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Abstract

Message Passing Interface (MPI) is a widely used standard for
managing coarse-grained concurrency on distributed computers.
Debugging parallel MPI applications, however, has always been a
particularly challenging task due to their high degree of concur-
rent execution and non-deterministic behavior. Deterministic re-
play is a potentially powerful technique for addressing these chal-
lenges, with existing MPI replay tools adopting either data-replay
or order-replay approaches. Unfortunately, each approach has its
tradeoffs. Data-replay generates substantial log sizes by recording
every communication message. Order-replay generates small logs,
but requires all processes to be replayed together. We believe that
these drawbacks are the primary reasons that inhibit the wide adop-
tion of deterministic replay as the critical enabler of cyclic debug-
ging of MPI applications.

This paper describes subgroup reproducible replay (SRR), a hy-
brid deterministic replay method that provides the benefits of both
data-replay and order-replay while balancing their trade-offs. SRR
divides all processes into disjoint groups. It records the contents of
messages crossing group boundaries as in data-replay, but records
just message orderings for communication within a group as in
order-replay. In this way, SRR can exploit the communication lo-
cality of traffic patterns in MPI applications. During replay, devel-
opers can then replay each group individually. SRR reduces record-
ing overhead by not recording intra-group communication, and re-
duces replay overhead by limiting the size of each replay group.
Exposing these tradeoffs gives the user the necessary control for
making deterministic replay practical for MPI applications.

We have implemented a prototype, MPIW1z, to demonstrate
and evaluate SRR. MPIW1z employs a replay framework that al-
lows transparent binary instrumentation of both library and sys-
tem calls. As a result, MPIWIiz replays MPI applications with
no source code modification and relinking, and handles non-
determinism in both MPI and OS system calls. Our preliminary
results show that MPIW1z can reduce recording overhead by over a
factor of four relative to data-replay, yet without requiring the entire
application to be replayed as in order-replay. Recording increases
execution time by 27% while the application can be replayed in
just 53% of its base execution time.

Categories and Subject Descriptors D.2.5 [Testing and De-
bugging]: Debugging aids; D.2.5 [Testing and Debugging]: Dis-
tributed debugging

General Terms Reliability, Design, Performance
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1.

Software bugs remain a key factor impacting the reliability of
high-performance computing (HPC) applications. A recent study of
more than 20 HPC systems, for instance, found that software bugs
accounted for 24% of system failures [32]. Debugging HPC appli-
cations has always been a particularly challenging task [13] due to
their high degree of concurrent execution, distributed communica-
tion across multiple nodes in contemporary cluster environments,
and non-deterministic behavior [5]. These characteristics conspire
to make subtle bugs difficult to reproduce and debug.

Deterministic replay is a potentially powerful technique for de-
bugging HPC applications. When an application executes, the re-
play tool records application inputs, such as messages, during the
recording phase. When developers want to track debug the appli-
cation, in the replay phase they can replay the faulty processes to
any state of a recorded execution and investigate how these pro-
cesses reached that state. Replay tools for HPC applications typi-
cally fall into two categories [22]. Data-replay tools record all in-
coming messages to each process during program execution, and
provide the recorded messages to processes during replay and de-
bugging. With this approach, developers can replay just faulty pro-
cesses rather than having to replay the entire parallel application.
In contrast, order-replay tools only record the outcome of non-
deterministic events in inter-process communication during pro-
gram execution — for instance, MPI_Recv with MPI_ANY_SOURCE
for MPI applications — and lets sending processes reproduce the
actual message contents during replay. Since order-replay only
records the ordering of non-deterministic events, it records far less
data than data-replay.

Despite their benefits, however, existing replay approaches for
HPC applications impose substantial overhead either at recording
or replay time. These overheads, unfortunately, limit their current
utility. With data-replay, the system must record the contents of all
inter-process communication to make every process replayable. As
aresult, the replay log size scales directly with the amount of inter-
process communication, and becomes prohibitively large for even
moderate-scale applications. The NPB kernel LU with 64 processes
in our experiments, for example, logs data at the rate of nearly 14
GB per minute. While order-replay dramatically reduces recording
overhead, it imposes overhead during the replay phase. All pro-
cesses must be replayed together, even if the developer only needs
to investigate just a few processes. This requirement is impractical
when an application has a large number of processes but a devel-
oper only has limited resources for debugging, a common situa-
tion in HPC settings. In general, these two approaches represent a
tradeoff between introducing overhead in the recording vs. replay
phases. It remains a challenge to find a balance between them and
make deterministic replay applicable for large HPC applications.

In this paper we propose a hybrid approach called subgroup re-
producible replay (SRR) that provides the benefits of both data-
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replay and order-replay while balancing their trade-offs. SRR di-
vides all processes into disjoint replay groups. During the record-
ing phase, SRR records the contents of messages crossing group
boundaries as in data-replay, but records just message orderings for
communication within a group as in order-replay. During replay,
developers can replay each group independently of the others. SRR
reproduces messages from outside the group directly from the logs,
and reproduces messages from within the group through direct ex-
ecution. It uses the recorded outcome of non-deterministic events
to make the replay deterministic with the original execution. SRR
therefore reduces recording overhead by not recording intra-group
communication, and at the same time constrains the replay over-
head by limiting the size of each replay group.

SRR is able to dramatically reduce recording overhead because
it exploits communication locality within HPC applications [8, 39,
18, 15]. Developers often structure communication patterns such
that processes naturally exchange messages within a group to avoid
global synchronization and therefore improve overall application
performance. By design, such intra-group messages are the domi-
nant form of communication in an application. By making replay
groups consistent with these communication patterns, most mes-
sages therefore become internal to a replay group and SRR avoids
having to record them.

