
Vol.:(0123456789)

The Journal of Supercomputing (2020) 76:549–579
https://doi.org/10.1007/s11227-019-03023-0

1 3

Survey of external memory large‑scale graph processing 
on a multi‑core system

Jianqiang Huang1,2 · Wei Qin1 · Xiaoying Wang2 · Wenguang Chen1,2

Published online: 26 October 2019 
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
The fast development of big data computing contributes to the fact that large-scale 
graph processing has become a basic computing model in both academic and indus-
trial communities, and it has been applied in many actual big data computing works, 
such as social network analysis, Web search, and product promotion. These comput-
ing works include large-scale graphs of billions of vertices and trillions of edges. 
Such scale has brought many challenges to large-scale graph processing. This paper 
mainly introduces the essential features and challenges of large-scale graph process-
ing and how we can handle billions of edges on a multi-core machine, for which we 
represent out-of-core processing system and semi-external memory processing sys-
tems. This paper also summarizes the key technologies in graph processing systems 
and forecasts the future development of large-scale graph processing systems.

Keywords  Graph data processing · Parallel computing · Computing model · Graph 
algorithms

1  Introduction

Graph processing is an abstract expression of the graph structure in the real world 
on the basis of graph theory and a computing model based on this data structure. 
Many graph processing problems exist in practical applications, such as shortest 
path, connected branch, Web page sorting, and friend recommendation. In the early 
days, the graph processing problem was small in scale, and the main solutions were 
as follows:

 *	 Jianqiang Huang 
	 hjq16@mails.tsinghua.edu.cn

	 Wenguang Chen 
	 cwg@tsinghua.edu.cn

1	 Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
2	 Department of Computer Technology and Application, Qinghai University, Xining 810016, 

Qinghai, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-03023-0&domain=pdf


550	 J. Huang et al.

1 3

•	 A multi-core machine graph processing algorithm library, such as Stanford 
GraphBase  [1] and BGL  [2], was used to limit the scale of graph processing 
problems.

•	 Parallel BGL [3] and CGMgraph [4] were used in parallel computing systems. 
These libraries have made considerable achievements for parallel graph algo-
rithms but are unable to solve the problem of fault tolerance in large-scale dis-
tributed systems and cannot guarantee system accuracy and stability.

•	 To develop a corresponding distributed architecture for a specific graph applica-
tion to realize graph processing, the code can be optimized for a specific appli-
cation to achieve high-performance computing. However, when faced with a 
new graph algorithm or graph representation, a large amount of code needs to 
be rewritten, which results in low code reuse rate, poor scalability, high require-
ments for programmers, and poor universality.

In recent years, the increasing scale of graph structure data has been increasing. For 
example, as of 2013, an average of 5 billion tweets were generated every day on the 
social platform Twitter  [5]. By the second quarter of 2016, Facebook had 1.7 bil-
lion monthly active users [6]. Nowadays, more relationships between users are being 
established, and data usually take up hundreds of gigabytes or even terabytes of stor-
age. Therefore, large graph processing is not only computationally intensive but also 
memory intensive. Computing large graphs within an acceptable time is difficult.

With the advent of big data, the need for efficient analysis and data value min-
ing for large-scale data has become particularly urgent. In the past decade, an open-
source ecosystem with Hadoop  [7] as the core and based on the MapReduce  [8] 
programming model has been rapidly popularized with its mature system code 
implementation and high availability of cluster scale. In the past three years, with 
the upgrading of the current memory capacity and terabytes of memory becoming 
the norm, Spark [9] as the core open-source ecosystem increases the performance of 
mass data processing by order of magnitude based on the RDD [10] memory com-
puting model. However, neither Hadoop nor Spark can adapt to the parallel com-
puting features of data relevance, access locality, and computational iteration in the 
graph data structure.

In the field of distributed computing, due to its search business requirements, 
Internet giant Google developed the Pregel  [11] graph processing system to meet 
computational requirements in the context of the graph data structure, which can-
not be achieved with high efficiency by the MapReduce programming model. Sub-
sequently, a series of distributed graph processing systems such as GraphLab [12] 
and PowerGraph [13] came into being. However, the simple multi-core machine sys-
tem has been attracting more attention than the distributed system, which involves 
complex programming and management. The multi-core machine system solves the 
problems of poor disk access performance, low task concurrency, and low device 
memory bandwidth utilization caused by graph data partition.

In terms of the multi-core machine graph processing system, GraphChi  [14], 
x-stream  [15], GridGraph  [16], and other systems  [17–36] make processing clus-
tered graph data on a multi-core machine possible. In the present multi-core 
machine graph processing system, due to the increasing graph size and limited 



551

1 3

Survey of external memory large-scale graph processing on…

memory capacity of the multi-core machine, the file size of the data to be processed 
is often several or even dozens of times the size of a multi-core machines memory. 
Therefore, the system is forced to adopt a data partitioning strategy in data process-
ing. Each time a portion of the data in the diagram is processed, the entire process is 
completed by performing processing tasks multiple times. The traditional data par-
titioning strategy involves dividing vertices sequentially from end to end according 
to the storage order of data files on the disk under the premise that each data block 
is smaller than the memory capacity and the associated data from the same graph 
vertex will not be split into two different data blocks.

The most basic traditional partition strategy is to divide the data directly accord-
ing to the structure of the graph. This strategy can cause two kinds of system prob-
lems. One problem is unbalanced computational load, which refers to the condition 
in which some high-frequency vertices may be distributed together, thereby leading 
to a large processing load of the entire data block and even to serious I/O overhead. 
The other problem is low task concurrency, which means that a large number of 
adjacent vertices will be present in each data block, causing problems such as data 
access conflicts in parallel computing. As a result, the number of concurrent tasks 
can be reduced and concurrency greatly reduced.

Compared with BSP models, which have a high synchronization overhead, the 
asynchronous processing model can avoid unnecessary synchronization overhead 
and is more suitable for graph data processing. However, the traditional asynchro-
nous processing model is mostly based on locking and graph coloring algorithm to 
address potential data conflicts in updating [37, 38]. Given the high cost of locking 
operation in GPU [39–45], graph coloring is the choice to ensure data consistency. 
Using the traditional coloring algorithm to deal with graphs will produce hundreds 
of color blocks, among which numerous color blocks contain only a few processing 
tasks; this condition leads to insufficient use of GPU computing resources.

With the vigorous development of information and communication technology, 
human society has entered the era of big data. According to Facebook′s assessment, 
in October 2018, the number of active users per month reached 2.2 billion [46], as 
shown in Fig.  1, which lists the top seven social network software with monthly 
active users. A large amount of various types of information can be naturally 
abstracted into graph structure data  [15, 47], thereby allowing corresponding practi-
cal problems to be naturally transformed into graph processing problems.

This paper introduces the main features and challenges of current large graph pro-
cessing. The basic ideas, advantages, and disadvantages of different types of graph 
processing systems will be compared, analyzed, and summarized from the system 
perspective. The key techniques of the graph processing system are summarized, 
and possible research directions for large graph processing systems are given.

2 � Features and challenges of large graph processing

Graph is a data structure that describes the complex relationship between data. In 
form, a graph is composed of vertices and edges, which are usually expressed as 
G = (V ,E) , where vertex set V represents an object or entity and edge set E represents 



552	 J. Huang et al.

1 3

the relationship between objects or entities. Table 1 shows the abbreviations used in this 
paper. Each vertex and edge may contain additional tags that mark the attribute informa-
tion of objects, entities, or relationships. Traditional graph theory and graph algorithm 
focus on the algorithm complexity of the graph problem and the real-scale graph algo-
rithm problem (such as the processing of a multi-core machine with limited memory).

In the current field of big data analysis, the scale of graph data to be processed 
is often in billions of vertices. Moreover, the graph data structure is complex and 
changeable, and the graph algorithm is difficult to process efficiently in traditional 
computing systems. Therefore, a computational model that supports large-scale and 
efficient graph processing needs to be designed to meet the above challenges. The 
graph processing model is designed and implemented in accordance with the char-
acteristics of graph data and graph processing, which is commonly used in the graph 
processing systems. The graph processing model has the following characteristics 
and challenges, which are different from those of the traditional computing model:

Facebook

YouTube

WhatsApp

WeChat

Instagram

Twitter

QQ

0 5 10 15 20 25

22

18

19

15

10

8.5

8

Fig. 1   Global social network ranking (by number of active users) (unit: 100 million people)

Table 1   Notations of a 
abbreviation

Notation Meaning

G A graph G = (V ,E)

V Vertices in G
E Edges in G
n Number of vertices in G, n = [V]

m Number of edges in G, m = [E]

BFS Breadth-first search
SSSP Single-source shortest path
CSR Compressed sparse row
CSC Compressed sparse column
GPU Graphics processing unit
PSW Parallel sliding windows



553

1 3

Survey of external memory large-scale graph processing on…

•	 Poor locality: The graph represents relationships between different entities that 
are often irregular and unstructured in practical problems. Therefore, graph pro-
cessing and memory model do not have good locality. In the current computer 
architecture, the performance of a program often requires good use of locality. 
Therefore, how to layout and divide graph data and developing a corresponding 
computing model to improve data locality are important approaches to improve 
the performance of graph processing and are also the main challenges.

•	 Data- and graph structure-driven calculations: Graph processing is entirely 
driven by the data in the graph. When the graph algorithm is executed, the algo-
rithm is guided by vertices and edges in the graph rather than directly through 
the code in the program. Therefore, different graph structures will have different 
computing performances on the same algorithm implementation. Thus, ensuring 
that different graph structures obtain better processing results on the same sys-
tem is also a major challenge.

