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LotusSQL: SQL Engine for High-Performance Big Data Systems

Xiaohan Li, Bowen Yu, Guanyu Feng, Haojie Wang, and Wenguang Chen�

Abstract: In recent years, Apache Spark has become the de facto standard for big data processing. SparkSQL

is a module offering support for relational analysis on Spark with Structured Query Language (SQL). SparkSQL

provides convenient data processing interfaces. Despite its efficient optimizer, SparkSQL still suffers from the

inefficiency of Spark resulting from Java virtual machine and the unnecessary data serialization and deserialization.

Adopting native languages such as C++ could help to avoid such bottlenecks. Benefiting from a bare-metal runtime

environment and template usage, systems with C++ interfaces usually achieve superior performance. However, the

complexity of native languages also increases the required programming and debugging efforts. In this work, we

present LotusSQL, an engine to provide SQL support for dataset abstraction on a native backend Lotus. We employ

a convenient SQL processing framework to deal with frontend jobs. Advanced query optimization technologies

are added to improve the quality of execution plans. Above the storage design and user interface of the compute

engine, LotusSQL implements a set of structured dataset operations with high efficiency and integrates them with the

frontend. Evaluation results show that LotusSQL achieves a speedup of up to 9� in certain queries and outperforms

Spark SQL in a standard query benchmark by more than 2� on average.
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1 Introduction

The rapid development of information technology has
brought significant progress to human society, and the
amount of data that computer systems need to deal with
has increased accordingly. Different frameworks[1–6]

have been proposed for big data processing, and they
include Apache Spark[4], which has become the de facto
standard in recent years. Spark’s core programming
abstraction is in the form of an immutable object
collection called Resilient Distributed Dataset (RDD).
Although the Spark RDD API offers powerful semantics
that can support complex data analytics, it is not easy
enough to use and often requires manual optimization.

Structured Query Language (SQL) is a common
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choice for data analysis in many scenarios. It is
originally designed for relational databases, but many
big data systems adopt it as a powerful tool for Online
Analysis Processing (OLAP) applications. SQL offers
a straightforward interface and gives the potential to
optimize the original workload and deliver superior
execution performance. To evaluate the execution
efficiency of SQL queries, the Transaction Processing
Performance Council (TPC) defines a set of benchmarks,
among which TPC-H is widely used for OLAP
performance evaluation.

SparkSQL[7] is designed for processing structured data
on Spark. It provides a bridge between relational tables
and RDDs, and it can function like a distributed SQL
query engine, thus bringing significant convenience for
end-users. SparkSQL also leverages careful optimization
to expedite queries. However, SparkSQL suffers from
the inefficiency of Spark. Many analyses[8–11] indicate
the shortcomings of Spark. Some overheads, including
garbage collection and data serialization, are attributable
to Java Virtual Machines (JVMs) while others are from
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Spark’s design, including its element-wise function calls.
Flare[9], an accelerator module for Spark whose

performance is at par with main-memory database
HyPer, delivers order-of-magnitude speedups to
SparkSQL on single-core TPC-H computing. The
distributed relational database HRDBMS[12] is several
times faster than SparkSQL in terms of the total elapsed
time of TPC-H.

To bypass the inefficiency of JVM and Spark, scholars
have proposed different big data frameworks[5, 13] that
are based on native languages. Lotus is a high-
performance data-parallel computing engine built with
C++. Lotus gains high performance because of its bare-
metal runtime environment, compact storage strategy,
coarse-grained function call, and memory-efficient
design. Details about Lotus can be found in Section 2.1.
Although C++ brings significant benefits for Lotus,
it also entails extensive programming and debugging
efforts. Features in modern C++, such as template
usage and automatic type deduction are widely-used
in Lotus. Although APIs are carefully designed, users
might encounter confusing problems when constructing
complex applications. Thus, a high-level interface such
as SQL is desired.

Supporting SQL with Lotus involves two main
challenges. First, a semantic gap exists between Lotus
and SQL. Lotus’s primary dataset abstraction organizes
data as one-dimensional, whereas a table in SQL is
two-dimensional. Second, building SQL engines with
full functionality that delivers optimized execution
performance requires massive development efforts.

In this work, We present LotusSQL, an SQL
module for Lotus, which addresses the aforementioned
challenges. For the first challenge, we design and
implement a set of structured data operators on
Lotus dataset abstraction to meet the need for table
manipulations. Column storage and operation fusion
are used to improve performance. For the second one,
we integrate the open-source framework Calcite[14] as a
frontend, which provides the parser, the validator, and
basic optimizer architectures to deal with SQL queries.
LotusSQL adopts a cost-based optimizer of Calcite and
offers cost evaluation methods for Lotus operators to
guide the optimization. In addition, LotusSQL extends
Calcite’s optimization process to produce good execution
plans.

