8 checkpoint i + 1

Figure 2: Inconsistency error if non-active files are not
handled.

Some CPR tools assume that there is only one kind of
non-idempotent operation1 for each file between two
consecutive checkpoints. However, in real-world appli-
cations, any file operations can be performed, and file
access patterns can be quite complicated.

• Only active files (opened and not closed yet when check-
pointing) are handled[25, 12, 17, 7]. Some tools as-
sume the files are always opened, and just save some
file information when checkpointing, but do not track
the files during normal running. Therefore, the files
open-and-closed between two checkpoints can not be
handled properly. In Figure 2, fd is non-active be-
cause it is opened after checkpoint i and closed before
checkpoint i+1; therefore, it is ignored by these CPR
tools. This can also lead to inconsistency: buf will be
incorrectly appended again to example after restarting
from checkpoint i.

• User applications require modifications[13, 18, 19, 8].
Many tools use wrappers on standard I/O interfaces,
which demand enormously invasive source changes to
use the new APIs.

A file system can avoid these problems and is a better solu-
tion than library-based approach. However, though kernel-
level file systems are expected of good performance, it is
hard to implement a kernel module and it could limit com-
patibility to certain kernel versions or devices. Additionally,
after being deployed, a kernel-level file system can affect ap-
plications that do not need CPR. These constraints prohibit
CPR from being widely used, since file operations are com-
mon place in real-world applications.

To address these problems, we propose CprFS, Checkpoint
and Restart oriented File System, a user-level file system for
file checkpointing. It leverages the advantages of file sys-
tem and user-level design with basic transactions support.
The prototype is implemented under Linux currently, and
it can be ported to different operating systems with little
effort. Since CprFS buffers file changes locally, it needs spe-
cial treatment for this scenario: in a shared storage system,
one process of a parallel application wants to access the file
data updated by another process in different node. Direct
accessing can result in inconsistency. CprFS detects the in-
consistency and can roll back the file states.

1Generally, an operation is idempotent if, whenever it is
applied twice to any element, it gives the same result as if it
were applied once. Considering file operations, idempotency
means the retrieval of data and information from files and
does not modify them (e.g., read, stat), while an operation
is non-idempotent if it changes either contents or attributes
of a file (e.g., write, truncate, chmod)[13].

This paper makes three main contributions.

• To the best of our knowledge, CprFS is the first at-
tempt to address file checkpointing with a user-level
file system. As a file system, CprFS is transparent
to user applications and allows the separation of file
checkpointing from memory checkpointing. It allows
us to remount any file system, distribute and deploy it
on application’s demand without interfering applica-
tions that do not need file checkpointing. Meanwhile,
user-level solution has good portability and maintain-
ability while keeps the implementation easy. By es-
tablishing a file access pattern model, it supports arbi-
trary file operations between checkpoints. The model
is not restricted to CprFS and can be added to other
systems.

• As a local file system, CprFS is designed to work with
different types of applications and storage systems.
For parallel applications with file sharing over shared
storage systems, a solution similar to transactional
memory is devised to process possible file access con-
flicts. It bookkeeps necessary tracing information of
file requests during normal running, and checks this in-
formation among all involved processes to decide whether
the file states can be committed.

• As overhead is the major concern for user-level file sys-
tem, we conducted extensive experiments on CprFS to
evaluate its performance and impact on an MPI CPR
system. Experiments on micro-benchmark show that
CprFS leads to 11.62% speedup for sequential write,
7.30% slowdown for sequential read, and random ac-
cesses slow down of at most 15.60%. We also evalu-
ate CprFS on 4 real-world applications and obtain an
average speedup of 3.58% with short checkpointing
intervals. The overhead of CprFS is acceptable and it
can even accelerate those applications containing lots
of small writes by aggregation.

The paper is organized as follows. Related works are dis-
cussed in Section 2, and an overview of CprFS design is then
presented in Section 3. Discussion of file state transition fol-
lows in Section 4, then the support for parallel applications
and file systems is described Section 5. Section 6 provides
a detailed evaluation of our system. Section 7 presents lim-
itations and directions for future work, then we conclude in
Section 8.

2. RELATED WORK
Many CPR tools are implemented as libraries to address

file checkpointing. Libckp[25] and Condor[12] assume all
files are opened in append mode, and it records the file length
upon opening and truncates it on recovery. All ftIO[13] file
operations are implemented as wrappers around the stan-
dard file operations. The entire file is copied upon the first
write, and subsequent file operations are performed on the
replica. When checkpointing, it replaces the original file
with its replica by means of the atomic rename operation.
Libfcp[2] deploys a “inplace update with undo logs” scheme,
and the file is rolled back according to the undo logs on
recovery. Libra[18] combines a “copy-on-change” strategy
and undo log to record the parts that are really changed
in order to reduce the log size. MOB[19] and Metamori[8]

115

also wrap file operations, and buffer all file changes between
checkpoints and commit in the next checkpoint.

These tools are implemented as static libraries, and file
operations are implemented as wrappers around the stan-
dard file APIs. User applications have to be modified to use
these wrappers. DejaVu[21] intercepts file operations via a
shared library and rolls back all changes made to the file sys-
tem since the last checkpoint on restart. User applications
have to load the shared library first to do interception. Ad-
ditionally, libraries share memory spaces with applications,
therefore if applications crash, all information maintained
by libraries will be lost: it is difficult to separate file check-
pointing from memory checkpointing.