•	 Unstructured characteristics of graph data: Graph data are often unstructured and 
irregular in graph processing. When a distributed framework is used for graph 
processing, the graph needs to be divided and the load must be distributed to 
each node. This unstructured characteristic of the graph makes achieving effec-
tive partitioning of the graph difficult; effective partitioning could attain load 
balance of storage, communication, and computing. An unreasonable partition 
causes the unbalanced load between nodes to seriously limit the systems expan-
sibility, and the processing capacity will not be able to meet the computational 
scale of the system.

•	 I/O bound: Substantial large graph processing makes storing all the data in the 
memory impossible. Disk I/O in computation is essential, and most graph algo-
rithms present an iteration. In other words, the whole algorithm needs to be iter-
ated several times, and the whole graph structure needs to be traversed in each 
iteration, and relatively minimal computing is performed in each iteration. There-
fore, a high visiting/computing rate is achieved. In addition, the poor locality of 
graph processing results in high overhead in waiting for I/O.

The current graph data processing system, whether in a distributed environment or 
multi-core machine processing system, mainly aims to solve two problems: how to 
reduce the random access overhead during graph algorithm execution and how to 
divide graph data efficiently to solve the load imbalance caused by partition. At pre-
sent, both local research and foreign research focus on the establishment of a graph 
processing system, data partitioning strategy, and GPU graph data processing [48–51].

2.1 � Out‑of‑core graph processing system

With the improved processing and storage capacity of a multi-core computer, as 
well as extensive research on the graph processing model, some systems for large 
graph processing on a multi-core computer are proposed. These systems have good 
graph processing performance and have obvious advantages of low hardware cost 
and power consumption over distributed systems.



554	 J. Huang et al.

1 3

Large-scale multi-core machine graph processing system uses the CPU, memory, 
and disk on a multi-core machine for large-scale graph processing. Such systems 
handle large-scale graph data by reducing random disk writes, avoiding high com-
munication overhead, and adopting multi-core and parallel technologies. When the 
graph size is not very large, the task can be completed within an acceptable time to 
achieve the time performance of the distributed large-scale graph processing sys-
tem. Examples of a large-scale multi-core machine graph processing system are 
GraphChi  [14], Grace  [17], X-Stream [15], TurboGraph  [18], VENUS [19], Grid-
Graph [16], FlashGraph [20], PathGraph [21], etc.

2.1.1 � GraphChi

GraphChi  [14] is a disk-based multi-core machine large graph processing system. 
In large graph processing, access locality is very poor, which seriously affects the 
computing performance. In particular, the computational power of the system is lim-
ited to multi-core machines. To improve computing performance, GraphChi uses an 
innovative disk data layout and a corresponding computing model to reduce random 
access to disks; selective scheduling is used to accelerate the convergence of the 
algorithm.

GraphChi assumes that the computer memory capacity is limited, that is, (1) the 
size of the processed graph structure data is much larger than the memory capacity 
and (2) the computer has enough memory to hold any vertex of graph data and all 
the adjacent edges of that vertex. Obviously, this assumption is in accordance with 
the actual situation. The actual large-scale graph data are basically sparse graph, and 
commonly used sparse graph storage formats, such as row compression (compressed 
sparse row) or column compression (compressed sparse column), experience the 
random access problem.

For example, row compression causes the output edge of a vertex to be stored 
continuously, while column compression makes the input edge of a vertex stored 
continuously. If only row compression is used, then the output edge of vertices can 
be accessed continuously and the input edge of vertices needs to be accessed ran-
domly. Likewise, if only column compression is used, then the input edge of vertices 
can be accessed continuously and the output edge of vertices needs to be accessed 
randomly. If both row and column compressions are used, then all edges in the 
graph will be stored in two copies. When the value of the edge is modified, the data 
synchronization problem occurs. To access the graph data stored in the disk continu-
ously, GraphChi proposed the method of parallel sliding windows (PSW) to solve 
the random access problem.

GraphChi first preprocesses the graph data before computing, dividing the input 
graph into multiple shards. Each shard stores all the input edges of the correspond-
ing vertex set and sorts them according to the ID of their source node. When par-
titioning, the number of edges in each shard should be roughly the same and each 
shard should be loaded into memory. GraphChi uses a vertex-centric computing 
model and uses PSW to load data for computing, as shown in Fig. 2. Every interval 



555

1 3

Survey of external memory large-scale graph processing on…

computes a subgraph. The input edge (dark gray part) of a point set and its output 
edge (black rectangle part) in other shards should be read sequentially. This data lay-
out and computing model ensure that I/O is computed each time sequentially. In this 
way, the values of all vertices in the whole graph are computed in one iteration and 
iterated many times until the algorithm converges.

In GraphChi, selective scheduling can be used to accelerate the convergence of 
some vertices in the graph, especially those vertices that change significantly in 
two adjacent iterations. When the vertex is executing update(), similar to apply() in 
GraphLab, its neighbor vertices can be added to the scheduler for selective scheduling.

Algorithm 1 Parallel Sliding Windows (PSW)
1: for each iteration do
2: shards[] = InitializeShards(P )
3: for interval = 1 to P do
4: /∗ Load subgraph for interval, using Alg. 3. Note
5: that the edge values are stored as pointers to the
6: loaded file blocks. ∗/
7: subgraph = LoadSubgraph(interval)
8: parallel
9: for each vertex ∈ subgraph.vertex do
10: /∗ Execute user − defined update function,
11: which can modify the values of the edges ∗/
12: UDF updateV ertex(vertex)
13: end for
14: /∗ Update memory − shard to disk ∗/
15: shards[interval].UpdateFully()
16: /∗ Update sliding windows on disk ∗/
17: for s ∈ 1, .., P, s �= interval do
18: shards[s].UpdateLastWindowToDisk()
19: end for
20: end for
21: end for

Interval(1) Interval(2) Interval(P)

|V|

Edge 
shard(1)

Edge 
shard(2)

Edge 
shard(P)

1 V1 V2

Vertex 
shard(1)

Vertex 
shard(P)

Vertex 
shard(2)

Fig. 2   Intervals and shards in the graph



556	 J. Huang et al.

1 3

Algorithm 2 Function LoadSubGraph(p)
Require: Interval index number p
Ensure: Subgraph of vertices in the interval p
1: /∗ Initialization ∗/
2: a = nterval[p].start
3: b = nterval[p].end
4: G = InitializeSubgraph(a, b)
5: /∗ Load edges in memory − shard. ∗/
6: edgesM = shard[p].readFully()
7: /∗ Evolving graphs : Add edges from buffers. ∗/
8: edgesM = edgesM ∪ shard[p].edgebuffer[1..P ]
9: for each e ∈ edgesM do
10: /∗ Note : edge values are stored as pointers. ∗/
11: G.vertex[edge.dest].addInEdge(e.source, e.val)
12: if e.source ∈ [a, b] then
13: G.vertex[edge.source].addOutEdge(e.dest, e.val)
14: end if
15: end for
16: /∗ Load out− edges in sliding shards. ∗/
17: for s ∈ 1, .., P, s = p do
18: end for
19: edgesS = shard[s].readNextWindow(a, b)
20: /∗ Evolving graphs : Add edges from shards buffer p ∗/
21: edgesS ∈ edgesS ∪ shard[s].edgebuffer[p]
22: for each e ∈ edgesS do
23: G.vertex[e.src].addOutEdge(e.dest, e.val)
24: end for
25: return G

Now we describe a simple example that consists of two execution intervals, as 
shown in Fig. 3. In this example, we have a graph of six vertices divided into three 
equal intervals: 1–2, 3–4, and 5–6. Figure 3a shows the initial contents of the three 
shards. PSW (as shown in Algorithms 1 and 2) starts executing interval 1 and loads 
the subgraph that contains the edges drawn in bold in Fig. 3c. The first shard places in 
memory, which is fully loaded. The memory shard contains all the inner edges of ver-
tices 1 and 2, as well as the outer sub-set. Shards 2 and 3 are slide shards, and the win-
dow starts with these shards. Shard 2 contains the two outer edges of vertices 1 and 2; 
shard 3 has only one outer edge. The loaded blocks are shown as shadows in Fig. 3a. 
After the graph is loaded into the memory, PSW runs the update function of vertices 
1 and 2. After the update is performed, the modified block is written to the disk; the 
updated value is shown in Fig. 3b. Then, PSW moves to the second interval, vertices 3 
and 4. Figure 3d shows the corresponding edges in bold, and Fig. 3b shows the loaded 
blocks in shadows. Now, shard 2 is the memory shard. For shard 3, we can see that the 
block of the second interval appears after the block loaded in the first interval.

2.1.2 � X‑Stream

Unlike GraphChi’s vertex-centric computing model, X-Stream  [15] uses an edge-
centric computing model (as shown in Fig. 4), and all states are stored in the point. 
The computing process of X-Stream is mainly divided into three stages: scatter, 



557

1 3

Survey of external memory large-scale graph processing on…

shuffle, and gather. In scatter phase, X-Stream traverses each edge in order to judge 
whether the source node of the edge generates update, and if update occurs, the edge 
is sent out to the destination node through output edge. Shuffle phase refers to the 
phase of updating data exchange between different partition blocks after graph parti-
tion, mainly to reduce the random write overhead in scatter phase.

