
VersaPipe: A Versatile Programming Framework for Pipelined
Computing on GPU

Zhen Zheng
Tsinghua University

z-zheng14@mails.tsinghua.edu.cn

Chanyoung Oh
University of Seoul
alspace11@uos.ac.kr

Jidong Zhai
Tsinghua University

zhaijidong@tsinghua.edu.cn

Xipeng Shen
North Carolina State University

xshen5@ncsu.edu

Youngmin Yi
University of Seoul
ymyi@uos.ac.kr

Wenguang Chen
Tsinghua University
cwg@tsinghua.edu.cn

ABSTRACT
Pipeline is an important programming pattern, while GPU, designed
mostly for data-level parallel executions, lacks an e�cient mecha-
nism to support pipeline programming and executions. This paper
provides a systematic examination of various existing pipeline exe-
cutionmodels onGPU, and analyzes their strengths andweaknesses.
To address their shortcomings, this paper then proposes three new
execution models equipped with much improved controllability,
including a hybrid model that is capable of getting the strengths
of all. These insights ultimately lead to the development of a soft-
ware programming framework named VersaPipe. With VersaPipe,
users only need to write the operations for each pipeline stage.
VersaPipe will then automatically assemble the stages into a hybrid
execution model and con�gure it to achieve the best performance.
Experiments on a set of pipeline benchmarks and a real-world face
detection application show that VersaPipe produces up to 6.90⇥
(2.88⇥ on average) speedups over the original manual implementa-
tions.

CCS CONCEPTS
•General and reference→Performance; •Computingmethod-
ologies → Parallel computing methodologies; • Computer
systems organization → Heterogeneous (hybrid) systems;

KEYWORDS
GPU, Pipelined Computing

ACM Reference Format:
Zhen Zheng, Chanyoung Oh, Jidong Zhai, Xipeng Shen, Youngmin Yi,
andWenguang Chen. 2017. VersaPipe: A Versatile Programming Framework
for Pipelined Computing on GPU. In Proceedings of MICRO-50, Cambridge,
MA, USA, October 14–18, 2017, 13 pages.
https://doi.org/10.1145/3123939.3123978

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-50, October 14–18, 2017, Cambridge, MA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4952-9/17/10. . . $15.00
https://doi.org/10.1145/3123939.3123978

1 INTRODUCTION
Pipeline parallel programming is commonly used to exert the full
parallelism of some important applications, ranging from face detec-
tion to network packet processing, graph rendering, video encoding
and decoding [11, 31, 34, 42, 46]. A pipeline program consists of a
chain of processing stages, which have a producer-consumer rela-
tionship. The output of a stage is the input of the next stage. Figure 1
shows Reyes rendering pipeline [12], a popular image rendering al-
gorithm in computer graphics. It uses one recursive stage and three
other stages to render an image. In general, any programs that have
multiple stages with the input data going through these stages in
succession could be written in a pipeline fashion. E�cient supports
of pipeline programming and execution are hence important for a
broad range of workloads [5, 22, 26, 51].

Primitives Split Dice Shade ImageBound
diceable?

Y

N

Figure 1: Reyes rendering: an example pipeline workload.

On the other hand, modern graphics processing unit (GPU)
shows a great power in general-purpose computing. Thousands of
cores make data-parallel programs gain a signi�cant performance
boost with GPU. While GPU presents powerful performance po-
tential for a wide range of applications, there are some limitations
for pipeline programs to make full use of GPU’s power. With its
basic programming model, each major stage of a pipeline is put
into a separate GPU kernel, invoked one after one. It creates an
ill-�t design for the pipeline nature of the problem. In the Reyes
rendering pipeline, for instance, the recursive process would need
a large number of kernel calls, which could introduce substantial
overhead. And as stages are separated by kernel boundaries, no par-
allelism would be exploited across stages, which further hurts the
performance. In the Reyes example, as the recursive depth varies
for di�erent data items in the pipeline, a few items that have deep
recursive depth will cause the whole pipeline to stall.

How to make GPU best accelerate pipelined computations re-
mains an open question. Some work has devoted manual e�orts
in developing some speci�c pipeline applications, such as graphic
processing [34, 35, 37, 45] and packet processing [46]. They provide
some useful insights, but do not o�er a programming support to
general pipeline problems. Some programming models have been
proposed recently trying to simplify the development of e�cient

587

https://doi.org/10.1145/3123939.3123978
https://doi.org/10.1145/3123939.3123978

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Z. Zheng et al.

pipeline applications on GPU. Most of them employ a Megakernel-
based approach [3, 16], in which, the code for all stages of a pipeline
is put into one large GPU kernel that branches to di�erent sub-
functions based on which stage the current data item needs to go
through. At launching time, the method tries to launch as many
blocks as can be concurrently scheduled on GPU and schedule the
tasks through software managed task queues [10, 43, 44, 47].

Although these e�orts have made good contributions to advance
the state of the art, they have some serious limitations. Putting
all stages into one kernel, Megakernel-based methods cause large
register and shared memory pressure on GPU. As a result, many
programs can have only a small number of threads running con-
currently on GPU, leaving the massive parallelism of GPU largely
untapped (detailed in Section 8).

An important observation made in this work is that, fundamen-
tally, the prior e�orts have been limited by the lack of software
controllability of executions on GPU. GPU uses hardware sched-
ulers to decide when and where (on which computing unit of a
GPU) a GPU thread runs. All prior pipeline model designs have
taken this limitation for granted, which has largely limited the
design �exibilities.

In this paper, by combining two recent software techniques (per-
sistent threads [3] and SM-centric method [50], explained later),
we show that the limitation can be largely circumvented with-
out hardware extensions. The software controllability released by
that method opens up a much greater �exibility for the designs of
pipeline execution models.

Leveraging the �exibility, we propose three new execution mod-
els with much improved con�gurability. They signi�cantly expand
the selection space of pipeline models. By examining the various
models, we reveal their respective strengths and weaknesses. We
then develop a software framework named VersaPipe to translate
these insights and models into an enhanced pipeline programming
system. VersaPipe consists of an API, a library that incorporates
the various execution models and the scheduling mechanisms, and
an auto-tuner that automatically �nds the best con�gurations of a
pipeline. With VersaPipe, users only need to write the operations
for each pipeline stage. VersaPipe will then automatically assemble
the stages into a hybrid execution model and con�gure it to achieve
the best performance.

For its much improved con�gurability and much enriched ex-
ecution model space, VersaPipe signi�cantly advances the state
of the art in supporting pipeline executions on GPU. Experiments
on a set of pipeline benchmarks and a real-world face detection
application show that VersaPipe produces up to 6.90⇥ (2.88⇥ on
average) speedups over the original manual implementations.

Overall, this work makes the following major contributions.

• It provides a systematic examination of the space of possible
execution models of pipeline computations on GPU. It ana-
lyzes the strengths and weaknesses of the various models.
• It introduces much improved software controllability into
the design of pipeline execution models.
• It contributes three new con�gurable execution models for
pipeline computations, which signi�cantly expand the selec-
tion space of pipeline execution models.

• It proposes VersaPipe, a versatile programming framework
that provides automatic support to create the combination
of execution models that best suit a given pipeline problem.
• It evaluates VersaPipe on a set of pipeline workloads and
compares its performance with several alternative methods.
Results show that VersaPipe outperforms the state-of-art so-
lutions signi�cantly (by up to 1.66⇥), accelerates the original
manual implementations by 2.88⇥ on average (up to 6.9⇥).

Our approach targets NVIDIA GPUs, but the general principles
behind the approach could be applied to any model based on an
equivalent of NVIDIA’s streaming multiprocessors, so long as the
model provides a way to gain access to the id of the SM on which a
thread is executing.

2 BACKGROUND
This section provides background on GPU that is relevant to this
work. We use NVIDIA CUDA [30] terminology for the discussion.

Graphic processing unit (GPU) is widely used in a variety of
general purpose computing domains now. It adopts a very wide Sin-
gle Instruction Multiple Data (SIMD) architecture, where hundreds
of units can process instructions simultaneously. Each unit in the
SIMD of GPU is called Streaming Processor (SP). Each SP has its
own PC and registers, and can access and process a di�erent instruc-
tion in the kernel code. A GPU device has multiple clusters of SPs,
called Streaming Multiprocessors (SMs). Each SM has indepen-
dent hardware resources of shared memory, L1 caches, and register
�les, while all SMs share L2 cache. For more e�cient processing and
data mapping, threads on GPU are grouped asCTAs (Cooperative
Thread Arrays, also called Thread Block). Threads in the same
CTA can communicate with each other via global memory, shared
memory and barrier synchronization. The number of threads in a
CTA is set by programs, but also limited by the architecture. All
CTAs run independently and di�erent CTAs can run concurrently.

GPU is a complex architecture in which resources are dynami-
cally partitioned depending on the usage. Since an SM has a limited
size of registers and shared memory, any of them can be a lim-
iting factor that could result in under-utilization of GPU. When
hardware resource usage of a thread increases, the total number of
threads that can run concurrently on GPU decreases. Due to this
nature of GPU architecture, capturing the workload concurrency
into a kernel should be done carefully considering the resource
usage of the kernel implementation, which is key to maximizing
the throughput of the GPU.