The main contributions of this work are as follows:
� A set of efficient structured data operations are

designed and implemented upon a native dataset

backend.
� Calcite is extended with customized cost models

and optimization passes to obtain a full-featured
SQL parser and optimizer for Lotus at reasonable
development efforts.
� Performance experiments on the complete set of

TPC-H queries are conducted, and related analyses are
performed to evaluate LotusSQL.

The rest of the paper is organized as follows. Section 2
introduces the background knowledge of two important
systems related to our work. Section 3 presents an
overview of the workflow of LotusSQL. Section 4
explains the design of physical operators and the
cost model. Section 5 formulates additional query
optimization techniques used in our SQL engine. Then,
Section 6 details the performance of LotusSQL on real
workloads. Section 7 discusses our design choice in two
aspects. Section 8 introduces related works. Finally,
Section 9 concludes the study and identifies future
research directions.

2 Background

2.1 Lotus

Lotus is a single-machine data parallel computing engine
constituted by a low-overhead storage module and a
highly efficient compute module. The storage module
is designed to have a low overhead on the basis of a
combination of buffer caches and compact object models.
The compute module is a C++ dataset programming
model. Lotus datasets provide the abstraction of compact
collections and efficient operation implementations.

Lotus dataset is logically an array of records that is
segmented into multiple partitions. Except for distributed
allocation, its abstraction is quite similar to Spark’s
RDD. It also adopts a lazy evaluation strategy and
supports fault tolerance. All intermediate result datasets
can be cached explicitly. However, as a C++ dataset, it
employs compact object storage rather than the general
object storage to reduce serialization and deserialization
overhead. Lotus dataset supports primary data types,
including int, double, and string. For a string dataset,
data are organized into two compact buffers: one as
indexes and the other as original characters.

Lotus provides a compute engine for LotusSQL. We
add structured dataset abstraction on Lotus and connect
it with SQL.

2.2 Calcite

Apache Calcite is an open-source software framework
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that provides query processing, optimization, and query
language support for multiple backends. It perceives
that developers of specialized systems encounter related
problems, such as query optimization or the need to
support query language (e.g., SQL and its extensions).
It also helps minimize the engineering effort required to
develop similar optimization logic and language support
as a unifying and pluggable framework.

Relational algebra lies at the core of Calcite. Two
types of operators express data manipulation operations
during the query compilation and optimization process.
A logical operator is the primary form of operation, and
it includes filter, project, and join. A physical operator
assigns an implementation method in an actual backend
to a logical operator. Operators compose the relational
algebra expression tree, which is the representation of an
execution plan. An execution plan consisting primarily
of logical operators is called a logical plan. Similarly, an
execution plan consisting mainly of physical operators
is called a physical plan.

Calcite’s query optimization strategy derives from
the Volcano[15] and Cascades[16] frameworks. It uses
rule-based expression transformation and cost-based
dynamic programming search to find the best execution
plan.

Calcite’s architecture also consists of a query
processor capable of processing a variety of query
languages, an adapter architecture designed for
extensibility, and support for heterogeneous data models
and stores (relational, semistructured, streaming, and
geospatial). However, these components are not involved
in our system and are thus excluded in our discussion.

LotusSQL employs Calcite’s optimizer as a frontend
to produce a physical execution plan. We supplement
Calcite further to deliver excellent results.

3 Workflow

As Fig. 1 illustrates, the processing starting from SQL
queries and ending at actual execution results can be
divided into four parts. First, an SQL query is taken and

parsed into a logical plan with the schema information.
Second, a series of optimizations are conducted to
generate the physical plan. Third, the physical plan is
mapped into C++ codes of structured data operations by
the code generator. Finally, the codes are run on Lotus,
and corresponding results are obtained. In the following
parts of this section, we further describe the process in
detail.

3.1 Schema provision and maintenance

In the perspective of SQL queries, data are organized
as tables. Tables correspond to a structured datasets
in the compute engine, and they share the same logical
structure called schema. A schema contains the metadata
information of tables, with the most important being the
names and data types of columns. This information is
the basis for processing SQL queries�.

In LotusSQL, schema acquisition includes two
aspects: Calcite schema acquisition and schema
acquisition. Calcite schema acquisition is used to
complete tasks, such as SQL parsing and optimization.
Schema acquisition in compute engine is used to locate
tables in a file system and conduct compilation inference.
The two schemas must be consistent to ensure the
correctness of execution information, such as column
indexes.

