
Self-Checkpoint: An In-Memory Checkpoint Method
Using Less Space and Its Practice on Fault-Tolerant HPL

Xiongchao Tang Jidong Zhai Bowen Yu Wenguang Chen Weimin Zheng
Department of Computer Science and Technology

Tsinghua University, Beijing, China
{txc13,yubw15}@mails.tsinghua.edu.cn {zhaijidong,cwg,zwm-dcs}@tsinghua.edu.cn

Abstract
Fault tolerance is increasingly important in high performance
computing due to the substantial growth of system scale and
decreasing system reliability. In-memory/diskless checkpoint
has gained extensive attention as a solution to avoid the
IO bottleneck of traditional disk-based checkpoint methods.
However, applications using previous in-memory checkpoint
suffer from little available memory space. To provide high
reliability, previous in-memory checkpoint methods either
need to keep two copies of checkpoints to tolerate failures
while updating old checkpoints or trade performance for
space by flushing in-memory checkpoints into disk.

In this paper, we propose a novel in-memory checkpoint
method, called self-checkpoint, which can not only achieve
the same reliability of previous in-memory checkpoint meth-
ods, but also increase the available memory space for appli-
cations by almost 50%. To validate our method, we apply the
self-checkpoint to an important problem, fault tolerant HPL.
We implement a scalable and fault tolerant HPL based on this
new method, called SKT-HPL, and validate it on two large-
scale systems. Experimental results with 24,576 processes
show that SKT-HPL achieves over 95% of the performance of
the original HPL. Compared to the state-of-the-art in-memory
checkpoint method, it improves the available memory size by
47% and the performance by 5%.

Keywords Fault Tolerance; In-Memory Checkpoint; Fault-
Tolerant HPL; Memory Consumption

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, contact the Owner/Author(s).
Request permissions from permissions@acm.org or Publications Dept., ACM, Inc.,
fax +1 (212) 869-0481.
PPoPP ’17 Feb. 4–8, 2017, Austin, Texas, USA.
Copyright c© 2017 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4493-7/17/02. . . $15.00
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/3018743.3018745

1. Introduction
The substantial growth of system scale in High Performance
Computing (HPC) makes fault tolerance increasingly impor-
tant. A long-running HPC application can run for hours, or
even days on an HPC system. Unfortunately, a large-scale sys-
tem’s mean time between failures (MTBF) may be too short
to afford a complete fault-free run. For example, large-scale
systems such as Blue Waters and Titan have failures every-
day [23, 28]. This problem becomes even worse as systems
scale up towards exascale computing.

Significant research efforts have been made trying to over-
come this problem. A series of algorithm-based fault-tolerant
(ABFT) applications [9, 10, 32, 36] have been proposed. The
main idea is to modify an application’s algorithm for fault
tolerance [20]. A recent study, called redMPI [17], employs
a strategy of redundant execution to increase system relia-
bility. All computation and communication are duplicated in
redMPI. Thus, if there exists any copy that survives a fail-
ure, the program can tolerate the failure and continue running.
However, since everything is duplicated, the system efficiency
is relatively low (no more than 50%).

Although ABFT and redundant execution provide a certain
fault tolerance for HPC applications, their ability to tolerate
faults highly depends on underlying runtime libraries. Mes-
sage Passing Interface (MPI) is a de-facto standard for HPC
applications. In the ABFT and redundant execution, it is as-
sumed that MPI programs can be suspended after a node
failure. A node failure means that a node is permanently lost,
such as power down and network disconnect. Based on our
observation, almost all current MPI implementations force
the whole program to abort after a node failure is detected.
On most MPI runtime, none of ABFT or redundant execution
methods can tolerate a permanent node loss, which is quite
common on a real HPC system [14, 29]. Some fault-tolerant
MPI implementations [5, 6, 12] may support ABFT and re-
dundant execution, with additional performance overhead.

Checkpoint-and-Restart (CR) is a classic strategy [13] that
works under extreme cases such as a permanent node loss.
Traditional CR methods save checkpoints to underlying stor-
age systems, and leads to significant performance degradation

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
Po
P
*

Ar
t ifact *

A
EC

P
P

401

for applications. Since memory has much higher performance
than disks, in-memory or diskless CR methods have gained
extensive attention recently, which can effectively reduce the
overhead of saving checkpoints [18, 27, 38].

Although the in-memory CR significantly reduces check-
point overhead, it poses a new challenge for applications.
Unlike disks, memory is a kind of relatively scarce resource.
Checkpoints saved in memory occupy some space so that
there is less available memory for applications. What’s more,
to maintain high reliability, in-memory checkpoint needs to
maintain at least two copies of checkpoints [38]. A second
checkpoint is used to tolerate failures when updating an old
checkpoint. This results in only one third of memory left
for applications. A solution is to use memory as a cache of
disks, and flush in-memory checkpoints into disks periodical-
ly. Several multi-level checkpoint frameworks have already
been proposed [3, 23]. However, copying checkpoints from
memory into disks also introduces additional overhead thus
loses the advantage of in-memory checkpoint.

To address this problem, we propose a novel method for in-
memory checkpoint, called self-checkpoint. Our method not
only achieves the same reliability of in-memory checkpoint
using two copies of checkpoints, but also increases available
memory for applications by almost 50%. The core idea
of our method is to make the workspace of applications
also as a checkpoint. For in-memory checkpoint methods,
when updating a checkpoint, we need to copy data from
the workspace of applications into checkpoint. It means that
the data in the workspace and the updated checkpoint are
the same, and both of them are in memory. Based on this
observation, we propose a novel encoding mechanism, self-
checkpoint. With the self-checkpoint, there is no need to
save multiple checkpoints in memory, thus more memory
is available for applications. Specifically, more available
memory has different meanings to different programs. For
some programs, more available memory means that the
program can run for larger problem sizes with the same nodes.
For some others, they can solve fixed-size problems with
fewer nodes.