On the other hand, some workloads may not have enough data-
parallelism to fully utilize the GPU whereas it may have some task-
parallelism as well. The conventional GPU execution model runs
one kernel on all SMs, exploiting only data-parallelism. Although
Concurrent Kernel Execution (CKE) can run more than one kernels
at the same time, it is limited to the case in which the previous
kernels do not fully utilize all the resources (SMs) in the GPU and
the current kernel is not dependent on them. This allows for a
limited form of task-parallel execution on GPU, but a task must be
described in a separate kernel, which incurs overhead, makes GPU
underutilized for kernels with small workload and usually cannot
maintain good data locality as the binding of a task onto an SM
cannot be controlled.

588

VersaPipe: A Versatile Programming Framework for Pipelined Computing on GPUMICRO-50, October 14–18, 2017, Cambridge, MA, USA

3 OVERVIEW OF VERSAPIPE
To help programmers deal with the complexities in developing e�-
cient pipeline programs on GPU, we develop VersaPipe, a software
framework that screens programmers from all the complexities,
and automatically produces e�cient pipeline models that best �t a
given pipeline problem. Using VersaPipe, programmers only need
to express the operations of each stage of the pipeline. VersaPipe
will automatically identify the best way to assemble these stages
into the most e�cient pipeline GPU program. This section provides
an overview of VersaPipe.

The framework of VersaPipe is shown in Figure 2, which consists
of three components: an underlying e�cient C++ template-based
scheduling library, an auto-tuner, and a programming API intended
to make VersaPipe easy to use.

The scheduling library (Section 5) is the main component of the
framework, which translates the pipeline structure and functions
from programming API into a combination of various execution
models. It consists of several components shown in Figure 2. SM
mapping controller maps each stage group onto target SMs. Block
mapping controller maps thread blocks on SMs for the stage groups
that use �ne-grained pipeline (detailed in Section 4.2.2). Task sched-
uler de�nes the strategies of fetching tasks from each stage. Work
queue library provides basic interfaces for queue operations.

Programming Interface

Profiling
Component

Offline
Tuner

Online
Tuner

Block Mapping
Controller

SM Mapping
Controller

Work Queue Library

Task Scheduler

High Level
Control

Low Level
Control

API

Auto
Tuner

Scheduling
Library

Figure 2: The framework of VersaPipe.

VersaPipe provides an auto-tuner (Section 7) which can auto-
matically con�gure a combination of several possible execution
models (explained in Section 4) to best suit a given pipeline. The
auto-tuner consists of pro�ling component, o�ine tuner, and online
tuner. Pro�ling component collects the workload characteristics
of each stage. One main metric is the maximum number of blocks
that can be launched concurrently on an SM for each stage. Based
on the collected pro�ling information, o�ine tuner �nds the most
suitable execution model for each stage group, along with the SM
binding strategy of each stage group and block mapping strategies
for �ne pipeline groups. Online tuner adjusts the con�guration of
VersaPipe dynamically while the pipeline program is running, to
better utilize GPU resources.

As a programming framework, VersaPipe o�ers a simple API
(explained in Section 6) to allow developers to program an arbitrary
pipeline workload with ease and get high performance. Develop-
ers only need to write the function of each stage and specify the
pipeline structures. All the other complex scheduling is done by
the framework. The con�guration for the scheduling can be set by

the auto-tuner. VersaPipe is open-source and will be made available
to the public.

We next explain each major component of VersaPipe.

4 EXECUTION MODELS
We start with the comprehensive set of execution models it covers.

4.1 Existing Pipeline Execution Models on GPU
For pipeline programs, there are two major types of strategies
to implement them on GPU. One is to use default programming
models provided by underlying GPU platforms without adopting
any software scheduling strategies. For this strategy, programming
is relatively simple but task parallelism among di�erent stages of
a pipeline program cannot be exploited. Typical models include
run-to-completion model and kernel-by-kernel model. The other is
to schedule a pipeline program with a software scheduler on top of
current programming models. With this strategy, more parallelism
can be discovered from di�erent stages. The most common model
for this strategy is Megakernel [3].

Run to completion (RTC). RTC is a basic model to realize
pipeline programs, which organizes all stages of a pipeline into
a single kernel. All the pipeline logic controls are realized in this
kernel. Figure 3(a) shows this model. For some regular pipeline
programs (i.e., those without recursion or global synchronizations),
it is easy to implement on GPU. Computations in each stage are
scheduled using the default hardware scheduling mechanism of
GPU.

gpuKernel
{
stage_1();
stage_2();
stage_3();

}

SM1

(a) Run to completion.

gpuKernel_1{
stage_1();

}
gpuKernel_2{
stage_2();

}
gpuKernel_3{
stage_3();

}

SM1

SM2

(b) Kernel by kernel.

gpuKernel
{
while(item=schedule())
{
switch item.type
{
case 1:

stage_1(); break;
case 2:

stage_2(); break;
case 3:

stage_3(); break;
}

}
}

SM1

SM2

SM3

(c) Megakernel.

Figure 3: Execution models of Run to completion, Kernel by
kernel andMegakernel.

Kernel by kernel (KBK). KBK is another common model to im-
plement pipeline programs on GPU. In this model, multiple kernels
are used to realize a pipeline program, where each kernel represents
one or multiple stages. The pipeline logic control is implemented
on the CPU side. Stages in di�erent kernels communicate by global
memory. Figure 3(b) shows this model. This is a simple model which
can realize all kinds of pipeline computations, even for the ones
with recursions or global synchronizations.

Megakernel.Megakernel organizes pipeline computations into
a huge kernel and schedules each stage with a software scheduler.
Figure 3(c) shows this model. A technique called persistent thread [3,

589

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Z. Zheng et al.

6, 16] is used to implement Megakernel. In the persistent thread
technique, the kernel creates a number of threads that stay alive
throughout the execution of a kernel function, usually through the
use of a while loop in the kernel as Figure 3(c) illustrates. These
threads continuously fetch new data items from the queue of each
stage and execute the corresponding stage based on data items they
fetched. These threads are called persistent threads. The method
allows certain scheduling control of the tasks, but as all the threads
are in a conventional kernel, the scheduling of them is still through
the underlying hardware scheduler.

4.2 Enriched Set of Execution Models for
Pipeline

Although there have been some previous studies on o�ering support
for pipeline computations on GPU, they mainly focus on one type
of execution model. There have not been systematic studies on the
broad space of possible execution models for pipeline workloads on
GPU. In this part, we �rstly present the strengths and weaknesses of
previous execution models in detail. Secondly, we propose two new
execution models for pipeline computations through leveraging a
software approach to circumvent the limitation of current hardware-
based scheduling. Finally, we propose a hybrid execution model
that combines the strengths of all previous execution models and
the two newly proposed models.

4.2.1 Understanding Previous Pipeline Execution Models. To bet-
ter guide the design and implementation of pipeline computations,
this section qualitatively analyzes the main strengths and weak-
nesses of various execution models for pipeline computations. (Sec-
tion 8 gives quantitative comparisons.)

RTC. In this model, since all stages are within one kernel, shared
memory can be employed for data communication across di�erent
stages and data locality is relatively good.

Although this model is simple to implement, the weaknesses
are obvious. First, hardware resources cannot be fully utilized for
some pipeline computations. In this model, all the stages are within
one kernel and hardware resources such as shared memory and
registers are shared in di�erent stages. Hence, if some stages in
a pipeline consume too much hardware resource, it can lead to a
low occupancy for this kernel, which further lowers the perfor-
mance. Second, if global synchronization between stages is needed,
it is infeasible to implement such a pipeline in the RTC model as
global synchronizations are not supported in conventional GPU
kernels. Finally, the instruction cache on GPU is relatively small; a
kernel with a large code size can hence su�er, a�ecting the program
performance.

KBK. In this model, as the whole pipeline is separated into
several kernels, each kernel will consume fewer hardware resources
and the occupancy of the GPU kernel is much larger than the RTC
model. Moreover, these small kernels are more e�cient for the
instruction cache.

On the other hand, there are several problems with this model.
First, in this model, there is an implicit synchronization between
every two consecutive kernels as all dependent kernels get exe-
cuted in sequential order. Thus a small number of long-running
threads could severely delay the start of the next stage. Second, the
model may cause frequent kernel launches, especially for a pipeline

with recursion or loops. The launching overhead could be substan-
tial [32]. Moreover, the CPU-side involvement that the model needs
for coordinating the pipeline control adds further overhead.

Megakernel. In this model, as di�erent stages are put into one
single kernel with persistent thread technique, it can avoid the need
of global synchronizations between di�erent pipeline stages, allow-
ing more parallelism among stages to be exploited. As this model
only has one kernel, shared memory can also be used for data com-
munication across di�erent stages. Using the Megakernel model,
di�erent stages in the Reyes rendering pipeline can be executed
concurrently and the stage that cannot fully utilize GPU resources
by itself, like Split, has little impact on the whole program.