The schema acquisition in Calcite adopts the
method of file parsing. An external file stores relevant
information in a specific format, such as CSV. LotusSQL
reads and analyzes the file and registers the information
into the framework before query parsing. The schema in
the C++ program is represented as template arguments.
Thus, the schema maintenance in the compute engine is
completed in the compilation stage by automatic type
inference. LotusSQL ensures that codes delivered to the
compute engine are compilable because the parsing and
optimization stages also maintain the correct schema.
The only extra information that needs to be provided

* The definition of schema here is different from the Schema
class in Calcite, which is a namespace for a series of tables.
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Fig. 1 Workflow overview.
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to the compute engine is the storage location of a
table. This information can be provided by maintaining
relevant information in Calcite’s table or by storing and
parsing additional files during execution.

3.2 Execution plan

Calcite’s optimizer uses an expression tree of relational
operators as its internal representation of an execution
plan. In addition to Calcite’s built-in logical operators,
LotusSQL customizes physical operators corresponding
to structured data operations. A physical operator
appoints an implementation method of a logical
operator. For example, a logical operator LogicalJoin
with equality conditions could be implemented by
the physical operator LotusBroadcastHashJoin or
LotusShuffleHashJoin. We will introduce these operators
and operations in Section 4. Each physical operator has
a cost function to provide its cost to the optimizer. Cost
estimation is related to the specific implementation and
relies on some metadata, such as the output number of
rows and number of distinct values in a column. Calcite’s
metadata provider can help to make many deductions,
such as row number estimation and unique key tracking.
Our supplement to Calcite is presented in Section 5.

An execution plan composed of logical operators is a
logical plan, whereas a physical plan comprises physical
operators. During compilation, a query is parsed into
a logical plan. The logical plan needs to be further
transformed into a physical plan, which then determines

the implementation of each operator. However, one
can decide how to execute a query only if it knows
the implementation of every operator. That is to say,
a physical plan is needed. Calcite can serve as a mature
framework of execution plan transformation. The query
optimizer we use in Calcite builds on the ideas from the
Volcano[15] and Cascades[16] frameworks, in which the
conversion from a logical plan to a physical plan and
query optimization are combined.

The optimization is based on rules and the operator
cost model. A rule matches a given pattern in the tree and
performs a transformation that preserves the semantics
of that expression. Calcite includes a set of such rules
to transform expression trees. In addition, we define
rule conversion as the conversion of logical operators
into their corresponding physical operators. All rules are
registered in the optimizer. The optimizer creates and
tracks the different alternative plans created by firing
the rules. By exhaustively exploring the search space
until all rules have been applied to all expressions, the
original expression tree is expanded to a directed acyclic
graph of sets. Each set consists of logical and physical
operators with equivalent semantics. With the cost
information provided by operators, the optimizer picks
up implementations using the dynamic programming
algorithm to reduce the overall expression cost.

As an illustrational example, Figs. 2a and 2b depict
the logical plan and optimized physical plan of TPC-H
Q3. Optimization methods, such as column pruning and
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Fig. 2 Execution plans for TPC-H Q3.
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filter push-down, are applied. The physical plan specifies
join implementations.

3.3 Code generation

LotusSQL generates codes according to the physical
plan and executes them in the compute engine to obtain
the final result of a query. Every physical operator has
a code generation function interface. The functions are
triggered recursively along the physical plan to generate
the codes of all involved dataset operations. Codes are
then integrated into a template C++ file and delivered to
the compute engine.

Nullable types and values need to be handled
carefully in the code generation stage. Nullable values
may come from nullable source columns, outer joins,
and global aggregations. The compute engine uses
std::optional to deal with nullable types, and
this application leads to the problem of nullable value
access not sharing the same pattern as the primitive type.
Expressions referring to nullable values can only be
produced inside a non-nullable check field.

4 Physical Operators

Physical operators constitute physical plans, which
connect the query optimizer and the compute engine
through code generation. Physical operators in the
optimizer and structured dataset operations in the
compute engine show a one-to-one correspondence.
This section discusses the physical operators and their
corresponding operations.

4.1 Operation fusion

Before delving into the details of operators, we
introduce an effective technique to dataset operation
implementation: operation fusion. This concept was
first proposed in the main-memory database field[17].
In an algebraic expression, operations that do not
take incoming tuples out of CPU registers can be
fused together to maximize data and code locality. For
example, consider a map operation followed by a filter
operation. In performing a single map operation, every
tuple needs to be loaded from the main memory into the
registers. Then, the map expression is calculated, and
the output tuple is written back. With regard to the filter
operation, similar steps are performed. However, the
memory access in-between is unnecessary because the
element dependency is determined and can be pipelined.
Operation fusion leaves tuples in registers and makes
the execution cheap. Note that this scenario does not

only happen in individual operators, such as maps and
filters. A structured dataset operator may be formed by
several basic operations, such as map and shuffle.
Operation fusion can happen between an operator and
its neighbor’s components.