As a result, the size of the replay group is the critical parameter
that fundamentally determines the overhead of the SRR approach.
We therefore developed a graph partitioning algorithm to discover
the communication locality of a running application, and automat-
ically determine the appropriate group size that best captures this
locality. With SRR, though, developers are still free to choose a
group size according to their needs. In fact, for an application with
n processes, group sizes of 1 and n make SRR behave exactly like
traditional data-replay and order-replay approaches, respectively.

We have implemented a prototype of SRR for MPI applica-
tions called MPIWI1z. MPIWIZ uses a flexible library-based re-
play framework called R2 [11] that employs binary instrumentation
to transparently make any MPI application replayable without re-
compilation. We apply MPIWIz to several common MPI applica-
tions to demonstrate its benefits compared to data-replay and order-
replay approaches alone. The extent of these benefits of SRR de-
pends upon the communication patterns of applications. For exam-
ple, for an application (NPB kernel CG) with good communication
locality, MPIW1z only generates 22% of the data-replay log size.
Even for applications that have no communication locality (e.g.,
NPB kernel FT, which uses all-to-all communication), MPIW1Z is
still able to reduce log size by about 13%. Across a suite of appli-
cations, the average recording and replay overheads of MPIWI1z
naturally fall in between that of data-replay and order-replay.

Furthermore, by building on the R2 framework, MPIW1z pro-
vides two additional practical features not found in existing MPI
replay tools. First, in addition to non-determinism in communica-
tion, MPIWI1z also captures non-determinism in operating system
calls (e.g., gettimeofday, random) invoked by MPI applications.
All of the applications in the NPB benchmarks, for example, use
non-deterministic system calls (MPI_Wtime), and capturing the full
extent of non-determinism is necessary for their accurate replay.
Second, MPIWIZ guarantees that the memory footprints of the re-
played processes are identical to those of the processes in recording
execution — all application memory locations at user-level have
the same values during both the record and replay phases. Ensur-
ing identical memory values further aids developers in debugging
applications by removing inconsistencies between deployment and
debugging environments as a source of uncertainty.

The rest of the paper is organized as follows: Section 2 presents
related work. Section 3 discusses the design of SRR. Section 4
describes our approach for determining replay groups, and Sec-
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tion 5 describes the MPIWI1Z replay framework. Section 6 details
how MPIWI1Zz deals with the various sources of non-determinism
in MPI applications. We evaluate SRR relative to data-replay and
order-replay in Section 7. Finally, Section 8 summarizes our work
and concludes.

2. Related Work

Deterministic replay is just one of many approaches that have been
proposed for debugging MPI applications. This section discusses
how subgroup reproducible replay relates to existing replay tech-
niques, and places it in the larger context of MPI debugging ap-
proaches.

Replay-based debug tools adopt either data-replay [25, 4, 2]
or order-replay [5, 21, 20] approaches to debug MPI applications.
Each approach has tradeoffs. Data-replay tools generate massive
logs, while order-replay tools require all processes to be replayed
together. Both of them are impractical for large-scale applications.
SRR is a balance between data-replay and order-replay. It only re-
quires replaying a group of processes, and users can adjust the num-
ber of processes in the group to match the resources of their debug-
ging environment. Further, by exploiting locality in the communi-
cation patterns of an application, SRR can substantially reduce the
size of logs generated during the recording phase. As a result, SRR
makes it possible to debug large-scale applications with limited re-
sources in the development environment.

Most MPI replay systems are implemented via the MPI profiling
interface. While convenient, unfortunately this approach does not
handle non-deterministic system calls, thereby making it difficult to
guarantee a completely faithful replay. We have implemented SRR
in MPIWIZ on a general record and replay platform [11], enabling
MPIWIZ to capture all forms of non-determinism in MPI appli-
cations. Other MPI replay systems are implemented by changing
the source code of the MPI distribution, which limits its portability.
MPIW1z employs binary instrumentation to transparently replay
applications without the need to recompile or relink, and does not
depend on the MPI distribution.

More generally, deterministic replay is just one of many ap-
proaches that have been proposed for debugging MPI applications.
MPI-CHECK [24] uses static analysis to check the source code at
compile time against the programming rules specified by the MPI
standard. Although useful for identifying some classes of errors,
static analysis also suffers from false negatives since many parame-
ters are not known until the application executes. Parallel debuggers
operate similarly as sequential debuggers [36, 31, 30, 28, 4], but can
be difficult to use effectively when there are hundreds of processes.
Automatic checking tools address the drawbacks of manual check-
ing in parallel debuggers [38, 12, 19, 7, 37]. These tools use similar
rules as static analysis, but they verify the rules at runtime rather
than compile time. IMC records communication during execution
and checks the trace to identify predefined errors [6]. Several re-
cent efforts have also explored the use of model checking to verify
MPI applications [23, 29, 33, 35, 34] to verify MPI codes. Though
it is difficult for these tools to handle bugs due to non-determinism,
they are helpful in application understanding and deterministic bug
tracking. We view SRR as complementary to these efforts, and it
can be used in conjunction with all of them.

3. Design Overview

This section presents an overview of our design of subgroup repro-
ducible replay. We first explain how SRR divides all processes into
the replay groups and exploits communication locality to reduce
recording overhead. Then we describe SRR record and replay for
an MPI application.
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Figure 1: Communication traffic in CG, MG and LU (CLASS=C, NPROCS=64). The cell at (4, j) represents the communication volume (in
bytes) between process ¢ and j using shades of gray. With replay groups in sets of 8 sequentially numbered processes, intra-group messages
account for about 77%, 55% and 50% of application communication traffic, respectively.