ReFS[10] is the first attempt to address file checkpointing
using file system. It inserts an address translator layer into
the Linux kernel and extends ext2 to a kernel-level version-
ing file system. Some kernel modules save the opened file
descriptors and re-open them on restart in a way similar to
libckp[4, 30, 17, 7]. Particularly, BLCR supports memory
mapped files, and shared mappings are stored only once for
any group of processes. They only handle active files. This
is not sufficient to restart some applications successfully. Re-
viveI/O[15] is implemented as a “pseudo device driver”[14]
and uses hardware to support I/O buffering, which requires
changing the directory protocol.

Though kernel-level file systems and kernel modules can
avoid the problems in library-based approaches, they are
difficult to implement and maintain. A versioning file sys-
tem is a variant case of shadow copy, and it doesn’t fit well
onto CPR without heavy adjustment: first, it is inconve-
nient for user applications to retrieve the old version trans-
parently and second, old versions are usually read-only. The
hardware solution is expensive and requires much effort to
deploy.

There are two types of files in UNIX like systems: regular
files and special files (such as device files). As most of the
data files in scientific applications are regular files, we focus
on regular files in this paper.

3. DESIGN OVERVIEW

3.1 Transactions and Work Modes
For CPR, an atomic transaction is considered to be the ex-

ecution of a program between two consecutive checkpoints[13].
The program either commits its state during checkpointing
or aborts at some point during execution, in which case it
can be recovered from the last checkpoint.

Transactions in CPR are coarse-grained in contrast to con-
ventional transactional file systems. For file checkpointing,
a fine-grained record of each individual file operation is not
necessary. CprFS buffers all file operations, and the files are
not modified until the next checkpoint. An open/close pair
can not be used as the boundaries of transactions, otherwise
inconsistency remains as illustrated in Figure 2: if the file
changes are committed on close in line 4, the file example

will be appended once again after recovery.
For parallel applications, generally there are two types of

file sharing among different processes with respect to de-
pendencies between file accesses. (1) Each process accesses
a certain part of the file and there are no overlaps between
accessed areas. (2) The data one process wants to access
is produced by another one. Accordingly, CprFS can run
in two modes: buffer mode and shadow mode. In buffer

user app

libcprfs

glibc

cprfs

libfuse

glibc

VFS

FUSE

· · ·

ext3

user space

kernel space

Figure 3: CprFS structure. cprfs is the run-time file system,
and libcprfs is the user application library, which is usually
incorporated into checkpoint libraries.

mode, CprFS captures all file operations between check-
points, records them in logs, organizes these logs into trans-
actions, and performs proper actions according to program
states (commit on checkpoint, replay or abort on restart).
In shadow mode, CprFS creates a copy for the file on its first
non-idempotent operation, and all operations are performed
on the original file. In case of error, the application replaces
the changed file with the replica.

Since most scientific applications belong to the first cat-
egory, this paper concentrates on buffer mode mainly, and
shadow mode is explained in Section 5.

3.2 System Architecture
CprFS consists of two main components: a run-time file

system and a user application library. Figure 3 shows the
relation between CprFS and other components in the op-
erating system. The run-time file system executes entirely
in user space with FUSE[23], supervises all file operations
and tracks file state transition. This architecture decouples
memory checkpointing and file checkpointing. A user space
approach, aside from providing greater flexibility and easier
implementation, also avoids cumbersome interaction with
the Linux VFS and page cache, both of which were designed
for a different interface and workload. The library exposes
the run-time file system to user applications by three trans-
action related APIs: cprfs_begin_tran, cprfs_commit_-

tran and cprfs_abort_tran, which are used to begin, com-
mit and abort transactions respectively.

3.3 Name Translation and Backing Store
CprFS can remount any file system (low-level file system).

The low-level file system can be either local file system, net-
work file system or parallel file system, which stores data and
provides standard file interface to user applications. From
this point of view, CprFS is a plug-in for low-level file sys-
tems. It extends the functionality of low-level file systems
on demand without creating a whole new file system. To
avoid mis-operations, name translation in CprFS works as
a map layer between user applications and files: it accepts
requests from user applications and forwards them to real
files in low-level file system.

The mount-point of CprFS is called the agent data path
(ADP), and the corresponding low-level file system directory
is the real data path (RDP). RDP is where data files are

116

user request ADP/data RDP/data

Hash TableBacking Store

Network

Backup Server

1 2

3

4

5

66

6

Figure 4: Name translation and the backing store. In
CprFS, the hash table resides in memory, while the back-
ing store is stored in local disk.

usually located, while ADP is usually an empty directory.
All file requests to ADP are redirected to CprFS by VFS,
then CprFS translates the requests to corresponding real
files in RDP.

Central to CprFS design is a hash table. The real file name
is used as the hash key and the buffered data is recorded in a
double-linked list. CprFS does not use the immutable inode
number as hash key, because on the one hand, the kernel
module functions pass file names but not inode numbers,
therefore, if the inode number is used as the key, CprFS
needs one additional query to lookup the inode number ac-
cording to the file name; on the other hand, for RENEWED
files in Section 4.3, they have no inode numbers before being
committed.

Figure 4 demonstrates how CprFS maps user requests
from ADP to RDP and how CprFS manages buffered data.
User applications send requests to ADP (1). CprFS inter-
cepts these requests and maps them to RDP (2), in the
meantime, CprFS loads data from RDP if necessary (3) and
saves new contents from user applications to the hash ta-
ble (4). At first, all the buffered data is stored in memory
(hash table), consuming more and more memories as the
buffered data increases. CprFS sets two thresholds: if the
buffered data in the memory exceeds the upper threshold,
CprFS flushes it to the backing store (5) on local disk un-
til the amount of buffered data in memory is no more than
the lower threshold. To tolerate permanent failures, CprFS
periodically backs up the hash table and backing store to a
remote server (6).

