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ABSTRACT

SMP clusters and multiclusters are widely used to execute
message-passing parallel applications. The ways to map par-
allel processes to processors (or cores) could affect the ap-
plication performance significantly due to the non-uniform
communicating cost in such systems. It is desired to have a
tool to map parallel processes to processors (or cores) auto-
matically.

Although there have been various efforts to address this
issue, the existing solutions either require intensive user in-
tervention, or can not be able to handle the situation of
multiclusters well.

In this paper, we propose a profile-guided approach to
find the optimized mapping automatically to minimize the
cost of point-to-point communications for arbitrary mes-
sage passing applications. The implemented toolset is called
MPIPP (MPI Process Placement toolset), and it includes
several components:

1) A tool to get the communication profile of MPI applica-
tions

2) A tool to get the network topology of target clusters

3) An algorithm to find optimized mapping, which is espe-
cially more effective than existing graph partition algorithms
for multiclusters.

We evaluated the performance of our tool with the NPB
benchmarks and three other applications in several clus-
ters. Experimental results show that the optimized pro-
cess placement generated by our tools can achieve significant
speedup.
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1. INTRODUCTION

SMP (Symmetric Multi-Processor) clusters and multiclus-
ters are widely used to execute message-passing parallel ap-
plications. The ways to map parallel processes to processors
(or cores) could affect the application performance signifi-
cantly due to the non-uniform communicate cost in such
systems. For example, in an SMP cluster, intra-node com-
munication is usually much faster than inter-node communi-
cation. In multiclusters, the bandwidth among nodes inside
a single cluster is normally much higher than the bandwidth
between two clusters. Hence, it is very important to find op-
timized mapping for parallel processes.

Various approaches have been proposed to optimize the
communication performance of MPI (Message Passing In-
terface) in SMP clusters and multiclusters. MagPIe[13] op-
timizes the collective communication primitives of MPICH
[7] for clustered wide area systems. Other implementations
[25, 22] of MPI use graph partitioning algorithms to optimize
the point-to-point communication performance. MPI/ SX
[25] uses a graph partitioning algorithm to optimize the im-
plementation of MPI_Cart_create() and MPI_Graph_create()
with the user-supplied communication topology information
of applications. MPICH VMI[22] proposed the profile-guided
approach to get the application communication topology,
and also proposed to use general graph partitioning algo-
rithms to find optimized mapping from parallel processes to
processors. However, MPICH VMI requires users to provide
the topology information of the target machine.

The contribution of this paper can be summarized as fol-
lows:

e We propose a fully automatic scheme for optimized
parallel process placement in SMP clusters and mul-
ticlusters without users’ knowledge on either applica-
tions or target systems. The proposed scheme includes
three major components:

1. A tool to get communication profile of MPI ap-
plications

2. A tool to get the network topology of target clus-
ters

3. An algorithm to find optimized mapping



e We propose a mapping algorithm, which outperforms
the existing graph-partition algorithms for multiclus-
ters.

e We performed extensive experiments with the NPB
benchmarks and three other applications in several
clusters and proved the effectiveness of our scheme.

The rest of the paper is organized as follows: Section 2
explains the problem that we are addressing. Section 3 de-
scribes our new graph mapping algorithm. The pseudo-code
of the algorithm is given in the appendix. Section 4 covers
the implementation of the profile-guided process placement
mechanism. The experimental environments, test results,
and data analysis are presented in Section 5. Section 6 sum-
marizes and describes future work.

2. BACKGROUND AND RELATED WORKS

Much research effort was spent to improve the MPI com-
munication performance by taking advantage of the different
communication costs in a multiple-hierarchy environment.
The related works comprise:

1. Approaches to optimize the MPI communication per-
formance

2. Algorithms to map parallel processes to processors.

2.1 Approachesto Optimize the MPI Commu-
nication Performance

A) Optimizing communications in transport layer
The MPI implementation has used different devices to
optimize the communication performance over different
transport protocols. For example, LAMMPI or Intel
MPI Library can use shared memory for the intra-node
communication, while using other protocols for inter-
node communication.

