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for regular workloads such 
as stencil-based and struc-
tured grid-based computa-
tions. Are they also capable 
of processing extreme-
scale graphs?

In this article, we discuss 
our efforts to enable ex-
treme-scale graph process-
ing in two leading super-
computer architectures.

Tianhe hardware 
features. The Tianhe su-
percomputer has unique 
designs for its many-core 

interface. Each panel has 
eight cache-coherent com-
pute cores. SVE enables 
Matrix-2000+ to choose 
the most appropriate vec-
tor length via two usage 
modes: auto vector-length 
agnostic (AVLA) mode and 
assembly vector-length 
specified (AVLS) mode. 
AVLA mode can auto-
matically pack sub-vectors 
into vectors but requires 
synchronization between 
processing of two vectors, 
while AVLS mode allows 
programmers to specify 
user-defined sub-vector 
lengths.

Tianhe’s network 
subsystem adopts a multi-
dimensional tree topology 
with optoelectronic-hybrid 
interconnection, which 
combines the benefits of 
both tree and n-D-Torus 
topologies. The network-
ing logic is integrated into 

CPU architecture and its 
high-performance inter-
connection network, pro-
viding both opportunities 
and challenges for graph 
processing.

Tianhe’s computing 
nodes (CN) use the propri-
etary Matrix-2000+ CPUs 
(see Figure 1). A CN has 
three Matrix-2000+ CPUs, 
each of which has 128 
2GHz cores. Each core has 
an in-order 8-to-12-stage 
pipeline extended with 
scalable vector extension 
(SVE). Matrix-2000+ CPUs 
adopt a regional autono-
mous parallel architecture 
where one CPU is com-
posed of four regions con-
nected through a scalable 
on-chip communication 
network. Each region is a 
functionally independent 
supernode (SN) with four 
panels communicating 
through an intra-region 

M
ANY APPLICA-

TIONS, SUCH 

as Web 
search-
ing, social 
network 

analysis, and power grid 
management, require 
extreme-scale graph pro-
cessing. However, it is very 
challenging because graph 
processing exhibits unique 
characteristics such as 
more load imbalance, 
lack of locality, and access 
irregularity. The extreme 
graph scale makes the situ-
ation even worse.

Supercomputers have 
large compute, large mem-
ory, and fast interconnect. 
They seem ideal for  
extreme-scale graph  
processing. China has built 
several leading supercom-
puters in the world. For 
example, the Tianhe-2 and 
Sunway TaihuLight super-
computers have ranked 
No. 1 in Top500 list 10 
times between June 2013 
through May 2018. Like 
many other supercom-
puters, they use hetero-
geneous accelerators to 
achieve high performance 
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One of the unique features  
of the TaihuLight machine is  
the heterogeneous on-chip 
SW26010 CPU.
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the extra refactorization 
overhead in most cases.

We further leverage 
the topology information 
to perform aggressive 
message aggregation. 
Messages are gathered 
to the responsible nodes 
(referred to as monitors) 
in the source domains, 
transferred between moni-
tors, and scattered to the 
target nodes in the target 
domains. We adopt adap-
tive buffer switching and 
dynamic buffer expansion 
to reduce communication 
cost effectively.

Applications of graph 
processing on Tianhe. The 
Tianhe graph processing 
system has been widely 
used in industry through-
out China in areas such 
as computational biology, 
industrial simulation, and 
visualization.

Beijing Genomics Insti-
tute (BGI) and Shanghai 
Institute of Materia Medica 
(SIMM) jointly constructed 
a high-throughput drug 
virtual screening platform 
based on Tianhe graph 
processing system. The 
platform screened over 40 
million molecular com-
pounds for anti-Ebola virus 
drugs per day, achieves the 
fastest high-throughput 
virtual drug screening in 
history, and plays an im-

the network interface chip 
(HFI-E) and the network 
router chip (HFR-E). HFI-E 
implements the proprie-
tary MP/RDMA (mini pack-
et/remote direct memory 
access) communication 
and collective offloading 
mechanism. CNs con-
nected to an HFR-E are in 
the same communication 
domain. Tianhe has highly 
optimized its intra-domain 
communication, which is 
an order of magnitude fast-
er than its inter-domain 
communication crossing 
multiple HFR-Es.

Leveraging hardware 
features for graph pro-
cessing. Different from 
the traditional SIMD 
(single-instruction-mul-
tiple-data) technique, the 
Matrix2000+ CPUs support 
vectorization to accelerate 
graph computation. We 
leverage SVE to realize ef-
ficient graph traversal.