LotusSQL borrows the philosophy but has a different
implementation methodology. Instead of real-time
computing and iterator modeling in databases, our
compute engine adopts lazy evaluation, such as Spark,
by tracking operation dependencies and triggering
the required computation. Dependencies exist in two
levels: one in the C++ code level and the other in the
execution level. Before compilation, the C++ template
metaprogramming is used to build the dependency
of operations. Each operation invokes a template
method with the signature produce(partition,
outConsumer) to scan through a given input
partition and yield the output elements through
outConsumer, which is a stateful lambda expression
that is called for each output element. At the compilation
stage, the C++ compiler automatically merges the
lambda expressions. This step compresses the original
dependencies and forms a compressed one for execution.
LotusSQL generates C++ codes by using physical

plans, which hold the code level dependencies of queries.
However, during optimization in the execution plans, the
cost model considers the operation fusion to evaluate the
actual running cost.

4.2 Implementation and cost model

Table 1 lists our physical operators (each for an
encapsulated dataset operation in the backend) and
their corresponding logical operators. The description
provides a short introduction to the implementation. The
cost model evaluates the costs of the implementation.

Operation fusion has an impact on the cost evaluation
of LotusSelect. A structured dataset in the
compute engine exists as columnar objects when
materialized. Hence, selecting columns from the
dataset is a lightweight action that only requires copy
object pointers. However, if the operation has been
fused in the compilation stage, then the selection
transforms into an element-wise operation and
becomes the same as LotusMap. This difference
may change the operator order in an execution plan.
For example, a LotusTableScan-LotusFilter-
LotusSelect operator chain is more expensive than
LotusTableScan-LotusSelect-LotusFilter
because a dataset reading from the file system is already
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Table 1 Operator list.
LogicalOp PhysicalOp Description

TableScan LotusTableScan
Read a table (dataset)
from the file system.

Filter LotusFilter
Filter a table by
given condition.

Project
LotusSelect

Select some columns from
a table.

LotusMap
Map table rows by given
expression.

Aggregate
LotusAggregate

Aggregate all rows by given
function.

LotusHash
Aggregate

Aggregate rows by given group
and function via HashMap.

Join

LotusCartesian
Product

Calculate cartesian product of
two tables.

LotusBroadcast
HashJoin

Join two tables via broadcasting
one to the other and HashMap.

LotusShuffle
HashJoin

Join two tables via re-partitioning
tables and using HashMap.

Sort
LotusSort

Sort all rows by given
reference key and direction.

LotusTopK
Find top-k rows by given
reference key and direction.

in columnar storage and thus entails a relatively low
cost for selection.

Taking the concrete implementation as a reference,
we implement the cost function for each physical
operator, which comprises the cost model for LotusSQL.
Generally, the cost can be depicted in several aspects,
such as CPU usage, memory access, and I/O bytes.
However, considering additional factors brings few
marginal benefits, and forecasting numerous indicators
accurately is somehow impossible in the query
optimization stage. Thus, in this work, we adopt CPU
usage as the only metric for the operation cost.

Take LotusBroadcastHashJoin as an example.
It is an implementation of join with an equality condition.
It is chosen when one table of join operands is small. Its
cost consists of several parts.
LotusBroadcastHashJoin takes two input

tables distributing on the left and right sides in
the operator tree. Assuming the left input table is
broadcasted to all partitions of the right one during
execution, the broadcasting cost thus given by

Costbroadcast DLeftInputRowCount�

LeftInputColumnCount�

NumRightPartition:

The left table is used to build a HashMap, with

the columns involved in the equality condition serving
as the hash key. The cost of building and searching
the HashMap depends on the entry number of the
HashMap. The entry number can be reflected by the
metadata DistinctRowCount, which is estimated by the
SQL engine. The cost of building and searching the
HashMap is
CosthashMapD.LeftInputRowCount�NumRightPartitionC

RightInputRowCount/�

log.LeftDistinctRowCount/:

With the DistinctRowCount, we can calculate the
average entry size. If the hash key is also a unique key of
the table, that is, the DistinctRowCount is the same as the
LeftInputRowCount, then the AvgHashMapEntrySize
should be 1. Otherwise, it can be calculated by

AvgHashMapEntrySize D LeftInputRowCount=

LeftDistinctRowCount:

If the AvgHashMapEntrySize is not 1, then the
HashMap entry should be an iterative type, which entails
additional overhead for dynamic memory management.
Under this condition, the cost for the HashMap operation
updates is
CosthashMapDCosthashMap�.AvgHashMapEntrySizeC1/:

After searching, the concat and output cost is
Costoutput D OutputRowCount � OutputColumnCount:

The final cost is
Cost D Costbroadcast C CosthashMap C Costoutput:

5 Query Optimization

Calcite offers a mature framework and many
optimization rules, but it should still be supplemented to
improve the optimization quality.