B) Optimizing the collective communication primitives
Most of collective communications are implemented by a
bunch of point-to-point messages. MagPle[13] optimizes
the collective communication primitives of MPICH for
clustered wide area systems by minimizing the amount
of data communicated over the slow wide area links.

C) Optimizing the point-to-point communications
Unlike the collective communications, optimizing the poi-
nt to point communications requires the communication
topology information of applications as well as the topol-
ogy information of target cluster systems.

The MPI standard provides primitives such as MPI Cart
create and MPI Graph create for users to provide the
communication topology information. MPI/ SX [25] op-
timizes these primitives by virtually ranking the MPI
process so that more communications in the topology
are conducted in one SMP node.

The other way to get the communication topology infor-
mation is by profiling. The Intel Trace Collector [9] and
some MPI implementations can provide trace data for
MPI messages. From the statistical information, we can
analyze the communication pattern of the application,
and optimize it. MPICH VMI [22] and ScaliMPI [24]
fall into this category.

Our work is profile-guided as well. The major differences
are that our solution is fully automatic and that our algo-
rithm addresses the multi-hierarchy interconnect effectively.

2.2 Algorithms to Map Parallel Processes to
Processors

The goal is to improve the communication performance
of the applications by aligning their communication with
the clusters interconnect hierarchy. Hence, two models are
needed: one that describes the communication behavior and
the other that describes the interconnect hierarchy. We de-
scribe the MPI communication of an application with a com-
munication graph (CG). The interconnect hierarchy that
connects the processors in a cluster is modeled with a system
topology graph (TG).

A) Working with system topology graph only
MagPle [13] is a network performance-aware collective
communication optimization for clustered wide area sys-
tems. It discovers the system topology with LogP model
[3], only the broadcast trees for the collective communi-
cations were be optimized.

B) Working with communication graph only
In general, this problem could be solved by graph parti-
tioning: Given a graph G with costs as edge weights and
sizes as vertex weights, partition the vertices of G into k
sub-graphs of equal sizes such that the sum of the edge
weights crossing sub-graph boundaries is minimized.

The graph partitioning algorithm [16, 11, 12, 27] is widely
used in the MPI performance optimization. It requires
the communication graph to describe the communica-
tion behavior of the program, which could be derived
from trace or profile or from user input. Many MPI im-
plementations, such as MPICH VMI[22] and ScaliMPI
[24] provide the interface for this kind of algorithms.
MPI/SX [25] uses a graph partitioning algorithm to op-
timize the MPI implementation of MPI Cart create and
MPI Graph create with the user-supplied communica-
tion topology information.

There are a few public suites available for the imple-
mentation of graph partitioning algorithms, for instance,
METIS[11], Chacol8], Jostle[26] and Party[21].

C) Working with both the communication graph and the
system topology graph
The problem is modeled as graph mapping problem:
Given a graph G with costs as edge weights and an-
other graph T also with costs as edge weights, map the
vertices of G to the graph T with equal size such that
the value of a cost function F is minimized. Here F cal-
culates the new cost of the edges when G is mapped to
T.

In [17], a basic graph mapping scheme was described.
More sophisticated algorithms [15, 18, 14, 23] were pro-
posed for the task assignment problem afterwards. These
works help to dispatch workloads to distributed systems
and resolve the dependences among them.

In this paper we implement a new graph mapping algo-
rithm. The communication graph is obtained from profile
collected by ITC and we assume that workload balance is
not an issue. In the process of mapping a CG to a TG, we
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Figure 1: Profile-guided parallel processes placement, where
the weight of the edge is communication cost between two
vertices and the smaller the better. ( The communication
graph A describes the communication behavior of the appli-
cation; the system topology graph B describes connection
overhead/bandwidth between processors in the SMP nodes;
C shows sub-groups after min-cut graph partitioning, which
can direct the placement; D is the optimal mapping result
from the communication graph A to the system topology
graph B. Here the cost function is a simple multiplication

)

hope to achieve the result that min-sums the total communi-
cation cost. For comparison purposes, a graph partitioning
algorithm is included in our study as well.

An example of graph G is in Figure 1.A, and the graph T’
is in Figure 1.B. The result of partitioning the graph into 2
sub-graphs is shown in Figure 1.C. Moreover, the mapping
result from graph G to graph T is in Figure 1.D.

