
pLock: A Fast Lock for Architectures with
Explicit Inter-core Message Passing
Xiongchao Tang

Tsinghua University, Qatar Computing Research Institute
txc13@mails.tsinghua.edu.cn

Jidong Zhai
Tsinghua University, BNRist
zhaijidong@tsinghua.edu.cn

Xuehai Qian
University of Southern California

xuehai.qian@usc.edu

Wenguang Chen
Tsinghua University
cwg@tsinghua.edu.cn

Abstract
Synchronization is a significant issue for multi-threaded
programs. Mutex lock, as a classic solution, is widely used
in legacy programs and is still popular for its intuition. The
SW26010 architecture, deployed on the supercomputer Sun-
way Taihulight, introduces hardware-supported inter-core
message passing mechanism and exposes explicit interfaces
for developers to use its fast on-chip network. This emerging
architectural feature brings both opportunities and chal-
lenges for mutex lock implementation. However, there is
still no general lock mechanism optimized for architectures
with this new feature.

In this paper, we propose pLock, a fast lock designed for ar-
chitectures that support Explicit inter-core Message Passing
(EMP). pLock uses partial cores as lock servers and leverages
the fast on-chip network to implement high-performance
mutual exclusive locks. We propose two new techniques
– chaining lock and hierarchical lock – to reduce message
count and mitigate network congestion.
We implement and evaluate pLock on an SW26010 pro-

cessor. The experimental results show that our proposed
techniques improve the performance of EMP-lock by up to
19.4× over a basic design.

CCS Concepts • Computer systems organization →
Multicore architectures; Processors and memory architec-
tures; • Software and its engineering→Multithreading;
Mutual exclusion; Concurrency control.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’19, April 13–17, 2019, Providence, RI, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304030

Keywords lock; synchronization; on-chip network; inter-
core message passing

ACM Reference Format:
Xiongchao Tang, Jidong Zhai, Xuehai Qian, and Wenguang Chen.
2019. pLock: A Fast Lock for Architectures with Explicit Inter-core
Message Passing. In 2019 Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’19), April 13–17, 2019,
Providence, RI, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3297858.3304030

1 Introduction
Mutual exclusive lock is a common mechanism of synchro-
nization for multi-threaded programs. A lock protects a
certain critical section (CS) and can only be held by a single
thread at any given time. Only the thread which acquires
the lock can execute the corresponding critical section. As a
classic solution, lock is widely used in legacy programs and
is popular for its intuition. Because of its importance, lock
has been carefully designed and implemented for modern
multi-core architectures [22, 27].
However, for emerging many-core processors, conven-

tional coherent cache architecture has become more and
more complex and it is very hard to achieve high perfor-
mance [32]. A novel architectural feature, Explicit inter-core
Message Passing (EMP), has gained popularity in research
and even been used in some product many-core processors,
such as TILE-Gx8036 [30] and SW26010 [13]. The Sunway
TaihuLight [1] supercomputer is powered by SW26010 that
uses EMP instead of coherent cache to share data among
cores.

Since EMP provides both high bandwidth and low latency
for inter-core communication, researchers have used EMP to
accelerate programs on Sunway Taihulight [24, 38]. However,
the widely used lock mechanism has not been well optimized
for SW26010 architectures, which leads to sub-optimal per-
formance for multi-threaded programs that frequently use
locks to protect critical sections. Consequently, developers
who want to port their multi-threaded programs to such
new architectures with EMP support face a dilemma: they
either need to rewrite their code using a new programming

Session: Synchronization ASPLOS’19, April 13–17, 2019, Providence, RI, USA

765

https://doi.org/10.1145/3297858.3304030
https://doi.org/10.1145/3297858.3304030
https://doi.org/10.1145/3297858.3304030

paradigm [25] or give up the opportunity to accelerate syn-
chronization with EMP.
In this paper, we propose pLock, a new lock mechanism

specially designed for EMP supported architectures, such
as SW26010. pLock enables developers to leverage the ben-
efits of fast EMP while preserving the conventional lock
and critical section paradigm. We build pLock as a library
that provides conventional lock/unlock interfaces and hides
all complex architectural details. As a result, application
developers can use pLock without knowing the underlying
architectural features, and thus saves much time from port-
ing and tuning.
Regarding thread synchronization, a key advantage of

EMP over shared memory is that programmers can explicitly
specify a core to share data with another. Therefore, high
contention for a shared memory region can be efficiently
avoided. The basic idea of an EMP-based lock is to use a
dedicated core as a lock-server, and all the other cores as
(clients) that can request locks from the lock-server [10].
Although less cores can be used for computation, the faster
lock still improves the performance for lock-intensive pro-
grams. This server/client model seems to be similar to locks
used in distributed systems. However, a distributed lock
usually prioritizes reliability and availability [5], whereas
on many-core processors, a lock mechanism designed for
multi-threaded programs needs to focus on performance.

There are two main challenges to efficiently utilize EMP to
implement a high-performance lock for Sunway Taihulight:
(1) Though transferring data over EMP avoids memory con-
tention, network congestion can become a new performance
bottleneck with frequent communication. A fast lock based
on EMP should minimize the number of messages among
cores. (2) The inter-core network of SW26010 architecture
is non-uniform and asymmetric. Thus the communication
performance between different cores is different. As a result,
we need to consider how an EMP-based lock works on a
hierarchical network.
We propose pLock, a high-performance lock library that

addresses the above two key problems. In previous EMP-lock
design, clients need to communicate with lock server to re-
quest and release locks each time. However, this mechanism
introduces a large amount of communication between a lock
server and clients. Instead of sending requests to lock server
each time, we transfer lock request among clients directly in
pLock. Therefore, pLock speeds up the process of requesting
and releasing locks, and reduces the communication traffic
to mitigate network congestion. Furthermore, we adopt a
hierarchical lock mechanism to improve the communication
performance on a non-uniform network. We summarize our
contributions as below:

• We propose novel chaining lock method, which allows
a client to bypass lock server and transfer locks directly
to another client. This design reduces the message

amount thus mitigates the communication congestion
caused by lock contention. To our best knowledge,
chaining lock is a new and novel approach on EMP
architectures.

• We propose a hierarchical lock method to fit the non-
uniform nature of the inter-core network. This hi-
erarchical method avoids unnecessary long-distance
communications (which is slow) and replaces them
with faster short-distance communications. Although
hierarchical lock has been used in traditional shared-
memory lock approaches, we are the first to adapt it
on EMP architectures.

• Based on the proposed approach, we implement pLock
on a product processor with EMP, i.e., SW26010. We
also evaluate our approach with micro-benchmarks
and multi-threaded parallel programs.

The experiment results show that, compared with a basic
design, pLock can reduce 53% of communication and reduce
lock latency by 83%.

2 Background
2.1 EMP on SW26010 Architecture
On-chip inter-core network is not a new architectural feature
and is already used bymodernmulti-core andmany-core pro-
cessors. However, on most current architectures, inter-core
network hardware is invisible to developers. For example, the
x86 architecture uses its inter-core network to transfer cache
lines among cores for cache coherence. Both of the inter-core
network and the cache are transparent in the x86 architecture.
On the contrary, the SW26010 architecture exposes its inter-
core network to developers for better architecture scalability.

Master Process Element

Co-Process Element Cluster

Memory Controller

Memory

Figure 1. The architecture of SW26010.