4. FILE ACCESS PATTERN MODEL

4.1 Operation Log
CprFS organizes all modifications into operation log. Op-

eration log is not undo/redo log, but the delta data. Take
write for example, CprFS captures all the new data, and
writes it into the buffer cache. As a result, a sequence of
write operations is combined into a single log record, which
can be committed on checkpointing or replayed after recov-
ery.

The operation log contains two types of information: the
pending data (buffered data) and pending commands. Pend-
ing data refers to the newly written data from write oper-
ations, while pending commands refers to commands per-

formed where no new data is produced, such as unlink and
truncate. Pending data is stored in the hash table, while
pending commands are represented by file states presented
in Section 4.3.

4.2 File Operation Semantics
CprFS redefines 5 non-idempotent file operations, open,

truncate, unlink, rename, write and 1 idempotent opera-
tion, read. open can be invoked with either the O_CREAT or
O_TRUNC flag; CprFS treats them as create and truncate

respectively. From the user application’s viewpoint, the file
operation interfaces remain the same, but their semantics
are different from the conventions.

• read Get data from the pending data (either in the
hash table or the backing store), if not found, read
from the real file.

• write Always inserts new data into the hash table.

• create A new file is created in the hash table instead
of on disk.

• truncate The new file size is recorded instead of trun-
cating the file immediately.

• unlink The file is marked with a special flag to indicate
it has been deleted instead of removing it from the disk
at once.

• rename The rename operation affects both the source
and destination, and changes their states simultane-
ously. To describe this clearly, we split rename into
renameSrc and renameDst, standing for actions against
source and destination respectively. rename makes the
model much more intricate than had been expected.
We discuss file state transition on rename in a dedi-
cated section.

4.3 File States
To support arbitrary file operations between checkpoints,

we have to build a file access pattern model and it is neces-
sary to list all possible file states at first. We start with a
new created blank file (an existing file or a nonexistent file),
and perform the above actions on it. If the resultant state
from an action can not be merged into existing file states,
a new file state is created. Then all actions are performed
on the new state. This procedure is repeated until no new
state is produced. This greedy method guarantees the com-
pleteness of file states. This approach produces 10 file states
and CprFS breaks them down into three categories (category
names are uppercase, and file states are lowercase):

• DEAD A file is DEAD if it has been deleted or renamed
to another file. That is, the file will not appear on the
disk after committing.

• ALIVE A file is ALIVE if it has not been DEAD. By
this definition, files that do not exist are ALIVE.

• RENEWED A file is RENEWED if it has been DEAD
and then recreated or renamed from another file.

All 10 file states and their commit actions are listed in Ta-
ble 1. The file state not only reflects its current status (e.g.,
normal and deleted), but also certain history information.
For example, the “combined” state (dead, reborn) means the
file has been renamed to another file at first (dead) and then
recreated (reborn). All these combined states appear in the
RENEWED category. As one can imagine, (deleted, reborn)

117

Table 1: CprFS file states and commit actions.
State Comments Commit Actions

ALIVE

normal new created or write enabled flush operation log
truncated truncated by O_TRUNC flag or truncate truncate to new length, then flush operation log
DEAD

deleted removed by unlink remove the file
dead the source of rename [renameSrc] Noop
RENEWED

reborn recreated after being deleted truncate to 0 and flush operation log
renamed the destination of rename [renameDst] rename and remove the leading “dead” flag of rename

source
(dead, reborn) recreated after being renamed Noop
(dead, renamed) renamed as the source and then renamed as

the destination
Noop

(dead, renamed, truncated) renamed as the source, then renmaed as the
destination, then truncated

Noop

(renamed, truncated) renamed as the destination and then truncated rename, truncate, flush operation log, and remove the
leading “dead” flag of rename source

is a possible file state, which means the file is removed at
first and then recreated. reborn also indicates the recreation
of a DEAD file. Thus, (deleted, reborn) can be merged into
reborn, and is not listed in the table.

On committing, CprFS traverses the hash table and flushes
all files bound to the process being checkpointed according
to their states and commit actions. Table 1 shows that some
file states can be committed immediately in one pass (e.g.,
normal and deleted), while those that start with dead (e.g.,
(dead, reborn) and (dead, renamed)), require more than one
pass to commit. This is because the dead flag in the file
state means that the file has been the source of a rename
operation, thus it is the duty of the rename destination to
remove its rename source before the rename source commits
itself. The “Noop” entries in the “Commit Actions” column
correspond to the first pass, they do nothing but waiting for
their rename destinations to remove the leading dead flags.
By “remove the leading dead flag”we mean if the file state is
a combined state starting with dead, just remove the lead-
ing dead flag from the state; if the file state is a single dead,
change it to deleted. Then the file changes its state to the
remaining flag only, and performs the actions corresponding
to the new state in the next pass.

4.4 CprFS State Machine
CprFS state machine does not differentiate between active

and non-active files, because all of them should be handled
on checkpointing. In this section we first introduce a subset
of the state machine for common cases. Then, we present
rename related file state transitions.

4.4.1 Basic State Transition

Figure 5 presents the transition diagram for CprFS state
machine with the premise that rename can only perform on
normal files. To clarify the diagram, operations are repre-
sented by different types of arrows. These state transitions
are easy to follow, and they account for common cases in
real world applications.