This model still su�ers from some limitations. The fundamen-
tal shortcomings of the Megakernel design stem from the lack of
controllability. Although the persistent thread technique can de-
cide what stage of the pipeline a thread helps with at each time,
it cannot determine where (or on which SMs) a stage runs, what
stages shall be put together onto one SM, which ones shall avoid
co-run together, and how the GPU resources shall be allocated to
the di�erent stages. Lack of such controllability can signi�cantly
hurt the program performance for some pipeline computations.
Furthermore, putting all stages into a single kernel, Megakernel-
based models cause large register and shared memory pressure on
GPU. For instance, each thread of the Reyes program in Megakernel
uses 255 registers and each SM can only launch 1 thread blocks. In
contrast, for the KBK model, 5 blocks can be launched on one SM
for the Shade stage. In addition, like the RTC model, Megakernel
has a large code size, which is not e�cient for instruction cache.

4.2.2 Exploring New Pipeline Execution Models. Due to the limi-
tations of the aforementioned existing models, a substantial room
is left for improvement (as much as several folds) of the computing
e�ciency of pipeline computations, as Section 8 will detail.

This section describes two new primary execution models we
have developed. They are designed to achieve better controllability
of task and thread scheduling such that better mappings can be
created between pipeline stages and SMs, and hence lead to better
resource utilizations.

The newmodels leverage the combination of persistent threads [3]
and another technique called SM-centric mechanism [50]. SM-centric
mechanism is a way to enable precise controls of the mapping of
the tasks (a task is the set of operations needed to process a data
item in a pipeline stage) of a GPU kerenl to the GPU SMs. It is
through transforming the kernel code such that each GPU thread
decides which tasks to process based on the ID of the SM on which
the thread runs. More speci�cally, it uses a method called SM-based
task selection to guarantee task execution is based on a speci�c
SM and enable the binding between tasks and SMs, and uses a
�lling-retreating scheme to o�er a �exible control of the amount of
active threads on an SM. (See [50] for details.) Persistent threads,
on the other hand, can help control which stages of a pipeline ap-
plication map to which threads, their execution order, and enable
cooperations across CTAs. Therefore, through combining these two
techniques, we can implement a precise control of the mapping
from pipeline stages to SMs. In this subsection, we describe two
new execution models for pipeline applications based on this idea,
coarse pipeline and �ne pipeline.

590

VersaPipe: A Versatile Programming Framework for Pipelined Computing on GPUMICRO-50, October 14–18, 2017, Cambridge, MA, USA

Coarse Pipeline.We �rst propose a coarse pipeline execution
model based on the SM-centric technique. Figure 4 shows this
model. In this model, each stage is implemented in a single kernel
like the KBK model, but with persistent threads. It puts each of the
kernels into a CUDA stream, such that through these streams, the
kernels can get launched at the same time on a GPU. One of its
main features is that through persistent threads and the SM-centric
scheme, it ensures that each stage is bound to one or more SMs and
each SM can only run a single stage. As di�erent stages are executed
on di�erent SMs, they can concurrently run without interfering
with each other. With the coarse pipeline model, we can allocate
SMs for each stage based on their actual requirements.

gpuKernel_1 {
if(check_sm())
while(notDone)

stage_1();
} // stream 1

gpuKernel_2{
if(check_sm())
while(notDone)

stage_2();
} // stream 2

gpuKernel_3 {
if(check_sm())
while(notDone)

stage_3();
} // stream 3

 {

s
(

stgid
}
*

Figure 4: Execution model of coarse pipeline. Each stage is
bound to speci�c SMs exclusively. All stages can execute con-
currently.

In coarse pipeline, no global synchronization between stages is
needed and di�erent stages can execute concurrently. Each stage
maintains an input task queue, which serves as a bu�er for data
communication between stages. A task of a previous stage fetches
input data from its queue, executes this stage, and �nally puts
output data into the queue of the next stage, which is repeated until
all stages �nish. The avoidance of global synchronization helps it
avoid the associated overhead that RTC and KBK su�er. Another
advantage of coarse pipeline is that because stages are put into
di�erent kernels, the hardware usage for each kernel is reduced
such that more threads can be launched concurrently compared
to Megakernel. For example, in the Reyes rendering pipeline, the
�rst and the third stage use 111 and 61 registers respectively with
coarse pipeline, while 255 with Megakernel. In addition, smaller
kernels can lead to better usage for instruction cache on GPU. A
disadvantage of this model is that it misses the cases, in which,
multiple kernels co-run on an SM could be better than they run
separately: They, for instance, either have complementary resource
needs or share some data that can bene�t from the on-chip (shared)
data cache.

Fine Pipeline. In coarse pipeline, as SM is a basic assignment
unit for each stage, SMs cannot be fully utilized for some pipelines.
A simple example is that a stage has limited workload and can use
only a half of an SM; there would be a half of the SM resource
wasted if this stage is assigned to the SM exclusively. To address
this limitation, we further propose a �ne pipeline execution model,
as shown in Figure 5. Like coarse pipeline, di�erent stages are
still implemented in di�erent kernels with persistent threads and
communicate with each other by a task queue. Pipeline stages in

�ne pipeline are still bound to speci�c SMs. The di�erence is that
in �ne pipeline, one SM can accommodate more than one stage. It
makes it possible for multiple stages to �ll up under-utilized SMs.
In �ne pipeline, thread block is a basic unit for stage mapping. With
the SM-centric technique, the count of thread blocks on a speci�c
SM can be controlled for a stage, but the total count of thread blocks
executed on an SM is limited by available hardware resources.

gpuKernel_1 {
if(check_sm_blk())

while(notDone)
stage_1();

} // stream 1

gpuKernel_2{
if(check_sm_blk())

while(notDone)
stage_2();

} // stream 2

gpuKernel_3 {
if(check_sm_blk())

while(notDone)
stage_3();

} // stream 3
 {

if
){

}

if(check_sm())

Figure 5: Execution model of �ne pipeline. Each stage is as-
signed to several blocks on several SMs and each SM can ex-
ecute several stages.

In �ne pipeline, as di�erent stages can be executed on the same
SM, the on-chip cache can be better utilized between di�erent stages.
Fine pipeline also allows �ne-grained hardware resource allocation
and hence o�ers more �exibility than coarse pipeline does. A better
load balance can be achieved by �lling up an SMwith several stages
consuming di�erent hardware resources. The main drawback is
that the con�guration of �ne-grained block mapping is tricky. It
is not easy to get the optimal performance from a large number of
optional con�gurations.

4.2.3 Hybrid Pipeline. We have examined the space of execu-
tion models for pipeline computations and analyzed the strengths
and weaknesses of each model and also proposed two new exe-
cution models. We give 7 metrics to summarize the strengths and
weaknesses qualitatively.

Applicability The metric of applicability indicates whether a
given execution model is practical for a variety of pipeline computa-
tions, such as pipelines with recursion or global synchronizations.

Task parallelism This metric re�ects whether a given execu-
tion model can exploit parallelism across di�erent pipeline stages,
which is important for a pipeline program to fully utilize GPU
resources.

Hardware usage This metric denotes hardware usage for a
given execution model, such as register �les and shared memory,
which can a�ect the number of threads that can be concurrently
executed on a GPU.

Load balance This metric denotes whether it is easy to balance
workload among GPU streaming multiprocessors or threads.

Data locality This metric denotes whether the data access in
an execution model has good locality.

Code footprint This metric denotes the code size of a pipeline
program in a given execution model, which a�ects the e�ciency of
instruction cache.

591

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Z. Zheng et al.

Simplicity control This metric means whether an execution
model is easy to be con�gured to reach its optimal performance,
which re�ects programming e�orts.

Figure 6: Characteristics of each pipeline model.

Figure 6 shows the strengths and weaknesses of each pipeline
execution model we have discussed. We can see that each model has
strengths and weaknesses so that no single model can outperform
the other models in all metrics. In a large pipeline program, di�erent
stages may have di�erent workload characteristics and the pipeline
structure itself may be complex so that there is no single execution
model meeting all the requirements. It is desirable to mix di�erent
pipeline execution models in a complex pipeline application and
combine the strengths of each model. To this end, we propose a new
execution model, called hybrid pipeline, which combines all these
execution models to meet the needs of various kinds of pipeline
programs.

Fine pipeline Megakernel Kernel by Kernel
Run to

Completion

SM1~SM4 SM5~SM7 SM8~SM12 SM13

1 block/SM 3 block/SM 1 block/SM

Stage
Grouping

Coarse
Pipeline

Fine
Pipeline

Figure 7: An example of hybrid pipeline model.

In hybrid pipeline model, we partition stages of a pipeline pro-
gram into several stage groups based on the workload characteri-
zation of each stage. Each stage group adopts a suitable execution
model based on its features. The execution model between stage
groups is a coarse pipeline model. That is, each stage group is bound
to several SMs and each SM is dedicated to execute the functions of
this stage group. For stage groups that need to be executed in a �ne
pipeline model, a mapping strategy of the thread blocks they con-
tain should be decided. Figure 7 uses a simple example to illustrate
how the hybrid model works. This pipeline program consists of 8
stages. First, 8 stages are partitioned into 4 groups and a speci�c
execution model is selected for each group. Second, each group is
assigned to several SMs based on their resource requirements. The
�nal step is to decide how many thread blocks shall be used on

an SM for each of the stages in a group that uses the �ne pipeline
model.