SW26010 is a product processor that has been deployed on
the supercomputer Sunway TaihuLight [13]. Figure 1 shows
parts of its architectural features related to this work. The
basic unit in SW26010 is a core group (CG). A CG is composed
of a master processing element (MPE) and a co-processing
element cluster (CPE cluster). While MPE is used for network
communications and IO operations, most computation work
is delivered to CPE cluster. A CPE cluster contains 64 CPE
cores, which are connected by a 2D mesh inter-core network.
Cores can use the following interfaces to communicate with
others in the same row or the same column:

Session: Synchronization ASPLOS’19, April 13–17, 2019, Providence, RI, USA

766

• PUTR(destination, value). A core can send a mes-
sage that contains value to another core in the same
row, specified by destination. Value is 256 bits long,
and developers can customize its content. We will
show how to use the 256 bits for encoding messages
in Section 4.

• PUTC(destination, value). Similar to PUTR, but
sends a message to the same column.

• GETR(value). A core can receive a message from other
cores in the same row, and then saves its content in
value. The source core is unknown until the message is
received. If no message is coming, the core will block
and wait until there is a message.

• GETC(value). Similar to GETR, but receives a message
from the same column.

When the on-chip network is free, the four instructions
above can complete within 13 CPU cycles, and the through-
put is 1 instruction per cycle. This fast on-chip network en-
ables the fast lock approach presented in this paper. Sunway
Taihulight is mainly used for High-Performance Computing
(HPC) programs. Most HPC programs pin each thread to a
fixed core, and a core serves only a thread. In other words,
there is a one-to-one mapping between cores and threads.
As a result, we use the term core and thread interchangeable
hereafter.
pLock is built on this 2D mesh network. Since commu-

nications across rows or columns is not supported at the
hardware level, they must be relayed in the software level by
developers. Other architectures may have better hardware
support for direct communication between arbitrary cores,
but they may still have a non-uniform network topology due
to a large number of cores.

2.2 A Basic Design of EMP-Lock
In this subsection we discuss the basic idea of using explicit
message passing to implement a fast lock (EMP-lock), and its
advantage over a traditional lock based on shared-memory
(SHM-lock). Suppose there are two cores A and B, they are
competing for a spin-lock L. Figure 2 shows the memory
traffic caused by the lock competition. Each core accesses
memory and examines the status of L to check if it is available.
If so, it acquires the lock and sets its status to occupied;
if the lock is already occupied by another core, it keeps
checking the status until the current holder releases the lock.
As shown in Figure 2, since A already got the lock, B keeps
accessing memory, which produces a lot of memory traffic.
This memory contention can lead to severe performance
degradation. The simple implementation of SHM-lock is
used to demonstrate the problem. More advanced shared-
memory lock leverages optimization techniques like expo-
nential back-off to mitigate memory contention, but they
can only mitigate but not eliminate the problem. We will
provide more discussion in Section 7.

A B MEM

MEM access, (try to) acquire a lock
MEM access, release a lock

1 A acquires L
Available

The status of L

2 B fails to get L
3 B fails to get L

7 B acquires L

4 B fails to get L
5 B fails to get L
6 A releases L

Occupied

Available

Occupied

Available8 B releases L

Figure 2. A spin lock based on shared memory.

EMP-lock is a design drastically different from SHM-lock.
Status of locks are maintained by the lock server and can
not be directly accessed from clients. Clients acquire and
free locks via sending and receiving messages to and from a
lock server, through the explicit message passing interfaces
provided by architecture. Therefore, the memory traffic is
significantly reduced compared to SHM-lock. Also, since
only the lock server S accesses the lock in memory, the
memory locality is improved.

Message, request a lock
Message, release a lock

Message, grant a lock
MEM access, update lock status

LOCK ID STATUS WAIT LIST

Lock 0
Lock 1
Lock 2
…

Lock N

S grants L to A

Append B to list

A releases L,
S grants L to B

L A NULL

L O NULL

L O B

L O NULL

L A NULL

A B S Lock List

1

2

3

4 B releases L

Figure 3. A basic design of EMP-lock

In a basic EMP-lock design shown in Figure 3, a core S is
used as a dedicated lock server, and all the other cores are
clients (A and B). Below is how two clients compete for a
single lock L:

1. Client A needs a lock L, so it sends a request message
to server S;

2. Server S received this request. Since the lock is cur-
rently available, S sends a grant message back to client
A;

3. B also requests a lock, but the lock is now occupied by
A. So S append B to the waiting list of lock L;

4. To free the lock, client A sends a release message to
server;

5. After receiving the release message, S picks a client
(B) from the waiting list and grants it the lock.

6. Client B releases the lock, there is no client in the wait-
ing list so S changes the status of L back to available.

Session: Synchronization ASPLOS’19, April 13–17, 2019, Providence, RI, USA

767

For multiple locks, the lock server maintains a lock list, in
which an entry represents the status of a lock. In a multi-
lock situation, there can be one lock server that holds all
locks or multiple lock servers that each holds part of locks.
A previous study on simulator shows that a lock server
can handle many locks without becoming a performance
bottleneck [10]. For simplicity, in the rest of this paper, we
only discuss the scenario that there is only one lock server
and all clients compete for the same lock.

Nowwe analyze the communication overhead of this basic
design. To execute a critical section, a client needs to (1) send
a request message to the server; (2) receive the grant message
from the server; (3) send a release message to the server. As
a result, for N clients each executes S critical session, the
message count is

Mbasic = 3NS (1)
In other words, three messages are passed among cores for
each client and each critical session.

Using an EMP-Lock, the core S is used as a dedicated lock
server and no longer available for computation, only the
client cores are used for computation. This design principle
sacrifices the compute resources for dedicated synchroniza-
tion support, which may slow down lock non-intensive
programs. However, as we will see in Subsection 5.2, for lock-
intensive programs, the lock performance will compensate
the disadvantage of less computing cores.

3 pLock Approach
3.1 Chaining Lock
In this subsection, we introduce chaining lock technique to
reduce message count. In the basic design (Figure 3), clients
only communicate with the server. When a client frees a
lock, it sends a release message to the server, then the server
receives this message and grants the lock to the next client
in waiting list. The key idea of chaining lock is: when a client
frees a lock, instead of releasing it to the server, it passes the
lock to a waiting client. Figure 4 shows the idea of chaining
lock.

To enable lock passing among clients, the client that cur-
rently holds a lock must know who is waiting for the lock.
To do so, when a lock server sends a grant message to a
client, it also piggybacks the waiting list of the lock. As the
example in Figure 4, the work is done in following steps:

1. All clients ask S for lock L;
2. S grants lock L to client A, and also sends the waiting

list [B,C,D] to A;
3. When client A finishes its work and wants to free L, it

checks the waiting list received with the lock;
4. Then A notices that B is waiting for the lock, so it

passes the lock L along with the updated waiting list
[C,D] to client B.

5. After B finishing its work, it passes lock L and the new
waiting list [D] to C;

A B C D S A B C D S

Request Release Grant Pass a lock

(a) Clients release to server, then
server approve to other clients.

(b) Server sends wait-list with lock.
Clients pass lock to other clients,
without communicate with server.

O BCD

O CD

O D

O

A

A

O BCD

A

A

CD
D

BCD

Figure 4. Chaining lock mechanism allows clients to pass a
lock to others, thus reduces message count.