CprFS records a file in the hash table on its first request.
If the requested file does not exist, CprFS inserts an entry
into the hash table and sets its state accordingly. create is
the only valid operation that can be performed on files of
DEAD category, which changes deleted to reborn, and dead

normaltruncated renamed

deletedreborn renamed, truncated

deaddead, reborn dead, renamed

dead, renamed, truncated

create

truncate

unlink

renameSrc

renameDst

Figure 5: CprFS basic state machine.

to (dead, reborn). create on all other states has no effect
because it does nothing to existing files.
truncate does not result in file state transition if the file

state is neither normal, reborn, renamed nor (dead, renamed).
If the file has been the source of rename, unlink changes its
state to dead, otherwise it is changed to deleted. In Figure 5,
renameSrc and renameDst only work on normal files, and
lead to states of dead and renamed respectively.

4.4.2 rename Related State Transition

The rename operation affects both the source and destina-
tion, and changes their states simultaneously. Furthermore,
source and destination files can be in any of the 10 file states,
so, there are one hundred possible combinations. Though
most of these can be grouped together, it is difficult to draw
them directly in a state transition diagram. To improve the
readability, we list them as in Table 2.

Table 2 has five columns. The first two columns denote
the states of the source and destination files before renaming,
column 3 and column 4 are the result states after renaming,
and the last column is the line number in each group for
reference.

All combinations are split into 4 groups. The 10 states of
the source file are distributed over the first column, while
the 10 states of the destination are shown in the second

118

Table 2: rename related file states transition. “—” means no state transition.
Before After Line #

source destination source destination
Group 1

normal, truncated normal, truncated, deleted, reborn
dead

renamed 1
(dead, renamed),
(dead, renamed, truncated)

renamed, (renamed, truncated) renamed* 2
dead, (dead, reborn) (dead, renamed) 3

renamed (dead, renamed),
(dead, renamed, truncated)

deleted (dead, renamed)* 4

Group 2

reborn
normal, truncated, deleted, reborn

deleted
renamed 1

dead, (dead, reborn) (dead, renamed) 2
(dead, reborn) renamed, (renamed, truncated), (dead,

renamed), (dead, renamed, truncated)
dead reborn* 3

Group 3

(renamed, truncated)

normal, truncated, deleted, reborn

deleted

renamed 1
dead, (dead, reborn) (dead, renamed) 2
renamed, (renamed, truncated) renamed* 3
(dead, renamed),
(dead, renamed, truncated)

(dead, renamed, truncated)* 4

Group 4

dead, deleted — — — 1

Table 3: An example for a file renamed twice.

Action a b c
1. BEGIN normal normal normal
2. rename(a, b) dead renamed normal
3. rename(c, b) deleted renamed* dead

column in each group. Therefore, in each group, each entry
in column 1 can match any entry in column 2 and their
result states are the entries in column 3 and 4 in the same
line as the entry in column 2. Entries in column 1 from one
group can not match any entry in column 2 of the other three
groups. For example, assume that before renaming, the state
of the source is normal and the state of the destination is
dead. By looking up the table, we find that the source is in
Group 1 (column 1, line 1), the corresponding dead state in
the same group is in (column 2, line 3), so the result states
are the entries in column 3 and 4 in Group 1 line 3: dead and
(dead, renamed) for the source and destination respectively.

Some items in the table are marked with an asterisk (*)
to denote the destination has to remove the leading dead
flag in its old rename source’s state. For example, the result
destination state is renamed* in line 2 of Group 1. We find
that the state of the destination before renaming contains
renamed, which indicates it was renamed from a file before
this rename operation. Now, it is going to be renamed from
another file. That means its rename source will be changed,
so it has to adjust its old rename source’s file state. Oth-
erwise, no one would remove its old source, because its old
source must have been marked as dead, and is waiting for
the destination to remove it on committing (see Table 1).
Table 3 is one example of these scenarios. Files a, b and
c are normal at the beginning. In Step 2, a is renamed to
b. a changes to dead, b changes to renamed, and b sets its
rename source to a. c has no state transition. In Step 3,
c is renamed to b; thus c changes to dead, and b updates
its rename source from a to c. Before doing this, b has to
remove the leading dead flag for its original rename source,
a. Otherwise, a will not be deleted in commit.

DEAD files can not be rename sources, because they do

not exist. Short lines (—) are used to denote impossible
states in Group 4, and no state transition happens.

Figure 5 and Table 2 make up of the complete file access
pattern model. There is really only one state machine, al-
though there are two represented here to clarify when a tran-
sition occurs. Using this model, CprFS is able to support ar-
bitrary file operations between two consecutive checkpoints.
Another benefit of this model is that it is independent of the
low-level file system and the checkpoint library and can be
added to other systems.

5. SUPPORT PARALLEL APPLICATIONS

AND PARALLEL FILE SYSTEMS
Since CprFS buffers pending data locally, special treat-

ment is required for parallel applications with file sharing:
before committing, the process on one node can not read the
new data updated by the processes on other nodes, which
would lead to inconsistency. For example, file foo is shared
in a cluster through a parallel file system; P0 and P1 are two
processes on Node0 and Node1 respectively. If P0 changes
foo, the modification is buffered on Node0 by CprFS, thus
P1 can only read the old data from foo but not the new data
written by P0.

A straightforward solution is extending CprFS to a net-
work or parallel file system, thus CprFS can buffer the pend-
ing data globally, in which way, all processes across different
nodes can share the same copy of the pending data. How-
ever, this method has two serious drawbacks. First, imple-
menting CprFS as a network or parallel file system is non-
trivial. The complexity of the protocol, distributed lock, and
implementation issues can counteract the benefits of a light
weight user-level file system. Second, the performance drops
dramatically and may become unacceptable. To maintain a
single copy of the pending data, client cache is impossible, so
all file operations are transferred to network requests. More-
over, the node that buffers pending data is very likely to be
a bottleneck.