3.1 Communication Locality

The key inspiration underlying SRR is that HPC applications typ-
ically exhibit strong communication locality. A number of stud-
ies have shown that HPC applications, by design, have structured
communication patterns where processes predominantly exchange
messages within a group [8, 39, 18, 15]. Such communication pat-
terns increase parallel application performance by improving their
scalability. For example, Figure 1 shows the communication pat-
terns of three widely-used MPI benchmarks — CG, MG and LU
from the NAS Parallel Benchmarks (NPB) [1] — generated from a
trace-driven simulation using SIM-MPI [27]. In the figure, the gray
level of a cell at the 7" row and 5*" column represents the commu-
nication volume between two processes ¢ and j. The figure shows
distinct group patterns, where processes can be divided into small
groups (e.g., a group of size eight for CG) in which intra-group
communication comprises the majority of overall communication
traffic. By organizing application processes into appropriate replay
groups, SRR can dramatically reduce recording overhead and limit
the resources required during replay.

Based on these observations, a desirable assignment of pro-
cesses into replay groups should satisfy two conditions. First, each
group should have a moderate size so that replay requires only
moderate hardware resources, i.e., MPIWIZ can replay a group
of processes reasonably fast with fewer computing resources than
required for the entire application. MPIW1z allows developers to
specify an upper-bound of the group size, and ensures this bound
when partitioning processes. By this means developers have the
freedom to choose different trade-offs between recording and re-
play overhead. Second, given the constraint on group size, the pro-
cesses assigned to each group should reduce inter-group commu-
nication as much as possible. In Figure 1a, for example, it is much
more effective to assign processes to replay groups in sets of eight
sequentially ranked processes rather than eight randomly selected
processes. We will describe how MPIWIZ satisfies these two con-
ditions in Section 4, and Section 7.3 experimentally quantifies the
tradeoff of recording overhead and replay group size, and the ben-
efits of making informed group membership assignments.

3.2 SRR Record

During the recording phase, SRR records only the contents of
incoming inter-group messages, and records the order of messages
only if an operation is non-deterministic (for any message, no
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matter whether the message is intra-group or not). Table 1 outlines
the recording and replay mechanism for different operations.

In the spirit of order-replay, since the replay phase executes the
processes within a replay group, SRR does not have to record any
data corresponding to intra-group deterministic MPI communica-
tion operations. Replay naturally reproduces message order and
contents. For non-deterministic intra-group communication, SRR
records the order of the messages but does not record their con-
tents; execution during replay will faithfully reproduce the contents
of messages as long as it preserves the original ordering. Messages
sent out of the replay group do not affect the replay of the group,
and can be safely ignored.

In the spirit of data-replay, SRR records the full contents of
inter-group messages received from outside the replay group, as
well as their order if the receive operation is non-deterministic.
Since only processes within a group execute during the replay
phase, SRR must record messages from outside the group during
the recording phase so that it can faithfully emulate them during
replay.

Collective communication in MPI involves messages sent
among a set of processes. As a result, during the recording phase
MPIWIZ needs to determine the process membership of a col-
lective communication to determine what information to record,
if any. A collective communication specifies the set of processes
involved in the operation, albeit indirectly. To determine whether
the current process is involved, MPIWIZ uses two steps. First, it
determines the MPI group associated with the collective commu-
nication’s communicator via MPI_Comm_group. It then translates
its global rank (the rank in MPI_COMM_WORLD) into the context of
this MPI group via MPI_Group_translate_ranks. If the result is
MPI_UNDEFINED, then the process is not in the group, otherwise it
is participating in the collective communication. Since the process
membership of the collective communication cannot be recalcu-
lated during the replay phase, MPIWIZ records this information
during the record phase.

Finally, when non-deterministic system calls are used directly
by the application, MPIWI1z always records their results in the log.

3.3 SRR Replay

In the replay phase, SRR replays all of the processes of only one
replay group. The replayed processes generate intra-group mes-
sages directly, and the contents of incoming inter-group messages
are emulated using the recorded logs. Since the message orders of



Table 1: Summary of record and replay mechanisms for the MPI API and system calls.

MPI_Comm_rank Section 3.3)

Category API Example Record&Replay mechanism
Point-to-Point Communication | MPI_Send, During recording, log inter-group communication, ignore intra-group communication. During
MPI_Recv replay, emulate inter-group communication using the log, and reproduce intra-group communi-
cation. For non-blocking operations, log the request type (send or receive) and buffer information.
(Section 3.2 & Section 3.3)
Collective Communication MPI Bcast, Record members involved, handle message contents as with point-to-point communication.
MPI_Gather Replace with point-to-point communication during replay. (Section 3.2 & Section 3.3)
MPI Environment API MPI_Init, Record parameters and return value. Emulate them using the log during replay. (Section 3.2 &

Non-determinism in MPI MPI_ANY_SOURCE,

MPI_ANY_TAG

Wildcard receives. Record the real values for source and tag fields. Replace them with real values
during replay. (Section 6.1.2)

MPI_Waitany,
MPI_Testsome

Record returned request indices, and handle corresponding messages buffer according to point-
to-point communication. During replay, check the request type and handle corresponding mes-
sage buffer according to point-to-point communication. (Section 6.1.3)

replay. (Section 6.2)

MPI_Probe Record the parameters and returned value. Emulate them using the log during replay. (Sec-
tion 6.1.3)
Non-determinism in OS GetTickCount Record the outcome according to the semantics of the routine. Emulate them using the log during

/* MPI_Bcast() replay code */
load MPI_Bcast rank_list from log
if (I am root) { /* for data sender */
foreach rank in rank_list:
if (rank is in replay group)
send message to rank
} else { /* for data receiver */
if (root is in group)
recv message from root
else
load message from log

Figure 2: Pseudo code for MPI_Bcast during replay.

non-deterministic operations have been recorded, SRR can guar-
antee a deterministic replay by enforcing this order in replay,
as follows. For non-deterministic point-to-point operations, SRR
replaces the parameters introducing non-determinism (e.g., wild-
cards) with their real values. For collective operations, SRR replays
them using multiple point-to-point operations because some of the
participants might be outside of the group. For instance, Figure 2
illustrates how it replays MPI_Bcast. If the replayed process is
the broadcast root, it generates messages to only those processes
in the replay group (the others do not execute during replay). If
the replayed process is a recipient, it receives the message as with
point-to-point communication replay if the root is in the group.
Otherwise, the recipient loads the message from the log.