5.1 Decorrelation of subqueries

Subqueries are common in SQL statements. Subqueries
that do not involve external variables are noncorrelated
and are parsed into an independent subtree in the
execution plan. The same is not true for correlated
subqueries with external references. In the original
logical plan, the correlated subquery appears as a
LogicalCorrelate operator. The operator behaves
like a special type of join, but the right input subtree
refers to variables from the left input. A straightforward
implementation is that for each tuple from the left
input, the right subtree is executed, and the union of
all the outputs obtained is taken. However, re-executing
the right subtree every time hampers performance in
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most cases. Thus, decorrelation is necessary, that is,
the LogicalCorrelate operator should be removed
before entering rule- and cost-based optimization.

Calcite adopts several methods for decorrelation, but
they are not efficient enough. Figure 3 illustrates the
decorrelation process of Calcite. Some rules match simple
patterns for quickly removing LogicalCorrelate.
However, for complex subqueries, the operator tree
should be decorrelated recursively. Before and after
recursive decorrelation, rules are also applied. The
post-rules can be regarded as a part of the subsequent
optimization. Thus, we do not discuss them in this
paper. The pre-rules include aggregation adjusting,
filtering and projection transposing, and condition
push-down. The main purpose is to ensure that the
operators are in fixed patterns and thus simplify the
decorrelation procedure. For example, after applying
the FilterProjectTranspose rule, the order in
a Filter and Project operator pair is fixed. In
the default implementation of Calcite, each pre-rule is
applied once. However, such application is not enough
because of the recursive decorrelation procedure.

In the recursive decorrelation procedure, subtrees need
to be copied in certain cases. Figure 4 shows an example.
The left side is a part of a logical execution plan, in
which the filter condition of the LogicalFilter
operator contains correlated variables. In this case, the
left subtree (SubTree 1) needs to be copied, and the
ValueGenerator operator (which is responsible for
generating all the values of the referred correlated
variables) needs to be added to join with the original
input operator. Consider this local execution plan as
the input of another LogicalFilter operator, which
contains filtering conditions that can be pushed down to
SubTree 1. If the condition is not pushed into SubTree 1

Apply fast 
de-correlation 

rules
Finish?

Apply 
de-correlation

pre-rules

De-correlate 
operator tree 

recursively

Apply 
de-correlation 

post-rules

Input Output

False

True

Fig. 3 Calcite decorrelation.

LogicalCorrelate

LogicalFilterSubTree_1

SubTree_2

LogicalJoin

LogicalJoinSubTree_1

SubTree_2 ValueGenerator

SubTree_1

Fig. 4 Decorrelation example.

before decorrelation, then the copied subtree existing in
the right subtree of LogicalJoin would never meet
the condition.

The preprocedure of decorrelation should push
the optimization down to the internal subtree as
much as possible. If SubTree 1 already contains all
the information needed for optimization, then the
optimization can be realized through the subsequent
optimization process after copying. To achieve this goal,
we add the update check after the preprocedure and
apply the pre-rules repeatedly so that Calcite enters
the process of recursive decorrelation only when the
execution plan does not change. In this way, the query
performance under the condition in which multiple
complex subqueries coexist is improved considerably.

5.2 Condition expression transformation

Condition push-down is a natural rule for reducing
the dataset scale as early as possible. However, the
condition form matters when performing the rule. We
add a condition expression transformation rule to Calcite.
In some cases, this step can help the condition to be
pushed down deeply.

At the beginning of query optimization, conditions
exist only in LogicalFilter operators. If the input
of a filter operator is a single-input operator, such as
a map or aggregation, then condition push-down can
always be accomplished by exchanging the order of two
operators and carefully adjusting the index number in
the condition. However, when the input is a join, the
condition is merged into the input operator and whether it
can be pushed down further is subsequently determined.
Figure 2a shows that a plain LogicalJoin’s semantic
is a Cartesian product. After a condition is pushed into
the join operator, it analyzes the condition to try to
acquire the equality condition for the physical operation
and then pushes down the other conditions.

To understand the condition push-down in join, we
consider the condition from the perspective of Boolean
algebra. A condition is composed of unit conditions
and basic operations. The basic operations of Boolean
algebra are as follows: AND (^), OR (_), and NOT
(:). Unit conditions are specific simple conditions, such
as range check and regular expression matching check
that do not include logical operations. When analyzing
a condition expression in a join, conjunction can be
decomposed. For a condition C1 ^ C2 ^ � � � ^ Cn,
subexpressions Ci can be divided into three sets:
� Subexpressions that refer to columns from only one
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input. They can be pushed down into the corresponding
input side;
� Subexpressions that refer to columns from both

inputs and with equality conditions. They remain in the
join operator to avoid the Cartesian product calculation;
� Subexpressions that refer to columns from both

inputs and with non-equality conditions. They are
applied to the output of join.