5 VERSAPIPE LIBRARY
VersaPipe library realizes the combination of execution models with
two levels of scheduling controls, high-level and low-level controls.
The high-level control puts stages into di�erent kernels and do SM
assignment for them, which corresponds to SM Mapping Controller
and Block Mapping Controller. The low-level control performs task
scheduling inside each kernel, which corresponds to Task Scheduler
andWork Queue Library, as shown in Figure 2.

In VersaPipe, we �rstly perform the high-level control among
all stages of a pipeline program. With the con�guration gener-
ated by the auto-tuner, the stages are partitioned into several stage
groups, with each group assigned with a speci�c execution model.
For Megakernel and RTC groups, all stages are put into one kernel.
Stages in coarse or �ne pipeline or KBK groups will be put in sepa-
rate kernels. Except the kernels in KBK groups, we put each kernel
into a separate CUDA stream so that they can execute concurrently
with di�erent hardware resources. After grouping, we leverage
SM-centric technique to implement SM and block mapping. SM
Mapping Controller binds all these kernels onto target SMs. In addi-
tion, for �ne pipeline groups, Block Mapping Controller maps each
stage to speci�c blocks on corresponding SMs.

The implementation of SM mapping uses a scheme employed in
the SM-centric mechanism. The kernel code is set up such that at
the beginning of each kernel, VersaPipe launches enough thread
blocks that can run concurrently on each SM. In the kernel code,
each thread block �rst checks whether it should execute on its
current SM according to the SM mapping con�guration. If not, that
block will exit. Thus only the blocks that should be assigned to this
SM will remain.

The implementation of block mapping is similar with SM map-
ping. The main di�erence is that, in addition to SM checking, each
kernel also checks block mapping status. Each stage on each SM
maintains a block counter whose initial value is 0. After SM check-
ing, Block Mapping Controller will check whether the current block
counter for this stage on this SM has exceeded the speci�ed block
count. If true, this block will exit. Otherwise this block counter will
increase by one.

The basic concepts of the low-level control in VersaPipe frame-
work are listed below.
• Data Item A basic data unit to be processed for each
stage. One data item can be processed by either one thread
or multiple threads on GPU.
• Task An instance that executes a data item in a stage. This
is the basic processing unit during execution.
• Work Queue A bu�er that is used for data communica-
tion between stages. A previous stage pushes data items into
a queue and the next stage pulls them from it, and executes
them.
• Task Scheduler Determining the strategy of fetching
data items from each work queue. Task scheduler guarantees
load balance of the program.

In the low-level control, both RTC and KBK models schedule
tasks with basic GPU hardware scheduler, while Megakernel, coarse

592

VersaPipe: A Versatile Programming Framework for Pipelined Computing on GPUMICRO-50, October 14–18, 2017, Cambridge, MA, USA

Block

Block

Block

(a) Megakernel.

SM 3

SM 1

SM 2

SM Mapping

(b) Coarse pipeline.

` SM1

SM2

SM3

Block Mapping

(c) Fine pipeline.

Figure 8: Mechanisms of low-level control in VersaPipe for Megakernel, coarse pipeline, and �ne pipeline.

pipeline, and �ne pipeline adopt additional software scheduling
strategies. The main body of the software-scheduled kernel is a loop
using persistent threads. Each block of the kernel fetches data items
from a work queue and executes tasks continually. A task scheduler
is in charge of querying queues of all corresponding stages in a
speci�c order. After a block executes its tasks, it pushes results into
the queue of the target stage and tries to fetch and execute new
tasks again. Task parallelism is realized as di�erent blocks may
pull data items from di�erent queues and execute tasks of di�erent
stages at the same time. Figure 8 shows the mechanism of the low-
level controls for Megakernel, coarse pipeline, and �ne pipeline. A
pipeline program with three stages maintains three work queues
in each model. In Megakernel, thread blocks fetch tasks through a
task scheduler, while in coarse/�ne pipeline, each SM and also each
thread block are bound with speci�c queues, from which blocks
fetch tasks directly.

With the aforementioned mechanisms and methods, the execu-
tion models in each stage group can be realized, and all stage groups
communicate with each other using work queues. The combined
execution models for the whole pipeline can be hence materialized
when the con�gurations are given to the VersaPipe framework.

6 API
VersaPipe provides a C++ template based API to implement pipeline
programs e�ciently. Developers can easily implement pipeline pro-
grams in VersaPipe framework. The implementation of a pipeline
program contains two steps: de�ning each stage of the pipeline
by extending a base class, and inserting initial elements into the
pipeline. There is an optional step, pipeline execution model con-
�guration, which can be provided automatically by the auto-tuner
in VersaPipe.

Figure 9 shows a simple example in VersaPipe framework for a
3-stage pipeline. Due to the limitation of space, we show the code
of the �rst stage only, which is a recursive stage. In that stage, each
data item is multiplied by 2. If the value reaches a threshold, the
data item is enqueued for stage 2 to process; otherwise, it goes
through stage 1 again.

To de�ne a stage, developers need to create a class by inheriting
a built-in class BaseStage. As Figure 9 illustrates, there are 3 main
�elds to implement: de�ning the type of a data item in the stage,
indicating the number of threads for processing a data item, and
de�ning the execute function of the stage. The execute function
is used by the threads of that stage to process each data item in
the input queue of that stage. The parameters of this function are

the pointer to the data item fetched from the queue and the ID
of the current thread. The function of enqueue<StageClassName>
(itemVal) is used to enqueue a data item (itemVal) to stage Stage-
ClassName. Developers call the function of insertIntoQueue() to
push initial data items into the input queue of the target stage. The
parameters of this function are an array of the initial data items
and its size.

class Stage_1 : public BaseStage {
typedef int DataItemType; // Element type is int
int threadNum = 1; // Each task has 1 thread

void __device__ execute(
DataItemType * data, int threadid) {

int val = *data; // Data fetched from queue
val *= 2;
if (val >= THRESHOLD)

enqueue<Stage_2>(val);
else

enqueue<Stage_1>(val);
}

};

…; // Definition of Stage_2 and Stage_3

// push 10 initial data items into queue
VersaPipe::insertIntoQueue<Stage_1>(initItems, 10);

Figure 9: Programming example in VersaPipe framework.

These simple interfaces screen programmers from concerning
the complexities in implementing and optimizing the interactions
and performance interplays among di�erent stages of a pipeline. If
we implement stage 1 with the original GPU interfaces, the recur-
sive pipeline structure would require either dynamic-parallelism,
whose recursive depth is limited, or multiple kernel calls controlled
by CPU. Both methods need much higher programming e�orts than
the use of the VersaPipe API. Programs written with VersaPipe look
like sequential programs in most cases. Porting existing pipeline
programs with VersaPipe needs only few changes.

It is worth noting that the de�nition of data items determines
the granularity of a task for a stage, and hence a�ects the e�ciency
of the program. Sometimes, combining several basic data elements
into a composite type can reduce the number of data items to be
processed as well as the needed queuing operations. For example, in
CFD application (described in Section 8), combining 1024 elements
into one composite data item yields much better performance than
using a single data item as an queuing unit.

593

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Z. Zheng et al.

7 VERSAPIPE AUTOTUNER AND RUNTIME
ADAPTATION

A con�guration for a pipeline application consists of the appropri-
ate stage grouping, SM mapping, as well as block mapping for �ne
pipeline as Figure 7 illustrates. The search space for the optimal
con�guration is usually large as it is the product of all the possi-
bilities of these three aspects. Di�erent con�gurations can a�ect
performance heavily; it is hence necessary to provide a method to
help developers explore the huge selection space systematically.

We provide an auto-tuner tool to do that. The auto-tuner consists
of an o�ine part and an online part. The former generates an initial
con�guration of the pipeline, and the latter supports online adaptive
mechanisms to adjust the con�guration.

autotuning() {
G = set of all possible stage grouping strategies
for g in G:

S = set of all possible SM mapping strategies for g
for s in S:
B = set of all possible block mapping strategies for s
// prune for B: 1. each stage has a maximum count
// of blocks on an SM; 2. a stage will have the same
// number of blocks on each of assigned SMs
for b in B:

config = {g, s, b}
// set timeout ‘mintime’ and execute program
newtime = timeoutexec(mintime, config)
if newtime < mintime:

minconfig = config
mintime = newtime

}

Figure 10: Pseudo-code of the o�line auto-tuner.

The o�ine auto-tuner �rst searches all possible grouping strate-
gies. To limit the searching space, a stage can only be grouped with
its neighbouring stages. It then explores all possible models for each
group: RTC, KBK, Megakernel, and �ne pipeline. Also, all possible
SM mappings are attempted, as well as all possible block mappings
for �ne pipeline groups. Some constraints are added to prune the
searching space of block mapping. One is the upper bound of block
counts for each stage on each SM, which is the maximum number
of blocks that can run concurrently on each SM for each stage.
Another constraint we add is that, in a �ne pipeline stage group,
a stage will have the same number of blocks running on each of
its assigned SMs. With these constraints, the searching space is
limited to a much smaller size. Finally, o�ine auto-tuner executes
the pipeline program with all the con�gurations and measures the
execution times. A timeout value is set to limit the execution time
of each run and this value is updated when a run completes its
execution with shorter time. The con�guration with the shortest
execution time is chosen as an initial hybrid pipeline model of the
program. Figure 10 is the pseudo-code of the o�ine auto-tuner. The
metrics required by the tuner is the maximum count of blocks that
can run on a SM for each stage, which is collected by the Pro�ling
Component.