3. THE GRAPH MAPPING ALGORITHM

In most MPI applications, the process number corresponds
to the CPU number. We omit the workload balance issue in
our algorithm to simplify the model.

3.1 Problem Definition

A formal description of the application communication
graph G, is given:

Gp = (Vp, Ep, Wg), where:

e Vp is a set of application processes, Vp = {v;|v; €
Gp}, v; is a vertex in the graph;

e E'p isaset of communications between v; and v;, Ep =
{es,j]vi,v; € Vp}, e ; is the edge between two vertices;

e Wg is the communication cost of the Ep,
Wg = {wi jlei; € Ep}, w;; is the weight of the edge.

Besides the definition of the application communication
graph, we model the system topology with the graph 7'

TN = <MN,DN>, where:

e My is a set of machine nodes or processors, My
{m;|m; € Tn}, m; is vertex in the graph;
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e Dy is a set of communication cost between m; and mj,
Dy = {di j|lmi,m; € Tn}, d;; is the distance between
two vertices.

The definition of graph mapping from G to T is:
Gpy = <V]/3N7E:DN, W;), where:

e U}y is aset of application processes after being mapped
’

to the set of machine nodes or processors, Vpy =
{vir, = vi = my|vi € Vb, mp € My}, vjy is the vertex
after mapping;

’

gl
’ ’ .

Epy = {ei,jilvi,vj € Vp,my,my € My}, egk,jl is the

edge between two vertices after mapping;

e Eby is a set of communications between v}, and v

. W;E
{f(wi ;. dwles ;i € Epy}, f(w,d) is the mapping func-
tion that calculates the cost when the communication
edge is mapped to the topology edge. It could be dif-

ferent equations for different applications.

7
, is the communication cost after mapping, Wy =

The objective function of graph mapping is minimizing
the real communication cost via intelligent mapping the
communication graph to the system topology graph.

MAPg 7 = {Gpy|min(}" W)}

3.2 New Heuristic in Graph Mapping

As described earlier, two graphs are generated from user-
input or trace analysis: one describes the application com-
munication pattern (CG); the other describes the system
communication topology (TG). We assume the numbers of
vertices in these two graphs are equal, which means we can
ignore the problem of load-balancing. i.e., the mapping of
vertices between two graphs is one to one:

/ !’
Ven = {vip = vi & mylv; € Vp,my € My}

Then our new mapping algorithm could map the commu-
nication graph to the system topology graph.

The graph partitioning and graph mapping problems have
been proved to be NP-hard[5]. We adopt the heuristic k-way
graph partitioning algorithm proposed in[16] as the basis
to solve the graph mapping problem with a new objective
function:

’
min E Wg = min

>

’ ! !
Vi V1€V N

J(wij, di)

A basic operation in the proposed heuristic is to exchange
a pair of process-node mappings and calculate the change of
the value of the objective function, which is defined as the
gain function g:

’ ’

g(vikvvjl) =

>

m#i,j,

f(wi,m7 dk,n) + f(wj,m + dl,n)
U,ImHEVII,N

>

m#i,j,
’

f(wi,mydl,n) + f(w],m + dk,n)

Umn€VpN



where the second sum is the communication cost between
other vertices and the two vertices vj;, and vj; after exchang-
ing the mapping of v; and v; . The first sum is the original
communication cost before the exchanging.

The algorithm starts with a random mapping scheme to
avoid being stuck in a poor local maximum. Each pass im-
proves the quality of the mapping scheme. If no positive
gain is available, the algorithm stops.

In each pass, the algorithm first calculates the matrix
g(v;k,v;l) for each pair of vertices in the communication
graph. It then selects the pair with max gain. Recalculate
the matrix g(v;mv;l) for the rest of vertices until all of the
vertices are selected. Choose the pairs of vertices in the se-
lection to exchange, if the sum of the gains is positive and
maximum. Exchange those chosen pairs, loop to next pass.
The detail pseudo-code is in the appendix.

The following points are worth noting:

1. The proposed algorithm is more efficient than those sim-
ple pair-wised exchange algorithms. In each pass, the
algorithm exchanges the maximal number of the pairs of
which the sum of the gains is positive and maximum.