Traditional vectoriza-
tion induces synchroniza-
tion between processing 
consecutive vectors (by 
inserting stalls) and thus 
lowers the overall perfor-
mance. Fortunately, we 
find that graph traversal 
(such as BFS) simply scans 
a vertex range to determine 
the vertices to-be-traversed 
at the next level, allowing 
avoiding synchroniza-
tion if none of the vertices 
belongs to more than one 
level. This situation might 

exist only because of the 
existence of loops in the 
graph. To address the 
loop problem, if a vertex 
exists in two successive 
levels and causes a loop, 
we split it into two virtual 
ones. Moreover, if we find 
a vertex that belongs to 
multiple levels during 
pre-processing, we use a 
virtual vertex at each level 
to participate in that level’s 
vectorized processing.

We adopt AVLA and 
AVLS to realize graph tra-
versal efficiently. If the tra-
versal is likely to encounter 
loops (for example, in top-
down BFS), then we adopt 
AVLA to automatically 
pack unvisited neighbor 
vertices (sub-vectors) into 
vectors while avoiding 
vertex splitting (at the cost 
explicit synchronization). 
Otherwise, it is unlikely 
to encounter loops (for 
example, in bottom-up 
BFS), and thus we pack the 
neighbors into the vectors 
through AVLS and split 
vertices once loops occur. 
AVLA and AVLS accelerate 
the procedure that every 
thread (core) handles a 
different vertex range 
and examines the edges 
connected to unvisited 
vertices, so as to determine 
whether the neighbor ver-
tices should be visited on 
the next level.

To adapt graph pro-
cessing to the topology 

of Tianhe’s multi-dimen-
sional tree network, we 
refactorize the graph with 
fusion and fission3 when 
storing graph vertices and 
edges. Specifically, fusion 
organizes a set of neigh-
boring low-degree vertices 
into a super-vertex (for 
processing locality), and 
fission splits a high-degree 
vertex into a set of sib-
ling sub-vertices (for load 
balancing). Refactorization 
is performed in parallel by 
all workers on CNs, and we 
resolve the potential con-
flict by double-checking 
on vertex states. A worker 
checks whether the vertex 
has been processed both 
before moving it to the pro-
cessing queue and before 
performing fusion/fission. 
If a conflict occurs, further 
processing will be skipped.

The vertices and edges 
of the refactorized graphs 
are assigned to the CNs in 
the network according to 
the proximity of the multi-
dimensional tree topol-
ogy. Neighboring vertices 
are assigned to the same 
communication domain. 
Graph refactorization 
could be pipelined with 
assignment and thus only 
induces a small extra over-
head.3 Note the partition-
ing results are reusable. 
Thus, it is worth paying for 

The Tianhe supercomputer  
has unique designs for  
its many-core CPU architecture 
and its high-performance 
interconnection network, 
providing both opportunities and 
challenges for graph processing.

Figure 1. Matrix-2000+ CPU architecture.
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in Figure 2. One of the 
unique features of Tai-
huLight machine is the 
heterogeneous on-chip 
SW26010 CPU (see right 
part of Figure 2). Each 
SW26010 CPU comprises 
four core groups (CGs) 
connected via a low-
latency on-chip network 
(NoC). Each CG consists of 
a management processing 
element (MPE), a 64-core 
computing processing 
element (CPE) cluster, 
and a memory controller 
(MC), and thus a total of 
260 cores per CPU (node). 
Each CPE comes with a 
64KB scratch pad mem-
ory (SPM) without cache, 
which requires explicit 
programmer control. The 
architecture demands 
manual coordination of all 
data movement, which is 
a particularly challenging 
task for irregular random 
accesses.

The TaihuLight CNs are 
connected via a 2-level In-

portant role in anti-Ebola 
drug development. The 
core algorithm, Lamarck-
ian Genetic Algorithm 
(LGA),2 is formed as a 
global-local-hybrid search 
problem and deeply 
accelerated on Tianhe 
graph processing system 
using 512 ~8192 CNs (up 
to 19.7K CPU cores). The 
efficiency of our graph 
processing system reaches 
as high as 60%.

Shaanxi Key Labora-
tory of Large-scale Elec-
tromagnetic Computing 

(LEC) has developed the 
complex matrix local 
block pivoting LU (LBPLU) 
decomposition software 
for applications of mas-
sive parallel Method of 
Moments (MoM). The LEC 
laboratory ran LBPLU with 
local pivoting on Tianhe 
to solve the matrix equa-
tion generated by MoM. 
Specifically, for simulat-
ing the electromagnetic 
scattering of an aircraft, 
LBPLU divides the aircraft 
surface into a grid struc-
ture, where each grid node 

is a vertex of a graph, and 
the influence between 
grid nodes is modeled as 
edges. LBPLU performs tri-
angulation on the grid to 
realize flow visualization. 
When running LBPLU, our 
system achieves as high as 
50.16% parallel efficiency 
when the parallel scale is 
8192CNs (19.7K cores).