Edge-centric computing model

scatter phase:
for each streaming_partition p
read in vertex set of p
for each edge e in edge list of p
edge_scatter(e): append update to Uout

shuffle phase:

src dst value

1

2 0.3

3

2 0.2

4

1 1.4

5

1 0.5

2 0.6

6

2 0.8

Shard 1

src dst value

1

3 0.4

2

3 0.3

3

4 0.8

5

3 0.2

6

4 1.9

Shard 2

src dst value

2

5 0.6

3

5 0.9

6 1.2

4

5 0.3

5

6 1.1

Shard 3

(a) Execution interval (vertices 1-2)

2

3

1

4

5

6

(b) Execution vertices 1-2

src dst value

1

2 0.273

3

2 0.22

4

1 1.54

5

1 0.55

2 0.66

6

2 0.88

Shard 1

src dst value

1

3 0.364

2

3 0.273

3

4 0.8

5

3 0.2

6

4 1.9

Shard 2

src dst value

2

5 0.545

3

5 0.9

6 1.2

4

5 0.3

5

6 1.1

Shard 3

(c) Execution interval (vertices 3-4)

2

3

1

4

5

6

(d) Execution vertices 3-4

Fig. 3   Illustration of the operation of the PSW method on a toy graph (see the text for description)



558	 J. Huang et al.

1 3

for each update u in Uout

let p= partition containing target of u
append u to Uin(p)

destroy Uout

gather phase:
for each streaming_partition p
for each update u in Uin(p)

edge_gather(u)
destroy Uin(p)

In gather phase, X-Stream iterates through all the updates generated in scatter phase 
and updates the state value of the corresponding point. X-Stream uses edge-centric 
computing model to access edges sequentially, giving full play to the sequential 
access high-bandwidth of secondary storage media on disk to accelerate graph pro-
cessing, but the access to the point in X-Stream is random. In order to optimize this 
and further improve computing performance, X-Stream divides the point set of the 
graph equally into small sub-sets, and all output edges of each point in sub-sets cor-
respondingly form a partition set of edges. The partition of points is mainly to store 
all points in each sub-set in memory. In this way, when computing each partition 
block, the random access overhead of points can be greatly reduced.

After graph partition, each partition block is in scatter phase. First, all update 
values are written in a local output cache. Then, a shuffle phase begins when all the 
blocks finish scatter. The main work in shuffle phase is to allocate all the updates of 
the partition blocks and allocate the updates to the input cache of the correspond-
ing partition blocks as the input of gather phase, and the status of point is updated. 
Compared with GraphChi, X-Stream makes sequential access to all edges, which 

2

3

1

4

(a) Graph example

Sequen�al read edges

Sca�er
Process Streaming Par��on-1

Process Streaming Par��on-2

Update[1]

Update[2]

Update[3]

Update[4]

Update[5]

Update[6]

Uout
Update[1].dest=2
Belongs to 
pari��on-1

shuffle

U
in-1

U
in-2

gather

Edge.gather[
Update[5]]

(b) Graph data processing

Fig. 4   Graph data processing based on X-Stream



559

1 3

Survey of external memory large-scale graph processing on…

can give full play to the sequential bandwidth speed of secondary storage media on 
disk, and meanwhile, the preprocessing stage (simple hash graph partition opera-
tion) does not require expensive sorting, so it can obtain better graph processing 
performance.

2.1.3 � GridGraph

In X-Stream, between scatter and gather phases, a shuffle phase is also required to 
allocate the updated values generated by each partition in scatter phase to the input 
cache of the corresponding partition for computing in gather phase. In scatter phase, 
the updated value will be as large as O(|E|), where |E| represents the number of edges 
in the graph. Therefore, when the memory runs out, a portion of the cache need to 
be written to disk first, and the updated value written to disk needs to be re-read into 
memory in gather phase. Thus, more I/O may be triggered during this process, seri-
ously affecting the performance of the system.

To solve this problem, GridGraph [16] proposes a grid division method as shown 
in Fig. 5. First, the entire point set is divided into P sub-sets of the same size, and 
then, the edges are divided into grids with rows and columns, with each row cor-
responding to all the output edges corresponding to the points in a sub-set and each 
column corresponding to all the input edges corresponding to the points in a sub-set. 
Based on this graph partition method, the author puts forward the computing model 
of double sliding window (as shown in Fig. 5), which is the first iteration of PageR-
ank of graph structure in Fig. 6. To compute the update value of the point, its input 
source node value needs to be read. To do this, the edges of each grid in column 
need to be read in sequence from top to bottom for computing. When a column is 
computed, the point value of a sub-set is computed. Then, the window slides to the 
next column and continues computing until all grids are traversed.

In this computing model, the updated value computation must conform to the 
commutative law. In addition, this point value update is local update, which will 
not produce intermediate update result, greatly reducing I/O. At the same time, the 

Fig. 5   Grid representation



560	 J. Huang et al.

1 3

locality of point data access will also be improved. The secondary graph partition 
strategy is used in graph partition. That is, the graph is first divided into Q parts so 
that the edges of each grid can be stored in memory and then to partition each grid 
so that each grid can be stored in the last level cache (LLC). In addition, GridGraph 
supports selective scheduling, which can greatly reduce I/O and improve computing 
performance in algorithms such as BFS and WCC.

2.2 � Semi‑external memory graph processing system

2.2.1 � FlashGraph

FlashGraph [20] is a multi-core-machine graph processing system that can process 
graphs with trillions of nodes on a solid-state disk array. To address the need for 
larger datasets for graph processing, FlashGraph uses Flash SSD instead of DRAM 
to hold more data and provide comparable performance. According to the descrip-
tion of this paper, the existing distributed graph processing is either conducted 
entirely with DRAM, pursuing high performance but high cost, or it is retrograde to 
use traditional disk as storage but has serious performance impact and the program-
ming model has certain limitations. (Random access to vertex list is not allowed.)

FlashGraph performs in three ways: One is to reduce I/O by making the data it 
constructs as compact as possible, the other is to adopt sequential I/O as possible, 
and the third is to parallelize I/O and computing. To do all the three things, a user-
space file system is built on top of Linux VFS, primarily to avoid memory copying 
and to understand I/O. Because issuing I/O to SSD requires a copy of user state and 

Fig. 6   Dual sliding windows



561

1 3

Survey of external memory large-scale graph processing on…

kernel state, and implementing a simple Page Cache in user state can greatly reduce 
the memory copy brought by Context Switch. Also, because cache can be applica-
tion-aware, the cache hit rate can be improved based on the context of the applica-
tion (Task). In addition, the programming model provided by FlashGraph enables 
execution below each execution body to the Userspace file system layer, making full 
use of the Userspace Page Cache for access and avoiding secondary copies of User-
space. Computing intensive applications often have high requirements for memory 
access, and both locality and space are major optimization points. Therefore, it is 
necessary to plan the execution space of the whole program into a flat space as much 
as possible to improve the cache hit rate.

2.2.2 � VENUS

Although GraphChi can achieve good computing effect in large graph processing, 
it has the following disadvantages: preprocessing requires sorting the source nodes 
of the edge, which is costly; the loading and computing of graph data are separate 
and do not take full advantage of the parallel disk and I/O to improve the comput-
ing performance; after sorting edges in shard, the corresponding edges of each point 
are not adjacent to each other, and the cache locality is not high. Based on the above 
observations, VENUS  [19] proposed vertex-centric flow graph processing model 
which significantly reduces disk-based graph I/O and greatly improves the situation 
of system I/O bottleneck. Compared with common big data platform like Hadoop 
and Spark, VENUS is designed to scale out data and read large data concurrently 
on large clusters to cope with the large amount of I/O required for large amounts of 
data. VENUS has a unique technology approach based on extraneous algorithms, 
known as hierarchical storage-based vertex central fluidized graph processing 
model, which has broken through the expandability of graph processing system on a 
multi-core computer and solved the problem of how to effectively utilize disk band-
width and reduce the access to mass graph data I/O in graph processing. g-shard 
is similar to the shard in GraphChi, storing all input edges corresponding to a sub-
point set. But instead of sorting edges, it stores the same edges at the destination 
vertex in adjacent locations. V-shard stores values corresponding to all destination 
and source vertices in a g-shard. In addition, a global table of point values is used 
from which v-shard reads and writes back the corresponding point values. When the 
system computes the update value of the point, it does not need to load all the input 
and output edges into memory at the same time as GraphChi but to load the input 
edge into memory, and when the node is updated, the updated value does not need to 
be written into the output edge anymore, which can greatly reduce I/O. In addition, 
when all the input edges of a point in g-shard are loaded, the value of that point can 
be computed to overlap I/O. At present, VENUS system analyzes 1 billion orders of 
magnitude of user log data in Huawei’s mobile application market, which supports 
target customer selection of advertisement and mobile application recommendation 
service.



562	 J. Huang et al.

1 3

2.2.3 � TurboGraph

Although GraphChi performs much better than disk-based distributed graph engines, 
it has the following problems:

•	 Limited parallel processing;
•	 Step-by-step I/O processing and CPU processing;

The author proposes a new disk-based graph engine, TurboGraph  [18], which can 
efficiently process billion-size graph on a single PC:

•	 A universal extensible graph engine based on a multi-core computer is proposed, 
which can make full use of the parallelism between multi-core and I/O and the 
overlapping processing between CPU and I/O;

•	 A disk and memory structure for storing a billion-size graph is proposed, which 
can effectively support graph traversal and bitmap-based operations;

•	 A fast and extensible core diagram operation is proposed, using the pin-and-slide 
model;

•	 Experiments with large datasets show that TurboGraph is four orders of magni-
tude stronger in performance than GraphChi.

2.2.4 � PathGraph

PathGraph [21] is a path-centric, multi-core machine graph processing system that 
improves iterative graph processing for graphs with billions of edges. It models large 
graphs using collections of tree-based partitions, improving memory and disk access 
localization for large graph iteration algorithms, and it has developed an optimized 
compression storage for the parallel computing of the iteration graph. Also, the scat-
ter/gather program model is used to implement the path-centric computing model.