A key difference between SRR and order-relay is how SRR de-
livers intra-group messages. In order-replay, the sender delivers a
message to the receiver through the same channel as in the record-
ing phase, e.g., through a socket. However, in SRR replay, the
original MPI initialization routine which constructs the MPI par-
allel computing environment cannot execute identically as in the
recording phase because only the processes in the replay group ex-
ecute. To address this problem, SRR replay skips the construction
of the full computing environment (similar to data-replay), and as
a result does not establish the communication channels among the
replayed processes as during the recording phase. Consequently,
normal MPI communication functions (e.g., MPI_Send) cannot de-
liver the message in SRR replay. Therefore, SRR needs to emulate
the communication channels and deliver messages itself. The em-
ulated communication channels also enable SRR to control the or-
der of message delivery, a necessary condition for reproducing non-
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determinism in MPI message orders. In our current implementation
of MPIWI1z, we use a dedicated replayer process as a message re-
lay, i.e., the wrapper of MPI_Send sends messages to the replayer,
and MPI Recv receives messages from the replayer.

4. Replay Groups

The size and membership of replay groups are key parameters that
determine the overhead and performance of SRR. A straightfor-
ward way to determine these parameters is to utilize expert knowl-
edge and manually specify them. This approach is reasonable when
the developer knows much about the communication flow of the
MPI application and the communication pattern presents good lo-
cality.

In general, though, it is more practical to have MPIW1z auto-
matically determine replay groups. First, we need to find out the
group size constraint. Then, for a given group size, we determine
an efficient membership of all processes to replay groups. Finally,
we search in a range of group sizes below a bound provided by the
user to find one that provides a near-optimal result, i.e., results in
the smallest inter-group communication volume.

For the group size constraint, in practice we imagine users set-
ting it to a small multiple (1-4) of the number of processor cores
in their debugging environment both to limit the replay execution
time overhead, as well as to fit the working set of the replayed pro-
cesses within memory constraints. As with data-replay, a goal of
SRR is to enable users to debug MPI applications on a single ma-
chine. To keep the execution time of replay reasonable, the group
size should reflect the resources available in the debugging envi-
ronment. Having the group size reflect the number of processors
minimizes replay execution overhead. With the advent of multi-
core architectures, we believe this rule of thumb matches hardware
trends well.

After setting the group size constraint, we formalize the group
membership problem as a k-way graph partitioning problem. We
represent the communication pattern of an application with a graph,
in which each vertex represents a process and the weight of each
edge is the aggregate message traffic between the two correspond-
ing processes of the two vertices. This communication graph can be
obtained, for example, by profiling the execution of the application
(e.g., with a tool like SIM-MPI [27] as in Figure 1). Our goal is to
partition this graph into k partitions with roughly equal numbers of
vertices, and where the sum of the weights of edges crossing the
partition boundary is minimized.
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Figure 3: The ratio of inter-group message size relative to to-
tal communication volume vs. group size for CG (NPROCS=64,
CLASS=C). If the group size upper bound is set to S = 12, MPI-
Wiz would choose the best group size in the range [6, 12].

Although MPIW1z can handle replay groups of different sizes,
we argue that partitioning the process graph into nearly equal sizes
is desirable for the following reasons. First, the replay group size
constraint should be applied to the largest partition, otherwise
MPIWIz cannot replay that partition with reasonable overhead.
On the other hand, if the total size of two partitions is still smaller
than the specified upper bound, they should be merged together.
Then the inter-group communication between them becomes intra-
group communication and does not need to be recorded. Therefore,
the merging of the two partitions will certainly not increase the
recording overhead, but more than likely will decrease it. Creating
nearly equal-sized groups tends to generate a balanced result which
is more efficient than the original unbalanced one.

Although this kind of graph partitioning problem is NP-complete,
many algorithms have been proposed to find reasonably good par-
titioning using heuristic methods [9, 3, 26]. MPIWIZ employs a
multilevel k-way partitioning algorithm MLKP [16] to partition the
process communication graph. We chose this algorithm since it
can generate a high-quality partitioning in linear time complexity
proportional to the number of edges (Section 7.3 shows the effec-
tiveness of MLkP). Let S be the upper bound of the partition size,
n be the number of vertices in the communication graph, and k
the number of partitions. Because the result of MLkP is nearly bal-
anced, MPIWIZ can limit the size of a partition to be lower than S
by guaranteeing that n/k < S.

Given an upper bound S of the partition size, the smallest
value of k that satisfies this upper bound may still not produce the
minimal amount of inter-group communication traffic. The reason
is that a group size of eight exactly matches the natural group
communication boundaries in the application (Figure 1). Slightly
larger groups will include processes that place them outside of their
natural communication group, causing substantially more inter-
group communication that MPIW1Z needs to record in the log. For
example, Figure 3 shows the inter-group communication traffic for
the NPB benchmark CG, as collected by SIM-MPI [27], for a range
of replay group sizes. In general, the inter-group communication
volume decreases with larger group sizes, but there still exist some
local optimal points (e.g., at 4 processes, 8, 16, etc.).

The next step is to automatically discover a local optimum near
the upper bound S on replay group size. We do so by applying
MLKP iteratively across a range of values of & to discover the value
that generates the optimal result. For each group size, MLkP identi-
fies the replay group and we use SIM-MPI to collect the aggregate
inter-group communication volume. Fortunately, the number of it-
erations is reasonably small — we show that MPIW1z only needs
to search for group sizes in the range S/2 < n/k < S. Figure 3
shows the results of this process when S = 12.
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Table 2: Group sizes grow slower as applications scale.