To ensure execution efficiency from the first two cases,
we define a new rule that transforms a disjunction to an
equivalent conjunction. The transformation involves two
steps: (1) to move the negation operation inward to the
unit condition according to De Morgan’s laws[18] and (2)
to try to extract common unit conditions from disjuncts
and make them a conjunction if the entire expression is
a disjunction.

Note that the transformation is not aimed toward a
conjunctive normal form. Conjuncts in the conjunctive
normal form usually involve multiple unit conditions
and, thus, multiple input data columns. They are not
conducive to decoupling and push-down. Compared
with complex propositions in common Boolean algebra,
conditions appearing in SQL queries are usually less
complicated. Thus, this one-step transformation is a
reasonable choice to balance the push-down effect.

Take TPC-H Q19 as an example. The query is to filter
and aggregate the results of a single join. The condition
is at first pushed into the join, and its transformation can
be expressed as Eq. (1)�:

Conditon D .LRE1^L1^L2^L3^R1^R2^R3/_

.LRE1^L4^L5^L6^R4^R2^R3/_

.LRE1^L7^L8^L9^R5^R2^R3/ D

LRE1^R2^R3^..L1^L2^L3^R1/_

.L4^L5^L6^R4/ _ .L7^L8^L9^R5// (1)

The condition before the transformation cannot be
pushed down because it involves columns from both
sides and is a disjunction. After the transformation,
LRE1 can be used as the equivalent condition of the
join operation, while R2 and R3 can be pushed down to
the right operator to reduce the amount of input data.

5.3 RowCount estimation

Calcite users can invoke getRowCount() to estimate
the number of output rows of an operator. The estimation
is based on Calcite’s mechanism that provides metadata.

�Li (Ri ) represents a unit condition that only refers to the left
(right) input; and LREI represents an equality unit condition
that refers to both inputs.

The mechanism can help to estimate information
such as RowCount and condition selectivity. It also
tracks inherited properties, such as unique keys and
column origins. Herein, we introduce our work that
utilizes unique key information to estimate the accurate
RowCount of join.

A unique key is a group of one or more fields or columns
of a table that uniquely identify row records. Consider
the estimation of the output RowCount of the simple
query select*from TableA, TableB where
TableA.x=TableB.y. In the default implementation
of Calcite, its estimated number of rows is
RowCount D TableA:RowCount � TableB:RowCount�

Selectivity.TableA.x D TableB.y/ (2)
Selectivity is a simple guess that returns a value

between 0.5 and 1.0. The guess does not involve any
table-related information and returns the same value for
all equality check. However, for each row in TableB,
if TableA.x is assumed to be a unique key for TableA,
then a maximum of one row in TableA can be found to
meet the condition TableA.x=TableB.y. Therefore,
we can deduce that the RowCount should not exceed
TableB. RowCount. It should be much less than the
default estimation in most cases. For other types of
join operations, the upper bound of the number of
rows can also be calculated. Under the assumption that
the columns involved in the left table in the equality
conditions constitute a unique key, Table 2 lists the upper
bounds of the estimated number of rows for different
types of join operations.

The column uniqueness information can be offered
when providing a schema for source tables. The metadata
provider tracks the information automatically when such
queries are invoked.

The estimation of RowCount is the basis of the cost
model. The join operator is almost the most expensive of
all operators and exerts great impact on the overall cost
of an entire query. Our estimation yields highly accurate
results and thus helps produce good execution plans.

6 Evaluation

In this section, we first analyze the query translation
quality of LotusSQL. To assess the performance and
acceleration potential of LotusSQL relative to Spark

Table 2 RowCount estimation for join.
Join Type RowCount upper bound

InnerJoin, RightJoin RTable:RowCount

OuterJoin, LeftJoin LTable.RowCount+RTable.RowCount-1
SemiJoin, AntiJoin LTable:RowCount
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SQL, we present two experiments on the standard
relational benchmark TPC-H[19]. The first experiment
involves the comparison of computing times while the
second one involves memory usage measurement.

6.1 Workloads and environment

We use the standard TPC-H benchmark for the analysis
and experiments. Datasets with a scale factor of 10
(SF10, i.e., 10 GB in total) and 100 (SF100, i.e., 100 GB
in total) are used for the running time experiment. Those
with a scale factor of 100 are used for the memory usage
experiment.

We conduct our experiments on a single machine,
the configurations of which are shown in Table 3. The
configurations of Spark SQL are presented in Table 4.
As the experiment is conducted on a single machine, we
deploy Spark SQL in the standalone mode and fine-tune
it in terms of memory and computing resource usage.