3 � Key techniques in large graph processing

Current research on graph processing models focuses on performance optimization 
for a particular pattern or provides the same interface for both patterns to allow users 
to select according to the characteristics of the algorithm. Reference [6] summarizes 
the data storage technology and computing model of graph processing and mainly 
explains the graph processing system and synchronous computing model based on 
Hadoop platform. Both PowerGraph  [13] and Grace  [17] systems provide support 
for both synchronous and asynchronous computing models with the same interface. 
Different from data parallel computing model represented by MapReduce, the appli-
cation of graph processing model usually requires the interaction between vertices 
and several rounds of iteration until all vertex computing converge.

The computation of each vertex is abstracted as three steps of collecting (gather) 
adjacent vertex data, updating (apply) own data, and activating (scatter) adjacent 
vertex (GAS). Taking PageRank, which is widely used in Web search and social 



563

1 3

Survey of external memory large-scale graph processing on…

impact statistics, as an example, formula (1) shows the algorithm of Web page v to 
compute its ranking value. d is an attenuation coefficient, usually at 0.85; n is the 
number of pages; v.in_ngbrs is all pages that point to v; u.noutngbrs is the number 
of pages that the Web page u points to.

Based on formula (1), Algorithm 3 gives the realization of PageRank under GAS 
computing model. Each Web page is regarded as a vertex in the graph. Users need to 
maintain a ranking value rank for each vertex and provide three function interfaces 
of gather, apply, and scatter. The gather (v, u) function is used to collect the ranking 
value of the adjacent vertex u of vertex v, the apply (v) function uses the sum of the 
neighboring vertex value to update the ranking value of the vertex v, and the scat-
ter (v, u) function determines whether to activate the adjacent vertex u according to 
the change in the ranking value of vertex v. During the computing of vertex v, the 
graph processing framework executes the gather function (lines 1–3) for all adjacent 
vertices pointing to vertex v to collect the ranking values; the apply function is then 
called on vertex v to update the ranking value (lines 5–9); finally, the scatter function 
(lines 12) is called for all vertices pointed by vertex v to activate adjacent vertices.

Algorithm 3 :Pseudo-code of the vertex update function for weighted PageRank.
Input: All intervals vertex-shards and edge-shards of graph G, optional initialization data.
Output: Desired output results.
1: function Update(vertex)
2: Initialize(vertex-shards);
3: repeat
4: v[i] = read values of out-edges of vertex i ;
5: vertex.value = f(v[i]) ;
6: if ∆f(v[i]) �= 0 then f(v[i]) = ∆f(v[i])+ f(v[i]) ;
7: for each edge of vertex do
8: edge.value = f(vertex.value, edge.value));
9: ∆f(v[i]) = 0 ;
10: end for
11: end if
12: PassingMessage(vertex) ;
13: remove outgoing edges of i

Accumulate ΔVi to vertex i and perform an update operation to use the update 
of ΔVj of the neighbor vertex, j, followed by resetting the change of information in 
vertex i. When the operation on vertex i is completed, the edge data of vertex i are 
deleted from memory to free memory space for other uncomputed vertex edge data. 
This activity is repeated until the algorithm converges.

3.1 � Computing model

With the increasing scale of graph data, the processing and storage capacity of a 
multi-core server cannot meet computing needs; thus, the distributed platform 
becomes the inevitable choice. The input graph needs to be evenly distributed 

(1)v.rank =
1 − d

n
+ d ×

∑

u∈v.in_ngbrs

u.rank

u.noutngbrs



564	 J. Huang et al.

1 3

across all the machines in the cluster, and distributed graph processing is completed 
through messaging. The messaging of graph processing can be summarized in two 
ways: direct messaging between adjacent vertices and messaging between vertices 
and read-only replication. Direct messaging, while simple, does not support the 
active capture of the vertex to contiguous vertex data (pull pattern) and can send 
updates in one direction only. Therefore, dynamic computing and incremental com-
puting cannot be implemented, and all vertices must participate in the whole com-
puting process even if most of them have converged.

The system based on vertex backup simulates distributed shared memory by 
creating local read-only replication for cross-machine vertices to meet the needs of 
adjacent vertex data access during computing, and the data of vertex and backup are 
kept consistent through messaging. The converged vertex does not need to partici-
pate in computing, and redundant computing is avoided. Currently, a large number 
of distributed graph processing models (e.g., GraphLab [12], PowerGraph [13], and 
GraphX [52]) adopt the message delivery model based on vertex backup. The same 
message delivery model based on vertex backup is used in this article.

The engine of the existing distributed graph processing framework can be divided 
into synchronous and asynchronous according to different control flow and data flow 
patterns. The control flow pattern determines how vertex computing is scheduled, 
while the data flow pattern determines when adjacent vertex data values are used. 
The pros and cons of both synchronous and asynchronous computing patterns are 
discussed as follows.

3.1.1 � Synchronous computing model

Synchronous computing model  [53] (briefly, synchronous model) adopts synchro-
nous control and data flow, dividing the whole computing process into several 
rounds of iteration, and all living vertices in each round are computed using the 
adjacent vertex value in the previous round. Global synchronization between rounds 
ensures that vertex computing of the previous round and vertex value update (in 
which the vertex synchronizes the data to the backup vertex via messaging) has been 
performed on all machines. In Algorithm 4, V is the set of vertices to be computed 
for this vertex, V ′ is the set of vertices to be excited by this vertex, M is the mes-
sage set generated by this computing, and Av is the set of contiguous vertices to be 
activated by vertex V. Compute() calls the user-implemented graph algorithm code 
to complete computing on vertex v, updates vertex values, and produces message m 
and the set of vertices that needs to be activated, Av(line 5).



565

1 3

Survey of external memory large-scale graph processing on…

Algorithm 4 Synchronous Computing Model
1: while iteration <= max iteration do
2: if V ! = ∅ then V

′
= ∅

3: end if
4: for each v ∈ V do
5: (v,m,Av) = v.compute()
6: M = M

⋃
m

7: V
′
= V

′ ⋃
Av

8: end for
9: barrier()
10: V = V

′

11: iteration++

As shown in Algorithm 4, all activated vertices in each round are computed using 
the values of adjacent vertices up to the previous round, and all messages are sent 
and received in batches (line 9) through the exchange(). The vertices activated by 
each vertex computing will be marked for the next round of computing (line 7). New 
values for all vertices are visible simultaneously after global synchronization. The 
computing ends when no vertex is activated for the next round of computing after 
the previous round ends. Given that each round in the synchronization model only 
has to traverse a living vertex and record an activated vertex, and access to vertex 
data during computing is not protected (the vertex value in the previous round is 
always used), the scheduling overhead is small. However, each round of computing 
can use only the value in the previous round, which results in slow convergence of 
the whole computing process and additional vertex computing times and computing 
rounds. As the number of convergent vertices increases, the proportion of effective 
computing time decreases rapidly, while the global synchronization overhead takes 
up most of the execution time in each round causing serious performance loss.

3.1.2 � Asynchronous computing model

The asynchronous computing model (referred to as asynchronous model) employs 
asynchronous control and data flow to maintain distributed scheduling queues for 
all active vertices [54]. As shown in Algorithm 5, the asynchronous model takes a 
vertex V from the scheduling queue V each time for computing (line 2). The set of 
vertices Av activated by vertex v is returned to the scheduling queue (line 4). The 
values updated by vertex v can be used immediately by other local vertices and 
used by remote vertices (lines 6 and 7) through message exchange within a certain 
interval without waiting for global synchronization. The computing ends when the 
scheduling queue is empty. Vertex computing in the asynchronous model can use a 
relatively new adjacency vertex value; thus, the computing process converges faster 
with few iterations of vertex computing. However, the performance loss is serious 
due to the need to maintain consistency of scheduling queues and data access in a 
distributed environment.



566	 J. Huang et al.

1 3

Algorithm 5 Asynchronous Computing Model
1: while V ! = ∅ do
2: v = dequeue(V )
3: (v,m,Av) = v.compute()
4: enqueue(V,Av)
5: M = M

⋃
m

6: if size(M) > interval then
7: exchange(M);
8: end if

3.1.3 � Hybrid computing model

On the basis of the analysis and comparison of synchronous and asynchronous comput-
ing models, this paper proposes the hybrid computing model [55] (referred to as hybrid 
model), that is, asynchronous data flow (messaging) is used on the basis of synchronous 
control flow (task scheduling). Combining the advantages of the two existing models, this 
model can achieve relatively fast convergence speed while reducing scheduling overhead, 
thus improving the performance of the distributed graph processing system. As shown 
in Algorithm 6, this hybrid computing model adopts the vertex scheduling similar to the 
synchronous model. Several iterations of computing are still performed until the vertices 
are not activated, and each round passes through all the living vertices in turn for comput-
ing. Unlike the synchronous model, however, the hybrid computing model uses asynchro-
nous messaging to enable the vertex to be computed by using a new contiguous vertex 
value. Each newly computed vertex value can be immediately available to the local vertex 
and used by the remote vertex (lines 8 and 9) at some interval through message exchange. 
This hybrid model does not need to maintain the distributed scheduling queue in parallel, 
thereby avoiding the scheduling overhead of the asynchronous model. Given that vertex 
computing can partially use the new values derived from adjacent vertices in this round 
of computing, it can converge faster than the synchronous model, thereby reducing the 
number of vertex computing and iteration rounds. The hybrid model, which combines the 
advantages of synchronous and asynchronous models and overcomes their disadvantages, 
is an ideal model for graph processing engines in a distributed environment.