Proc. # 16 32 64 128 256
GromsSe | CG | 4 8 8 16 16
WPSIZE MG | 4 8 8 16 16

Let s be the replay group size of one local optimal point. The
group size 2s should also be a local optimal point since, in this case,
groups with size 25 can be formed by merging pairs of groups with
size s. These merging operations do not increase the inter-group
communication volume while maintaining its local optimum at the
same time. Then given .S as the group size upper bound, if there is
no local optimal point with group size less than S, MPIWIZ can
find the optimal partitioning result when group size equals S. If
there are local optimal points with group size less than S, let s be
the local optimal group size which is less than and nearest to S.
Then we must have 2s > S since 2s is also a local optimal point,
which we can rewrite as s > S/2. Hence, since s by definition is
less than .S, we have S/2 < s < S. Therefore, by searching in the
group size range from S/2 to S, MPIWIZ can find a global optimal
group size satisfying the constraint.

A final observation is that, in scalable MPI applications, the size
of a communication group does not scale as quickly as the overall
application size. As the application scales up, the number of groups
increases accordingly, while the number of processes within each
group increases more slowly. Table 2 shows that the group size
grows more slowly as applications scale to larger numbers of pro-
cesses for two NPB applications. As a result, even with applications
using a large number of processes, MPIWIZ can replay the appli-
cation using relatively small replay groups.

5. Replay Framework

Deterministic replay requires that all MPI routines are both re-
playable and deterministic. In this section we describe our approach
for making MPI routines replayable, and in Section 6 we describe
the techniques we use to ensure that all MPI and system routines
are deterministic.

MPIWI1z takes advantage of a replay platform called R2 that
we previously developed for multi-threaded, distributed applica-
tions [11]. R2 uses binary instrumentation to transparently inter-
pose wrappers on API routines for both runtime environments as
well as system calls. For the MPI library, MPIW1z transparently
interposes a wrapper routine around each MPI routine in the library
interface.

Under MPIW1z, when applications call into the MPI library
they instead invoke the wrapper. The wrapper implements the
record and replay functionality, and invokes the actual MPI library
routine when necessary. For example, when an application calls
MPI_Recv, it will instead call a wrapper for the function. During
the record phase, the wrapper will call MPI_Recv, record the con-
tents of the received message to the log if appropriate, and then
return to the application. During the replay phase, the wrapper may
emulate MPI_Recv by returning the contents of the message from
the log rather than invoking the routine.

Implementing the recording and replay functionality for the en-
tire MPI API can be tedious because it requires wrapping nearly
300 API functions. Thanks to R2, which provides a flexible code
generation mechanism, we only need to write several general
code templates as annotations on API parameters instead of man-
ually programming recording and replay wrapper functions for
every API routine. MPIWI1z currently supports 191 of the most
commonly-used MPI functions (MPI-2.0 has 284 functions in to-
tal). Functions not supported include remote memory access, MPI



int
[reproducible]
MPI_Recv (
[out, bsize("GetSize(type, count)"), force] void* buf
[in] int count,
[in] MPI_Datatype type,
[in] int src,
[in] int tag,
[in] MPI_Comm comm,
[out, opt(MPI_STATUS_IGNORE)] MPI_Status* status
);

Figure 4: The annotation of MPI_Recv. reproducible means this
function may be reproduced if it is called by a process in a replay
group. in means the parameter is not modified, and no logging is
needed, while out indicates the parameter is changed by the routine
and it is recorded automatically by generated code. bsize indicates
how to obtain the length of the buffer, and force means the length
itself should be saved since the length can not be calculated during
replay. opt means the parameter can be null or some special values,
in which cases it does not need to be saved.

I/0, and dynamic process creation. Expanding the set of supported
functions with further annotations is ongoing work.

For example, Figure 4 shows the signature of MPI_Recv. To
generate its wrapper functions, we only need to annotate its input
and output parameters as shown in the figure. The generator in
R2 will then parse the annotations and generate code that logs
input parameters during the recording phase and returns output
parameters during the replay phase. Compared with the manual
approach, automatic code generation is more convenient and avoids
many potential errors in manual programming.

6. Handling Non-Determinism

Roughly speaking, for a replay tool everything that cannot be de-
terministically reproduced during the replay phase needs to be
recorded during the recording phase. This section describes our ap-
proach for handling non-determinism in both the MPI API and in
system calls.

6.1 Non-determinisms in MPI API

MPIW1Z needs to accomodate three sources of non-determinism in
the MPI API: inter-group messages, the use of wildcard parameters
when receiving messages, and the use of wait, test, and probe
operations.

6.1.1 Inter-group Message Content

During the recording phase, when a process receives a message
MPIWIZ needs to determine whether or not the message came
from a sender outside the replay group. At initialization time, MPI-
W1z reads the membership of replay groups from a configuration
file which stores the ranks of processes in each group. When a pro-
cess receives a message, MPIW1z checks the membership of the
sender process and records the received message if it is from a dif-
ferent replay group than the current process.

MPIWIz retrieves the message from the receiving buffer, typi-
cally provided as parameters to MPI routines. In addition to plain
buffers, MPI allows applications to specify derived data types for
which the sender can transmit a data trunk which is later split and
placed into non-contiguous positions of the receiving buffer at the
receiver. Currently, MPIWIZ records the entire buffer used with de-
rived data types. In such cases, recording the entire receive buffer
ensures the correctness of replay, but it may be inefficient because
only a subset of the buffer may actually be used. A more efficient
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solution is for MPIWIZ to process the definitions of these data
types and record only the transmitted data. Our experience with
MPI applications suggests that the use of derived data types is un-
common, however, so we have left optimizing derived data types
for future work.

6.1.2 Wildcard Receives

Another source of non-determinism is the order of messages re-
ceived using wildcard parameters. For a receive operation, an ap-
plication typically specifies the source, the communicator, and a
conventional tag. However, both the source and the tag can be spec-
ified using wildcards, e.g., MPI_ANY_SOURCE and MPI_ANY_TAG. A
wildcard as the source (or tag) identifier allows a message from any
process to be accepted. When wildcards are used to receive mes-
sages, the arrival order of messages is non-deterministic. Different
orders may change the application’s behavior because the execution
after the receive operation may depend on the order of messages.

