
Taking the Pulse of Financial Activities with Online Graph Processing

Xiaowei Zhu1, Zhisong Fu1, Zhenxuan Pan1, Jin Jiang1, Chuntao Hong1, Yongchao Liu1, Yang Fang1,

Wenguang Chen2,1, and Changhua He1

1Ant Group
2Tsinghua University

Abstract

Graph processing has been widely adopted in various financial

scenarios at Ant Group to detect malicious and prohibited

user behaviors. The low latency requirement under big data

volume and high throughput raises rigorous challenges for

efficient online graph processing. This paper gives a brief

introduction of our encountered issues, the current solutions,

and some future directions we are exploring.

1 Introduction

Graph processing is a powerful tool in financial scenarios,

widely adopted within Ant Group [1]. Various types of data

sources can be modelled as graphs: transactions recording

fund transfers between user accounts, and social networks

connecting users are representatives that naturally form graph-

structured datasets; besides, there are many cases in which

graph objects can be extracted from “flat” data, e.g. activities

in Alipay [2] can link users through commonly used medium,

such as devices, mini-programs, etc. In fact, sometimes mul-

tiple graphs may be used together, while some graphs are

shared by multiple scenarios.

Many applications have been built on top of these graphs,

with risk control being the largest domain in use. Graph ana-

lytics can effectively detect malicious and prohibitive finan-

cial activities such as fraud, money laundering, gambling,

and many others as these actions are usually performed by

densely connected groups of entities. While community de-

tection algorithms can be used on periodically dumped graph

snapshots, the long latencies caused by the offline processing

nature make them difficult to keep up with the fast pace of

massive mobile and online payments or other actions made

in Alipay everyday.

To this end, we have developed our own systems to enable

online dynamic graph analytics, so that risk control decisions

can be made timely enough to meet the quality of service.

We also build a simulation framework so that developers can

try out new strategies on historical graph snapshots and test

whether proposed new queries could bring desired benefits.

This paper gives a brief overview of the major challenges we

have been facing, our current working solutions and tradeoffs,

as well as our long-term vision towards more efficient online

graph processing.

2 Challenges

Querying on a graph that is changing frequently is currently

the most widely adopted way how graph-structured data is

used in financial risk control scenarios. The challenges come

from various aspects, described as follows.

Big data volume generated with high velocity. There are

hundreds of millions of daily active users, and a total of bil-

lions of users in Alipay. During promotion events, there can

be up to billions of payments each day (e.g. Singles’ Day [3]),

with hundreds of thousands per second at peak times.

Power-law degree distribution. This is a common feature

of most real-world graphs [4]. The hotspots (e.g. top merchant

accounts) can have much more associated relationships than

normal personal accounts.

Complex query patterns. Compared to relational queries

in OLTP scenarios, complexities of graph queries are signif-

icantly higher, sometimes involving deep explorations with

up to six-hop traversals. Some queries like shortest path and

cycle detection involve iterative computations.

Strong need for simulation. In some business scenarios

such as credit payments, a new graph processing strategy

needs to be tested for a long duration to see whether it could

bring stable and consistent improvements. Query simulation

using historical data is thus in great need to enable fast devel-

opment.

Strict tail latency requirement. The risk control decisions

usually need to be made within hundreds of milliseconds, and

only a portion of these can be allocated to graph processing.

Many workloads require tail latencies to be shorter than 20

milliseconds [5].

High service availability requirement. This is a common

and important requirement of all financial applications. Repli-

84



cation and consensus protocols are employed to avoid or

reduce serving failures.

3 Present Solutions

We perform both synchronous and asynchronous graph com-

putation in our online scenarios, tailored to simple and com-

plex queries respectively. Their design decisions and tradeoffs

will be described next.

3.1 Synchronous Graph Computation

For scenarios relying on synchronous graph computation,

clients send requests (i.e. updates and queries) to servers,

and wait for corresponding responses synchronously (Fig-

ure 1). No existing open-source graph storage systems could

meet our demands of low-latency and high-throughput query

processing on large-scale graphs, which led us to develop

GeaBase [6], our own graph database solution.

Figure 1: Synchronous graph computation with GeaBase

GeaBase adopts a shared-nothing architecture, spliting the

whole graph into multiple shards. Each shard manages a por-

tion of vertices and their attached edges with a local graph

storage built on top of RocksDB [7]. Raft [8]-assisted syn-

chronous replication is employed to achieve strong data con-

sistency among multiple replicas of each shard.