Algorithm 6 Hybrid Computing Model
1: while iteration <= max iteration do
2: if V ! = ∅ then V

′
= ∅

3: end if
4: for each v ∈ V do
5: (v,m,Av) = v.compute()
6: M = M

⋃
m

7: V
′
= V

′ ⋃
Av

8: end for
9: if size(M) > interval then exchange()
10: end if
11: barrier()
12: V = V

′

13: iteration++



567

1 3

Survey of external memory large-scale graph processing on…

3.2 � Communication model

In the communication model of message passing  [56–58], the state of the point 
in the algorithm is saved locally, and the state of the point on other machines is 
updated via message passing. The communication model of message passing is used 
in Pregel and Giraph. To ensure that all updated data are available, a synchronization 
operation needs to be added between two iterations. In the communication model of 
shared memory, each processing unit allows concurrent access and modification of 
data at the same address. In some distributed computing systems, such as GraphLab 
and PowerGraph, virtual shared memory is used to achieve transparent synchroni-
zation between computing nodes. Virtual shared memory is implemented in these 
graph processing systems by using ghost vertex. In the implementation strategy for 
ghost vertices, each point in the graph has a working node of its own, and other 
working nodes have copies of that point. Therefore, in this communication model, 
data consistency needs to be considered when multiple working nodes access the 
same memory address concurrently.

3.3 � Graph partition

Graph partition [14, 16, 59, 60] is a key problem in efficient graph processing. Gen-
erally, an ideal graph partition situation is that work nodes have the same amount 
of work and the communication between work nodes is minimal, but this is a NP-
hard problem. Currently, common graph partition algorithms are divided into three 
categories.

•	 In the first category, the input graph data are first preprocessed to transform 
the initial graph data into a specific storage format, which improves the visit-
ing locality of graph processing or lessens the amount of space occupied by the 
graph data.

•	 In the second category, dynamic repartition is performed during algorithm 
execution. Given that the algorithms behavior before execution cannot be pre-
dicted, this dynamic partition strategy can be adjusted according to the execution 
state of the existing algorithm to improve the performance of the system. This 
dynamic partition strategy needs to divide the graph several times, thereby intro-
ducing graph partition overhead.

•	 In the third category, edge-cut partition and vertex-cut partition are used. Edge-
cut partition evenly divides the points in the graph and ensures a minimum num-
ber of edges across different partition blocks. Vertex-cut partition evenly divides 
the edges and keeps a minimum number of points across different blocks. Many 
real-life large graphs conform to the power law distribution. Therefore, unlike 
edge-cut partition, the vertex-cut partition can ensure the load balance of the sys-
tem, but the graph processing system needs to use an edge-centered computing 
model such as PowerGraph.



568	 J. Huang et al.

1 3

3.4 � Load balance

The load balance algorithm can be divided into static load balance and dynamic 
load balance [36, 61–65]. The static load balance is used to allocate tasks before the 
implementation of the algorithm. However, because the algorithm cannot predict its 
specific behavior before execution, load imbalance may occur during the implemen-
tation of the algorithm. The dynamic load balance is improved based on the static 
load balance, that is, in the running process of the algorithm, the working nodes 
with fewer tasks in the system can steal tasks from the working nodes with large 
tasks to achieve load balance and further improve the performance of the system.

3.5 � Fault tolerance

Fault tolerance is a problem to be solved in distributed graph processing systems 
[65–69]. In the distributed processing system, each machine will have a certain prob-
ability of error failure, and if it is not handled, then it will have a serious impact on 
the system. The common distributed graph processing system uses the master–slave 
node approach, in which the master node is responsible for the management and 
scheduling of the whole system and the slave node is responsible for a specific com-
puting task. The main fault-tolerant strategies include multiple copy strategy and log 
redo strategy. In the multiple copy strategy, when the primary work node executes 
its task, another working node as a replica will perform the same task; when the 
primary work node fails, the replica takes over the tasks of the primary work node. 
This fault tolerance method has almost no error recovery time but consumes a large 
amount of computing and memory resources. In the log redo strategy, checkpoint 
or log is used to record the computing operation of work nodes. When the machine 
fails, the recorded operation can be repeated for recovery. This recovery method will 
consume a certain amount of recovery time, but the consumption of computing and 
memory resources is relatively small.

4 � Performance evaluation comparison

We evaluate large-scale graph processing systems on several real-world social 
graphs and network graphs, which requires to analyze a large number of graph algo-
rithms to discover their common features. First four commonly used large-scale fig-
ure structure data processing algorithms are introduced here: Web page rank (PR) 
algorithm, breadth-first search (BFS) algorithm, multi-core source shortest path 
(SSSP) algorithm, and connected components (CC), and important operators of 
each algorithm are listed in table form.

The PR algorithm is a link analysis algorithm in which each vertex in the graph 
corresponds to a numerical weight, and the importance of each vertex in the whole 
vertex set is measured by comparing their weight values. Before the algorithm starts 
execution, the weight value of the vertex is initialized to 1. The algorithm iterates to 
execute the given number of iterations or the weight value of all vertices is no longer 



569

1 3

Survey of external memory large-scale graph processing on…

changed as the termination condition. Formula (1) shows how the weight value of 
each vertex is computed, where v.rank represents the weight value of vertex v, a as a 
constant, and u.OutDeg as the output value of point u.

BFS is a widely used graph data search algorithm and is also the basic algorithm 
of the Graph500 test set. In this algorithm, each vertex corresponds to a distance 
value. Before the algorithm starts execution, the distance value of the given starting 
vertex is initialized to 0, and the distance value of the remaining vertex is initialized 
to infinity (INF). The algorithm executes iteratively, with the distance value of all 
vertices no longer changing as the termination condition. Formula (2) shows how to 
compute the distance value of vertex v to v.dist. .

SSSP is a commonly used method of traversing graph data. In this algorithm, each 
edge has a weight value, and each vertex corresponds to a distance value dist. Given 
a starting vertex, the shortest distance from other vertices to that starting vertex is 
computed. Before the algorithm starts execution, the distance value of the given 
starting vertex is initialized to 0, and the distance value of the remaining vertex is 
initialized to infinity (INF). The algorithm executes iteratively, with the distance 
value of all vertices no longer changing as the termination condition. Formula (3) 
shows how to compute the distance value of vertex v to v.dist.

CC is a commonly used graph structure data analysis algorithm. In this algorithm, 
each vertex corresponds to a label value, and the label value of vertex is initialized 
to the identification number of this vertex. The algorithm executes iteratively, with 
label values of all vertices no longer changing as the termination condition. The fol-
lowing formula shows how to compute the label value of vertex v to v.label.

4.1 � Test environment

This computer is equipped with an Intel i7-4790k (4.0 GHz) processor, and the CPU 
contains four cores (with two threads running on each core) and 8 MB L3 caches. 
The computer is equipped with 16 GB physical memory, four 1 TB SATA-III disks 
that are organized into a RAID-0 disk array, and an 800 GB SSD that runs on 
Ubuntu 12.04 system.

4.2 � Test dataset and test graph algorithm

For each system, we run BFS [70], WCC [71], SpMV [72], and PR on four data-
sets: LiveJournal [73], Twitter [74], UK [75], and Yahoo [76], as shown in Table 2. 

(2)v.dist =
∑

u|(u,v)∈E∧u.dist≠INF
min(v.dist, u.dist + 1)

(3)v.dist =
∑

u|(u,v)∈E∧u.dist≠INF
min(v.dist, u.dist + e.weight)

(4)v.lable =
∑

u|(u,v)∈E
min(v.lable, u.lable)



570	 J. Huang et al.

1 3

All graphs are real-world graphs with power law distributions. Live Journal and 
Twitter are social graphs that show relationships between users in each social net-
work. UK and Yahoo! are network diagrams that consist of hyperlinks between Web 
pages with a larger diameter than a social graph. We run BFS and WCC until they 
converge, that is, no more vertices can be found or updated. For SpMV, we run an 
iteration to compute the multiplication result. For PR, we run 20 iterations on each 
graph. 

4.3 � CPU utilization analysis

Figures 7, 8, and 9 show the comparison of CPU utilization when different multi-
core machine graph calculation systems run different graph algorithms to process 
graph data. In graph processing, multi-core machine graph processing engine is 

C
PU

  U
til

iz
at

io
n 

 (%
)

0

20

40

60

80

100

WCC on LiveJournal Dataset WCC on twitter Dataset WCC on UK Dataset WCC on Yahoo Dataset

GraphChi
X-Stream
GridGraph
FlashGraph

Fig. 7   GraphChi, X-Stream, GridGraph, FlashGraph average CPU utilization for processing PageRank

C
PU

  U
til

iz
at

io
n 

 (%
)

0

20

40

60

80

100

BFS on LiveJournal Dataset BFS on twitter Dataset BFS on UK Dataset BFS on Yahoo Dataset

GraphChi
X-Stream
GridGraph
FlashGraph

Fig. 8   GraphChi, X-Stream, GridGraph, FlashGraph average CPU utilization for processing BFS



571

1 3

Survey of external memory large-scale graph processing on…

generally divided into the in-memory computing engine and out-of-core engine. 
If the pending graph data can be stored in the memory, completely so the graph 
processing system is based on the memory; otherwise, each part will be from the 
peripheral storage data into the memory . The LiveJournal dataset shows the aver-
age CPU utilization of each graph processing system of the in-memory computing 
engine. In this case, each individual graph processing system has high CPU utiliza-
tion. The Twitter, UK, and Yahoo! datasets show a comparison of CPU utilization in 
the out-of-core engine of individual graph processing systems. Among them, Flash-
Graph [20] is a semi-external memory graph engine that stores the vertex state in the 
memory and edge lists on SSDs. As can be seen from these figures, GridGraph [16] 
has the lowest CPU. For X-Stream, the system adopts an asynchronous direct I/O 
approach and bypasses the page cache of OS. X-Stream creates a thread that specifi-
cally tasks I/O with accessing the disk, and it overlaps the space between GridGraph 
system performances, although GridGraph is superior to X-Stream with in-place 
because GridGraph directly updates the status of vertices, whereas X-Stream  [15] 
does so indirectly. I/O updates the update strategy and needs to update the value of 
the source vertex storage to update the tables (update list). Then, it needs to visit the 
update table to collect and update the value of the source vertex status to the destina-
tion utilization.  