Since MPIWIZ handles messages from inside and outside of
the replay group differently, it needs to determine the actual mes-
sage origin when the source is set to MPI_ANY_SOURCE. Typically,
MPIWI1z can retrieve the actual source from the status parameter.
Unfortunately, the MPI standard allows applications to ignore the
status parameter by setting it to a special value (MPI_STATUS_IG
NORE or MPI_STATUSES_IGNORE). To successfully record such re-
ceive operations, we transparently replace the special status value
provided by the application with an allocated private variable pro-
vided by the MPIWIZ runtime to ensure the MPI routine returns
the necessary information. After retrieving the actual source of the
message, MPIWI1Z records it and restores the special status value as
provided by the application. MPIWIZ performs similar steps dur-
ing replay. This method makes use of MPI’s functionality, and does
not change the application’s control flow and semantics.

Non-blocking receive operations can also use these wildcard
tags, and therefore also need special treatment to determine the
source process of a message. Non-blocking operations return im-
mediately without waiting until messages are received or deliv-
ered (e.g., MPI_Irecv/MPI Isend). Instead, an application uses
test operations (e.g., MPI_Wait/MPI_Test) to check for the arrival
of messages or to check if a send operation has finished. Non-
blocking receive operations return MPI request objects, which can
subsequently be used as handles by test operations. A test opera-
tion returns a status parameter for the related request. Again, the
status can be ignored according to the MPI standard. We adopt the
same techniques described above to determine the actual sources
of the non-blocking receive operations, and record and replay them
accordingly.

6.1.3 Waits, Tests and Probes

The MPI routines MPI_Waitsome, MPI_Waitany, MPI_Testsome
and MPI_Testany can also introduce non-determinism. These
procedures operate on a set of requests posted by previous non-
blocking operations, and return if any or some of the requests have
completed in blocking or non-blocking manners for waits and tests,
respectively.

To address the non-determinism introduced by wait and test op-
erations, MPIWI1Z maintains a table tracking the requests posted by
non-blocking operations and their corresponding buffer informa-
tion. To help describe how MPIW1z handles such operations, Fig-
ure 5 illustrates the use of MPI_Waitany. During the record phase,
MPI_Irecv justinserts the request and buffer information into the
table. After MPI_Waitany returns, it records the index of the re-
turned request and the status structure. Since the receive buffer con-
tains the message at this point, MPIW1Zz uses this information to
index into the table and decide whether it needs to record the mes-
sage contents based on the message source.



MPI_Request reqs[2];
MPI_Irecv(bufl, cntl, typel, srcl, tagl, coml, reqs[0])
MPI_Irecv(buf2, cnt2, type2, src2, tag2, com2, reqs[1i])

/* wait until either bufl or buf2 is ready */
MPI_Waitany(2, reqs, index, status);

Figure 5: An example of non-determinism caused by MPI
_Waitany. When MPI_Waitany returns, either bufl or buf2 is
ready, depending on the actual execution.

During the replay phase MPI_Irecv also only inserts the request
and buffer information into the table, and the buffer contents are
backfilled by MPI_Waitany. If the request is bound to a send
operation, the process is similar. Indeed, all other wait and test
functions (MPI_Wait, MPI_Waitall,MPI_Test and MPI_Testall)
are handled in the same way.

Blocking MPI_Probe and non-blocking MPI_Iprobe are anal-
ogous to MPI_Wait and MPI_Test, respectively. Both of them can
also accept MPI_ANY_SOURCE and MPI_ANY_TAG as source and tag
parameters. The difference between probes and the wait and test
operations is that, after a successful probe, the corresponding mes-
sage is not copied to the application buffer. Therefore, unlike waits
and tests, it is impossible to handle the message at the time of a
probe operation. A common programming convention is to invoke
a receive operation after a probe. Therefore, MPIWIZ records and
replays probe operations as normal operations without special treat-
ment. Instead, it is the responsibility of the subsequent receive op-
eration to properly handle the message. During replay, MPIW1z
loads the return value of the probe operation from the log. Doing
so directs the application to follow the same execution path as it
did during the record phase, and the corresponding receive opera-
tion takes over.

6.2 System Calls

Some applications may directly call some system calls provided
by the operating system, or indirectly through the MPI runtime.
These system calls can depend on the execution environment, and
therefore are non-deterministic when the replay environment dif-
fers from the recording environment. For example, random number
generators will produce inconsistent numbers, and gettimeofday
(on which MPI_Wtime depends) returns different values at different
times. These system calls fall into a wide range of categories, in-
cluding I/O operations (e.g., reading a file), callback functions of
signals and interrupts, etc., and must be carefully dealt with so that
they can be replayed deterministically. Further, ideally the mem-
ory footprints of each process should also be identical for both the
record and replay phases. Having identical memory footprints is
very useful when debugging memory-related bugs like buffer over-
flow. To make both system calls and memory footprints determin-
istic across the record and replay phases, MPIWI1z relies upon the
functionality implemented in the R2 framework.

7. Evaluation

In this section, we evaluate MPIW1Zz using NPB benchmarks and
real-world applications with a variety of communication patterns to
demonstrate the benefits SRR provides over data-replay and order-
replay approaches alone. All of the applications also use some form
of non-deterministic operations, and we demonstrate that MPIW1z
is able to correctly handle such cases.

This sections answers the following questions:

e What is the record and replay overhead and performance of
MPIW1z compared to data-replay and order-replay alone?
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Table 3: Application characteristics: All-to-All: all-to-all communi-
cation pattern; Locality: group communication locality; M/S: mas-
ter/slave pattern; Non-determ. MPI and Non-determ. Sys: whether
non-deterministic MPI and operating system calls are used, respec-
tively; Collective Ops: whether collective operations are used.