6. Client C finishes its work and passes an empty waiting
list to [D];

7. At last, client D sees nothing in the waiting list so it
sends a release message to server S.

The message count of chaining lock depends on the be-
haviors of programs. If the waiting list is long when the
server grants a lock, the passing chain will be long too. More
particularly, all clients must send a request and a release (or
pass), but there is only one grant message in the best case.
The chain length is limited by the number of clients since a
waiting list cannot be longer than the full set of clients. On
the contrary, if no client is in the waiting list for each time
the server grants a lock, there will be no lock passing.

A B C D S

Request Release Grant Pass a lock

For new requests after a
lock chain is passed away,
they will be pended in the
waiting list until the lock
is released back to server.

O BC

A

C

O

O

O D

A

Figure 5. Chaining lock mechanism allows clients to pass
lock to others, thus reduces message count.

Figure 5 shows a non-ideal case of lock passing. In this
example, the server S has granted the lock L to client A
before more requests come, so client A cannot pass the lock
to anyone, instead it needs to release the lock to server S. The
only chain appears in client B and C. When server grants
the lock to B, the client C is already pending in waiting list,
so it can be sent to B together with the grant message.

Session: Synchronization ASPLOS’19, April 13–17, 2019, Providence, RI, USA

768

Suppose there are N clients and S critical sections, the
message count in the worst case is

Mchain_worst = 3NS (2)
And the message count in the best case is

Mchain_best = S × (N + 1 + N) = (2N + 1)S (3)
From Equation 2 and 3 we can see that, in the worst case,
chaining lock does not introduce any extra messages, and
in the best case, when N is very big, chaining lock reduces
about 1/3 communications.
Chaining lock also has some drawbacks. All clients need

to allocate space for storing a waiting list, and they need to
check the list to decide where to send the release message,
which also introduces additional computation overhead. Be-
sides, the message content in this approach needs to include
a waiting list, which may enlarge the message size. Never-
theless, both benefits and overheads depend on programs
and platforms. Fortunately, in Section 4 we will see that, on
the SW26010 processor, these overhead can be hidden with
a careful implementation.

3.2 Hierarchical Lock
As discussed in previous sections, the network performance
of a many-core processor can be different for nearby and
faraway cores. Based on that, we introduce a technique
named hierarchical lock to remove slow long-distance com-
munication. Figure 6 demonstrates the comparison of the
basic design and the hierarchical design.

A B X S Y C D

Request a lock Release a lock Grant a lock

Clients A B C D directly
communicate with
server S, involve many
slow long-distance
communications.

Clients communicate
with local server X Y,
which communicate
with S. There are only
fast short-distance
communications.

(a) Basic design without hierarchical lock

(b) Hierarchical lock design

A B X S Y C D

Figure 6. Hierarchical lock strategy reduces long-distance
inter-core communication.

In Figure 6 there are seven cores. According to the distance
of each pair, we cluster the cores into three groups: {S, X, Y },

{X, A, B}, and {Y, C, D}. Communications inside a group are
short-distance and fast, while communications across groups
are long-distance and slow. We can see that X and Y are
clustered into two groups, we call these cores ad-core. Core
A, B, C, D are clients and S is the lock server. In Figure 6 (a),
clients communicate with the server directly and generate a
lot of long-distance communications.

The key idea of hierarchical lock is to use ad-cores as local
servers to avoid long-distance communication. Figure 6 (b)
demonstrates the principle of hierarchical lock, the work
flow can be listed as below:

1. Client A sends a request message to local server X for
lock L;

2. X does not own the lock, so it asks S for it;
3. S grants L to X, and then X grants L to A;
4. A releases L, and X grants L to B. At this time, since X

already owns L, it does not need to ask S again;
5. After X releases L to S, Y gets L and the process repeats.
6. At last, all clients have done their work and the lock L

is released back to server S.
In the hierarchical lock design, a local lock server acts as a

lock cache to provide fast response to clients in its group. The
message count of hierarchical lock depends on the network
topology and the time sequence of client requests.

Request a lock Release a lock Grant a lock

Local server X keeps a
lock until there is no
more waiting clients.

A B X S Y C D

Figure 7. A local server prioritizes the lock locality.

In Figure 7 we can see that a local server manage to
avoid releasing a lock. More particularly, a local server will
not release a lock to the global server unless its waiting
list is empty. So, although clients C and D sent requests
earlier than the second request of A, they can only get the
lock after A finishes its work. There can be some fairness
problems with this design. In a highly-contended situation,
some threads may be starved for a while since a lock is
repeatedly requested by clients belonging to another local
server. However, most HPC programs prioritize throughput
and care little about which thread finishes first, so we choose
to minimize the message count between the global server
and local servers to improve the throughput.

Session: Synchronization ASPLOS’19, April 13–17, 2019, Providence, RI, USA

769

Suppose there are N clients, S critical sections, andT local
servers, we analyze the message count for both best and
worst cases.

In the worst case, a local server serves only one client then
frees the lock to the global server. As a result, an execution
of a critical section involves two requests, two grants, and
two releases.

Mhier_worst = 6NS (4)
Equation 4 indicates that the hierarchical lock method dou-
bles the message count of the basic design. However, since
the short-distance communication here is faster than long-
distance ones in the basic design, it is not necessary to take
double time.
In the best case, a local server only communication with

the global server once, i.e., it frees the lock after all local
clients finish their work. In this case, the message count is

Mhier_best = 3NS + 3T (5)
From Equation 5 we can see that, in the best case, if T is
much less than NS , the hierarchical lock method is approxi-
mately to replace all long-distance communications by short-
distance communications. This change of network distance
can lead to a performance improvement in communication.

3.3 Combining Two Techniques
We can combine chaining lock with hierarchical lock to-
gether to get an even faster design for EMP architectures.

A B X S Y C D

Request Release Grant Pass a lock

Locks can be passed
between clients or
between local servers.

Figure 8. A hierarchical chaining lock

Figure 8 illustrates a combined design. Cores are orga-
nized hierarchically to reduce long-distance communication.
Chaining lock technique is applied to servers and clients. A
client can pass a lock to another client belonging to the same
local server. A local server can also pass a lock to another
local server. In this example:

1. Client A and B send requests to their local server X, C
and D send requests to local server Y ;

2. Local server X and Y hold no lock, so each of them
sends a request to global server S;

3. S sends the granting message, along with the waiting
list [Y] to X ;

4. X sends the granting message, along with the waiting
list [B] to A;

5. After A finishing its work, it passes the lock to B;
6. B releases the lock to local server X after work done.
7. X passes the lock to another local server Y ;
8. Y grants the lock to D and the process repeats;
9. Finally, local server Y releases the lock to global server

S.
With this combined design, the message count for the

worst case and the best case will be:
Mplock_worst = 6NS (6)

Mplock_worst = (2N + 1)S + 2T + 1 (7)
Equation 6 is identical to Equation 4 because neither hierar-
chical or chaining techniqueworks. Equation 7 is a derivation
of Equation 3 and Equation 5. In the best case, compared
with the basic design, the combined design can reduce 1/3
communications and improve the performance of the rest.

4 Implementation
In this section, we describe the implementation of pLock on
the SW26010 architecture. According to its architecture, as
shown in Figure 1, we map servers and clients to cores in a
manner shown in Figure 9.

