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Abstract. In this paper we propose a new parallelization scheme for
Simulated Annealing — Hierarchical Parallel SA (HPSA). This new
scheme features coarse-granularity in parallelization, directed at
message-passing systems such as clusters. It combines heuristics such
as adaptive clustering with SA to achieve more efficiency in local search.
Through experiments with various optimization problems and compar-
ison with some available schemes, we show that HPSA is a powerful
general-purposed optimization method. It can also serve as a framework
for meta-heuristics to gain broader application.
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1 Introduction

Simulated Annealing(SA), firstly proposed in [7], is a randomized optimiza-
tion algorithm widely applied to various combinatorial and continuous prob-
lems. Compared with other randomized algorithms, such as GA, Tabu Search,
various evolutionary algorithms, it possesses a formal proof of convergence to
global minima[6] under some restrictions on cooling scheduling and temperature
parameters[10]. Despite this strictness, SA in practice retains the ability to avoid
local minimum and to locate near-optimal solutions.

SA is computation-intensive algorithm and features sequential intrinsics;
there has been much work on its parallelization [4,3,8,11,2]. With different par-
allel granularity, these parallel schemes are targeted at various kinds of parallel
machines. Schemes of coarse granularity usually have to deal with scalability
problems. We’ve designed a new parallel SA scheme in which processes are orga-
nized in a three-level hierarchy, addressing scalability problems effectively while
achieving better coverage over the search space. Experiments show that it out-
performs conventional parallel SA in either convergence speed or solution quality.
This article is organized as follows: in Section 2 we will have a short overview
of sequential and parallel SA and summarize related works. Detailed design and
implementation of HPSA is presented afterwards in Section 3. In Section 4 we
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show HPSA outperforms available parallel SA in either speed or solution quality
through various experiments. Finally We conclude that HPSA could serve as a
general-purposed optimization scheme and point out our future work.

2 Sequential SA and Its Parallelization

2.1 Sequential SA

Simulated Annealing[7,1,10] is an optimization algorithm in analogy to the an-
nealing process in metallurgy. For a formal description of SA, we give definition
over these terms:

S : Search Space;
Cost : S → IR, Cost Function Defined over S;

N : S → 2S , Neighborhood Function;
T : Temperature, T ∈ IR+.

SA is used to locate a solution sm in S that minimize function Cost, given
the neighborhood relation N . Usually, N is symmetric over S: ∀s ∈ S, t ∈ S,
t ∈ N (s) → s ∈ N (t). The basic idea of SA is to find an initial point in S and
an initial temperature T0, then conduct a random local search process within
S under the control of T . The process carries on until T approaches zero close
enough. A basic flow chart of SA is shown in Fig.1.

PROCEDURE Sequential SA
BEGIN

s ← Initial Solution in S
T ← Initial Temperature T0
DO

DO
s∗ ← N eighbor(s)
∆C ← Cost(s∗) - Cost(s)
IF ∆C < 0 OR Accept(∆C,T) THEN

s ← s∗

END IF
UNTIL Equilibrium
T ← Decrement(T )

UNTIL Frozen
END PROCEDURE

Fig. 1. Sequential SA

The outer loop of SA generally deals temperature. It starts from T0 and
terminates when T is low enough, which also terminates the algorithm. The
inner loop(Metropolis Loop) which is conducted under a certain temperature,
mainly deals with local search. A solution s∗ in N (s), is generated and judged
by Cost(s∗). If s∗ is better, i.e., of lower cost, s is replaced by s∗. If it is worse,
it is accepted statistically according to the Metropolis criteria[7].
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2.2 Parallelization of SA

According to the classification of parallelization of Metaheuristics in [5], parallel
schemes for SA fall into three categories:

– Fine granularity parallelization for inner loop
• Functional parallelization on move evaluation
• Data parallelization of multiple-move evaluation

– Parallelization based on search space partitioning
– Multiple concurrent runs exploring the solution space