While GeaBase is able to manage huge graphs with up to

hundreds of billions of relationships, we still need to apply

some skills or make some tradeoffs to satisfy the business

requirements.

Pre-computation. We can perform aggregations (e.g.

count, sum, max, etc.) on some properties along incident

edges or neighboring vertices of each vertex in advance (i.e.

modified upon each related update), so that later queries can

just read the aggregated result rather than doing (at least) one

more hop of traversals then performing computations. This

strategy makes reads faster, at the cost of both space and write

amplification.

Windowing. Due to the high velocity of data ingestion,

it would be very expensive and even impossible to hold the

complete graph evolution history. Thus we usually limit the

lifespan of each entity by setting its TTL (Time-to-Live) upon

creation, and sometimes only keep the latest version to reduce

space consumption.

Restricted expanding. It is sometimes inevitable to come

across high-degree vertices during graph traversals. Develop-

ers can add a hint in the query to use only a limited of number

of edges when expanding as a workaround, so that latencies

can be more stable and predictable.

Asynchronous updates. Sometimes updates can be ap-

plied in an asynchronous fashion, i.e. batched, to amortize the

synchronous replication cost between data centers (possibly

distributed in different cities). This strategy enables higher

write throughputs. The downside is that queries may occa-

sionally read stale data.

3.2 Asynchronous Graph Computation

Our current graph database solution is unable to process very

complex queries, e.g. those more than three hops, under the

tight latency requirements, as the complexity increases expo-

nentially with growing depths of exploration. We therefore

develop GeaFlow, a streaming graph processing system, to

handle more complex queries in an asynchronous manner.

In addition to the general streaming operators, GeaFlow pro-

vides a vertex-centric API [9] for developers to write graph

processing logics.

The methodology is simple yet effective (Figure 2): clients

write computing requests to message queues ahead of query-

ing, i.e. predictively; GeaFlow takes requests from message

queues, applying updates and performing queries; computed

results are written to external storage systems, which can be

read by clients later.

Figure 2: Asynchronous graph computation with GeaFlow

We should note that compared to synchronous mode, asyn-

chronous computation has some restrictions. It is not usable

for situations when graph processing and result retrieval can-

not be separated into two events with significant intervals.

There are two major design tradeoffs in GeaFlow:

Mini-batch processing. Currently, graph processing op-

erators in GeaFlow are executed in BSP super-steps [10],

as batching could increase parallelism to provide adequate

throughputs. The downside is that batching inevitably intro-

duces longer latencies, sometimes leading to stale results (i.e.

latest results not available yet when retrieving).

85



Decoupled processing and serving. The dynamic graph

is maintained as states of the streaming system, while results

are written to external storage systems. This decoupling of

processing and serving enables each component to excel at

their own areas. Result retrievals can be just as fast as a single

key-value lookup, which can easily satisfy the tail latency

requirement. However, when results are subsets of states,

there would be data duplication.

While query simulation appears to be an offline work-

load, its temporal processing nature makes it very suitable

for stream processing. The main distinctions between online

processing and query simulation include following aspects:

Source and sink. Typically in online scenarios, message

queues are used as data sources, while offline logs or data

warehouse tables serve as the inputs to query simulation. As

for sinks, online streaming writes results to external (usually

key-value) storage systems, while query simulation dumps all

results to data warehouses for further in-depth analytics.

Compaction window. The TTLs set in online scenarios

mean physical time durations. Hence query simulation cannot

expire data with the same mechanism, and a much smaller

window size according to how fast simulation runs is set for

data compaction.

4 Further Steps

While the existing adoptions of our systems within Ant Group

have proven to be effective in many scenarios, we keep work-

ing on enhancement of our systems and try to open up new

possiblities for existing and potentially new workloads.

4.1 Ongoing Actions

Our ongoing actions include the following:

Faster synchronous processing. We are exploring the use

of non-volatile memory like Optane Persistent Memory [11]

as a part of the backing storage to provide more stable and

even lower latencies. The database team is also working on

a new parallel computing engine which aims to enable more

complex queries under the same latency requirement.

Faster asynchronous processing. We are prototyping a

new dynamic graph computing system which aimes for lower

complex query latencies by processing each request separately

rather than in mini-batches.