4.4 � Data locality analysis

Figures  10, 11, and 12 show the comparison of data locality of these datasets in 
different multi-core machine graph processing systems by using the above graph 
algorithm. As can be seen from these figures, GridGraph has the best data locality 
performance, which is one of the reasons GridGraph performs better than GraphChi 
and X-Stream in processing Twitter and UK with BFS and WCC.

C
PU

  U
til

iz
at

io
n 

 (%
)

0

20

40

60

80

100

WCC on LiveJournal Dataset WCC on twitter Dataset WCC on UK Dataset WCC on Yahoo Dataset

GraphChi
X-Stream
GridGraph
FlashGraph

Fig. 9   GraphChi, X-Stream, GridGraph, FlashGraph average CPU utilization for processing WCC​



572	 J. Huang et al.

1 3

C
ac

he
 h

it
ra

te
(%

)

0

20

40

60

80

100

pagerank on 
LiveJournal Dataset

pagerank on 
twitter Dataset

pagerank on 
UK Dataset

pagerank on 
Yahoo Dataset

GraphChi
X-Stream
GridGraph
FlashGraph

Fig. 10   GraphChi, X-Stream, GridGraph, FlashGraph average cache hit rate for processing PageRank

C
ac

he
 h

it
ra

te
(%

)

0

20

40

60

80

100

BFS on LiveJournal Dataset BFS on twitter Dataset BFS on UK Dataset BFS on Yahoo Dataset

GraphChi
X-Stream
GridGraph
FlashGraph

Fig. 11   GraphChi, X-Stream, GridGraph, FlashGraph average cache hit rate for processing BFS

C
ac

he
 h

it
ra

te
(%

)

0

20

40

60

80

100

WCC on LiveJournal Dataset WCC on twitter Dataset WCC on UK Dataset WCC on Yahoo Dataset

GraphChi
X-Stream
GridGraph
FlashGraph

Fig. 12   GraphChi, X-Stream, GridGraph, FlashGraph average cache hit rate for processing WCC​



573

1 3

Survey of external memory large-scale graph processing on…

4.5 � I/O analysis

We compared four systems: GraphChi, X-Stream, GridGraph, and FlashGraph. As 
shown in Fig. 13, FlashGraph performs better on different datasets than GraphChi, 
X-Stream, and GridGraph. To better understand this result, we analyzed the total 
amount of I/O of BFS, WCC, and PR algorithms in different graphs, as shown in 
Fig. 13. Specifically, compared with GraphChi, S-Stream, and GridGraph, the I/O 
data volume of Twitter, UK 2007, and Yahoo! is reduced by 10 instantly, and the 
vertex state does not need to be written back to the disk.

4.6 � Comparison of large‑scale multi‑core machine graph processing systems

We evaluate the processing performance through a comparison with the latest ver-
sion of GraphChi, X-Stream, GridGraph, and FlashGraph. Table 3 presents the per-
formance of the chosen algorithms on different graphs and systems with memory 
limited to 8 GB to illustrate applicability. Under this configuration, only the Live-
Journal graph can fit the memory, whereas the other graphs require access to disks. 
We can see that GridGraph outperforms GraphChi and X-Stream.

Table 2   Graph datasets used in 
evaluation

Dataset V E Data size

LiveJournal 4.85M 69M 527 MB
Twitter 41.6M 1.47B 11 GB
UK 106M 3.47B 28 GB
Yahoo 1.41B 6.64B 50 GB

I/
O

D
at

a
A

m
ou

nt
(G

B
)

0
500

BFS on Datasets pagerank on Datasets WCC on Datasets

GraphChi
X-Stream
GridGraph
FlashGraph

1000
1500

2000

2500

3000

3500

4000

4500

5000

twitter uk-2007 Yahoo twitter uk-2007 Yahoo twitter uk-2007 Yahoo

Fig. 13   GraphChi, X-Stream, GridGraph, FlashGraph I/O data Amount for processing different graph 
algorithm



574	 J. Huang et al.

1 3

5 � Conclusions and opportunities

The wide application of large-scale graph data processing promotes the rapid devel-
opment of large-scale graph processing systems. In the era of big data, an increasing 
number of problems will need to be solved by using large-scale graphs. Therefore, 
researchers in industry and academia have developed numerous large-scale graph 
processing systems. Multi-core systems are characterized by simple programming 
and computing models, low hardware overhead, and limited computing power 
that cannot meet some computing requirements. From the perspective of comput-
ing models, two main types of computing models for large graph processing exist: 
point-centered and edge-centered computing models. GraphChi mainly USES ver-
tex-centric computing models that are easier to program and understand. Edge-cen-
tered computing models such as X-Stream are also used. In addition to these two 
main computing models, other systems proposed new computing models to improve 
system performance on the basis of data locality. However, in essence, these com-
puting models are based on vertex-centric computing models that are modified for 
the layout of data. This paper summarizes the research on the existing large-scale 
graph processing system. Although large-scale graph processing systems have made 
some achievements, studies can be conducted further from the following aspects:

Table 3   Execution time (in 
seconds) with 8GB memory

‘–’ Indicates that the corresponding system failed to finish execution 
in 48 h

BFS WCC​ SpMV PageRank

LiveJournal
GraphChi 21.96 46.77 11.03 52.88
X-Stream 6.61 15.05 6.48 18.16
GridGraph 2.69 4.16 2.09 12.46
FlashGraph 2,88 4.29 1.82 10.89
Twitter
GraphChi 435.2 466.9 271.8 1261
X-Stream 433.9 1203 141.6 1784
GridGraph 201.6 288.2 48.98 534.7
FlashGraph 100.6 141.2 32.1 196.8
UK
GraphChi 2773 1782 413.9 2081
X-Stream 8086 12049 386.2 43,768
GridGraph 1839 1702 112.2 1341
FlashGraph 296 1126 99 968
Yahoo
GraphChi – 114185 2669 13,066
X-Stream – – 1071 9948
GridGraph 16,786 3598 258.4 4702
FlashGraph – – – –



575

1 3

Survey of external memory large-scale graph processing on…

•	 A large-scale distributed graph processing system with hybrid computing model. 
In recent years, some MapReduce large-scale distributed graph processing sys-
tems based on the MapReduce model and large-scale distributed graph process-
ing systems based on BSP and GAS models have been developed, all of which 
have their own advantages and defects. How to integrate the advantages of each 
model and develop a large-scale distributed graph processing system with better 
overall performance and high efficiency, expansibility, reliability, and flexibility 
is a research problem that is worthy of further discussion;

•	 Partial synchronous or restricted asynchronous large-scale distributed graph pro-
cessing system. Synchronous paradigm scheduling is simple and correctness is 
guaranteed, while asynchronous paradigm computing converges quickly and has 
fast execution speed. Partial synchrony or restricted asynchrony has the advan-
tages of synchronous and asynchronous paradigms. Designing a large-scale 
distributed graph processing system with partial or restricted asynchrony faces 
a considerable challenge given that the design needs to balance the execution 
speed and accuracy of graph processing to ensure that it has the accuracy of the 
synchronous paradigm and the quick execution of the asynchronous paradigm;

•	 Large-scale distributed graph processing system integrating the traditional par-
allel computing framework. The existing large-scale graph processing system 
is mostly coarse-grained parallel. A good research topic is the identification of 
the advantages of traditional parallel computing frameworks such as MPI, SMP, 
MMPS, OpenMP, GPU, CUDA, OpenCL, OpenMP, and OpenACC and their 
integration into large-scale graph processing systems for fine-grained parallel 
optimization and to improve existing large-scale graph processing systems;

•	 Real-time incremental big data graph processing system. Most existing large-
scale graph processing systems are global batch processing systems that are 
oriented to a static graph structure. Thus, these systems have difficulty meeting 
the real-time requirements of dynamic graph structures. They give priority to 
the efficiency of offline processing or the optimization of graph processing and 
pay little attention to how to deal with big data graph processing in real time 
incrementally. They are also inefficient in frequently updating large-scale real-
time graph data and graph structure. To meet the requirements of applications 
such as Twitter, Facebook, and Sina Weibo and of real-time graph processing of 
dynamic changes in graph structure, a real-time incremental big data graph pro-
cessing system needs to be developed;

•	 Big data graph processing system based on parameter server architecture. Under 
the parameter server architecture, new copy consistency of parameters should be 
designed to balance the correctness and concurrency of the algorithm, that is, to 
improve the concurrency of the whole system as much as possible on the prem-
ise of ensuring the correctness of the algorithm and further design the big data 
graph processing system based on the parameter server architecture;

•	 Large datasets of large-scale graphs. At present, although some graph datasets 
can be used to evaluate large-scale graph processing systems, they are not large 
in scale. In the era of big data, multiple big datasets of various types of large-
scale graph processing systems need to be developed to test on these big datasets 
and for further performance comparison;



576	 J. Huang et al.

1 3

•	 Analysis and evaluation of large-scale graph processing system. For the existing 
large-scale graph processing system, the present theoretical analysis from differ-
ent computing models, key technologies, and methods is not sufficiently compre-
hensive. A comparison of the experimental evaluation of the existing large-scale 
graph processing system on the existing graph dataset is still lacking. The exist-
ing large-scale graph processing system and graph dataset can be integrated to 
develop the corresponding evaluation model, and comparative analysis and quan-
titative comparison can be conducted from theoretical analysis and experimental 
evaluation. In the aspect of multi-core machine graph processing system, due to 
limited computing power, a hot research topic is the use of an effective graph 
partition strategy and a computing model that matches this strategy to enhance 
the localization of computing. The multi-core characteristics of the machine 
should be fully used in parallel I/O and computing and to improve the parallelism 
in computing, which is a topic that also deserves further research.