2. To avoid getting the local optimum for the heuristic, the
algorithm chooses random mapping as the start. To im-
prove the quality of the heuristic, we can start the map-
ping algorithm with several random initializations. In
addition, multiple execution with different initial start
mapping could be performed in parallel.

3. The complexity of the algorithm is dominated by the cal-
culation of the gain, which takes O(N?) time. Each pass
calculated the gain function for N times, so the com-
plexity for each pass is O(N®). The execution time of
the mapping algorithm depends on the complexity of the
graph CG and TG, i.e., how many passes to get the opti-
mized solution. In section 5.3, we give the execution time
of the mapping algorithm and analyze its scalability.

4. |IMPLEMENTATION OF THE PROFILE

GUIDED PROCESSES PLACEMENT
MECHANISM

The processes placement mechanism was implemented as
an experimental component of the Intel Cluster Tool Kit[9].
In Figure 2, the communication graph can be parsed and
abstracted from the trace file of the application after its ex-
ecution with Intel Trace Collector[9] or Intel MPT library[10].
The system topology graph can be obtained using our MPI
parallel ping-pong tool or other topology discovery mecha-
nisms, in addition to using the administrator’s input.

4.1 Application Communication Graph Gen-
erator

Message count and message volume are used to repre-
sent the communication cost between MPI processes to form
the application communication graph. Message count is a
good metric for short message dominant applications be-
cause short messages are more sensitive to the communi-
cation overhead occurred each time regardless the message
size. Message volume is more proper to represent the com-
munication cost of large message dominated applications be-
cause it is more sensitive to the total size of messages.
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Figure 2: Workflow of the profile-guided parallel processes
placement.

In our implementation, we first calculate the median mes-
sage size of the application and compare it with a threshold
to determine whether it is dominated by large messages or
small ones. Then choose either message count or message
volume accordingly.

It should be noted that the threshold to distinguish small
and large messages varies on different MPI implementations.
In our implementation, it is obtained by measuring the la-
tency and bandwidth of ping-pong messages with various
sizes.

4.2 Exploration of Interconnect Topology

The topology graph describes the interconnect hierarchy
of a cluster. This hierarchy has a large impact on the appli-
cations’ communication behavior. We use parameters, such
as gap and overhead, from the LogP model [20] to weight the
connections in the cluster topology graph. Overhead dom-
inates the small message transmission time, while gap, the
reciprocal of bandwidth, determines the transmission time
of bulk messages. These parameters can be obtained from

32 CPUs Topology Bandwidth

Gap(us/KB)

with gigabit Ethernet connections.

the technical specification of a cluster or from conducting
a simple ping-pong test. We implemented a MPI paral-
lel ping-pong tool to measure these parameters that adopts
single-circle-match algorithm, which requires N71 iterations
of ping-pong tests. In each iteration N/2 pair-processors are
exchanging MPI ping-pong message simultaneously. This
approach mimics the environment of real applications where
simultaneous data transfer is a norm. In addition, to re-
duce the noise, the 10% data with the highest overhead/gap
ping-pong results are ignored, because these data are likely
to suffer from extreme congestion. Another method we use
to enhance the data is the average-median statistic. For
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cluster with gigabit Ethernet connections.

the examples of gap and overhead topology graphs shown in
Figures 3 and 4, we can see that inter-node communication
is slower than the intra-node communication.

The advantage of this tool is twofold. Firstly it measures
the effective bandwidth and overhead for the interconnect
by simulating the application run time, while the technical
specifications only describes the theoretic values and could
not reflect situations such as congestion. Secondly, it scales
to clusters with tens of thousands of nodes in that the mea-
surement is performed in parallel so the time spent in topol-
ogy discovery is kept reasonable.

4.3 Generating the New Process Placement

With a communication graph and a system topology graph,
we can use the mapping algorithm described in the last sec-
tion to generate the new process placement. The mapping
function is defined as:

Frequency x Overhead if small message

Jflwig,dig) = {

Volume x Latency if bulk message

The new process placement can direct the scheduling of next
run.