Since Type 1 schemes [3,8,4,2,3] feature fine granularity, they fit SMP or
SIMD machines. The high communication frequency between processes hampers
the effectiveness of such schemes on loosely-coupled systems, such as clusters or
even distributed systems. Type 2 schemes require an effective segmentation over
the search space so that final output can be summarized directly basing on partial
results from concurrent processes[5]. These schemes are problem-dependent, so
there’s much constraints applying them to general problems. In Type 3 schemes
processes are organized in non-intersected subsets, which we call clusters, to
conduct search process, while communication between processes follows some
patterns. For further description of Type 3 schemes we define:

P : { pi | 1≤ i≤ N}, set of processes;
C : { ci | ci ∈ 2P , ci �= ∅,

⋃
i ci = P , ci

⋂
cj = ∅ for i �= j, 1 ≤ i, j ≤ m},

set of clusters formed from P .

These parallel schemes posses coarse granularity. Each process pi in P ini-
tiates with a randomly chosen solution in S and carries on with its own chain
until SA terminates. During the search process, local information is dynamically
interchanged among process clusters cj (here we assume pi ∈ cj) after all the
processes within cj has undergone certain steps of tempering, so that processes
within cj gain a better knowledge of the search space. Usually a solution s′ is
chosen or created for all the processes within cj to carry on instead of their
original solutions si. Process clusters could dynamically adapt during the search
process.

MMC-PSA in [9] is a representative of Type 3 schemes. In MMC-PSA C ≡
{P}, i.e., only one constant process set exists. The replacement strategy is to
replace solutions of all the processes with the best one sbest. While this replace-
ment scheme’s intuitively beneficial, currently best solution sbest may well be a
local minimum. If current solutions of all processes in P are to be overridden,
there’s a possibility that processes which may potentially achieve global min-
imum sm are deviated and lose adjacency to sm. Given an extra large search
space with many local minima, it is more probable for MMC-PSA to get trapped
into a local minimum with fair cost, which is not our objective. Also the com-
munication pattern of MMC-PSA does not fit large-scale systems. Especially,
in asynchronous MMC-PSA, maintaining a globally accessible best solution is
extremely costly in a distributed environment. HPSA is designed with these
problems in notion. It’s similar to MMC-PSA in that it is also based on multiple
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chains. Through dividing computation power over potential areas in the search
space and confining most communication within process clusters, HPSA solves
scalability problems faced by MMC-PSA and other similar schemes.

3 Hierarchical Parallel SA

HPSA is targeted at message passing systems, typically cluster environments.
Generally HPSA can be classified as a coarse-grained, i.e., Type 3 scheme. It is
similar to MMC-PSA in that it is also based on Multiple Markov Chain. Main
design considerations are listed below:

– Processes include P , a set worker processes, and a farmer process;
– P is dynamically divided into clusters: ci’s;
– Farmer is responsible for dynamically organizing clusters, i.e. changing C,

to achieve optimal distribution of processes, keeping:
– Processes within the same cluster have adjacent solutions, hence keeping

high reachability within each cluster and minimizing the possibility of killing
potential ones;

– Communication is either intra-cluster or between cluster and farmer.

3.1 Main Structure

Farmer process is mainly responsible for setting up and maintaining clusters.
When the algorithm begins, no cluster exists. Dissociated processes, which do
not belong to any cluster report to farmer directly. When all processes have re-
ported to farmer, clustering decision is made and processes are informed of the
cluster they belong. Each process is uniquely associated with a cluster, which
is confined with an MPI communicator. In each cluster a head process is cre-
ated to report to farmer at intervals about information of local search. Farmer
decides to reshuffle clusters when a certain number of clusters have reported
to have undergone great changes from their original positions. On the decision
of reshuffling, farmer responds cluster heads with a message flag which indi-
cates dismissal, which is broadcasted within the cluster. Processes which have
received messages with dismissal flag on will become dissociated and report to
farmer afterwards, just like when the algorithm begins. After all the clusters
have been noticed of dismissal, farmer enters the phase same to the time when
the algorithm initiates. A cluster reports to farmer that it’s quitting when all
of its processes have reported to have ended the annealing processes. When all
the clusters have reported quitting, farmer quits, terminating the algorithm.