In conclusion, in the era of big data, with the complexity of graph data scale, repre-
sentation, and organization form of graph data and graph processing tasks, new big 
data graph processing systems are believed to be constantly generated according to 
application requirements. Although many research achievements have been made in 
the field of the large-scale graph processing system, room for innovation and opti-
mization still exists in the area of graph processing platforms, graph algorithms, and 
graph datasets. This paper aims to help researchers understand the field and provide 
guidance for the improvement of large-scale graph processing systems.

Acknowledgements  The authors are grateful to the reviewers for valuable comments that have greatly 
improved the paper. This paper is partially supported by the Open Project of State Key Laboratory of 
Plateau Ecology and Agriculture, Qinghai University (No. 2020-ZZ-03), the “Qinghai Province High-end 
Innovative Thousand Talents Program Leading Talents” and the National Natural Science Foundation of 
China (Nos. 61762074 and 61962051), and National Natural Science Foundation of Qinghai Province 
(No. 2019-ZJ-7034).

References

	 1.	 Knuth DE (1993) The Stanford GraphBase: a platform for combinatorial computing. ACM Press, 
New York

	 2.	 Siek JG, Lee L-Q, Lumsdaine A (2002) The boost graph library: user guide and reference manual. 
Addison-Wesley, Boston

	 3.	 Gregor D (2005) Lumsdaine A The parallel BGL: a generic library for distributed graph computa-
tions. Proc Parallel Object Oriented Sci Comput 2:1–18

	 4.	 Chan A, Dehne F, Taylor R (2005) CGMGRAPH/CGMLIB: implementing and testing CGM 
graph algorithms on PC clusters and shared memory machines. Int J High Perform Comput Appl 
19(1):81–97

	 5.	 Twitter Usage Statistics. http://www.inter​netli​vesta​ts.com/twitt​er-stati​stics​/. Accessed October 
(2016)

	 6.	 Monthly Active Facebook Users. https​://www.stati​sta.com/stati​stics​/26481​0/numbe​r-of-month​ly-
activ​e-faceb​ook-users​-world​wide/. Accessed October (2016)

	 7.	 Shvachko K, Kuang H, Radia S et al (2010) The hadoop distributed file system. In: Proceedings of 
the 26th IEEE symposium on mass storage systems and technologies, pp 1–10

http://www.internetlivestats.com/twitter-statistics/
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/


577

1 3

Survey of external memory large-scale graph processing on…

	 8.	 Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Commun 
ACM 51(1):107–113

	 9.	 Zaharia M, Chowdhury M, Franklin MJ et al (2010) Spark: cluster computing with working sets. In: 
Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing, p 10

	10.	 Zaharia M, Chowdhury M, Das T et al (2012) Resilient distributed datasets: a fault tolerant abstrac-
tion for in-memory cluster computing. In: Proceedings of the 9th USENIX Conference on Net-
worked Systems Design and Implementation, p 2

	11.	 Malewicz G, Austern MH, Bik AJ et al (2010) Pregel: a system for large-scale graph processing. In: 
Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, ACM 
New York, NY, USA, pp 135–146

	12.	 Low Y, Bickson D, Gonzalez J et al (2012) Distributed GraphLab: a framework for machine learn-
ing and data mining in the cloud. Proc VLDB Endow 5(8):716–727

	13.	 Gonzalez JE, Low Y, Gu H et  al (2012) PowerGraph: distributed graph parallel computation on 
natural graphs. In: Proceedings of the 10th USENIX Conference on Operating Systems Design and 
Implementation, pp 17–30

	14.	 Kyrola A, Blelloch GE, Guestrin C (2012) GraphChi: large-scale graph computation on just a PC. 
In: Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementa-
tion, pp 31–46

	15.	 Roy A, Mihailovic I, Zwaenepoel W (2013) X-stream: edge-centric graph processing using stream-
ing partitions. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Prin-
ciples, ACM New York, NY, USA, pp 472–488

	16.	 Zhu X, Han W, Chen W (2015) GridGraph: largescale graph processing on a single machine using 
2-level hierarchical partitioning. In: Proceedings of the 2015 USENIX Annual Technical Confer-
ence, pp 375–386

	17.	 Prabhakaran V, Wu M, Weng X et al (2012) Managing large graphs on multicores with graph aware-
ness. In: Proceedings of the 2012 USENIX Annual Technical Conference, pp 41–52

	18.	 Han WS, Lee S, Park K et  al (2013) TurboGraph: a fast parallel graph engine handling billion-
scale graphs in a single PC. In Proceedings of the 19th ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining, ACM, pp 77–85

	19.	 Cheng J, Liu Q, Li Z et al (2015) VENUS: vertex-centric streamlined graph computation on a single 
PC. In Proceedings of the 2015 IEEE 31st International Conference on Data Engineering IEEE, pp 
1131–1142

	20.	 Zheng D, Mhembere D, Burns R et  al (2015) FlashGraph: processing billion-node graphs on an 
array of commodity SSDs. In Proceedings of the 13th USENIX Conference on File and Storage 
Technologies, pp 45–58

	21.	 Yuan P, Xie C, Liu L et al (2016) PathGraph: a path centric graph processing system. IEEE Trans 
Parallel Distrib Syst. https​://doi.org/10.1109/TPDS.2016.25186​64

	22.	 Feng Z, Heng L, Jidong Z, Jie C, Dingyi X, Jizhong L, Yunpeng C, Xiaoyong D (2018) An adaptive 
breadth-first search algorithm on integrated architectures. J Supercomput 74(11):6135–6155

	23.	 Zhang M, Wu Y, Zhuo Y, Qian X, Huan C, Chen K (2018) Wonderland: a novel abstraction-based 
out-of-core graph processing system. In: ASPLOS, pp 608–621. ACM

	24.	 Vora K, Xu GH, Gupta R (2016) Load the edges you need: a generic I/O optimization for disk-based 
graph processing. In: USENIX ATC, pp 507–522

	25.	 Vora K, Gupta R, Xu G (2017) KickStarter: fast and accurate computations on streaming graphs via 
trimmed approximations. In: ASPLOS, pp 237–251

	26.	 Maass S, Min C, Kashyap S, Kang W, Kumar M, Kim T (2017) Mosaic: processing a trillion-edge 
graph on a single machine. In: EuroSys, pp 527–543. ACM

	27.	 Ai Z, Zhang M, Wu Y, Qian X, Chen K, Zheng W (2017) Squeezing out all the value of loaded 
data: an out-of-core graph processing system with reduced disk I/O. In: USENIX ATC, pp 125–137

	28.	 Jun S-W, Wright A, Zhang S, Xu S (2018) Using accelerated flash storage for external graph analyt-
ics. In: ISCA. IEEE, GraFBoost

	29.	 Jin-zhong L, Peng-jie T, Jie-wu X et al (2015) Advances in iterative MapReduce. Comput Eng Appl 
51(12):123–132

	30.	 Bu Y, How B, Balazinska M et al (2012) The HaLoop approach to large scale iterative data analysis. 
VLDB J 21(2):169–190

	31.	 Bu Y, How B, Balazinska M et al (2010) HaLoop: efficient iterative data processing on large clus-
ters. Proc VLDB Endow 3(1):285–296

https://doi.org/10.1109/TPDS.2016.2518664


578	 J. Huang et al.

1 3

	32.	 Ekanayake J, Li H, Zhang B et al (2010) Twister: a runtime for iterative Mapreduce. In: Proceedings 
of the 19th ACM international symposium on high performance distributed computing, pp 810–818

	33.	 Zhang Y, Gao Q, Gao L et al (2012) iMapReduce: a distributed computing framework for iterative 
computation. J Grid Comput 10(1):47–68

	34.	 Zhang Y, Gao Q, Gao L et al (2013) PrIter: a distributed framework for prioritizing iterative compu-
tations. IEEE Trans Parallel Distrib Syst 24(9):1884–1893

	35.	 Kang U, Tsourakakis CE, Faloutsos C (2009) Pegasus: a petascale graph mining system implemen-
tation and observations. In: Proceedings of the Ninth IEEE International Conference on Data Min-
ing, IEEE, pp 229–238

	36.	 Chen R, Weng X, He B et al (2010) Large graph processing in the cloud. In: Proceedings of the 
2010 ACM SIGMOD International Conference on Management of Data, ACM, pp 1123–1126

	37.	 Ceze L, Tuck J, Montesinos P et al (2007) BulkSC: bulk enforcement of sequential consistency. In: 
Proceedings of the 34th annual international symposium on computer architecture, pp 278–289

	38.	 Shun J, Blelloch GE (2013) Ligra: a lightweight graph processing framework for shared memory. 
In: Proceedings of the 18th ACM SIGPLAN symposium on principles and practice of parallel pro-
gramming, ACM New York, NY, USA, pp 135–146