Due to these difficulties, a local file system is preferred to a
global solution. CprFS borrows the idea from transactional
memory, and regards this situation as a conflict where: two

119

or more processes from different nodes access the same part
of the same file, and at least one of them is write.

In most scientific applications, different processes access
different parts of the data files, and they do not conflict
according to the above definition. Our solution is to release
the constraints, allow conflicts to occur, and test them before
committing. The algorithm is described as following:

1. During normal running, CprFS collects necessary in-
formation for conflict test:

(a) Every file is accompanied with a special file record-
ing information of the processes (hostname and
pid) requesting the file. These processes may come
from different nodes;

(b) CprFS maintains an operation list for each file,
recording which parts of the file are read and writ-
ten. The list items are coalesced if possible to
reduce the item number;

2. Before committing, CprFS tests conflicts:

(a) All processes dump the operation lists in the same
location as their related files;

(b) For each file recorded in the hash table, CprFS
tests the operation lists of different processes from
different nodes. The processes accessing this file
are recognized from its accompanied special file.
If conflicts are found, CprFS writes the result to
an agreed global file and returns. Otherwise, goes
to Step 2c;

(c) Check the agreed global file for conflicts from other
files. This is because different processes can ac-
cess different files, and conflicts in any file can
abort the transaction.

If no conflict is found, CprFS commits the pending data.
Otherwise, it aborts the transaction and the application
should be restarted with CprFS running in shadow mode.
Though designed for parallel file systems, this algorithm also
works well with local file system. For local file system, the
special file only records the processes in the same node, and
they must have not shared data with processes from other
nodes, so the test would pass as expected. Besides, it is easy
to understand that this algorithm also works for sequential
applications.

6. EXPERIMENTAL RESULTS
In this section, we evaluate CprFS both against micro-

benchmarks and real-world applications to demonstrate its
performance and impact on an MPI CPR system.

6.1 Methodology
The experiments were conducted on a cluster of 8 nodes.

Each node was equipped with dual Intel Itanium2 1.3GHz
CPUs, 4GB RAM and a 36GB Ultra320 SCSI disk. The
operating system used was Redhat Linux AS3 with kernel
2.4.21-20.EL.ia64. The file system for local disk was ext3.
All machines share a storage device via NFS and are con-
nected through a switched 1Gbps Ethernet LAN. We devel-
oped a coordinated checkpointing system for MPI applica-
tions based on MPICH-1.2.7p1[6] and Thckpt[27]. In our
tests, all input and output files are stored in the NFS, and
CprFS is mounted over NFS on each node.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

write re-write read re-read random read random write

S
p
e
e
d
 (

M
B

/s
e
c
)

4K.NFS
4K.cprfs
8K.NFS
8K.cprfs

Figure 6: IOzone performance: NFS vs. CprFS.

6.2 Micro-benchmarks

6.2.1 Raw Performance

We used IOzone[16] to evaluate the performance charac-
teristics of CprFS. IOzone calls sync after the write and
re-write phases to flush file system buffers, while CprFS
does nothing with sync. To make a reasonable comparison,
we inserted CprFS commit actions after write and re-write

phases into IOzone, otherwise, CprFS would keep the data
in memory during the following tests. Wang[24] pointed out
that in many scientific applications, small requests account
for more than 90% of all requests, so we ran IOzone with
record sizes of 4 and 8KB. Figure 6 presents the performance
of the NFS and CprFS over NFS. 4K.NFS and 4K.cprfs de-
note the results of NFS and CprFS for record size of 4KB,
while 8K.NFS and 8K.cprfs are for 8KB record size.

There is about a 11.62% speedup rather than slowdown
for sequential write in CprFS. This is because CprFS buffers
data in memory, and aggregates all record-sized writes into
a single large write on committing. Re-write incurs about
12.56% overhead, because CprFS has to read in the old data
before overwriting it.

In CprFS, sequential read is 7.30% slower than NFS. This
is because CprFS has to retrieve data from the real file and
send it to IOzone, which requires one more context switch.
re-read is used to test the performance if buffer cache is
available with the native file system. CprFS delivers about
a 3.60% speedup for re-read because all data is in memory
after read, and CprFS simply feeds them back. This means
that CprFS does not diminish the benefit of buffer cache.
Random read and random write are 15.60% and 11.87%

slower respectively in CprFS. Random accesses act in the
same way as their sequential counterparts with additional
seek operations. Random write also needs to read in old
data before writing new data.

6.2.2 Conflict Test Overhead

Section 5 explains that conflicts can arise when parallel ap-
plications access the same file. This section presents the con-
flict test overhead in CprFS. Since there are no well-known
benchmarks and applications for this scenario, we designed
a synthetic MPI application in which conflicts happen. All
processes access one 2GB file simultaneously, and the file is
separated equally according to the process number, each pro-
cess performs 104 reads and writes in total randomly on its
part. By default, there are no conflicts, because no process
accesses data outside its boundary. We then set different
overlap ratios, meaning that the data segment for each pro-

120

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 0.2 0.4 0.6 0.8 1.0

C
o

n
fl
ic

t
T

e
s
t

T
im

e
(s

)

Overlap Ratio

2 procs
4 procs
8 procs

16 procs

(a) Test overhead

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

0 0.2 0.4 0.6 0.8 1.0

It
e

m
s
 i
n

 o
p

e
ra

ti
o

n
 l
is

ts

Overlap Ratio

2 procs
4 procs
8 procs

16 procs

(b) Items number

Figure 7: Conflict test performance in CprFS.