5. EXPERIMENTS AND ANALYSIS

We have tested the performance of profile-guided place-
ment with the following MPI benchmarks and applications:

e NPBJ1]: Five applications from NASA Parallel Bench-
mark:

LU: a version of SSOR algorithm by splitting of
the operator of the Navier-Stokes equation into
a product of lower triangular matrix and upper
triangular matrix. It sends large numbers of very
small (40byte) messages and is very sensitive to
the small message communication performance.

BT: use Alternating Direction Implicit(ADI) ap-
proximate factorization of the operator of Navier-
Stokes equation.

SP: uses the Beam-Warming approximate factor-
ization and Pulliam-Chaussee diagonalization of
the operator of the Navier-Stokes equation.

MG: iterations of V-cycle multi-grid algorithm for
solving a discrete Poisson problem on a 3D grid
with periodic boundary conditions.
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— CG: a solution of a sparse system of linear equa-
tions by iterations of the conjugate gradient meth-
od.

e WRF[28]: a next-generation mesoscale numerical weat-
her prediction model designed to serve both opera-
tional forecasting and atmospheric research need. The
WRF MPI version uses MPI messages to exchange the
data at the division boundary.

e ZEUSMPI6]: a message passing implementation of the
ZEUS algorithm, which solves the ideal MHD equa-
tions governing the evolution of a wide variety of astro-
physical systems. It divide the computational domain
into 3-dimensional tiles, each exchanging the bound-
ary data with neighboring tiles by MPI non-blocking
message passing.

e COMBUSTIONJ4]: an application which implements
the direct numerical simulations (DNS) with a time de-
pendent turbulence structure and a finite rate reaction
model. The scope is to study auto ignition processes
of synthetic turbulent diffusion flames.

The test-beds include clusters based on Itanium®-based
and TA-32 systems. Each cluster has eight 2-way SMP nodes
(Itanium® 2 or Intel® Xeon® processor) connected by a
gigabit Ethernet.

o Itanium® 2 processor with 1.5GHz and 6MB L3 cache
and 2GB memory, and RHEL3.0.

e Intel® Xeon® processor with 3.60GHz and 2MB L2
cache and 2GB memory, and RHEL3.0. It should be
noted that we enabled the hyperthreading feature in
the Xeon processor, so we put four MPI processes in
each dual Xeon machine in our experiments.

e Intel® MPI 1.0 (icc 8.1) and ITC5.0 are used to trace
the application.

To simulate clusters with different scales and interconnect
hardware, we construct two kinds of cluster topology:

e Two-tier topology: We setup two clusters. One of
them consists of 8 Itanium 2 nodes. The other one
consists of 8 Xeon nodes. All the nodes are inside the
clusters are connected with one switch while each node
of the cluster is a SMP machine. This configuration is
common in current clusters.

e Three-tier topology: Divide the 8 nodes into 2 groups
connected by two unique switches. The connections
between the 2 switches are:

(a) A Gigabit Ethernet for the Itanium 2 cluster;

(b) A 100 Mbps Fast Ethernet for the Xeon cluster.
This configuration is to simulate the situation of clus-
ters of clusters where clusters are connected with shared
links with limited bandwidth.

5.1 Comparison of MPI Placement Schemes
We have compared three kinds of placement in the exper-

iments:

e MPI default placement: Select processors from the
node list in the round-robin order.



Table 1: Two-tier topology for the 8 x 2 Itanium cluster.

Application | Metric | MPI Graph |Graph |Speedup
default |Parti- |Map-
tion ping
Zeusmp sec 2645 1579 1579 1.68
Combustion |sec 297 277 278 1.07
WRF sec 583.71 |582.99 [582.99 [1.00
LU.A.16 Mflops|148.70 |189.59 [180.83 [1.22
BT.A.16 Mflops|140.04 [146.50 [149.61 |1.07
SP.A.16 Mflops |44.53 43.84 47.02 1.06
MG.A.16 Mflops |72.16 108.32 |108.32 |1.50
CG.A.16 Mflops |12.88 16.37 19.12 1.48

Table 2: Three-tier topology for the 8 x 2 Itanium cluster.