Communications inHPSAfall into two categories: intra-cluster communication
and communication between clusters and farmer. Intra-cluster communication is
carried out at the interval of n tempering iterations. Within a cluster the communi-
cation is synchronous, i.e., a process synchronizes with others to find out their best
solution. Afterwards, processes will continue local search from this best solution.
Under synchronous communication, there’s no need to keep record of the globally
best solution; also we are free from the overhead of exclusively accessing it.
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Inter-cluster communication is fully asynchronous. Non-associated processes
report to farmer as soon as they’ve reached local equilibrium under current
temperature, sending out their current solutions; afterwards they wait for the
cluster assignment from farmer. Heads of clusters report to farmer when local
synchronization times has reached a threshold. After sending out local informa-
tion to farmer, head processes wait until farmer replies. Farmer would either
reply indicating the cluster to either carry on annealing or dismiss. On receiving
dismissal messages, head process would dismiss all its fellow processes within
the cluster and they will all enter non-associated state.

All the processes in HPSA are organized into a multiple-level hierarchy. When
clusters are formed, it contains three levels: the highest level contains farmer
process only; the secondary level contains all cluster head processes; the lowest
layer contains ordinary working processes. When clusters are disassociated, it
is a two-level structure. Under either mode, communication is controlled within
directly-adjacent nodes in the hierarchy.

3.2 Clustering Decision in HPSA

On farmer we adopt Agglomerative Hierarchical Clustering to organize processes
into clusters. So the process of building C can be divided into two steps:

– Building Hierarchical Clustering Tree
– Forming C

Fig.2a is an example of dendrogram of hierarchical clustering. As is shown,
configurations to be clustered are labelled from 1 to 12. A full tree is formed
with internal nodes labelled from 13 to 23, according to their generation time
during the clustering process. While conventionally in hierarchical clustering a
stop criterion is used to terminate the clustering process, such as cluster count
reaches a threshold, in HPSA we decide to build the whole cluster tree since
available process count is usually small and not likely to exceed several hundred
and the overhead of building the whole tree is trivial. Cluster identification is
specific to problems. For problems such as Protein structure prediction in [12], a
quantitive threshold may be provided basing on experiences. For other problems
of implicit distance measurement, threshold may be provided heuristically, for
example, 1/10 of Radius.

As for those problems for which no distance threshold is available, other
heuristics can be applied to identify clusters. For example, clustering decisions
can be made basing on variance changes between different clustering options. For
example, clustering decisions can be made basing on the variation series from
leaf node up to the root in the clustering tree. See Fig.2 for an example. The
variance trajectory of Node−4 in Fig.2a is shown in Fig.2b. Usually the variation
series is non-descending. So we can detect one-step changes in variation series
and put the clustering barrier between the pair of nodes with greater slope. In
the previous example, all the nodes under Node − 18 will form a cluster.
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a. Dendrogram Example b. Trajectory of Node-4

Fig. 2. Hierarchical Clustering Example

4 Experiments

4.1 Implementation and Configurations

HPSA is implemented in MPI to support message-passing environments such as
clusters. We have tested HPSA over various TSP problems.

For symmetric TSP problems, the definition of neighborhood structure and
distance between solutions varies according to implementations. In HPSA we
use conventional neighborhood definition for TSP[3]. With this local topology, it
requires much computation to attain the distance between solutions. In HPSA
we introduce a method to approximate distance between different TSP solutions:
the ratio of uncovered cities by common sub-chains among all the cities of two
solutions. For comparison we have implemented MMC-PSA [9,11] and MIR-
PSA(Multiple Independent Run).

Experiments are carried out on an 8-node cluster, each node featuring 4-way
SMP of Pentium-III Xeon 700MHz CPU and 1GB Ram. The software envi-
ronment is Linux 2.4.20 and mpich-1.2.5. All nodes are connected by 100Mb/s
switch. On the cluster totally 64 MPI processes are engaged in the parallel SA,
including the farmer process.