6.2 Query translation analysis

Optimized physical plans are essential for satisfying

Table 3 Experiment environment.
Item Discription
CPU Intel(R) Xeon(R) E5-2680 v4

Frequency 2.40 GHz
Pyhsical Cores 28
Virtual Cores 56

NUMA Nodes 2
Operating System Ubuntu 16.04.10

Main Memory 512 GB
Disk 6 TB NVMe SSD

Table 4 Spark configuration.
Item Discription

Spark Version 3.0.1
Hadoop Version 2.7

Java Version 11.0.9
Scala Version 2.12.10

Executors 8
Executor Cores 7

query performance. Figure 2b shows the translation
result of TPC-H Q3 with SF100. As a relatively simple
query involving three tables, the physical plan is nearly
the same as a human-optimized one. As for the other
queries, especially for those that need more joins and
aggregations, LotusSQL also generates satisfactory
results. Complex decisions, such as join reordering, are
difficult for humans to handle. Meanwhile, LotusSQL
performs well in such tasks.

Through the operation abstraction, the codes
generated by an execution plan are readable. These codes
are cumbersome to write, especially when manually
maintaining the index of columns. Remembering the
index after several joins takes significant human effort.

Although LotusSQL yields satisfactory plans and
achieves good usability, we admit that its query
optimization may still be improved. This potential
lies in the transformation of subqueries. As shown in
Fig. 5, even with a C++ computing engine, LotusSQL
behaves relatively slow on some queries. Typically,
Q18, Q21, and Q22 all include subqueries leading to
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Fig. 5 TPC-H computing time.
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expensive joins, which degrade performance. In addition,
operation-level optimization, such as dataset indexing,
can help improve join performance.

6.3 Computing time

In this experiment, we compare the absolute query
computing times of LotusSQL and Spark SQL on a single
machine using the TPC-H benchmark with SF10 and
SF100. We load all data into the main memory before
querying to eliminate the effect of data reading. We use
persist() to cache the data in both systems and ensure
that they have sufficient memory during computing. We
run the query once as a warm-up, repeat it 10 times, and
report the average running time as the result.

Figures 5a and 5b show respectively the average

computing times of LotusSQL and Spark SQL with
scale SF10 and SF100. LotusSQL performs better than
Spark SQL in most queries. Across all 22 queries,
the geometric average speedups of LotusSQL over
SparkSQL for SF10 and SF100 are 2:61� and 2:25�,
respectively.

6.4 Memory usage

We perform a memory usage experiment on the dataset
with SF100. The experiment evaluates the performance
of Spark SQL under different memory constraints. For
LotusSQL, we monitor the maximum memory usage
for each query. Figure 6 summarizes all queries for
both systems in one graph to reflect the overall situation.
The dots indicate the performance of Spark SQL under
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different memory limits (a line mainly identifies the data
points of the same query, and it does not represent the
performance in a continuous state). The triangle points
indicate the maximum memory usage of LotusSQL; they
are accurate values with a maximum available memory
of 512 GB. We do not mark query IDs as triangles for
clarity.

We evaluate the average query time of Spark SQL
when the maximum memory for the whole Spark cluster
is limited to 96, 128, 256, and 512 GB. Spark SQL
involves external storage in data shuffling when the
memory is insufficient. The performance degradation
caused by external storage access mostly happens before
256 GB. We also try to limit Spark SQL memory
usage to 64 GB. However, many queries fail because
of insufficient memory under this constraint. Thus, we
discard this configuration. The comparison of each query
is presented in Fig. 6.

The average maximum memory usage of 22 queries
is 153.60 GB, which is about 1:5� the original tables.
But for some complex queries, the memory usage is
still relatively large, which is reflected by a red triangle
appearing at the right side of a sub-figure, e.g., the sub-
figures of Q9 and Q18. Lotus adopts a partition-wise
computing model that each thread loads a partition into
memory at a time. Therefore, re-parting tables into
smaller pieces can save memory and make it possible to
run on a machine with less memory.

7 Discussion

By observing existing big data processing systems that
support SQL and how they support SQL, we can find that
they basically follow a similar route, which addresses
the challenges mentioned in Section 1. In this section,
we discuss our choice and hope that our work can bring
some inspiration to this type of problem.

7.1 Calcite as front end

When adding an SQL engine for a system, building it
from scratch is not wise. As SQL is such a mature query
language, many existing frameworks or modules can
facilitate compilation or optimization. Among all these
previous works, we choose Calcite as our frontend to
translate SQL queries into execution plans.

Adopting Calcite has advantages in several aspects.
First, Calcite is a united framework that integrates a
query parser and a query optimizer. Thus, we do not need
to deal with query parsing and optimization separately.

Second, the built-in optimization logic is powerful.
For example, Calcite can perform join reordering with
the information from a cost model. It is decisive with
regard to the performance of some queries, but it is not
supported in Spark SQL’s Catalyst optimizer. Third,
Calcite’s modular and extensible architecture makes the
addition of new features easy and allows implementation
to be adjusted according to our specific backend. Calcite
reduces the labor cost needed to develop an SQL engine
to an acceptable extent for one person.