	39.	 Han TD, Abdelrahman TS (2011) hi CUDA: high-level GPGPU programming. IEEE Trans Parallel 
Distrib Syst 22(1):78–90

	40.	 Harris M (2005) GPGPU: general-purpose computation on GPUs. In: SIGGRAPH 2005 GPGPU 
COURSE. http://www.gpgpu​.org/s2005​/

	41.	 Lee S, Min S, Eigenmann R (2009) Open MP to GPGPU: a compiler framework for automatic 
translation and optimization. In: Proceedings of the 14th ACM SIGPLAN symposium on principles 
and practice of parallel programming, pp 101–110

	42.	 Harish P, Narayanan PJ (2007) Accelerating large graph algorithms on the GPU using CUDA. In: 
Proceedings of the 14th International Conference on High Performance Computing, pp 197–208

	43.	 Luo L, Wong M, Hwu W (2010) An effective GPU implementation of breadth-first search. In: Pro-
ceedings of the 47th Design Automation Conference, pp 52–55

	44.	 Katz GJ, Kider Jr JT (2008) All-pairs shortest-paths for large graphs on the GPU. In: Proceedings of 
the 23rd ACM SIGGRAPH symposium on graphics hardware, pp 47–55

	45.	 Hong S, Oguntebi T, Olukotun K (2011) Efficient parallel graph exploration on multi-core CPU and 
GPU. In: Proceedings of the 20th International Conference on Parallel Architectures and Compila-
tion Techniques, ACM New York, NY, USA, pp 78–88

	46.	 https​://www.wusiw​ei.com/post-2085.html
	47.	 Robinson I, Webber J, Eifrem E (2015) Graph databases: new opportunities for connected data. 

O’Reilly Media Inc., Sebastopol
	48.	 Zhong J, He B (2012) An overview of medusa: simplified graph processing on GPUs. In: Proceed-

ings of the 17th ACM SIGPLAN symposium on principles and practice of parallel programming, 
ACM New York, NY, USA, pp 283–284

	49.	 Khorasani F, Vora K, Gupta R et al (2014) CuSha: vertex-centric graph processing on GPUs. In: 
Proceedings of the 23rd international symposium on high-performance parallel and distributed com-
puting, ACM New York, NY, USA, pp 239–252

	50.	 Lingxiao M, Zhi Y, Han C, Jilong X, Yafei D (2017) Garaph: efficient GPU-accelerated graph pro-
cessing on a single machine with balanced replication. In: USENIX Annual Technical Conference 
(ATC’), Santa Clara, CA, USA, pp 195–207

	51.	 Zhisong F, Michael P, Bryan T (2014) MapGraph: a high level API for fast development of high 
performance graph analytics on GPUs. In: Proceedings of workshop on graph data management 
experiences and systems (GRADES’14). ACM, New York, NY, USA, Article 2

	52.	 http://spark​.apach​e.org/
	53.	 Ben-Nun T, Sutton M, Pai S et al (2017) Groute: an asynchronous multi-GPU programming model 

for irregular computations. In: Proceedings of the 23rd ACM SIGPLAN symposium on principles 
and practice of parallel programming, Austin, pp 235–248

	54.	 Sha M, Li Y, He B et al (2017) Accelerating dynamic graph analytics on GPUs. Proc VLDB Endow 
11:107–120

	55.	 Zhang JL, Li J (2018) Degree-aware hybrid graph traversal on FPGA-HMC platform. In: Proceed-
ings of the 26th ACM/SIGDA international symposium on field-programmable gate arrays, Monte-
rey, pp 229–238

http://www.gpgpu.org/s2005/
https://www.wusiwei.com/post-2085.html
http://spark.apache.org/


579

1 3

Survey of external memory large-scale graph processing on…

	56.	 Zhou SJ, Prasanna VK (2017) Accelerating graph analytics on CPU-FPGA heterogeneous platform. 
In: Proceedings of the 29th international symposium on computer architecture and high perfor-
mance computing, Campinas, pp 137–144

	57.	 Zhang MX, Zhuo YW, Wang C et al (2018) GraphP: reducing communication for PIM-based graph 
processing with efficient data partition. In: Proceedings of the 24th IEEE international symposium 
on high-performance computer architecture, Vienna, pp 544–557

	58.	 Dai G, Huang T, Chi Y et al (2017) Fore-graph: exploring large-scale graph processing on multi-
FPGA architecture. In: Proceedings of the 25th ACM/SIGDA international symposium on field-
programmable gate arrays, Monterey, pp 217–226

	59.	 Shi XH, Liang JL, Di S et al (2015) Optimization of asynchronous graph processing on GPU with 
hybrid coloring model. In: Proceedings of the 20th ACM SIGPLAN symposium on principles and 
practice of parallel programming, San Francisco, pp 271–272

	60.	 Dai GH, Huang TH, Chi YZ et al (2018) GraphH: a processing-in-memory architecture for large-
scale graph processing. IEEE Trans Comput Aided Des Integr Circuits Syst. https​://doi.org/10.1109/
TCAD.2018.28215​65

	61.	 Kang U, Tong H, Sun J et al (2012) GBASE: an efficient analysis platform for large graphs. VLDB J 
21(5):637–650

	62.	 Valiant LG (1990) A bridging model for parallel computation. Commun ACM 33(8):103–111
	63.	 Tasci S, Demirbas M (2013) Giraphx: parallel yet serializable largescale graph processing. In: Pro-

ceedings of European Conference on Parallel Processing. Springer, Berlin, pp 458–469
	64.	 Khayyat Z, Awara K, Alonazi A et al (2013) Mizan: a system for dynamic load balancing in lar-

gescale graph processing. In: Proceedings of the 8th ACM European Conference on Computer Sys-
tems. ACM, pp 169–182

	65.	 Yan D, Cheng J, Lu Y et al (2015) Effective techniques for message reduction and load balancing in 
distributed graph computation. In: Proceedings of the 24th International Conference on World Wide 
Web. ACM, pp 1307–1317

	66.	 Bao NT, Suzumura T (2013) Towards highly scalable pregel based graph processing platform with 
x10. In: Proceedings of the 22nd International Conference on World Wide Web Companion, Inter-
national World Wide Web Conferences Steering Committee, pp 501–508

	67.	 Donald N, Andrew L, Keshav P (2013) A lightweight infrastructure for graph analytics. In: Pro-
ceedings of the twenty-fourth symposium on operating systems principles (SOSP’13), ACM, pp 
456–471

	68.	 Zhang K, Chen R, Chen H (2015) NUMA-aware graph-structured analytics. In: Proceedings of the 
20th ACM SIGPLAN symposium on principles and practice of parallel programming, PPoPP, pp 
183–193

	69.	 Abdullah G, Beltrao CL, Elizeu S-N, Matei R (2012) A yoke of oxen and a thousand chickens for 
heavy lifting graph processing. In: Proceedings of the 21st International Conference on Parallel 
Architectures and Compilation Techniques (PACT’12). ACM, New York, NY, USA, pp 345–354

	70.	 Brandes U (2001) A faster algorithm for betweenness centrality. J Math Sociol 25(2):163–177
	71.	 Broder A, Kumar R, Maghoul F, Raghavan P, Rajagopalan S, Stata R, Tomkins A, Wiener J (2000) 

Graph structure in the web. Comput Netw 33(1):309–320
	72.	 Su BY, Keutzer K (2012) clSpMV: a cross-platform OpenCL SpMV framework on GPUs. In: Pro-

ceedings of the 26th ACM International Conference on Supercomputing, ACM, pp 353–364
	73.	 Backstrom L, Huttenlocher D, Kleinberg J, Lan X (2006) Group formation in large social networks: 

membership, growth, and evolution. In: Proceedings of KDD, pp 44–54
	74.	 Kwak H, Lee C, Park H, Moon S (2010) What is Twitter, a social network or a news media? In: Pro-

ceedings of WWW, pp 591–600
	75.	 Boldi P, Rosa M, Santini M, Vigna S (2011) Layered label propagation: a multiresolution coordi-

nate-free ordering for compressing social networks. In: Proceedings of WWW, pp 587–596
	76.	 Yahoo: Yahoo WebScope (2002) Yahoo! altavista web page hyperlink connectivity graph. https​://

websc​ope.sandb​ox.yahoo​.com/

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1109/TCAD.2018.2821565
https://doi.org/10.1109/TCAD.2018.2821565
https://webscope.sandbox.yahoo.com/
https://webscope.sandbox.yahoo.com/

	Survey of external memory large-scale graph processing on a multi-core system
	Abstract
	1 Introduction
	2 Features and challenges of large graph processing
	2.1 Out-of-core graph processing system
	2.1.1 GraphChi
	2.1.2 X-Stream
	2.1.3 GridGraph

	2.2 Semi-external memory graph processing system
	2.2.1 FlashGraph
	2.2.2 VENUS
	2.2.3 TurboGraph
	2.2.4 PathGraph


	3 Key techniques in large graph processing
	3.1 Computing model
	3.1.1 Synchronous computing model
	3.1.2 Asynchronous computing model
	3.1.3 Hybrid computing model

	3.2 Communication model
	3.3 Graph partition
	3.4 Load balance
	3.5 Fault tolerance

	4 Performance evaluation comparison
	4.1 Test environment
	4.2 Test dataset and test graph algorithm
	4.3 CPU utilization analysis
	4.4 Data locality analysis
	4.5 IO analysis
	4.6 Comparison of large-scale multi-core machine graph processing systems

	5 Conclusions and opportunities
	Acknowledgements 
	References