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

Global Server

The first column
are used as local
lock servers.

Each local lock
server serves the
other cores in its
same row.

These 7×7 cores
are clients used
for computation.

Figure 9.Mapping the cores to global lock server, local lock
servers and clients.

We use core 0 as the global lock server, and use the first col-
umn (except core 0) as local servers. Cores in other columns
are used as clients. The communication latency between
any two cores (in the same row or same column) are the same
on SW26010. Therefore, the choice of server column has no
impact on the performance. We select the edge column for
convenience, but it can be any other column as well. A local
server serves the clients in the same row. For basic design
without a local server, the local server cores act for relaying
messages. This is because the hardware messaging is only
supported within a row or a column, so we have to dedicate
the first column for software message relaying. Moreover,
the server cores are saturated by the relaying work and are
unable to do computation (as a client) simultaneously. As a
result, this 49 clients + 8 servers design is the only feasible
solution of implementing EMP lock on SW26010, and we

Session: Synchronization ASPLOS’19, April 13–17, 2019, Providence, RI, USA

770

cannot implement 63 clients + 1 server due to the on-chip
network constraints of SW26010. We give a discussion for
more flexible EMP architectures in Section 6.

In practice, we can also include the first row as clients. To
do so, core 0 will be both a global server and a local server at
the same time. However, core 0 will handle more messages
than others and become a performance bottleneck. For higher
performance and more transparent implementation, we let
each core plays only one role, and we leave core 1-7 in
the first row unused. Using 15 cores for lock sacrifices
computational power, but benefits the synchronization. We
discuss the tradeoff in the discussion under Figure 13, where
the data show that 49 cores + pLock is better than 64 cores
+ SHM-Lock when the critical section consumes more than
0.88% of total time.
When using multiple SW26010 processors for parallel

computing, a CG is bound to a process, so the change of
the number of available computing cores only affects the
thread-level parallelism, but does not affect the process-level
decomposition. In other words, we do not need to allocate
more CG or introduce more network communication for
using pLock.

#include “plock.h”
thread_work() {

… // some code
PL_Init();
… // some code
PL_Begin();
… // some code
PL_lock(lock-id);
… // critical session
PL_unlock(lock-id);
… // some code
PL_End();

… // some code
}

Import the library

Initialize

Enter Server/Client Mode

Acquire and free a lock

Leave Server/Client Mode

Use 64 cores for
computation.

1 core as global server
7 cores as local servers
49 core as clients

Figure 10. The APIs and usage of pLock

We have implemented pLock as a library for developers.
The core APIs and usage of pLock are demonstrated in
Figure 10 with C-style pseudo-code. Leaving 15 cores for
non-computational purpose raises a question that whether
fewer cores lead to lower performance. To efficiently utilize
the resource of a CG, we do not enforce developers to use this
core mapping strategy at all time. Instead, developers can
enter server/client mode before a critical section intensive
area and back to normal mode after that. This switching
allows developers to use 64 cores for embarrassing parallel
workload and then switch to 49 cores for workload that
needs synchronization. Developers can use PL_Begin to
assign roles to cores as servers or clients, then use PL_End
to go back to the 64-core mode. Inside the surrounding area
from PL_Begin to PL_End, developers can use PL_lock and
PL_unlock to acquire and free locks. Also, a more conser-
vative way is to use 49 cores from the beginning to avoid

potential load re-balancing among threads due to mode
switching. In Section 5 we will see that pLock is much
faster than a shared-memory lock. For a programwith highly
contended critical sections, using 49 cores plus pLock can
be faster than using 64 cores plus shared-memory lock.

The next step of implementation is message encoding. The
inter-core communication APIs in SW26010 support sending
and receiving 256-bit messages. We encode a message as
shown in Figure 11.

192-255 bit0-63 bit 64-127 bit 128-191 bit

PreservedLock ID Action Waiting list

Specify a lock.

Currently not used.

Used to send waiting list
for chaining lock approach.

Request, Grant, Release, or Pass.

Figure 11.Message encoding for SW26010

A 256-bit hardware message is divided into four segments,
and each has 64 bits. These four segments are used as:

• Lock ID. This field is used to specify which lock to
operate on.

• Action. This field can be request, grant, release, or pass.
• Waiting List.As discussed in Subsection 3.1, chaining
lock needs to transfer waiting lists among cores.

• Preserved. This field is currently not used.
As SW26010 supports 256-bit hardware-level message, al-
though we can use fewer bits to encode fields list above, we
use 64 bits for each to simplify encoding/decoding operations
for a high-performance implementation on SW26010. Also,
it is possible to implement non-trivial routing algorithms,
e.g., non-minimal routing, to support more complex server-
client layouts. However, on SW26010, the message encod-
ing/decoding/addressing operations are more expensive than
sending the message itself. Therefore, we keep the logic as
simple as possible.

At the end of Subsection 3.1 we discuss possible drawbacks
of chaining lock. For SW26010, since the hardware-supported
message length is long enough to contain a waiting list,
chaining lock does not introduce any overhead for message
passing.
Based on this implementation, we revisit the message

count of approaches described in Section 3. In this discussion,
we suppose that all the 49 clients are used. On SW26010, a
long-distance message passing is implemented by two short-
distance message passing. So the message count for the basic
design becomes

Csw_basic = 6NS = 294S (8)

For hierarchical lock design, we haveT = 7, and the message
count of the best case is

Csw_hier_worst = 6NS = 294S (9)

Session: Synchronization ASPLOS’19, April 13–17, 2019, Providence, RI, USA

771

Csw_hier_best = 3NS + 3T = 147S + 21 (10)
We build chaining lock on the base of hierarchical lock, so
its message count is

Csw_plock_worst = 6NS = 294S (11)

Csw_plock_best = (2N + 1)S + 2T + 1 = 99S + 15 (12)
We can see that the worst cases of hierarchical and chaining
lock have the same message count with the basic design. For
a critical section inside a loop with many iterations, S can
be quite large (S → ∞), and we have extreme case

Csw_basic : Csw_hier_best : Csw_plock_best = 6 : 3 : 2 (13)

Equation 13 indicates that, compare with the basic design,
hierarchical lock can reduce at most 50% inter-core communi-
cations and chaining lock can reduce at most 67%. Reducing
communication have potential benefits to improving the lock
performance, but additional logic work in hierarchical and
chaining lock may undermine this advantage. We evaluate
our approaches in Section 5.

5 Evaluation
5.1 Methodology
We have done experiments to evaluate the performance of
pLock. Experiments were done on the Sunway TaihuLight
system. Since this work focuses on the thread synchroniza-
tion inside a process, all experiments are done using a single
CG of SW26010. Three approaches, (1) the Basic design
(Basic), (2) Hierarchical lock (Hier) and (3) the combination
of hierarchical and chaining, i.e., our design (pLock) are
evaluated. All experiments of EMP lock approaches were
done with 1 global server thread, 7 local server threads, and
49 client threads.