The online adaptation is enabled through a coordination between
the kernels and the host thread. The adaptation does not adjust stage
groupings as most pipeline applications in practice have �xed quite
stable behavior patterns and inter-stage relations. The adaptation
is mainly about dynamically adjusting SM mappings and block

assignments.When a thread block does not have any task to execute,
the threads raise a �ag on the pinned host memory and exit. At
seeing the �ag, the host thread notices the availability of some
extra computing resource on GPU. It launches new kernels to �ll
the underutilized SMs. During the process, it chooses the stage
group with the most data items stalled in its queues. Such dynamic
adjustments incur some changes to the initial SM mappings and
block assignments. The use of queues make the adjustments easy
and safe to do.

8 EVALUATION
In this section, we evaluate our proposed VersaPipe framework
using a variety of real pipeline applications with di�erent pipeline
structures. To demonstrate the bene�ts of the VersaPipe framework
over previous work, we compare it with the basic pipeline execution
models, such as RTC and KBK, which are the original versions for
those applications. We also compare our method with a state-of-
the-art Megakernel model, called Whippletree [44].
Table 1: Various pipeline applications used for evaluating
VersaPipe framework.

Applications Description Stage
Count

Pipeline
Structure

Workload
Pattern

Pyramid Image Pyramid 3 Recursion Dynamic
Face Detection LBP Face Detection 5 Recursion Dynamic

Reyes Reyes Rendering 3 Recursion Dynamic
CFD CFD Solver 3 Loop Static

Rasterization Image Rasterization 3 Linear Dynamic
LDPC LDPC Decoder 4 Loop Static

8.1 Pipeline Applications
We evaluate VersaPipe with a diverse set of pipeline applications
shown in Table 1. Image Pyramid and Face Detection are imple-
mented based on thework of Oh et al. [31]. Reyes and Rasterization
are ported from the source codes released by Patney et al. [35]. CFD
is from Rodinia benchmark [8]. LDPC is implemented based on an
open source version [18].

The main features for a pipeline program include stage count,
pipeline structure, workload patterns, and hardware usage. Table 1
shows these features for evaluated pipeline applications. The stage
count ranges from 3 to 5. We classify the pipeline structure by linear,
loop, and recursion. Linear pipelines are the simplest structures.
Recursion pipelines have recursive executions and loop pipelines
have iterations over di�erent stages. The workload patterns are
either static or dynamic, regarding whether the amount of workload
of each task in a stage changes on di�erent inputs. Together, these
applications provide a diverse set for evaluating the performance
and applicability of VersaPipe. We �rst provide an overview of the
overall results, and then analyze the results of each application in
detail.

8.2 Overall Results
We experiment on two models of GPU, K20c GPU with 13 SMs and
GTX 1080 GPU with 20 SMs. The CUDA version is 7.5. The CPU
is Intel Xeon E5-2620. Figure 11 shows the overall results for all
the applications in the basic pipeline execution models used in the
original benchmarks (RTC or KBK), Megakernel, and VersaPipe.
All timing results are the average of �ve repeated runs and no

594

VersaPipe: A Versatile Programming Framework for Pipelined Computing on GPUMICRO-50, October 14–18, 2017, Cambridge, MA, USA

(a) Speedup on K20c.

(b) Speedup on GTX 1080.

Figure 11: Overall results in di�erent models. Speedup is
normalized by the execution times of the basic models used
in the original benchmark (either RTC or KBK). (8 images
used for Face Detection and Pyramid)

Table 2: Experiment results on K20c.

(32 images used for Pyramid and Face Detection)

Program Execution Time(ms) Longest Stage
RTC/KBK Megakernel VersaPipe time(ms) itemSz

Pyramid 14.41 1.59 1.37 0.80 12B
Detection 18.27 9.09 5.38 5.29 16B
Reyes 15.6 12.5 7.7 4.02 272B
CFD 5820 5430 3270 2970 12B
Raster 32.8 30.8 30.7 30.6 4B
LDPC 560 394 352 185 12B

signi�cant variances are observed. The execution time is measured
on CPU side, starting from the beginning of the �rst kernel and
ending just after the last kernel �nishes. It includes all the kernel
executions, CPU controls, and memory copies covered in that entire
code range. All results have been normalized by the performance of
the basic models, which are either RTC or KBK, depending on the
original implementation for each application. The block dimension
for Megakernel, coarse pipeline, and �ne pipeline are all 256 in our
experiments.

The input of Image Pyramid and Face Detection is 8 HD
(1280 ⇥ 720) images. The rendering result of Reyes is a teapot in a
resolution of 1280 ⇥ 720 pixels. The input of CFD program is the
missile data set provided by Rodinia benchmark. The Rasterization
application rasterizes 100 cubes and outputs pictures in 1024 ⇥ 768
resolutions. In LDPC, we set both the number of frames and itera-
tions as 100. The performance of each application also changes with
di�erent inputs, and we will discuss them in detail in Subsection 8.5.

In general, the results on both K20c and GTX 1080 show that for
all the applications, VersaPipe has a better performance than the
basic models and Megakernel. On K20c, VersaPipe has achieved

up to 6.90⇥ (2.88⇥ on average) better performance than the
basic models and 1.66⇥ (1.38⇥ on average) better performance than

Megakernel. All versions of the kernels run much faster on GTX
1080. For instance, the baseline versions of the kernels �nish in
11-44% of the time they take on K20c. That re�ects the bene�ts of
the extra resource and more advanced designs of GTX 1080. The
bene�ts of VersaPipe remains. It still signi�cantly outperforms both
the baseline and the Megakernel versions, yielding 2.7⇥ and 1.2⇥
speedups over them.

8.3 Detailed Results
Image Pyramid Image Pyramid is a widely used approach in im-
age processing and computer vision domains to �nd an object of
unknown size. It produces a set of down-sampled images from the
given image [1, 4, 28]. The practical use of Image Pyramid ranges
from real-time applications such as robot vision [41] to video ana-
lytics with surveillance cameras or satellites [13]. We construct a
typical Image Pyramid with 3 stages as shown in Figure 12, where
the Resize stage has a recursive execution. Note that, the amount
of workload in Image Pyramid decreases as it reaches a high level
of the down-sampling process (i.e., getting close to the top of the
pyramid of samples), which causes the GPU to be under-utilized
in the basic KBK model. For example, the workload size and the
computation time for an HD input in the Resize stage vary by
up to 239 times and 4.94 times respectively as the resized image
becomes smaller. However, the most severe performance bottleneck
in Image Pyramid is Histogram equalizaitonwhich has a limited
degree of parallelism and contains a serial portion that cannot be
parallelized. It can be executed only with 256 threads in a block. As
a result, most of SMs are idle in Histogram equalizaiton and it
takes 96.1% (13.85 ms) of the time in Image Pyramid. In contrast
to this execution in KBK model, VersaPipe can make a full use of
the GPU resources by e�ectively combining task-parallelism and
data-parallelism.

Images Grayscale Histogram
Equalization Resize Image

Pyramid

Figure 12: The pipeline structure of Image Pyramid.

Figure 13 shows the experimental results of Image Pyramid for
processing di�erent numbers of input images in di�erent models.
KBK with Stream is an improved model over KBK. In this model,
di�erent images are processed in multiple GPU streams, which alle-
viates the limited parallelism in KBK model. VersaPipe outperforms
both execution models signi�cantly since it avoids large kernel
launch overhead and achieves good load balance. VersaPipe shows
a much better performance than Megakernel does for all the cases,
thanks to its e�ective exploitations of both the coarse pipeline and
the �ne pipeline models.

In VersaPipe, we can get a proper con�guration for the hybrid
execution model with the VersaPipe auto-tuner. Image Pyramid
stages are separated into two groups to get bene�ts with coarse
pipeline model. One is for Grayscale with 4 SMs and the other
is for Histogram equalization and Resize with 9 SMs. These
stages launch 6, 2, and 2 thread blocks on each SM, respectively.
Although the maximum numbers of blocks in an SM for Histogram
equalization and Resize are originally 3 and 4, �ne pipeline

595

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Z. Zheng et al.

model allows them to share the hardware resources and makes it
feasible to execute 4 blocks (i.e., 2 blocks each) all the time. As a
result, VersaPipe maintains a total of 60 blocks, while Megakernel
only 39 blocks. When the input size is small (less than 5 images), the
performance di�erence of the di�erent models is less prominent due
to the limited amount of work to do; in those cases, the performance
is in general less of a concern.

Figure 13: Performance results of Image Pyramid.

Face Detection Face detection is a real-life application, which
tries to detect faces from a given image. In this paper, we use a
face detection application which adopts Local Binary Pattern (LBP)
based classi�cation [2].