We have also deployed 
the graph processing 
system on a subset of the 
next-generation exascale 
Tianhe supercomputer, 
which consists of 512CNs 
with 96608 cores. Perfor-
mance evaluation shows 
that the 512-node sub-sys-
tem achieves 2131.98 Giga 
TEPS (traversed edges per 
second) for the BFS test of 
Graph500, which outper-
forms Tianhe-2 Supercom-
puter with 16x more nodes.

Processing Graphs  
on Sunway TaihuLight
The architecture of 
TaihuLight is illustrated 

To maximize utilization  
of the full-bisection  
intra-supernode bandwidth, 
we form target groups using 
supernode boundaries.

Figure 2. The architecture of TaihuLight.

Figure 3. Supernode routing and module mapping in CPEs.
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finiBand network. A single-
switch with full bisection 
bandwidth connects all 
256 nodes within a super-
node, while a fat-tree with 
1/4 of the full bisection 
bandwidth connects all 
supernodes (see left part of 
Figure 2).

Mapping the graph 
processing modules to 
heterogeneous processors. 
Within each SW26010 
CPU, the four CGs are 
assigned with distinct 
functions as shown in 
Figure 3: (A) Generation, 
(B) Relay, (C1) Coarse 
sort, and (C2) Update. 
This function mapping is 
static, and each function is 
performed by one CG only. 
The goal of this mapping 
is to achieve balanced CG 
utilization. This pipelined 
architecture allows us to 
process batched data in 
a streaming way, gaining 
lower I/O complexity to 
main memory and higher 
utilization of the on-chip 
bandwidth.

At the second level of 
specialization, we lever-
age the specific hardware 
features within each CG. 
The MPE is well suited for 
task management, plus 
network and disk I/O, 
while the CPEs are tightly 
connected through the 2D 
fast communication fea-
ture, naturally leading us 

to assign communication 
tasks on the MPE and data 
sorting tasks on the CPEs.

Supernode routing. This 
technique targets efficient 
inter-node communication 
to enable our heteroge-
neous processing pipeline 
on the full system.

The performance of 
distributed graph applica-
tions are usually damaged 
by large numbers of small 
messages sent following 
the graph topology. The 
all-to-all style small mes-
sages among 10,000s of 
nodes is inefficient due 
to per-message overheads 
(routing information, 
connection state, and so 
on.) We propose a super-
node routing technique to 
mitigate this by factoring 
all compute nodes into 
groups according to their 
supernode affiliation. 
Each node combines all 
messages to nodes within 
the same target group 
into a single message sent 
to a designated node with-
in that group. This so-
called relay node unpacks 
the received messages, 
combing messages from 
different source groups, 
repack the messages to 
each in-group target node 
into one message, and 
distributes them to appro-
priate peers.

To maximize utilization 

of the full-bisection intra-
supernode bandwidth, we 
form target groups using su-
pernode boundaries. Each 
source node minimizes 
the number of relay nodes 
it sends to within a target 
group (usually one relay 
node per target group) to 
perform message aggrega-
tion effectively. To achieve 
load balance, each node in 
a target group acts as a relay 
node. The situation is more 
complicated if there are fail-
ure nodes in a supernode, 
and we use a stochastic 
replay assignment to main-
tain load balance.

The Shentu graph 
processing framework. In 
addition to the hardware 
specialization and super-
node routing, we also have 
other innovations such as 
on-chip CPU sorting and 
degree-aware messaging. 
We omit them here due 
to limited space. Readers 
interested in more details 
should refer to Lin et al.1

Finally, we designed 
and implemented a vertex-
centric graph processing 
framework, Shentu, in Sun-
way TaighuLight. It could 
support graph algorithms 
such as PageRank, WCC, 
and BFS with around 30 
lines of code to run on the 
full system of TaighuLight.

It should be noted 
that the Sogou graph is 

the largest real graph 
processed in literature, 
which has 12 trillion 
edges and is prohibitive 
for small scale systems. 
Shentu could process it 
with 8.5s for each iteration 
of PageRank in full scale 
Sunway TaighuLight (see 
the accompanying table). 
The 42.kron (70 trillion 
edges) is also the largest 
synthetic graph processed 
in literature to date.

Conclusion
In this article, we showed 
how graph processing 
is efficiently supported 
by supercomputers with 
different heterogeneous 
architecture characteris-
tics: on-chip processing 
element array with SPMs 
and wide vector units. We 
also showed how tech-
niques such as vectoriza-
tion and supernode rout-
ing are used to optimize 
the all-to-all messages 
of graph computing. We 
expect the result not only 
enables extreme-scale 
graph processing, but also 
hints at the possible fusion 
of supercomputing and big 
data architectures. 
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