Note that we do not use shared-memory lock approaches
or atomic-based approaches as a baseline, because SW26010
has no coherent cache, shared-memory lock approaches can
only use atomic operations that directly access mainmemory,
which results in long latency and low throughput. Only for
some test cases, we compared EMP lockwith shared-memory
lock or atomic approaches to validate our idea.
In Subsection 5.2, we design several micro-benchmarks

to validate our ideas. Experiments in this subsection include
latency, throughput, scaling performance of three EMP-lock
designs. We also record the message count to verify our
analysis in previous sections.
In Subsection 5.3, we evaluate the performance benefits

of pLock on five benchmarks. Counter and Stack are two
popular data structures used in multi-threaded programs.
BFS (breadth-first search) and Tri (triangle count) are bench-
marks from Graph500 and CRONO [2]. Despite above four
common test programs for lock performance evaluation, we
design an Imbalanced Counter test program, to evaluate the
performance under a highly imbalanced workload.

As mentioned in Section 3, the performance of our ap-
proach depends on the workload. However, in our exper-
iments, for a given workload, the performance of our ap-
proach is quite stable. This is partially due to the in-order
design of SW26010 architecture. We use the average of three
times measurement as the results for this section.

5.2 Validation
Figure 12 shows the latency of a critical section using three
EMP-lock approaches. In this experiment, threads are doing
critical sections repeatedly. There is nothing inside the criti-
cal section, only lock and unlock. The interval between two
critical sections varies from 100 cycles to 100,000 cycles.

102 103 104 105

Interval between critical sections (cycles)

0

2000

4000

6000

8000

10000

La
te

nc
y

(c
yc

le
s) Basic

Hier
pLock

Figure 12. The average latency of a critical section using
three EMP-lock approaches

From Figure 12 we can see that, In a lightly contended
situation (interval > 10,000 cycles), all approaches have short
latency. In a highly contended situation, where there is
communication congestion, the benefit of reducing message
count is obvious. With an interval of 100 cycles, pLock is
5.89× faster than Basic. Even more, with an interval of 4000
cycles, pLock is 19.41× faster than Basic. To explain the
sudden shoots up around 600 cycles for Hier, we can look
at the X-axis from the right. With a decreasing interval,
the latency of Hier increases due to higher network traffic.
However, when the interval is short enough, a local lock
server will always have pending requests, so it keeps serving
local clients without giving the lock back to the global server.
In this case, the latency drops due to lock locality.
Latency shown in Figure 12 represents the average time

cost from entering lock() to leaving unlock(). Throughput
shown in Figure 13 represents the total operation rate of
the whole program, i.e., how many critical sections are com-
pleted within a period. The throughput is measured in Mops
(Million Operations Per Second). With a long interval, the
throughput is limited by the parallelism of the programs
itself, so we focus on the results with short intervals.

From Figure 12 and Figure 13 we can see that, although the
latency of Hier is much shorter than Basic, its throughput
improvement is less impressive. pLock, on the other side,
has much higher throughput than Basic. With a 200-cycle
interval, pLock has 3.84× improvement over Basic. We can

Session: Synchronization ASPLOS’19, April 13–17, 2019, Providence, RI, USA

772

102 103 104 105

Interval between critical sections (cycles)

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

op
s) Shm Lock

Basic
Hier
pLock

Figure 13. The throughput of three EMP-lock designs and
SHM-lock.

also see that the throughput of shared-memory lock with 64
threads (Shm Lock) is much lower than pLock (1.03 Mops vs.
28.19 Mops).

We use an example to show that 49 cores plus pLock can
work better than 64 cores plus shared memory lock, for a
program with a highly contended critical section. Suppose
there is a program using pLock and it contains a critical
section with 1000 cycles interval, which occupies S of total
time and the rest 1 − S is embarrassing parallel workload. If
we use 64 cores plus Shm Lock, the time will be

T =
28.19
1.03 S +

49
64 (1 − S) = 26.60S + 0.7656 (14)

We can have T < 1 when S < 0.0088. In other words, pLock
is better than Shm Lock when the critical section consumes
more than 0.88% of time.

Figure 14 and Figure 15 show the scaling performance of
the three approaches. We fixed the interval between critical
sections to 200 cycles, and vary the client number from 1 to
49.

0 10 20 30 40 50
The number of threads

0

2000

4000

6000

8000

10000

La
te

nc
y

(c
yc

le
s) Basic

Hier
pLock

Figure 14. Latency scales with client numbers

For all of the three approaches, the latency is increasing
proportionally to the number of threads. The increasing
latency is due to the increasing length of the waiting list. For
example, if there are 10 clients, a client will need to wait for
5 other clients on average; but if there are 40 clients, a client
will need to wait for 20 clients on average.

Generally, throughput increaseswith the number of clients
with some drop-down points. As we discussed in Section 3,

0 10 20 30 40 50
The number of threads

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

op
s)

Basic
Hier
pLock

Figure 15. Throughput scales with client numbers

lock performance depends on the behavior of programs.
When the lock acquisition has good locality, the communi-
cation also has good locality then the performance is better.
The lock acquisition behavior depends on the time sequence
of clients, which is further affected by the number of clients.
From Figure 15 we can also see that, the scalability of pLock
is better than the other two. With an interval of 200 cycles,
Basic scales up to only 3 clients and pLock scales up to 20
clients. So pLock has better scalability than a basic EMP-lock
implementation.

Basic-
GS
Basic-

LS
Basic-

C
Hier-GS

Hier-LS
Hier-C

pLock-GS
pLock-LS

pLock-C
0

25

50

75

100

125

150

M
es

sa
ge

 C
ou

nt
 (K

) Send Count
Receive Count

Figure 16.The send and receivemessage counts of the global
server, local servers, and clients

To verify our analysis in Section 3 and Section 4, we let
each client do critical sections for 1000 times, and record
the message counts at runtime. The results are shown in
Figure 16. Message counts are listed for the global server
(GS), local servers (LS), and clients (C), respectively. We also
distinguish send count and receive count. From Figure 16 we
can see that the bars for Basic is symmetric. It is because that
each lock operation involves a client-relay-server commu-
nication path. The total message count of LS is twice as GS
and C, and a local server needs to receive then send for each
message. Message count for GS and LS are reduced a lot with
hierarchical lock. Chaining lock further reduces the message
count for LS. The message counts of three approaches in this
experiment are

Cexp_basic : Cexp_hier : Cexp_plock = 6.00 : 3.43 : 2.80 (15)

Session: Synchronization ASPLOS’19, April 13–17, 2019, Providence, RI, USA

773

Compare Equation 13 and 15, we see that the actual impact
of hierarchical and chaining techniques is between the best
case and the worst case.
When the global server and local servers handle fewer

messages, they can respond much more quickly than before,
As a result, while pLock only reduce 25% messages of Hier
with an interval of 4000 cycles, its performance ismuch better
than Hier (4.98× for latency and 2.10× for throughput).

5.3 Case Studies
We use three EMP-lock designs on five multi-threaded pro-
grams: Stack, Counter, Imbalanced Counter, BFS, and Tri. The
speedup over basic design is shown in Figure 17. In this
figure we also show the geometric mean of speedup.

Stack Counter Imbalanced
Counter

BFS Tri GeoMean
0

1

2

3

4

Sp
ee

du
p

Basic
Hier
pLock

Figure 17. Speedup over basic design. The speedup of pLock
for Imbalanced Counter is 5.76 and its bar is truncated.

Figure 17 shows that pLock approach has the best perfor-
mance. In average, Hier and pLock improve performance by
47% and 118%, respectively. For Imbalanced Counter, pLock
achieves the highest speedup, 5.76× over Basic. In this sub-
section, we analyze the characteristics of these programs to
explain the results.