Application |Metric | MPI Graph |Graph |[Speedup
default |Parti- |Map-
tion ping
Zeusmp sec 5308 3223 1573 3.27
Combustion |sec 1498 307 277 5.41
WRF sec 607.76 |587.54 |589.82 [1.03
LU.A.16 Mflops|137.93 |175.31 [191.56 |[1.39
BT.A.16 Mflops|103.65 [115.8 125.45 |1.21
SP.A.16 Mflops |33.05 37.46 39.18 1.19
MG.A.16 Mflops |64.71 63.79 81.34 1.26
CG.A.16 Mflops |9.19 16.93 16.11 1.75

e Graph partitioning placement: Generated by the ex-
isting graph partitioning algorithms which always take
the system as a two-tier one. We choose the METIS
toolkit because it is one of the most popular toolkit
for graph partitioning.

e Graph mapping placement: Generated by our pro-
posed graph mapping algorithm.

Tables 1 shows the results in the Two-tier 8x2 Itanium?2
clusters while Table 2 shows the results when the cluster
is configured as three-tiered. The speedup in both Table 1
and Table 2 means performance of graph mapping scheme
versus performance of the MPi default scheme. Figure 5
shows the NPB data in Table 1 and Table 2 more intuitively.

The speedup columns in Table 1 and 2 show that both the
graph partitioning scheme and the graph partition scheme
are effective for the two-tier configuration. However, for
the three-tier configuration, although the graph partitioning
algorithm could still provide significant speedup over the
MPI default placement scheme, it is completed exceeded by
the graph mapping schemes.

Table 3: Results for the 8 x 4 Xeon cluster.

Application | Metric Two-tier Three-tier
MPI Graph |[MPI Graph
default |Map- |default |Map-

ping ping

Zeusmp sec 4000 1299 32640 |13355

WRF sec 80 72 386 158

LU.B.32 Mflops | 224 245 44 174

BT.B.32 Mflops | 239 250 98 141

SP.B.32 Mflops | 108 114 30.53 |51.52

MG.C.32 |Mflops|106 106 37 52

CG.B.32 Mflops|7.32 16.15 |1.45 3.49
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Figure 5: NPB test results in 3-tier Itanium cluster.
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Figure 6: Zeusmp results in Itanium cluster

Figure 6 shows Zeusmp results by comparing the perfor-
mance of two-tier and three-tier configuration under differ-
ent schemes. It is shown that both the MPI default scheme
and the graph partition scheme suffered from the three-
tier configuration, while the graph mapping scheme almost
maintains the performance in the two-tier configuration.

Table 3 demonstrates the results for the 8 x4 Xeon clus-
ter with both two-tiered and three-tiered configurations. In
the three hierarchy topology of Xeon cluster, the bottleneck
is the slow connection between those switches. Compar-
ing Table 2 and Table 3 would show that graph mapping
scheme is more effective for multicluster systems when the
bandwidth of interconnect between clusters is low. For a ex-
ample, the WRF shows only marginal speedup in Table 2,
but significant speedup in the 3-tier configuration in Table 3.
The trend of multicore processors will put many more com-
puting power in a cluster system and the interconnect may
be more congested in the future multicluster systems. Our
graph mapping algorithms are supposed to be more effective
in these systems.

There are some constraints for the profile-guided processes
placement. The intelligent placement only improves the per-
formance of applications with heavy point-to-point commu-
nications. It works best if these communications are asym-
metrical. If an application fails to meet these requirements,
slight slow down may occur. This situation occurred when
we tested a version of CHARMM [2] application written
with point-to-point messages. We have addressed this issue
by introducing a threshold for the improvement brought by
process placement.



Table 4: Execution Time of the Graph Mapping Algorithm.

Benchmark scale(process #) Mapping time (sec)

LU.C
LU.C
MG.C
MG.C
CG.C
CG.C

32
64
32
64
32
64

0.026
0.326
0.026
0.344
0.023
0.380

5.2 Execution Time of the Graph Mapping Al-

gorithm

In this section, we present the execution time of our graph
mapping algorithm up to 64 MPI processes with three bench-
marks from NPB, LU.C, MG.C and CG.C. We limit the

number of process to 64 because it is the largest scale of

traces we could get in our test environments. The algorithm
is implemented in C4++. The experiments were performed
on a Desktop PC with Intel P4 2.8Ghz processor, Linux 2.6

and GCC 4.0 at -O3.