Higher cost efficiency. Both GeaBase and GeaFlow cur-

rently use RocksDB, a tree-structured key-value store for

graph storage. We are working on the replacement of old stor-

age modules with a new hash-based engine whose memory

consumption would be a lot smaller.

Better flexibility. We are seeking the possibilities for new

replication strategies which enable multi-master writes with

eventual consistency, so that writes do not need to be batched

for high throughput.

Better usability. We have been making great efforts to

ease the use of our systems. Many utilities like visualization,

hotspots detection, and performance estimation are continu-

ously being developed. We are also trying to unify the query

languages of various graph processing systems, even those

for analytical processing (i.e. iterative computation).

Benchmark proposal. To provide guidelines on system

requirements and performance optimization towards online

graph processing in financial scenarios, we are also develop-

ing a benchmark which is modelled on top of the key charac-

teristics. Compared to existing graph querying benchmarks

such as LDBC SNB [12], the proposed benchmark differs in

various aspects, e.g. more strict latency requirements, inclu-

sion of read-write operations, multi-edge generations with

richer edge properties, etc.

4.2 Long-Term Vision

Besides the above ongoing actions, we have some long-term

visionary goals:

Convergence of synchronous and asynchronous pro-

cessing. We expect a single system that is capable of effi-

ciently handling both synchronous computation of simple

queries and asynchronous computation of complex queries

to be the ultimate solution. Storage, computation, scheduling,

and many other components need to be re-architected.

Connecting online and offline processing. We also have

offline graph processing systems that perform global graph

analytics and graph neural network computation. The current

ETL pipelines can be improved through a better connection

of online and offline systems, so that the batch processing

latency could be significantly reduced.

Integration with other types of storage systems. Cur-

rently in many use cases, we have to duplicate another copy

of data inside graph processing systems other than original

data sources. A future graph processing system with better in-

teroperability with e.g. relational databases, key-value stores,

etc. would greatly reduce developing/deployment complexi-

ties as well as costs.

5 Conclusion

This paper aims to make a brief introduction of the challenges

in online graph processing under the big picture of financial

workloads and requirements, as well as our present solutions

and future directions. We hope the content could bring inspi-

rations of new techniques and open up new research topics.

References

[1] https://www.antgroup.com/.

[2] https://www.alipay.com/.

86



[3] https://en.wikipedia.org/wiki/Singles%27_

Day.

[4] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny

Bickson, and Carlos Guestrin. Powergraph: Distributed

graph-parallel computation on natural graphs. In 10th

{USENIX} Symposium on Operating Systems Design

and Implementation ({OSDI} 12), pages 17–30, 2012.

[5] Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng,

Ying Zhang, Xuemin Lin, and Jingren Zhou. Real-time

constrained cycle detection in large dynamic graphs.

Proceedings of the VLDB Endowment, 11(12):1876–

1888, 2018.

[6] Zhisong Fu, Zhengwei Wu, Houyi Li, Yize Li, Min Wu,

Xiaojie Chen, Xiaomeng Ye, Benquan Yu, and Xi Hu.

Geabase: a high-performance distributed graph database

for industry-scale applications. International Journal

of High Performance Computing and Networking, 15(1-

2):12–21, 2019.

[7] Siying Dong, Mark Callaghan, Leonidas Galanis,

Dhruba Borthakur, Tony Savor, and Michael Strum. Op-

timizing space amplification in rocksdb. In CIDR, vol-

ume 3, page 3, 2017.

[8] Diego Ongaro and John Ousterhout. In search of an un-

derstandable consensus algorithm. In 2014 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 14),

pages 305–319, 2014.

[9] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik,

James C Dehnert, Ilan Horn, Naty Leiser, and Grzegorz

Czajkowski. Pregel: a system for large-scale graph

processing. In Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data, pages

135–146, 2010.

[10] Leslie G Valiant. A bridging model for parallel com-

putation. Communications of the ACM, 33(8):103–111,

1990.

[11] https://www.intel.com/content/www/

us/en/architecture-and-technology/

optane-dc-persistent-memory.html.

[12] Renzo Angles, János Benjamin Antal, Alex Aver-

buch, Peter Boncz, Orri Erling, Andrey Gubichev, Vlad

Haprian, Moritz Kaufmann, Josep Lluís Larriba Pey,

Norbert Martínez, et al. The ldbc social network bench-

mark. arXiv preprint arXiv:2001.02299, 2020.

87