Counter and Stack are two synthesized benchmarks. Threads
keep doing a critical section for many times, inside the
section, they increase a global counter or push new elements
into a global stack, respectively. These two benchmarks were
run with 49 clients and 200 cycles interval, their performance
is measured by throughput (Mops). The throughput of three
approaches and two benchmarks, along with the results in
Figure 13, are shown in Table 1.

Table 1. The critical section duration and throughput of
micro-test, Counter, and Stack benchmarks.

The Duration of
a Critical Section

Throughput (Mops)
Basic Hier pLock

Micro-Test 0 cycles 7.44 9.71 28.60
Counter 419 cycles 1.72 3.47 4.12
Stack 460 cycles 1.71 3.31 3.80

As we can see in Table 1, the throughput of Counter is
much lower thanmicro-test in Subsection 5.2. This is because
the global memory access in SW26010 is quite slow and the
long duration of critical section limits the parallelism of
threads. Since there are more memory access operations in
Stack, its critical section is even longer, so the throughput is
lower. As the proportion of memory accessing increases, the
performance impact of lock optimization becomes smaller.
So the speedup for Stack is lower than Counter.
We also implemented an atomic counter, which uses 49

threads to concurrently increase a counter using the atomic
increment instruction. Since the atomic operations on SW26010
directly access the main memory, the atomic increment was
so slow that the atomic-based counter is 2.01× slower than
pLock version.

Another test program Imbalanced Counter has non-uniform
workload for clients. A client k has k times workload of
client 1. We also record the message counts of using three
approaches and the ratio is 6.00 : 4.26 : 2.92. However, pLock
got speedup even more than 3×. This is because the imbal-
anced workload causes network congestion in Column 0 (the
server column) of the chip, and our chaining lock technique
can efficiently reduce the inter-server communication and
avoid network congestion. In this experiment, the ratio of
inter-server message count was 100.53 : 30.56 : 1.00. In
other words, pLock reduced 51% overall communication and
99% inter-server communication.
BFS and Tri are two graph computing programs. We run

BFS with 245K vertexes with an average degree of 16. For
Tri, the test graph has 100K vertexes and the average degree
is 16. From Figure 17 we can see that pLock improved the
performance of BFS and Tri by 29% and 25% respectively.

Basic Hier pLock
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
Co

ns
um

pt
io

n
(s

) Barrier
Critical Section

Figure 18. Time consumption of global synchronization
(barrier) and critical sections

We further profile the execution time of BFS, for both
critical sections and other parts. Figure 18 shows the time
consumption of global synchronization (barrier) and critical
sections of a BFS run. The time consumption was measured
for each core, the bars in Figure 18 represent the average
time of all client cores. The error bars show the minimum
and maximum values. We can see that while pLock reduces

Session: Synchronization ASPLOS’19, April 13–17, 2019, Providence, RI, USA

774

the time for critical section, the variance of barrier time was
increased. The reason is that while both hierarchical lock
and chaining lock techniques improve the locality of lock
acquiring, the basic design has better fairness. Nevertheless,
pLock still has better overall performance than the basic
design.

6 Discussions
In this work, we present pLock, a lock approach that focuses
on throughput. Some programs may have other priorities
such as fairness and security. A fair and safe lock on EMP
architectures remains as future work. Allowing clients to
pass locks to others may introduce potential security issues.
As a temporal solution for security concern, we can fall back
to a centralized server-client solution by forcing lock servers
always to return an empty waiting list.
The two techniques used in pLock, chaining lock and hi-

erarchical lock, are general techniques for any architectures
that support EMP. For a new architecture that supports arbi-
trary pairwise communication, there will be more possible
EMP lock hierarchies and the optimal hierarchical solution
can be different from the one of SW26010. Also, if an EMP
architecture supports coherent shared cache, then cores can
use cache to share waiting list, and there is no need to pass
a waiting list among client cores explicitly.

7 Related Work
Multi-thread programming is widely used to efficiently uti-
lize the computational ability of multi-core and many-core
processors. Since many threads share a region of memory,
synchronization is necessary to avoid data race and ensure
the correctness of concurrent operations [8, 15, 23, 36].

Using locks to protect critical session is a popular solution
for synchronization. Many techniques can be used to imple-
ment locks. Spin lock [4] is a classic and straightforward
lock approach. A spinlock keeps checking a shared variable
until it gets the lock. Spinlocks have poor scalability since
all threads spin on a single memory location, which can lead
to heavy contention. Lock contention can cause significant
performance loss [37], so researchers have investigatedmany
approaches to reduce or avoid lock contention.

When a thread cannot get a lock immediately, it can wait
for a period then retry. A spin lock with exponential back-off
algorithm [22] has much better performance than a naive im-
plementation. Queue locks like MCS [27] and CLH [7] were
proposed to address the lock contention problem. Threads
using queue locks append themselves to the end of a queue.
When a thread releases a lock, it will pass the lock to its
successor. Queue locks have good performance in a highly
contended situation. However, if a thread is scheduled to
the background by OS, the lock passing chain may break
and harm performance. In modern operating system (OS),
threads can also suspend until the lock is available. This is

the approach used by POSIX mutex (pthread_mutex_lock),
a better choice when processors are highly over-subscribed.
Since queue locks and POSIX mutex introduce additional
overhead, the most straightforward spinlock has the best
performance under no-contended or lightly-contended situa-
tions. QOLB [14, 20] uses a hardware-supported queue and
cache-line associated syncbits to organize waiting processes
and critical data. With the hardware support, QOLB can
simplify and accelerate lock transferring among processes
on cache-coherent architectures.
The lock approaches above are all trying to transfer the

permission of executing critical sessions among threads. As a
result, cache lines containing lock variables and shared data
are also transferring between cores. In nowadays processors,
cache transfer can be expensive. Some researchers propose
new cache coherence protocol extension to mitigate the
contention in cache [16], and some others propose software
solutions called delegation technique to improve memory lo-
cality. Instead of transferring permission via locks, delegation
synchronization approaches transfer computation, i.e., the
work of a critical section. With Flat-Combining (FC) [12, 17]
technique, threads that do not get a lock appends their re-
quests to an additional request queue, then the thread which
gets the lock not only finishes its job but also reads the
request queue and does the work for others threads. The
service threads in FC is dynamically selected, in RCL [25],
service threads are dedicated and pinned to cores and have
better cache performance. Some optimization in traditional
locks are also be applied to delegation methods. Queue-
delegation [21] use a queue to organize client threads. Server
threads only need to communicate with the client thread
in the queue head, without polling over all client threads.
While delegation methods have good performance in highly-
contended situations, their latency is longer than most locks
due to remote-procedure-call (RPC) operation, so is not the
best choice for lightly-contended programs. Besides, modi-
fication in the source code is required to adopt delegation
approaches, and it can consume considerable manual efforts.

Recent architectural evolution also affects thread synchro-
nization techniques. Many modern computers have Non-
Uniform-Memory-Access (NUMA) architecture. NUMA-aware
and hierarchical synchronization methods were proposed
for both locking and delegation [12, 33]. HCLH [26] and
Cohort-Locks [9] are hierarchical locks, and SANL [40] is a
NUMA-aware delegation approach.
Another trend in a many-core processor is the undeter-

mined future of cache coherence (CC) and the emerging of
explicit message passing (EMP) [31, 39]. For inter-core com-
munication, EMP is much faster than CC-based data sharing.
A processor with EMP is somehow similar to a cluster or a
distributed system. Although locks are also widely used in
distributed systems [5], they often consider high availability
and reliability, while locks for multi-thread programs put the
performance (throughput and latency) in the first place. As

Session: Synchronization ASPLOS’19, April 13–17, 2019, Providence, RI, USA

775

Table 2. A brief comparison of state-of-the-art synchronization approaches.