Table 4: Geometric mean of overhead in different modes.
Negative values indicate speedup instead of slowdown. The
last row is the geometric mean overhead for all applications.

Application cprfs w/o ckpt cprfs w/ ckpt
BTIO -11.56% -3.28%
PAPSM -15.73% -14.64%
ClustalW-MPI 1.22% 1.78%
mpiBlast 1.10% 2.86%
Geometric Mean -6.55% -3.58%

cess is extended to the left and right, so adjacent processes
can both access more of each other’s data and the overlap
ratio increases.

Figure 7a presents the conflict test time in CprFS for dif-
ferent process numbers with different overlap ratios. It is
clear that as the number of processes and overlap ratio in-
crease, the overhead increases. This is because increasing
processes means one process has to check against more and
more other processes, and bigger overlap ratios mean each
process produces more items that can not be coalesced in
operation lists. Figure 7b shows the total number of items
in all processes; the curves are similar to those in Figure 7a.

6.3 Real-world Applications
Four real-world applications (including one from NPB 3.2.1)

were selected to evaluate CprFS: (1) NPB BTIO[26] is used
to test the output capabilities of high performance com-
puting systems, especially parallel systems, (2) ClustalW-
MPI[11] is a tool for aligning multiple protein or nucleotide
sequences, (3) mpiBLAST[3] is a parallel version of BLAST,
and (4) PAPSM[28] is a parallel power system simulator.

All applications are run with different process numbers
in three modes: normal running over the native file system
without checkpointing, normal running over CprFS without
checkpointing committing pending data on program termi-
nation, and running over CprFS with periodic checkpoint-
ing. These three modes are called “native run”, “cprfs w/o
ckpt”, and “cprfs w/ ckpt” in the following figures. Figure 8
shows the total running times for different applications in
different modes, and Table 4 presents the geometric mean
of overheads on average.

6.3.1 Running without Checkpointing

We first evaluated the applications in “native run” and
“cprfs w/o ckpt” modes to investigate the performance in-
fluence of CprFS.

For BTIO, we used subtype full — the implementation

of the benchmark that takes advantage of the collective I/O
operations in the MPI-IO standard. We report results for
Class A (for the sake of disk quota) for 4, 9 and 16 processes.
BTIO is I/O intensive and outputs a total of 400MB to a
single file.

Figure 8a depicts the total running times for BTIO in
the different modes. When BTIO runs over CprFS without
checkpointing, the speedup is about 11.56%. The benefits
come from the better write performance of CprFS.

Each PAPSM process writes several floats after regular
time steps, and the output files are about 163MB in all,
which leads to about 20 million small write operations. CprFS
is inherently suitable to accelerate PAPSM because of its
write aggregation. This is illustrated in Figure 8b, which
shows that CprFS delivers 12.80%, 18.12% and 16.16% in-
creases in speed when running PAPSM on 2, 4 and 8 pro-
cessors respectively.

ClustalW-MPI and mpiBlast are computing intensive, and
their output files are only 1.01 MB and 67MB respectively.
Their total running times are nearly the same across the
different modes as illustrated in Figure 8c and Figure 8d.
The average overhead for ClustalW-MPI on “cprfs w/o ckpt”
is about 1.22%, and for mpiBlast, it is about 1.10%.

Since sequential accesses are most commonly used in sci-
entific applications, CprFS does not hurt their performance
because it can accelerate sequential writes due to operation
aggregation, and incurs acceptable overhead for sequential
read.

6.3.2 Checkpointing Overhead

In our tests, a coordinated checkpoint is taken in four
steps: 1) synchronize all processes, 2) dump the memory
image to a checkpoint file on the local disk, 3) CprFS com-
mits pending data, including conflict testing, and 4) syn-
chronize all processes again. The checkpoint files are writ-
ten to the local disk and transferred to shared storage in
the background by a dedicated thread. Therefore, we did
not include the time for transferring checkpoint files in the
checkpoint overhead. Thus, the checkpoint overhead con-
sists of three parts: total synchronization time in Steps 1
and 4, the time to write the checkpoint file to local disk in
Step 2 and the duration of CprFS committing pending data
in Step 3.2 Periodic checkpoints were taken every 2 minutes
except for BTIO, for which only one checkpoint was taken
because its total running time is less than 2 minutes.

As mentioned above, BTIO and PAPSM consist of many
small writes and benefit a great deal from CprFS. Figure 8a
and Figure 8b show that when running over CprFS with
checkpointing BTIO and PAPSM exhibit 3.28% and 14.64%
speedup compared to running over the native file system.
In contrast, the performance decrement is about 1.78% for
ClustalW-MPI, and about 2.86% for mpiBlast as shown in
Figure 8c and Figure 8d.

Checkpoint overhead is small with respect to the total
running time and leads to acceptable performance deterio-
ration. Figure 9 shows the contribution breakdowns of the
different parts during one checkpoint for each application.
These figures indicate that “ckpt time” and “sync time” dom-
inate checkpointing overhead. Synchronization time for the

2All these applications perform sequential reads and writes,
and there are no file access conflicts in them. The conflict
test overhead is negligible, therefore, we include it in commit
time.