Images Grayscale Feature
Extraction

Resize

Detection
Result

Histogram
Equalization

Scanning

Figure 14: The pipeline structure of face detection.

There are 5 stages in this pipeline with a recursive structure as
shown in Figure 14, where Feature extraction and Scanning are
processed after Image Pyramid. In the Scanning stage, the threads
whose assigned searching windows contain no face will terminate
earlier than others with faces [48], which could result in severe
load-imbalance between threads. Thus we de�ne a search window
as a basic data item in VersaPipe to achieve a good load-balance.

VersaPipe gives 3.4⇥ speedup over KBK. One of the main reasons
for this improvement is from Histogram equalization, which
has limited degree of parallelism and cannot fully utilize GPU re-
sources in KBK. Note that, in KBK, we try to minimize performance
degradation due to this lack of parallelism, by dividing Histogram
equalization into three separate kernels, where two kernels are
executed in pixel-level parallelism. Nevertheless, KBK still shows
worse results than our framework.

Compared toMegakernel, VersaPipe achieves better performance
in all cases. First, VersaPipe reduces register usage which limits
the maximum number of active thread blocks in Megakernel. Each
thread in Megakernel consumes 87 registers, while in VersaPipe,
each kernel by a thread consumes 56, 69, 56, 61, 37 registers re-
spectively. Megakernel can only launch 2 concurrent blocks in an
SM, while VersaPipe can launch at least 3, or at most 6 blocks for
di�erent stages concurrently. Also, with �ne pipeline model, an
SM can execute di�erent kernels concurrently. Since most tasks

are memory-intensive, cache a�ects the performance signi�cantly.
For this case, the �ne pipeline model provides large performance
enhancement by utilizing L1 cache more e�ciently with good data
locality.
ReyesRenderingReyes renderingwas proposed byCook et al. [12],
which is widely used inmodern renders, like Pixal’s Renderman [36].
Our implementation is based on the source code released in [35], in
which bound and split are implemented as one stage, referred to
as Split. The pipeline structure is shown in Figure 1. This pipeline
is recursive and has dynamic workload generation between neigh-
bouring stages, which makes it impractical to deal with RTC model.
We implement Reyes with KBK, Megakernel, and VersaPipe. Ta-
ble 2 shows VersaPipe has a 2.03⇥ speedup over KBK and a 1.62⇥
speedup over Megakernel.

The KBK implementation contains 16 kernel calls. Memory copies
and recursive control on CPU introduce large overhead. The work-
load in Split are not able to fully utilize the GPU, but implicit
synchronizations between kernels make task parallelism between
stages impossible.With auto-tuning, VersaPipe combines �ne pipeline
and Megakernel. CPU-GPU switching is eliminated and task paral-
lelism is also introduced to fully utilize the GPU.

Megakernel outperforms KBK, but performs worse than Ver-
saPipe as Megakernel consumes too many registers in the single
kernel. Megakernel consumes 255 registers per thread, while the
3 kernels in VersaPipe consume 111, 255, 61 registers respectively.
The high register usage comes from Dice, while Split and Shade
use less. In VersaPipe, Split and Dice compose a stage group with
�ne pipeline model, while Shade composes another group with
Megakernel model. By separating into di�erent kernels, threads
executing in Split and Shade consume fewer registers and then
GPU can launch more blocks concurrently. Dice consumes too
many registers that one SM can only execute one block. Although
the remaining hardware resources are not enough for a Dice block,
it is su�cient for a Split block, enabling each SM to execute one
block for Split and another block for Dice in VersaPipe. There-
fore, Split and Dice can make full use of an SM with �ne pipeline
model. Finally, there are 35 blocks launched concurrently in Ver-
saPipe, while the count for Megakernel is only 13.

Step
Factor Flux Time

Step

Inner Loop

Outer Loop

Figure 15: The pipeline structure of CFD.

CFD CFD (Computational Fluid Dynamics) [17] is an important
branch in �uid mechanics. We use the implementation in the Ro-
dinia benchmark [8], whose pipeline structure is shown in Figure 15.
There are 3 stages and 2 iterations in this pipeline. The count of
inner iterations is 3 and the count of outer iterations is 2,000. The
execution time is 5.82 seconds, 5.43 seconds, and 3.27 seconds for
KBK, Megakernel, and VersaPipe, respectively.

KBK makes 14,000 times of kernel calls. Frequent switching
between CPU and GPU introduces large overhead. Furthermore,
the occupancy of Flux is only 37.5%. Without task parallelism, the

596

VersaPipe: A Versatile Programming Framework for Pipelined Computing on GPUMICRO-50, October 14–18, 2017, Cambridge, MA, USA

GPU utilization is very low. With �ne pipeline model, VersaPipe
eliminates CPU-GPU switching overhead by reducing the count of
kernel launches to 3 and utilizes GPU better by introducing task
parallelism.

In Megakernel, each SM can only execute 2 blocks as Flux con-
sumes too many registers. VersaPipe separates 3 stages into 3 ker-
nels such that threads executing Step Factor or Time Step con-
sume fewer registers. With VersaPipe, the block count that can be
executed concurrently on each SM are 4 for Step Factor, 2 for
Compute Flux, and 3 for Time Step. Thus, VersaPipe achieves
much higher throughput by launching more blocks.

As Figures 11 shows, VersaPipe gives a higher speedup on GTX
1080 than on K20c for CFD. It is because as kernels execute faster on
GTX 1080, the launching overhead of the baseline version accounts
more.
Rasterization Rasterization is the most commonly used rendering
technique for producing real-time 3D graphics on a computer. We
implement rasterization based on the source code released in [35].
As shown in Figure 16, the pipeline includes 3 stages. The workloads
of each stage changes dynamically based on di�erent inputs.

Primitives Clip Interpolate Shade Pixels

Figure 16: The pipeline structure of rasterization.

The basic version is implemented in both KBK and the mixing
of KBK and RTC models. In the mixing of KBK and RTC model,
Clip and Interpolate are in the same kernel with RTC model,
and Shade is in the other kernel. The execution time for KBK is
33.8ms, while it is 32.8ms for the mixing of KBK and RTC. It is
30.8ms in Megakernel, and 30.7ms in VersaPipe.

KBK presents the worst performance as it has the large overhead
of CPU-GPU switching and memory copy, and GPU cannot be
fully utilized under dynamic workload without task parallelism.
By merging kernels of Clip and Interpolate, the mixing of KBK
and RTC achieves better performance thanks to better data locality,
fewer global synchronization, and fewer CPU-GPU switching. Both
models exploit task parallelism of di�erent stages and the execution
time of the �rst 2 stages are overlapped with the last stage. The
hybrid models in VersaPipe create a better overlap.
LDPC LDPC (Low-Density Parity-Check) [15] is a linear error
correction program that transmits a message over noisy transmis-
sion channels. We realize it based on an open source implemen-
tation [18], which is in KBK model. There are 4 stages in LDPC
decoding pipeline, as shown in Figure 17. There are 2 iterations in
this pipeline.

In KBK, the execution time of 4 kernels themselves is 495ms,
which means that the total overhead for kernel launch, CPU man-
agement, and memory copy between CPU and GPU is 65ms. Fur-
thermore, the occupancies of the 4 kernels in KBK are all around
40%, which is because the workload is too small to fully utilize
GPU without task-level parallelism. VersaPipe separates four stages
into three groups, Initialize and C2V are in a �ne pipeline group,
and the other two stages are in two other groups with Megakernel
model. VersaPipe eliminates the overhead of CPU control and mem-
ory copy, and utilizes GPU better with task parallelism between

di�erent stages. Megakernel su�ers from high register usage so
that each SM can only execute 4 thread blocks. On the contrary, in
VersaPipe, one SM can execute 5 blocks for C2V or V2C, or 4 blocks
for Initialize or ProbVar. A total of 56 blocks can be executed
concurrently in VersaPipe, while it is 52 blocks in Megakernel.

Initialize C2V V2C ProbVar

Inner Loop

Outer Loop

Figure 17: The pipeline structure of LDPC.

8.4 Dynamic Parallelism
Dynamic Parallelism (DP) allows threads running on GPU to launch
subkernels. We use Reyes to compare DP with VersaPipe. When a
new data item is generated in a stage, a new subkernel is launched to
process it. Results show that the execution times with DP (110.6ms
on K20c and 45.2ms on GTX 1080) are over 10 times longer than
VersaPipe due to the large launching overhead of DP. That echoes
the observations in previous studies [9, 14, 49]. It is possible that
with some careful coding or advanced optimizations, the subker-
nel launching overhead could be reduced. But it takes much non-
intuitive coding or optimization. Moreover, pipeline computations
require some careful resource allocations to di�erent pipeline stages.
It remains unclear how that can be done e�ectively when DP is
used. Finally, DP is subject to some hardware limit (e.g., on nesting
depth), which could limit its applicability.

8.5 Overhead Analysis and Insights
We summarize the main reasons for the bene�ts of VersaPipe, and
some insights on opportunities for further improvement by analyz-
ing the main overhead of VersaPipe.