Synchronization Approaches
Lock-Based
or Lock-Free

Required Hardware Feature
Compatibility
for Legacy Code

Performance in Highly-
Contended Situations

Lock-free Data Structures [19] Lock-free Atomic instructions Very Low High
Delegation (shm version) [25] Lock-free Atomic instructions Low High
Transactional Memory [29] Lock-free Transactional memory instructions Medium Conflict rate dependent

Spinlock [4] Lock-based Atomic instructions High Low
POSIX mutex lock Lock-based OS dependent High Medium
Queue-lock [27] Lock-based Atomic instructions High Medium

Delegation (EMP version) [30] Lock-free Explicit message passing Low High
pLock (our work) Lock-based Explicit message passing High High

a result, instead of using distributed locks directly on EMP
processors, developers should carefully design new synchro-
nization mechanisms to meet performance requirements.
EMP has been used to accelerate the request sending rou-
tine in RCL [30], and the performance is improved by 4.3×.
On Sunway Taihulight [13], concurrent data classification
obtains a speedup of 19.15× after changing synchronization
method from shared-memory based locking to EMP based
delegation [24]. Dogan et al. designed a server-client lock
model to accelerate multi-thread programs while preserving
the original lock interface [10]. Our work also uses the
server-client lock model used in Dogan’s. Nevertheless, our
hierarchical lock and chaining lock techniques improved the
performance of EMP-based lock by up to 10.38× over the
intuitive method used in Dogan’s work.

There are also some alternative synchronization methods
without explicit locking. Simple and common data structures
like queue [35], stack [18], hash table [28], have been re-
design to be lock-free. Universal construction approaches
for wait-free or lock-free data structures have also been
proposed [3, 11]. Nevertheless, auto-constructed lock-free
data structures can introduce additional memory space us-
age and performance overhead. Transactional memory has
been proposed to support more aggressive parallel execu-
tion. Software transactional memory (STM) [34] is too slow
thus is not practical [6]. Hardware transactional memory
(HTM) is much faster than STM, while still can be further im-
proved [29]. HTM-based programs have good performance
with low conflict rate. With frequent memory access conflict,
HTM-based programs often fall back to using a traditional
synchronization method.

There are so many synchronization approaches that many
other works are not introduced in this paper. We summa-
rize the pros and cons of state-of-the-art synchronization
approaches in Table 2. As we can see, previous solutions
either do not perform well in highly contended situations
or lack of compatibility to use on legacy code. Our work,

pLock, preserves the lock interfaces, so it is easy to be ap-
plied for legacy programs. It also leverages explicit message
passing for high performance. Since “every locking scheme
has its fifteen minutes of fame” [8, 15], several tools [30, 40]
have been proposed to help developers to choose the best
synchronization solution according to program workload
and hardware platform.

8 Conclusion
In this paper, we discuss the principles of using explicit
message passing (EMP) interface to design and implement
mutex lock. We also proposed two techniques – hierarchical
lock and chaining lock – to reduce message count and further
improve the performance of EMP-lock. We implement our
approach on SW26010, a product processor with EMP and is
used in the supercomputer Sunway Taihulight. Experimental
results show that our optimization techniques improve the
performance by over 10× compared with the basic imple-
mentation.

Acknowledgments
We would like to thank the anonymous reviewers for their
insightful comments and suggestions. We also thank Bowen
Yu, Heng Lin, Xiaosong Ma, and Xu Ji for their valuable
feedback and suggestions. This work is partially supported
by the National Key R&D Program of China (Grant No.
2016YFB0200100), National Natural Science Foundation of
China (Grant No. 61722208), and National Science Founda-
tion (Grant No. CCF-1657333, CCF-1717754, CNS-1717984,
CCF-1750656). Jidong Zhai is the corresponding author of
this paper (Email: zhaijidong@tsinghua.edu.cn).

References
[1] 2018. top500 website. http://top500.org/. (2018).
[2] Masab Ahmad, Farrukh Hijaz, Qingchuan Shi, and Omer Khan. 2015.

CRONO: A Benchmark Suite for Multithreaded Graph Algorithms
Executing on Futuristic Multicores. In Proceedings of the 2015 IEEE
International Symposium on Workload Characterization (IISWC ’15).

Session: Synchronization ASPLOS’19, April 13–17, 2019, Providence, RI, USA

776

http://top500.org/

[3] James H Anderson and Mark Moir. 1995. Universal constructions
for large objects. In International Workshop on Distributed Algorithms.
Springer, 168–182.

[4] Thomas E. Anderson. 1990. The performance of spin lock alternatives
for shared-money multiprocessors. IEEE Transactions on Parallel and
Distributed Systems 1, 1 (1990), 6–16.

[5] Mike Burrows. 2006. The Chubby lock service for loosely-coupled
distributed systems. In Proceedings of the 7th symposium on Operating
systems design and implementation. USENIX Association, 335–350.

[6] Calin Cascaval, Colin Blundell, Maged Michael, Harold W Cain, Peng
Wu, Stefanie Chiras, and Siddhartha Chatterjee. 2008. Software
transactional memory: Why is it only a research toy? Queue 6, 5
(2008), 40.

[7] Travis Craig. 1993. Building FIFO and priorityqueuing spin locks
from atomic swap. Technical Report. Technical Report TR 93-02-02,
University of Washington, 02 1993.

[8] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2013. Ev-
erything you always wanted to know about synchronization but were
afraid to ask. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles. ACM, 33–48.

[9] David Dice, Virendra J Marathe, and Nir Shavit. 2015. Lock cohorting:
A general technique for designing NUMA locks. ACM Transactions on
Parallel Computing 1, 2 (2015), 13.

[10] Halit Dogan, Farrukh Hijaz, Masab Ahmad, Brian Kahne, Peter Wilson,
and Omer Khan. 2017. Accelerating Graph and Machine Learning
Workloads Using a Shared Memory Multicore Architecture with
Auxiliary Support for In-hardware Explicit Messaging. In Parallel and
Distributed Processing Symposium (IPDPS), 2017 IEEE International.
IEEE, 254–264.

[11] Panagiota Fatourou andNikolaos DKallimanis. 2011. A highly-efficient
wait-free universal construction. In Proceedings of the twenty-third
annual ACM symposium on Parallelism in algorithms and architectures.
ACM, 325–334.

[12] Panagiota Fatourou and Nikolaos D Kallimanis. 2012. Revisiting
the combining synchronization technique. In ACM SIGPLAN Notices,
Vol. 47. ACM, 257–266.

[13] Haohuan Fu, Junfeng Liao, Jinzhe Yang, Lanning Wang, Zhenya Song,
XiaomengHuang, Chao Yang,Wei Xue, Fangfang Liu, Fangli Qiao, et al.
2016. The Sunway TaihuLight supercomputer: system and applications.
Science China Information Sciences 59, 7 (2016), 072001.