Communication Patterns
Locality All-to-All M/S
Operations CG | MG | LU | FT | GE | ASP PU
Non-determ. MPI Vv N4 V4 N4 Vv
Non-determ. Sys v/ N N R
Collective Ops V4 Vv vV I VIV N

e What is the sensitivity of the record log size to replay group size
and membership?

We start by describing our methodology.
7.1

We conducted our experiments on a cluster of eight nodes totalling
64 cores. Each node is equipped with two Quad-Core Intel Xeon
2.33 GHz CPUs, 8 GB RAM, and a 140 GB hard disk. We run MPI
applications within the MPICH2-1.0.7 environment on Windows
Server 2003 Enterprise Edition SP1. All machines are connected
through a switched 1Gbps Ethernet LAN. Each process writes its
log to local disk without compression.

We evaluate MPIW1z using the following set of applications
with 64 processes:

e CG, MG, LU, FT: NAS Parallel Benchmarks (NPB) kernels
version 2.4 compiled in Class C [1].

Methodology and Applications

e GE [14]: A message passing implementation of Gaussian Elim-
ination.

e ASP [17]: A parallel application that solves the all-pairs-
shortest-path problem with the Floyd-Warshall algorithm.

e probe-unexp (PU) [10]: A test program that validates the cor-
rectness of non-deterministic MPI probe operations, and stress-
tests communication primitives using many messages and a
range of messages sizes.

Table 3 summarizes the characteristics of the applications we
use in terms of their communication patterns and their use of non-
deterministic operations.

The applications fall into three distinctive communication pat-
terns. (1) CG, MG and LU have communication locality as illus-
trated in Figure 1, and every eight successively ranked processes
form a natural replay group. (2) For FT, GE and ASP, commu-
nication is uniformly distributed across all processes. This all-to-
all style has no communication locality, and represents a less-
than-ideal case for SRR in terms of reducing recording overhead.
Though these applications do not benefit as much as CG and MG
from SRR, our experiments show that SRR remains helpful even
when no communication locality exists. As with the previous appli-
cations, we place eight processes with successive ranks in a replay
group (Section 7.3 shows that results are insensitive to the particu-
lar replay group membership). (3) PU uses a master/slave pattern:
the master sends messages to slaves, and slaves only communicate
with the master. Since replay groups are disjoint, the master can
only be in one group. Consequently, we organize the master (rank
0) and a slave (rank 1) as one replay group, and each other slave as
its own independent replay group. Since nearly every process is in
its own replay group (as the case for traditional data-replay), this
pattern represents a worst-case for SRR.

The applications also use different forms of non-determinism,
as described in Section 6.1. In terms of non-deterministic MPI com-
munication operations, MG, LU, GE and PU use receive operations
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Figure 6: Record and replay times relative to base execution time (beside the application name on the z-axes). Data Log, SRR log and
Order Log mean the record phases for data-replay, SRR and order-replay respectively. AVG: geometric mean for applications of the current

communication pattern.

with the MPI_ANY_SOURCE source wildcard; PU also uses probe op-
erations with the wildcard MPI_ANY_TAG message type. In terms of
non-deterministic system calls, GE uses the Windows system call
GetTickCount directly, and all NPB kernels call MPI_Wtime. The
prevalence of non-deterministic operations in these common appli-
cations show that handling non-determinism in both communica-
tion and system is important for any replay tool.

Finally, the table also shows that all applications except PU
use collective communication operations, which MPIW1z handles
using the techniques described in Section 3.2 and Section 3.3.

7.2 Record and Replay Overhead

This section presents the record and replay overhead of MPIW1z
compared to data-replay and order-replay in terms of execution
time (for both record and replay phases) and record log size. MPI-
Wiz implements data-replay by considering each process in its own
replay group, and order-replay by including all processes in one re-

play group.

7.2.1 Execution Time

Figure 6 compares the execution time of MPIW1z for the various
record and replay scenarios relative to the baseline execution time
of the original application. It shows the execution time of both
the record and replay phases for data-replay and SRR with replay
groups of eight processes, and the execution time of the record
phase for order-replay.!

The execution times of the record phases of all approaches are
slower than the baseline due to the overhead of capturing logs.
Since SRR is a balance between data-replay and order-replay, its
execution performance falls roughly halfway between those two
approaches. Log writing dominates the record overhead for SRR.
Due to the characteristics of our test cases — the applications did
not run for a long time, while the communication volumes are
large — the time to flush log is significant to the base execution
time. And the same is true for data-replay. Therefore, the record
time slowdown is not as meaningful as the log size reduction. R2
has optimizations to reduce the overhead of recording system calls
in the log. However, MPIW1z does not benefit much from those

I MPIW1z currently replays all processes on a single node for ease of im-
plementation and debugging. Since it is misleading to measure the execu-
tion time of order-replay for all 64 processes on a single node, we do not
report replay execution time for order-replay. Since order-replay restarts all
processes and executes all computation and communication as with normal
execution, its replay execution time is nearly the same as the base execution
time [25].
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Figure 7: SRR replay time relative to data-replay for different
number of processors.

optimizations since most of the log entries for MPI applications are
generated by MPI calls and consist of MPI communication data.

The execution times of the replay phases of data-replay and
SRR are faster than the baseline because messages in both cases
are taken from the log. As expected, the replay time of SRR is
slower than data-replay. Data-replay emulates all communication
by reading from the log without the need to wait and synchronize,
while SRR needs to reproduce and exchange intra-group messages.
Also, since the current implementation of MPIWI1z uses a relay
process for all communication — in particular, to simplify the
handling of collective communication — this level of indirection
adds additional overhead during replay.