As the experiments results have shown, the bene�ts of VersaPipe
mainly come from its reduced register usage in the kernels, fewer
kernel launches, and the improved con�gurations of the execution
models for a given application. The low register usage allows Ver-
saPipe to launch more threads concurrently than Megakernel does.
Having fewer kernel launches reduces the launching overhead.
Better con�gurations allows VersaPipe to more fully utilize GPU
resources. We found that data locality plays relatively a modest role
except on Face Detection; Megakernel and VersaPipe show similar
L1 and L2 performance on others.

There are two possible aspects for further improvement. The
�rst is queue overhead. For each program, we have measured the
execution time of each single stage of the pipeline while employing
the same number of basic blocks as in the con�gurations used
by VersaPipe. No queuing time is included. The second rightmost
column in Table 2 reports the time taken by the longest stage, which
could be regarded as the performance of VersaPipe if there was no
queuing or other runtime overhead (LDPC is an exception because
its versaPipe version folds some CPU computations into the kernel
and is hence not comparable to the longest stage). From Table 2,
we can see that the overhead is 10% or less on Face Detection,
CFD, and Rasterization. It is more visible on Pyramid, because the

597

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Z. Zheng et al.

kernel is very short. Its signi�cant overhead shows on Reyes, which
features the largest data item structure in the queue as shown in
the rightmost column of Table 2. More e�cient queue schemes (e.g.,
distributed queues or hardware-based queues) could help. Methods
that reduce data item size in the queues could also be bene�cial.

Another potential opportunity for improvement is better load
balance. Our measurement shows that even with VersaPipe, the
times of stages still di�er a lot. For instance, on Reyes, the longest
stage takes about one third more time than the shortest stage does.
Relaxing some restrictions to the search scheme of the autotuner
could possibly yield con�gurations giving a better load balance.

9 RELATEDWORK
There is a body of work on supporting task-level parallelism on het-
erogeneous systems. For instance, Halide [38] is a domain-speci�c
language proposed to support the development of e�cient graph
processing applications. It treats a GPU as a single processing unit
in the system and deploys only one GPU kernel on it each time. In
contrast, our work focuses on how to best utilize the computing
resource on a GPU to support multiple stages of a pipeline on a
GPU.

Some work has concentrated on some particular pipeline appli-
cations and explored how to manually tune them to achieve high
performance. Examples include the work on ray tracing [3, 24, 33].
They provide no general programming frameworks for pipeline
applications.

E�cient work queue implementation is critical for high per-
formance Megakernel. Access from massive parallel threads may
cause severe contention and the work queue may become the main
performance bottleneck. For distributed queues, access contention
can be reduced but load balance will be another problem. Recent
studies [7, 10, 47] have proposed e�cient solutions, like work steal-
ing and donation, to implement distributed queues with good load
balance.

Steinberger et al. [44] propose a framework based onMegakernel
to schedule pipeline programs with dynamic, irregular workloads
on GPU. The main limitation for this model is high hardware re-
source usage as the previous sections show.

Wu et al. [50] study SM-Centric technique. This method o�ers a
solution to enable program-level spatial scheduling on GPU. Ker-
nels can be mapped to speci�c SMs with this method. It provides
some opportunities for optimizing GPU programs with schedul-
ing strategies. Lin et al. [27] study the preemption on GPU and
realize a light-weight context switching method. Kim et al. [23]
propose some hardware extensions to GPU to dynamically check
dependencies and overlap di�erent kernels.

Another orthogonal research direction is to improve hardware
schedulers on GPU to reduce execution ine�ciency, examples
include a large warp architecture [29], a two-level warp sched-
uler [19, 20], instruction pattern based scheduling [25], cache con-
scious scheduling [39, 40], and thread block scheduler [21]. These
techniques improve execution e�ciency of a GPU kernel, but are or-
thogonal to the execution model con�gurations of pipeline stages.

10 CONCLUSION
In this paper, we provide a systematic examination of various
pipeline execution models on GPU, and analyze their strengths
and weaknesses. We further propose three new execution models
equipped with much improved controllability, including a hybrid
model that is capable of getting the strengths of all. We then de-
velop a software framework named VersaPipe to translate these
insights and models into an enhanced pipeline programming sys-
tem. With VersaPipe, users only need to write the operations for
each pipeline stage. VersaPipe will then automatically assemble the
stages into a hybrid execution model and con�gure it to achieve
the best performance. Experiments on a set of pipeline benchmarks
and a real-world face detection application show that VersaPipe
produces up to 6.90⇥ (2.88⇥ on average) speedups over the origi-
nal manual implementations. VersaPipe is open-source and will be
made available to the public.

ACKNOWLEDGMENTS
The authors would like to thank Skip Booth, John Marshall, and
Robbie King for discussions at the early stage of this work. The
feedback from the anonymous reviewers are helpful for improving
the �nal version of the paper. This material is based upon work
supported by DOE Early Career Award (DE-SC0013700), the Na-
tional Science Foundation (NSF) under Grant No. 1455404, 1455733
(CAREER), and 1525609, and Cisco. Any opinions, �ndings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily re�ect the views of
DOE or NSF or Cisco. In China, this work is partially supported by
NSFC Project No.61232008, National Key Research and Develop-
ment Program 2016YFB0200100, and Tsinghua University Initiative
Scienti�c Research Program. This research was supported by Basic
Science Research Program through the National Research Founda-
tion of Korea(NRF) funded by the Ministry of Science, ICT & Future
Planning(No. 2015R1C1A1A01055212). Jidong Zhai, Xipeng Shen,
and Youngmin Yi are corresponding authors of the paper.

REFERENCES
[1] Edward Adelson, Charles Anderson, James Bergen, Peter Burt, and Joan Ogden.

1984. Pyramid Methods in Image Processing. RCA Engineer 29, 6 (1984), 33–41.
[2] Timo Ahonen, Abdenour Hadid, and Matti Pietikainen. 2006. Face Description

with Local Binary Patterns: Application to Face Recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence 28, 12 (2006), 2037–2041.

[3] Timo Aila and Samuli Laine. 2009. Understanding the E�ciency of Ray Traversal
on GPUs. In Conference on High PERFORMANCE Graphics. 145–149.

[4] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. 2006. Surf: Speeded Up Robust
Features. In European Conference on Computer Vision. Springer, 404–417.

[5] Christian Bienia and Kai Li. 2010. Characteristics of Workloads Using the
Pipeline Programming Model. In International Symposium on Computer Architec-
ture. Springer, 161–171.

[6] Michael Boyer, David Tarjan, Scott Acton, and Kevin Skadron. 2009. Accelerating
Leukocyte Tracking Using CUDA: A Case Study in Leveraging Manycore Copro-
cessors. In Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium on. IEEE, 1–12.

[7] Daniel Cederman and Philippas Tsigas. 2008. On Dynamic Load Balancing on
Graphics Processors. In Eurographics/acm SIGGRAPH Conference on Graphics
Hardware 2008, Sarajevo, Bosnia and Herzegovina. 57–64.

[8] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Shea�er, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A Benchmark Suite for Heterogeneous
Computing. In IEEE International Symposium on Workload Characterization. IEEE,
44–54.

[9] Guoyang Chen and Xipeng Shen. 2015. Free Launch: Optimizing GPU Dynamic
Kernel Launches through Thread Reuse. In Proceedings of the Annual IEEE/ACM
International Symposium on Microarchitecture.

598

VersaPipe: A Versatile Programming Framework for Pipelined Computing on GPUMICRO-50, October 14–18, 2017, Cambridge, MA, USA

[10] Long Chen, Oreste Villa, Sriram Krishnamoorthy, and Guang R Gao. 2010. Dy-
namic Load Balancing on Single-and Multi-GPU Systems. In IEEE International
Symposium on Parallel & Distributed Processing. IEEE, 1–12.

[11] Nagai-Man Cheung, Xiaopeng Fan, Oscar C Au, and Man-Cheung Kung. 2010.
Video Coding on Multicore Graphics Processors. IEEE Signal Processing Magazine
27, 2 (2010), 79–89.

[12] Robert L Cook, Loren Carpenter, and Edwin Catmull. 1987. The Reyes Image
Rendering Architecture. In ACM SIGGRAPH Computer Graphics, Vol. 21. ACM,
95–102.

[13] Carl Doersch, Saurabh Singh, Abhinav Gupta, Josef Sivic, and Alexei A Efros.
2015. What Makes Paris Look Like Paris? Commun. ACM 58, 12 (2015), 103–110.

[14] Izzat El Hajj, Juan Gómez-Luna, Cheng Li, Li-Wen Chang, Dejan Milojicic, and
Wen-mei Hwu. 2016. KLAP: Kernel Launch Aggregation and Promotion for Opti-
mizing Dynamic Parallelism. In 49th Annual IEEE/ACM International Symposium
on Microarchitecture. IEEE, 1–12.

[15] Robert Gallager. 1962. Low-density Parity-check Codes. IRE Transactions on
Information Theory 8, 1 (1962), 21–28.

[16] Kshitij Gupta, Je� A Stuart, and John D Owens. 2012. A Study of Persistent
Threads Style GPU Programming for GPGPU Workloads. In Innovative Parallel
Computing (InPar), 2012. IEEE, 1–14.