Employing Calcite also brings problems that need
to be addressed. Its complicated design makes it a
heavy project. The source code in the core package
of Calcite exceeds 180 000 lines. Understanding
this foundation and using it correctly are inevitable
challenges. Furthermore, modifying Calcite under the
constraints of its architecture requires sophisticated
efforts.

7.2 SQL support in system hierarchy

Although LotusSQL sets itself as an SQL module for
the Lotus system, it is actually for Lotus’ operation API
with a cost model. Figure 7 abstracts our system into
two layers with a total of five parts. The intermediate
parts with purple shadow have direct dependencies
while the parser and bottom module can be replaced
by any compatible substitute. Calcite leaves storage
management to the backend and provides Adapter
to connect to them. LotusSQL does not adopt the
adapter design, but it can support specialized low-
level implementation. Lotus can replace the in-memory
storage module with a distributed one transparently. We
will analyze the distributed version in the future. The
change of the bottom module may require an adjustment
of the cost model. For Lotus, such adjustment is not
needed because our cost model is not that fine-grained
and our physical operations keep the relative cost in
distributed mode.
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Optimizer

Dataset API

Operation Implementation

I/O, Storage, Schedule…

Co
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M
od

el Physical Plan

Front
End

Back
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Fig. 7 System hierarchy.
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8 Related Work

8.1 SQL for big data systems

Since the introduction of the Google File System[20]

and MapReduce model[21], big data processing based
on their ideas has grown rapidly. Hadoop[1] and its file
system[22] support fault-tolerant MapReduce workloads
on large clusters. Twister[2] and Haloop[3] improve
iterative MapReduce workloads by keeping invariant
data between iterations. Spark[4] further supports
persisting data in memory to enhance data reuse. Another
contribution of Spark is the abstraction RDD and its
concise interfaces.

On top of these systems, the need for OLAP on
structured and semistructured data encourages many
specific modules or subsystems. Pig[23], Hive[24], and
Impala[25] are upper-level query engines for Hadoop
supporting SQL or SQL-like language. Pig and Hive
are developed in Java and integrated with native
Hadoop while Impala uses C++ and does not build on
MapReduce. However, Impala lacks some important
features, such as correlated subqueries and custom user-
defined functions. Shark[26] and Spark SQL[7] are SQL
engines for Spark. Spark SQL adopts a completely
new query optimizer and is widely used because of its
complete functionality and energetic community.

Asterix[27] and Stratosphere[28] are other systems
that overtake Hadoop or Hive in various dimensions.
Tupleware[29] is a system that is explicitly aimed
towards complex analytics on small clusters. Structured
Computations Optimized for Parallel Execution
(SCOPE)[30] is a structured data processing language
presented by Microsoft. SCOPE has its particular
distributed compute engine.

Although these systems are impressive, LotusSQL sets
itself apart by building an SQL engine on general dataset
abstraction written in C++ and achieving relational
performance improvement over Spark SQL by more
than 2� on average on a full set of TPC-H queries.

8.2 Query compilation

The iterator model for query evaluation is classical in
relational databases. It was proposed relatively early[31].
Volcano[15] and Cascades[16] are the most commonly
used optimization strategies today, as they are flexible
and quite simple.

The query compilation strategy[17] proposed by
Thomas Neumann on HyPer[32] inspires LotusSQL.
Whereas HyPer is a main-memory database and

translates queries into machine code directly, LotusSQL
is based on a big data processing system and generates
C++ codes.

8.3 Performance evaluation

McSherry et al.[33] proposed the Configuration that
Outperforms a Single Thread (COST) metric and showed
that in many cases, single-threaded programs could
outperform big data processing frameworks running on
large clusters. This finding reminds us that cumbersome
clusters may not be the best and only choice for big data
processing. We agree with such notion given the fact
that high-bandwidth out-of-core storage is becoming the
new mainstream.

TPC-H[19] is a commercial decision support
benchmark that consists of 22 analytical queries. Almost
all typical query patterns, including aggregation, large
join, sorting, and correlated subqueries, can be found in
TPC-H.

9 Conclusion

Modern data analytics need to make efficient use of
modern hardware with large memory and numerous
cores. Lotus is such a general big data processing
system developed with native programming language.
To boost Lotus with a convenient and expressive user
interface, we present LotusSQL. LotusSQL uses Calcite
to compile and optimize queries with the guidance of a
physical cost model. Structured datasets are designed
to be compatible with native Lotus datasets but adopt
columnar storage. The dependencies are resolved as a
whole and compressed during C++ compilation time.
With all these strategies, LotusSQL outperforms Spark
SQL in TPC-H queries by more than twice on average.

In future LotusSQL versions, we plan to support
prepared statements in SQL queries to enable query plan
reuse, and to improve the optimization toward correlated
subqueries.
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