121

 0

 10

 20

 30

 40

 50

 60

4 9 16

T
im

e
 (

s
)

(a) BTIO proc #

native run
cprfs w/o ckpt

cprfs w/ ckpt

 0

 100

 200

 300

 400

 500

 600

 700

2 4 8

T
im

e
 (

s
)

(b) PAPSM proc #

native run
cprfs w/o ckpt
cprfs w/ ckpt

 0

 500

 1000

 1500

 2000

 2500

 3000

2 4 8 16

T
im

e
 (

s
)

(c) ClustalW-MPI proc #

native run
cprfs w/o ckpt
cprfs w/ ckpt

 0

 100

 200

 300

 400

 500

 600

 700

 800

2 4 8 16

T
im

e
 (

s
)

(d) mpiBlast proc #

native run
cprfs w/o ckpt
cprfs w/ ckpt

Figure 8: Running times for BTIO, PAPSM, ClustalW-MPI and mpiBlast in different modes.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

4 9 16

T
im

e
(s

)

(a) BTIO proc #

sync time
ckpt time

cprfs commit

 0

 0.5

 1

 1.5

 2

 2.5

 3

2 4 8

T
im

e
(s

)

(b) PAPSM proc #

sync time
ckpt time

cprfs commit

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2 4 8 16

T
im

e
(s

)

(c) ClustalW-MPI proc #

sync time
ckpt time

cprfs commit

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2 4 8 16

T
im

e
(s

)

(d) mpiBlast proc #

sync time
ckpt time

cprfs commit

Figure 9: Checkpoint overhead breakdown for BTIO, PAPSM, ClustalW-MPI and mpiBlast. sync time is the synchronization
time, ckpt time is the time to write checkpoint file, and cprfs commit is the time for CprFS to commit pending data.

Table 5: Checkpoint file sizes. “–” means the application is
not run with the corresponding process number.
Proc # 2 4 8 9 16
BTIO – 31.97M – 16.35M 11.44M
PAPSM 27.14M 14.12M 14.62M – –
ClustalW-MPI 27.59M 14.05M 14.04M – 15.13M
mpiBlast 66.15M 65.10M 51.40M – 70.35M

Table 6: File sizes committed by CprFS. “–” means the ap-
plication is not run with the corresponding process number.
Proc # 2 4 8 9 16
BTIO – 57.67M – 27.40M 14.64M
PAPSM 17.92M 7.65M 3.24M – –
ClustalW-MPI 38.82K 38.80K 19.85K – 58.19K
mpiBlast 582B 580B 582B – 600B

same number of processors varies little in all cases, while
“ckpt time” and “cprfs commit” time are proportional to data
sizes (see Table 5 and Table 6).

For ClustalW-MPI and mpiBlast, most of the output data
is not written until the application finished, so the pending
data sizes are nearly 0 on each checkpoint as shown in Fig-
ure 9c and Figure 9d as well as in Table 6. Since CprFS com-
mitting is independent of the checkpointing protocol, CprFS
does not affect the scalability of coordinated checkpointing.

7. LIMITATIONS AND FUTURE WORK
Our prototype can support many scientific applications.

However, there are a still some issues we plan to address in
the future.

First of all, CprFS builds a file access pattern model,
which does not provide perfect support for complex direc-
tory operations. Simulating a directory in the hash table can

complicate the model a great deal. A more elegant scheme
is required.

Secondly, Our current implementation of CprFS does not
support memory mapped files. This is because all file oper-
ations are translated into memory operations for mmap()’d
files, and it is impossible for CprFS to intercept these opera-
tions via standard file IO APIs. This issue will be addressed
in the future.

Thirdly, CprFS is independent of low-level file systems,
which leads to good portability and deployability. However,
some useful functions provided by the low-level file system
might be lost in this process (e.g., client cache, file locking).
We plan to integrate CprFS more tightly with some well-
known parallel file systems, such as PVFS and Lustre.

8. CONCLUSION
We have described the design and implementation of the

CprFS system that helps guarantee the consistency between
the application and its files during checkpoint and restart.
By exposing file system interfaces, CprFS can provide trans-
parency to user applications. User-level implementations get
rid of the restrictions of kernel programming and exploit the
flexibility of user space programming, and also have good
portability, deployability and maintainability. Though per-
formance is the major concern for user-level file systems, our
experimental results on both micro-benchmarks and real-
world applications show that CprFS introduces acceptable
overhead and has little impact on checkpointing systems.
Experiences with CprFS demonstrate that: user-level file
system is an effective and efficient solution to approach file
checkpointing for high performance computing.

9. ACKNOWLEDGMENTS
We thank the anonymous reviewers for useful feedback.

The research was partially supported by Chinese National

122

973 Basic Research Program under Grant 2007CB310900
and by Tsinghua National Laboratory for Information Sci-
ence and Technology.

10. REFERENCES
[1] A. Bouteiller, F. Cappello, T. Hérault, G. Krawezik,

P. Lemarinier, and F. Magniette. MPICH-V2: a Fault
Tolerant MPI for Volatile Nodes based on Pessimistic
Sender Based Message Logging. In SC’03, pages 25–41,
Washington, DC, USA, 2003. IEEE Computer Society.

[2] P. E. Chung, Y. Huang, S. Yajnik, G. Fowler, K. P.
Vo, and Y. M. Wang. Checkpointing in CosMic a
User-level Process Migration Environment. In Pacific
Rim International Symposium on Fault-Tolerant
Systems, pages 187–193, Dec. 1997.

[3] A. E. Darling, L. Carey, and W. chun Feng. The
Design, Implementation, and Evaluation of mpiBlast,
http://www.mpiblast.org, June 11, 2003.

[4] J. Duell, P. Hargrove, and E. Roman. The Design and
Implementation of Berkeley Lab’s Linux
Checkpoint/Restart. white paper, Future Technologies
Group, 2003.