4.2 Test Results

We have randomly picked several TSP benchmarks from TSP-LIB:
eil101, tsp225, ch150, kroA100 and kroC100, with best solutions known. Two
aspects of HPSA are evaluated: the First Hit Time(FHT) of a certain cost level
and Quality of final result. Table.1 shows the test result of FHT, and cost-levels
were selected as 102%,105% and 110%. Since the annealing processes are dif-
ferent only in the initial temperature, so the percentages of FHT in the whole
annealing process is listed. The average FHT of 10 independent runs are re-
trieved from each test suit for HPSA, MMC-PSA and MIR-PSA. We have also
tested effects of fixed scheduling on HPSA. Given a fixed initial temperature,
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Fig. 3. Test Result II

especially one of a low value, the quenching process would take shorter time.
The quality of final result generated by different parallel SA for given problems
are listed in Fig.3.

Table 1. FHT Results

FHT 102% 105% 110%
Problem HPSA MMC MIR HPSA MMC MIR HPSA MMC MIR

ch150 83.0% 83.5% 87.0% 66.2% 64.2% 66.3% 44.0% 44.9% 34.6%
eil101 69.6% 73.2% 68.2% 57.5% 60.0% 51.9% 44.3% 48.3% 45.9%

kroA100 74.8% 77.2% 75.0% 61.2% 62.2% 64.8% 40.1% 37.0% 41%
kroC100 70.3% 70.1% 72.0% 57.7% 57.3% 61.4% 42.2% 33.1% 37.2%
tsp225 87.7% 93.3 91.0% 79.5% 59.5% 77.0% 50.0% 41.7% 47.8%

From Table.1 we can see that HPSA gains a margin over MMC-PSA and
MIR-PSA if we use a lower cost level. But when cost level rises, there are more
chances that any of the three may overtake the other two. Also given a fixed
schedule, the quality of final result averaged by 10 runs, as is in Fig.3, shows
that HPSA outperforms MMC-PSA and MIR-PSA. The fact that MIR-PSA
outperforms MMC-PSA is congruent with the tuition that given a low starting
temperature, MMC is more likely to kill potential processes.

The running time saved by HPSA is trivial according to our experiment
results. Most of the time MMC-PSA and HPSA consume similar amount of time.
Through localizing communication by assigning clusters of processes to adjacent
processing units, HPSA may gain further timing-advantages over MMC-PSA.

5 Conclusion and Future Work

HPSA is a parallel SA scheme that is located between MMC-PSA and MIR-PSA.
By dynamically clustering processes and manage them in a two-level hierarchy, it
easily handles the scalability problem most conventional parallel SA schemes face.
Through experiments we show that for TSP problems, HPSA gains advantages
over MMC-PSA and MIR-PSA on the large. With further growth of distributed
systems, HPSA is a more promising algorithm among parallel SA schemes.
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For our future work, clustering criterion of HPSA is to be refined so that it
can handle problems with speculative distance threshold is provided, which may
not be accurate enough and has to be refined. Mixed clustering schemes would
be more adaptive, combining both heuristics and experiential results for cluster
identification. In future work we will apply HPSA to various contemporary ap-
plications, such as protein 3D structure prediction. Since HPSA can serve as an
general-purposed optimization method, we will also put much emphasis on its
interface design, so that we can cut down implementation efforts of applying it
to other problems.

References

1. E.H.L. Aarts and J.H.M. Korst. ”Simulated Annealing and Boltzmann Machines”.
1989.

2. A. Bevilacqua. ”A Methodological Approach to Parallel Simulated Annealing on
an SMP System”. J. of Parallel and Distributed Computing, April 2002.

3. H. Chen, N.S. Flann, and D.W. Watson. ”Parallel Genetic Simulated Annealing:
A Massively Parallel SIMD Algorithm”. IEEE Trans. on Parallel and Distributed
Systems, 9(2), Febrary 1998.

4. R. Diekmann, R. Luling, and J. Simon. ”Problem Independent Distributed Sim-
ulated Annealing and its Applications”. Proceedings of the 4th IEEE Symposium
on Parallel and Distributed Processing, 1992.

5. Fred Glover and Gary A. Konchenberger. ”Handbook of metaheuristics”. Boston,
Kluwer Academic Press, 2003.

6. V. Granville, M. Krivunek, and J. P. Rasson. ”Simulated Annealing : A Proof of
Convergence”. IEEE Transactions on Pattern Analysis and Machine Intelligence,
16:652–656, June 1994.

7. S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. ”Optimization by Simulated An-
nealing”. Science, May 1983.
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