[17] John L Hess and A_M O Smith. 1967. Calculation of Potential Flow about
Arbitrary Bodies. Progress in Aerospace Sciences 8 (1967), 1–138.

[18] Jiwei Liang. 2016. LDPC OOK Decoder. https://github.com/BibbyLiang/
LDPC-OOK-Decoder-on-GPU. (2016).

[19] Adwait Jog, Onur Kayiran, Nachiappan ChidambaramNachiappan, Asit KMishra,
Mahmut T Kandemir, Onur Mutlu, Ravishankar Iyer, and Chita R Das. 2013. OWL:
Cooperative Thread Array Aware Scheduling Techniques for Improving GPGPU
performance. In ACM SIGPLAN Notices, Vol. 48. ACM, 395–406.

[20] Adwait Jog, Onur Kayiran, Asit Mishra, Mahmut Kandemir, Onur Mutlu, Ravis-
hankar Iyer, and Chita Das. 2013. Orchestrated Scheduling and Prefetching for
GPGPUs. In ISCA.

[21] Onur Kayiran, Adwait Jog, Mahmut T. Kandemir, and Chita R. Das. 2013. Neither
More Nor Less: Optimizing Thread-level Parallelism for GPGPUs. In PACT.

[22] Brucek Khailany, William Dally, Ujval Kapasi, Peter Mattson, Jinyung Namkoong,
John D Owens, Brian Towles, Andrew Chang, and Scott Rixner. 2001. Imagine:
Media Processing with Streams. IEEE MICRO 21, 2 (2001), 35–46.

[23] Gwangsun Kim, Jiyun Jeong, John Kim, and Mark Stephenson. 2016. Automati-
cally Exploiting Implicit Pipeline Parallelism from Multiple Dependent Kernels
for GPUs. In International Conference on Parallel Architectures and Compilation.

[24] Samuli Laine, Tero Karras, and TimoAila. 2013. Megakernels ConsideredHarmful:
Wavefront Path Tracing on GPUs. In High-Performance Graphics Conference. 137–
143.

[25] Minseok Lee, Gwangsun Kim, John Kim, Woong Seo, Yeongon Cho, and Soojung
Ryu. 2016. iPAWS: Instruction-issue Pattern-based Adaptive Warp Scheduling for
GPGPUs. In 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 370–381.

[26] Kai Li and Je�rey F Naughton. 2000. Multiprocessor Main Memory Transaction
Processing. In Proceedings of the �rst international symposium on Databases in
parallel and distributed systems. IEEE Computer Society Press, 177–187.

[27] Zhen Lin, Lars Nyland, and Huiyang Zhou. 2016. Enabling E�cient Preemption
for SIMT Architectures with Lightweight Context Switching. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE Press, 77.

[28] David G Lowe. 2004. Distinctive Image Features from Scale-invariant Keypoints.
International journal of computer vision 60, 2 (2004), 91–110.

[29] Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Miftakhutdinov,
Onur Mutlu, and Yale N. Patt. 2011. Improving GPU Performance via Large
Warps and Two-level Warp Scheduling. In MICRO.

[30] NVIDIA Corporation. 2016. NVIDIA CUDA. http://www.nvidia.com/object/
cuda_home_new.html. (2016).

[31] Chanyoung Oh, Saehanseul Yi, and Youngmin Yi. 2015. Real-time Face Detec-
tion in Full HD Images Exploiting both Embedded CPU and GPU. In 2015 IEEE
International Conference on Multimedia and Expo (ICME). IEEE, 1–6.

[32] Sreepathi Pai and Keshav Pingali. 2016. A Compiler for Throughput Optimiza-
tion of Graph Algorithms on GPUs. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications. ACM, 1–19.

[33] Steven Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock,
David Luebke, David Mcallister, Morgan Mcguire, Keith Morley, and Austin
Robison. 2010. OptiX: A General Purpose Ray Tracing Engine. Acm Transactions
on Graphics 29, 4 (2010), 157–166.

[34] Anjul Patney and John D Owens. 2008. Real-time Reyes: Programmable Pipelines
and Research Challenges. ACM SIGGRAPH Asia 2008 Course Notes (2008).

[35] Anjul Patney, Stanley Tzeng, Kerry A. Seitz, and John D. Owens. 2015. Piko: A
Framework for Authoring Programmable Graphics Pipelines. Acm Transactions
on Graphics 34, 4 (2015), 1–13.

[36] Pixar. 2016. Pixar’s RenderMan. https://renderman.pixar.com/view/renderman.
(2016).

[37] Timothy Purcell, Ian Buck, William Mark, and Pat Hanrahan. 2002. Ray Tracing
on Programmable Graphics Hardware. In ACM Transactions on Graphics (TOG),
Vol. 21. ACM, 703–712.

[38] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: A Language and Compiler
for Optimizing Parallelism, Locality, and Recomputation in Image Processing
Pipelines. ACM SIGPLAN Notices 48, 6 (2013), 519–530.

[39] T. Rogers, M. O’Connor, and T. Aamodt. 2012. Cache-Conscious Wavefront
Scheduling. In Proceedings of the International Symposium on Microarchitecture.

[40] T. Rogers, M. O’Connor, and T. Aamodt. 2013. Divergence-aware Warp Schedul-
ing. In Proceedings of the International Symposium on Microarchitecture.

[41] Keigo Shirai, Hirokazu Madokoro, Satoshi Takahashi, and Kazuhito Sato. 2014.
Parallel Implementation of Saliency Maps for Real-time Robot Vision. In Control,
Automation and Systems (ICCAS), 2014 14th International Conference on. IEEE,
1046–1051.

[42] Changhe Song, Yunsong Li, and Bormin Huang. 2011. A GPU-acceleratedWavelet
Decompression System with SPIHT and Reed-Solomon Decoding For Satellite
Images. IEEE Journal of selected topics in applied earth observations and remote
sensing 4, 3 (2011), 683–690.

[43] Markus Steinberger, Bernhard Kainz, Bernhard Kerbl, Stefan Hauswiesner,
Michael Kenzel, and Dieter Schmalstieg. 2012. Softshell: Dynamic Scheduling on
GPUs. ACM Transactions on Graphics (TOG) 31, 6 (2012), 161.

[44] Markus Steinberger,Michael Kenzel, Pedro Boechat, Bernhard Kerbl, MarkDokter,
and Dieter Schmalstieg. 2014. Whippletree: Task-based Scheduling of Dynamic
Workloads on the GPU. Acm Transactions on Graphics 33, 6 (2014), 1–11.

[45] Jeremy Sugerman, Kayvon Fatahalian, Solomon Boulos, Kurt Akeley, and Pat
Hanrahan. 2009. GRAMPS: A Programming Model for Graphics Pipelines. ACM
Transactions on Graphics (TOG) 28, 1 (2009), 4.

[46] Weibin Sun and Robert Ricci. 2013. Fast and Flexible: Parallel Packet Process-
ing with GPUs and Click. In Proceedings of the ninth ACM/IEEE symposium on
Architectures for networking and communications systems. IEEE Press, 25–36.

[47] Stanley Tzeng, Anjul Patney, and John D Owens. 2010. Task Management for
Irregular-parallel Workloads on the GPU. In Proceedings of the Conference on
High Performance Graphics. Eurographics Association, 29–37.

[48] Paul Viola and Michael Jones. 2001. Rapid Object Detection Using a Boosted
Cascade of Simple Features. In Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, Vol. 1.
IEEE, I–511.

[49] Wang, Jin and Yalamanchili, Sudhakar. 2014. Characterization and Analysis of
Dynamic Parallelism in Unstructured GPU Applications. In Workload Characteri-
zation (IISWC), 2014 IEEE International Symposium on. IEEE, 51–60.

[50] Bo Wu, Guoyang Chen, Dong Li, Xipeng Shen, and Je�rey Vetter. 2015. Enabling
and Exploiting Flexible Task Assignment on GPU Through SM-Centric Program
Transformations. In Proceedings of the 29th ACM on International Conference on
Supercomputing. ACM, 119–130.

[51] Feng Zhang, Jidong Zhai, Bingsheng He, Shuhao Zhang, and Wenguang Chen.
2017. Understanding Co-running Behaviors on Integrated CPU/GPU Architec-
tures. IEEE Transactions on Parallel and Distributed Systems 28, 3 (2017), 905–918.

599

https://github.com/BibbyLiang/LDPC-OOK-Decoder-on-GPU
https://github.com/BibbyLiang/LDPC-OOK-Decoder-on-GPU
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
https://renderman.pixar.com/view/renderman

	Abstract (25)
	1 Introduction (25)
	2 Background (7)
	3 Overview of VersaPipe
	4 Execution Models
	4.1 Existing Pipeline Execution Models on GPU
	4.2 Enriched Set of Execution Models for Pipeline

	5 VersaPipe Library
	6 API
	7 VersaPipe AutoTuner and Runtime Adaptation
	8 Evaluation
	8.1 Pipeline Applications
	8.2 Overall Results
	8.3 Detailed Results
	8.4 Dynamic Parallelism
	8.5 Overhead Analysis and Insights

	9 Related Work (2)
	10 Conclusion (1)
	Acknowledgments (3)
	References (26)