Recall from Section 4 that we expect users to constrain replay
group sizes to fit within the computing resources of their debugging
environments, which is typically limited in HPC environments. The
replay execution times in Figure 6 show the benefits of having
enough processor cores to replay all processes in the replay group
(eight cores in that experiment). What is the impact on replay
execution time if a user has fewer processor resources than the
size of a replay group? Figure 7 answers this question for the
CG and FT applications with a replay group size of eight. With
fewer processors, the replay time correspondingly increases. Note
that, with fewer processors, not only does replay have to execute
the replayed processes, but it also has to handle all intra-group
communication operations as well. Increased replay execution time
may be acceptable for debugging; if not, users can always decrease
the size of the replay group at the cost of increasing the size of the
log. We view this flexibility as an important feature of SRR.

7.2.2 Log Size

Figure 8 compares the size of the logs generated during the record
phase of MPIWIz for data-replay and SRR. Since order-replay
only needs to record ordering information about non-deterministic
operations, as expected its log sizes are negligible compared to
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Figure 8: SRR’s log size compared to data-log. AVG: geometric
mean for applications of the current communication pattern.

data-replay and SRR. However, since the goal of SRR is to retain
the replay execution benefits of data-replay (replay only a subset of
the original application processes), the more interesting compari-
son is between SRR and data-replay.

Since SRR only records inter-group messages, whereas data-
replay has to record all messages, SRR log sizes are strictly lower
than data-replay. The degree to which SRR improves log size over-
head, though, depends upon the communication pattern of the ap-
plication. For the applications with group communication locality,
the SRR log size is only 38% of data-replay on average, or just a
third of the log size required by data-replay.

With all-to-all applications, whose communications are uni-
formly distributed across all processes, SRR still provides some
benefit. If the replay group contains k of the total n processes, the
expected log size reduction with SRR is k /n relative to data-replay.
For the FT, GE and ASP applications, we therefore expect SRR to
reduce the log size by 1/8 & 12.5% relative to data-replay, where
k = 8,n = 64 in our experiments. Figure 8 shows that SRR logs
for FT, GE and ASP are 13%, 12.8%, and 13.1% smaller than data-
log, respectively, or 13% on average. These results match the theo-
retical analysis very well.

PU benefits least from SRR, whose log only decreases about
1.6%. Since almost every process is in its own replay group, this
communication pattern makes SRR behave almost identically with
data-replay.

7.3 Replay Group Size and Membership

Finally, we evaluate the sensitivity of the record log size generated
by MPIWIZ to the replay group size and membership. The size of
the replay group represents a tradeoff to the application developer:
a larger group size produces smaller logs (less inter-group traffic
needs to be recorded), but requires more resources during replay
(more processes have to execute again during replay). Log size can
also be sensitive to process membership since processes that exhibit
communication locality will generate more inter-group traffic if
they are not placed in the same replay group.

We explore these issues with the following experiment. For a
given application, we vary the size of a replay group from one
process (equivalent to data-replay) to 64 processes (equivalent to
order-replay). For each replay group size, we determine the process
membership of the group using two methods: according to group
communication locality (Section 4), and uniform random selection.
Data-replay log size is used as a baseline.

Figure 9 shows the results of this experiment for two applica-
tions, one with communication locality (CG) and another without
locality (FT), in two graphs. The x-axes show the size of the replay
group, and the y-axes show the log size relative to a group size
of one process (data-replay). The two curves correspond to group
membership based on locality and using a random assignment; for
random, we performed 3 trials and show the average and standard
deviation of the trials.
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Figure 9: Log size as a function of replay group size and mem-
bership relative to log size of data-replay. Locality: organize replay
groups according to communication locality; Random: organize re-
play groups randomly. With Random, we show the average and
standard deviation from 3 trials. Note that the two curves overlap
each other for FT.

The results in Figure 9 confirm that larger groups produce
smaller logs. For random group assignment, the log size decreases
roughly linearly with the size of the group. For applications with
locality, however, MPIWI1Z can do much better.

Figure 9a shows the benefits of making informed group mem-
bership assignments for applications that exhibit communication
locality. Relative to a random assignment, exploiting communica-
tion locality substantially reduces the log size. For a group size of
eight, for example, the log size using locality is 2.8 times smaller
than with random. Figure 9b, however, shows that applications
lacking communication locality are insensitive to group member-
ship. The group membership assignment using graph partitioning
results in the same log sizes as using a random assignment.

8. Conclusion

This paper proposes a new deterministic replay method, subgroup
reproducible replay (SRR), for making deterministic replay practi-
cal for MPI applications. SRR balances the tradeoffs of both data-
replay and order-replay. It partitions processes into disjoint replay
groups and allows any subset of these groups to be recorded and
replayed. We have implemented a prototype, MPIW1z, to demon-
strate and evaluate the SRR approach to deterministic replay.

By partitioning processes into replay groups, SRR can fully ex-
ploit communication locality in MPI applications to further reduce
recording overhead. When using MPIW1z on popular MPI bench-
marks, for example, SRR can reduce recording overhead by over a
factor of four relative to data-replay.

Replay groups also make the replay phase more feasible relative
to order-replay. An important advantage of data-replay is that it
can replay any process of an application individually on a single
machine, whereas order-replay requires all processes of the original
application to be replayed together. SRR strikes a balance between
the two. It only requires replaying the processes of a single replay
group, enabling practical replay on one multi-core machine rather
than an entire cluster as with order-replay.

MPIW1z provides two additional benefits not found in exist-
ing MPI replay tools. In addition to handling the non-determinism
in MPI operations, it also handles non-determinism due to system
calls like gettimeofday. And it guarantees that the memory foot-
prints of the replayed processes are identical to those of the original
processes. These features further increase the practicality of deter-
ministic replay for MPI applications.

Finally, although MPIW1z is a fully functional replay tool, it
currently does not support checkpointing. Checkpointing was not
critical for evaluating SRR relative to data-replay and order-replay,
but we recognize that checkpoint and restart is important for many
applications and are implementing them as future work.
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