[14] James R Goodman, Mary K Vernon, and Philip J Woest. 1989. Efficient
synchronization primitives for large-scale cache-coherent multipro-
cessors. In Proceedings of the Third Symposium on Architectural Support
for Programming Languages and Operating Systems. ACM, 64–75.

[15] Hugo Guiroux, Renaud Lachaize, and Vivien Quéma. 2016. Multicore
Locks: The Case Is Not Closed Yet.. In USENIX Annual Technical
Conference. 649–662.

[16] Syed Kamran Haider, William Hasenplaugh, and Dan Alistarh. 2016.
Lease/release: Architectural support for scaling contended data struc-
tures. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. ACM, 17.

[17] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. 2010. Flat
combining and the synchronization-parallelism tradeoff. In Proceed-
ings of the twenty-second annual ACM symposium on Parallelism in
algorithms and architectures. ACM, 355–364.

[18] Danny Hendler, Nir Shavit, and Lena Yerushalmi. 2010. A scalable
lock-free stack algorithm. J. Parallel and Distrib. Comput. 70, 1 (2010).

[19] MosheHoffman, Ori Shalev, and Nir Shavit. 2007. The baskets queue. In
International Conference On Principles Of Distributed Systems. Springer,
401–414.

[20] Alain Kägi, Doug Burger, and James R Goodman. 1997. Efficient
synchronization: Let them eat QOLB. In ACM SIGARCH Computer
Architecture News, Vol. 25. ACM, 170–180.

[21] David Klaftenegger, Konstantinos Sagonas, and Kjell Winblad. 2014.
Brief announcement: Queue delegation locking. In Proceedings of the
26th ACM symposium on Parallelism in algorithms and architectures.
ACM, 70–72.

[22] Byung-Jae Kwak, Nah-Oak Song, and Leonard E Miller. 2005. Per-
formance analysis of exponential backoff. IEEE/ACM transactions on
networking 13, 2 (2005), 343–355.

[23] M. LeBeane, S. Song, R. Panda, J. H. Ryoo, and L. K. John. 2015.
Data partitioning strategies for graph workloads on heterogeneous
clusters. In SC ’15: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–12.

[24] Heng Lin, Xiongchao Tang, Bowen Yu, Youwei Zhuo, Wenguang Chen,
Jidong Zhai, Wanwang Yin, and Weimin Zheng. 2017. Scalable Graph
Traversal on Sunway TaihuLight with Ten Million Cores. In Parallel
and Distributed Processing Symposium (IPDPS), 2017 IEEE International.
IEEE, 635–645.

[25] Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia L Lawall, Gilles
Muller, et al. 2012. Remote Core Locking: Migrating Critical-Section
Execution to Improve the Performance of Multithreaded Applications..
In USENIX Annual Technical Conference. 65–76.

[26] Victor Luchangco, Dan Nussbaum, and Nir Shavit. 2006. A hierarchical
CLH queue lock. Euro-Par 2006 Parallel Processing (2006), 801–810.

[27] John M Mellor-Crummey and Michael L Scott. 1991. Algorithms for
scalable synchronization on shared-memory multiprocessors. ACM
Transactions on Computer Systems (TOCS) 9, 1 (1991), 21–65.

[28] Maged M Michael. 2002. High performance dynamic lock-free hash
tables and list-based sets. In Proceedings of the fourteenth annual ACM
symposium on Parallel algorithms and architectures. ACM, 73–82.

[29] Takuya Nakaike, Rei Odaira, Matthew Gaudet, Maged M Michael,
and Hisanobu Tomari. 2015. Quantitative comparison of hardware
transactional memory for Blue Gene/Q, zEnterprise EC12, Intel Core,
and POWER8. In ACM SIGARCH Computer Architecture News, Vol. 43.
ACM, 144–157.

[30] Darko Petrović, Thomas Ropars, and André Schiper. 2014. Leveraging
hardware message passing for efficient thread synchronization. ACM
SIGPLAN Notices 49, 8 (2014), 143–154.

[31] Carl Ramey. 2011. Tile-gx100 manycore processor: Acceleration
interfaces and architecture. In Hot Chips 23 Symposium (HCS), 2011
IEEE. IEEE, 1–21.

[32] Sabela Ramos and Torsten Hoefler. 2013. Modeling communication
in cache-coherent SMP systems: a case-study with Xeon Phi. In
Proceedings of the 22nd international symposium on High-performance
parallel and distributed computing. ACM, 97–108.

[33] Sepideh Roghanchi, Jakob Eriksson, and Nilanjana Basu. 2017. ffwd:
delegation is (much) faster than you think. In Proceedings of the 26th
Symposium on Operating Systems Principles. ACM, 342–358.

[34] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L Hudson, Chi Cao Minh,
and Benjamin Hertzberg. 2006. McRT-STM: a high performance
software transactional memory system for a multi-core runtime. In
Proceedings of the eleventh ACM SIGPLAN symposium on Principles and
practice of parallel programming. ACM, 187–197.

[35] Michael L Scott andWilliamN Scherer. 2001. Scalable queue-based spin
locks with timeout. In ACM SIGPLAN Notices, Vol. 36. ACM, 44–52.

[36] Shuang Song, Xu Liu, Qinzhe Wu, Andreas Gerstlauer, Tao Li, and
Lizy K. John. 2018. Start Late or Finish Early: A Distributed Graph
Processing System with Redundancy Reduction. PVLDB 12, 2 (2018),
154–168.

[37] Nathan R Tallent, John M Mellor-Crummey, and Allan Porterfield.
2010. Analyzing lock contention in multithreaded applications. In
ACM Sigplan Notices, Vol. 45. ACM, 269–280.

[38] Chao Yang, Wei Xue, Haohuan Fu, Hongtao You, Xinliang Wang,
Yulong Ao, Fangfang Liu, Lin Gan, Ping Xu, Lanning Wang, et al. 2016.
10M-core scalable fully-implicit solver for nonhydrostatic atmospheric
dynamics. In High Performance Computing, Networking, Storage and

Session: Synchronization ASPLOS’19, April 13–17, 2019, Providence, RI, USA

777

Analysis, SC16: International Conference for. IEEE, 57–68.
[39] Zhiyi Yu, Ruijin Xiao, Kaidi You, Heng Quan, Peng Ou, Zheng Yu,

Maofei He, Jiajie Zhang, Yan Ying, Haofan Yang, et al. 2014. A 16-core
processor with shared-memory and message-passing communications.
IEEE Transactions on Circuits and Systems I: Regular Papers 61, 4 (2014),

1081–1094.
[40] Mingzhe Zhang, Haibo Chen, Luwei Cheng, Francis CM Lau, and

Cho-Li Wang. 2017. Scalable Adaptive NUMA-Aware Lock. IEEE
Transactions on Parallel and Distributed Systems 28, 6 (2017), 1754–
1769.

Session: Synchronization ASPLOS’19, April 13–17, 2019, Providence, RI, USA

778

	Abstract
	1 Introduction
	2 Background
	2.1 EMP on SW26010 Architecture
	2.2 A Basic Design of EMP-Lock

	3 pLock Approach
	3.1 Chaining Lock
	3.2 Hierarchical Lock
	3.3 Combining Two Techniques

	4 Implementation
	5 Evaluation
	5.1 Methodology
	5.2 Validation
	5.3 Case Studies

	6 Discussions
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