From the Table 4, it could be concluded that for small-
scale MPI applications whose number of processes is less
than 64, the overhead of our graph mapping algorithm is
almost ignorable. With these testing data and the O(N?)
complexity, a rough estimation on the algorithm’s cost would
be around 1000 seconds when the number of processes is

1000.

For an MPI application with 1000 processes, it is expected
to execute hours or even days. Besides, this cost is a one
time cost for a given application/system pair, which will be
amortized with multiple executions. Comparing with the
current profile guided compiler optimization for sequential
code(which requires hours to have 5%-10% performance im-
provement), we think that the performance/cost ratio of our

approach is acceptable.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a fully automatic scheme for
optimized parallel process placement in SMP clusters and
multi-clusters without users’ knowledge on either applica-
tions or target systems. We implemented this scheme as a
toolset named MPIPP. MPIPP is being integrated into the

Intel Cluster Toolkit now.

We proposed a graph mapping algorithm which maps the
communication graph of parallel applications to the sys-
tem topology graph. This algorithm is more powerful than
the existing graph partitioning algorithms because it takes
multi-tier interconnect topology into consideration. With
the advent of the multicore processor, future systems are
likely to be multiple-tiered instead of just two-tiered where

our algorithm should be superior.
We made extensive experiments with several parallel bench-

marks and applications on a few cluster systems and multi-
cluster systems. Experimental results show that the opti-
mized process placement generated by our tools can achieve
significant speedup.
Our current implementation only addresses point-to-point
MPI messages. Many applications are written with primar-
ily collective operations, such as LS-DYNA [19]. We are
working on the optimization of collective operations.
Besides communication, there are other factors that could
affect the application performance, such as memory usage,
load balance and application communication pattern. The
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interaction of these factors and the placement scheme should
be investigated.

While this research focus on message passing applications,
the approach described in this paper has the potential to be
extended to shared memory applications.
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APPENDIX

A.

PSEUDO-CODE OF THE GRAPH MAP-
PING ALGORITHM

Algorithm: MAPPING — minimize the sum of commu-
nication cost.
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Input: the communication graph
Gp = WI1..|PJ][1..|P|] and topology graph
Gr = D[1..|N|][1..|N]|], where define V = N = P.

Output: mapping scheme /* M[1..|V]|] x/

Variables:

/* M[i] = processor number that task p; maps. x/
M][1..|P|]: integer;

/s GAINJI[j] = gp.py +/
GAIN[1..|P|][1..]P|]: real,

/* 0 = unused, 1 = used state */
STATEI1..|P|): Boolean;

/* history information on move operations x/
HISTORY(1..|P|][1..|P|]: integer;

/* temporary gain for move history */
TEMPI1..|P|]: integer;

1) Construct a random initial mapping;
/% M[i] =random_index(i) x/
2) for i := 1 to |P| do
/* one pass start: calculate gain for all pairs; /
STATEi] :=0; /* unused %/
for j:=1 to |P| do
GAIN][] = g(pi,m(i]> Pj,M15))3
endfor
endfor
3) for i:=1 to |P|/2 do
3.1) select unused p; such that
9(P1, M 1) Pm, M[m]) = max; j(GAIN[d][j]);
3.2) STATE[]] := 1; STATE[m]:=1 /* p; switch with py, */
3.3) M[l] & M[m]; /* one—switch */
3.4) /* save information of one —switch */
HISTORY[i][1] := I;
/% save information of one — switch */
HISTORY[i[2] := m;
3.5) /*save the gain of vj <= vm */
TEMPIi] := GAIN[I][m];
3.6) for j := 1 to |P| do /* recalculate gains %/
for j := 1 to |P| do
GAIN][] = g(Pi,m(i]> Pj,M[5))3
endfor
endfor /x step 3.6 x/
endfor /* step 8, one pass end x/
4) chooe t to maximize Gain = 3°%_; TEM P[j];
5) if Gain > 0 then /+ complete one pass */
for j:=t + 1 to |P| do
/* restore %/
M[HISTORYj][1] <= M[HISTORYj][2]];
endfor
goto 2);
endif