[5] Q. Gao, W. Yu, W. Huang, and D. K. Panda.
Application-Transparent Checkpoint/Restart for MPI
Programs over InfiniBand. In ICPP’06, pages
471–478. IEEE Computer Society, 2006.

[6] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A
High-performance, portable implementation of the
MPI Message Passing Interface Standard. Parallel
Computing, 22(6):789–828, Sept. 1996.

[7] G. J. Janakiraman, J. R. Santos, D. Subhraveti, and
Y. Turner. Cruz: Application-transparent distributed
checkpoint-restart on standard operating systems. In
DSN’05, pages 260–269, Yokohama, Japan, 28 June –
1 July 2005.

[8] A. R. Jeyakumar. Metamori: A library for
Incremental File Checkpointing. Master’s thesis,
Virgina Tech, Blacksburg, June 21 2004.

[9] H. Jung, D. Shin, H. Han, J. W. Kim, H. Y. Yeom,
and J. Lee. Design and implementation of multiple
fault-tolerant MPI over myrinet (Mˆ3). In SC’2005,
Seattle, Washington, USA, Nov. 2005.

[10] H. Kim and H. Yeom. A User-Transparent Recoverable
File System for Distributed Computing Environment.
In CLADE 2005, pages 45–53, July 2005.

[11] K.-B. Li. ClustalW-MPI: ClustalW analysis using
distributed and parallel computing. Bioinformatics,
19(12):1585–1586, 2003.

[12] M. Litzkow, T. Tannenbaum, J. Basney, and
M. Livny. Checkpoint and Migration of UNIX
Processes in the Condor Distributed Processing
System. Technical Report CS-TR-1997-1346,
University of Wisconsin, Madison, Apr. 1997.

[13] I. Lyubashevskiy and V. Strumpen. Fault-tolerant
file-I/O for portable checkpointing systems. The
Journal of Supercomputing, 16(1-2):69–92, 2000.

[14] Y. Masubuchi, S. Hoshina, T. Shimada, H. Hirayama,
and N. Kato. Fault Recovery Mechanism for
Multiprocessor Servers. In FTCS’97, pages 184–193,
1997.

[15] J. Nakano, P. Montesinos, K. Gharachorloo, and
J. Torrellas. ReViveI/O: Efficient Handling of I/O in

Highly-Available Rollback-Recovery Servers. In
HPCA’06, pages 200–211, Austin, Texas, USA,
Feb.11–15 2006.

[16] W. D. Norcott and D. Capps. IOzone Filesystem
Benchmark, http://www.iozone.org/, 2006.

[17] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The
design and implementation of Zap: A system for
migrating computing environments. In Proceedings of
the Fourth Symposium on Operating Systems Design
and Implementation (OSDI’02), Dec. 2002.

[18] J. Ouyang and P. Maheshwari. Supporting
Cost-Effective Fault Tolerance in Distributed
Message-Passing Applications with File Operations.
The Journal of Supercomputing, 14(3):207–232, 1999.

[19] D. Pei. Modification Operations Buffering: A
Lowoverhead Approach to Checkpoint User Files. In
IEEE 29th Symposium on Fault-Tolerant Computing,
pages 36–38, Madison, USA, June 1999.

[20] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt:
Transparent checkpointing under UNIX. In
Proceedings of the USENIX Technical Conference on
UNIX and Advanced Computing Systems, pages
213–224, Berkeley, CA, USA, Jan. 1995.

[21] J. F. Ruscio, M. A. Heffner, and S. Varadarajan.
DejaVu: Transparent User-Level Checkpointing,
Migration, and Recovery for Distributed Systems. In
IPDPS’07, pages 1–10. IEEE, 2007.

[22] G. Stellner. CoCheck: Checkpointing and Process
Migration for MPI. In IPPS’96, pages 526–531,
Honolulu, Hawaii, Oct. 02 1996.

[23] M. Szeredi. File System in User Space,
http://fuse.sourceforge.net, 2006.

[24] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller,
D. D. E. Long, and T. T. McLarty. File system
workload analysis for large scale scientific computing
applications. In MSST’04, College Park, MD, Apr.
2004. IEEE Computer Society Press.

[25] Y.-M. Wang, Y. Huang, K.-P. Vo, P.-Y. Chung, and
C. M. R. Kintala. Checkpointing and its applications.
In FTCS’95, pages 22–31, 1995.

[26] P. Wong and R. F. V. der Wijngaart. NAS Parallel
Benchmarks I/O Version 2.4. Technical Report
NAS-03-002, Computer Sciences Corporation, NASA
Advanced Supercomputing (NAS) Division, NASA
Ames Research Center, Moffett Field, CA 94035-1000,
Jan. 2003.

[27] R. N. Xue, Y. H. Zhang, W. G. Chen, and W. M.
Zheng. Thckpt: Transparent Checkpointing of UNIX
Processes under IA64. In H. R. Arabnia, editor,
PDPTA’05, volume 1, pages 325–332, Las Vegas,
Nevada, USA, June27–30 2005. CSREA Press.

[28] W. Xue, J. Shu, Y. Wu, and W. Zheng. Parallel
Algorithm and Implementation for Realtime Dynamic
Simulation of Power System. In ICPP’2005, pages
137–144, Oslo, Norway, June 2005. IEEE Computer
Society.

[29] V. C. Zandy. ckpt – process checkpoint library,
http://pages.cs.wisc.edu/~zandy/ckpt/, 2004.

[30] H. Zhong and J. Nieh. CRAK: Linux
Checkpoint/Restart As a Kernel Module. Technical
Report CUCS-014-01, Department of Computer
Science, Columbia University, Nov. 2001.

123