To verify and evaluate the self-checkpoint method, we
apply it to a challenging problem, fault-tolerant HPL. High-
Performance Linpack (HPL) is a prominent benchmark
used in the TOP500 ranking list [1] of HPC systems. However,
a future large-scale system may not afford a complete HPL
test because of decreasing system reliability. Despite previous
efforts on fault tolerant HPL, existing approaches either fail
to tolerate a permanent node loss on a real system (algorithm-
based fault tolerant methods) [32, 36], or introduce too much
overhead (traditional CR methods saving checkpoints in
disks) [13, 30], thus they are not practical for a performance
benchmark.

In-memory checkpoint is a promising solution for fault
tolerant HPL. However, HPL has several characteristics that
make it even more difficult for in-memory checkpoint. First,

the memory usage of HPL is configurable, and generally
larger memory is much better for performance. For this
reason, HPL needs as much memory as possible for high
performance, while checkpoint itself should use as little
memory as possible. Second, as the consequence of high
memory usage, it will take a long time to flush checkpoints
from memory into disks. So multi-level checkpoint methods
are not suitable for fault-tolerant HPL. Third, HPL has
a big memory footprint. Almost every byte is modified
between two checkpoints. As a result, incremental checkpoint
methods [2, 26, 31] are not efficient for this problem.

To this end, we implement a fault-tolerant HPL based
on the self-checkpoint mechanism, called SKT-HPL1. It can
not only achieve very high performance but also tolerate a
permanent node loss. We evaluate SKT-HPL on two large
systems, Tianhe-1A and Tianhe-2 (ranked TOP#2 in TOP500
list). Experimental results show that with 24,576 processes on
Tianhe-2, the self-checkpoint method improves the available
memory size by 47%. SKT-HPL achieves over 95% of
the original HPL’s performance, and 5% higher than using
previous in-memory checkpoint methods. We also perform
powering-off experiments to validate SKT-HPL can tolerate
a real node failure.

In summary, we make the following contributions in this
work.

• We propose a novel in-memory checkpoint method, self-
checkpoint, which can not only keep the same reliability
of in-memory checkpoint using two copies of checkpoints,
but also significantly increase the available memory space
of applications by almost 50%.

• We apply our proposed self-checkpoint method to an
important problem, fault-tolerant HPL. We implement
a scalable and node failure tolerant HPL (SKT-HPL) on
real HPC systems.

• We evaluate SKT-HPL on two large-scale systems, Tianhe-
1A and Tianhe-2. Results show that SKT-HPL achieves
over 95% of the original HPL’s performance and improves
the memory usage over the state-of-the-art in-memory
checkpoint by 47%.

The remainder of this paper is organized as follows. Sec-
tion 2 gives basic in-memory checkpoint framework. Sec-
tion 3 describes the approach of self-checkpoint mechanism.
Section 4 discusses the importance of more available memory.
Section 5 describes the implementation of SKT-HPL. Sec-
tion 6 presents our experimental results. Section 7 describes
related work. Section 8 gives the conclusion.

2. Basic In-Memory Checkpoint Framework
In this section, we describe some general fundamental tech-
niques for in-memory checkpoint methods. Our work is also
constructed on this basic framework.
1 Source code and documents of self-checkpoint project can be downloaded
from https://github.com/thu-pacman/self-checkpoint.git

402

2.1 Protecting Data with Encoding
For in-memory checkpoint methods, since checkpoints are
saved in volatile memory, an error-correcting code is nec-
essary to encode in-memory checkpoints. Calculating error-
correcting codes for all processes in a large-scale system
is prohibitive due to large communication overhead, so we
apply a group encoding strategy [3, 23] to reduce the com-
munication overhead. We partition all the processes into a
number of small groups and build error-correcting codes for
each group separately. To further reduce communication con-
tention during building error-correcting codes within a group,
we perform a stripe-based encoding for each process. The
basic idea is that we partition each process data into N − 1
stripes (each group has N processes), and then each pro-
cess of the group is in charge of building an error-correcting
code for partial stripes. This method can effectively avoid
single-node network contention during encoding.

As

B1

C1

D1

Process 0

A1

Bs

C2

D2

A3

B3

C3

Ds

A2

B2

Cs

D3

········
Group 0 Group 1 Group K-1

Process 1 Process 2 Process 3

Figure 1. Data encoding. Processes in a large-scale applica-
tion are partitioned into a number of small groups. We use
a stripe-based encoding in each group. AS , BS , CS , and DS

in dashed dark blocks are checksums for Ai, Bi, Ci, and Di

respectively.

Figure 1 shows an example to illustrate above encoding
method used in our system, which is similar with the encoding
mechanism used in RAID-5 [24]. Suppose that there are four
processes, P0, P1, P2, and P3, in each group. Each process
partitions its local data into three stripes and allocates four
empty slots. After filling its own three stripes into the slots,
each process has an empty slot for the checksum of stripes
from the other processes within the same group. For example,
we calculate the checksum of A1, A2, and A3 from P1, P2,
and P3, then store this checksum AS into the empty slot of
P0. Other checksums, BS , CS , and DS , are built in the same
way. A general encoding method is listed below.

XS = X1 +X2 + ...+Xn−1 (1)

X is a stripe in each process. The operator “+” can be either
a numerical sum or a logical exclusive-or. Note that the
encoding time for each group does not change with the system

scale and only depends on the group size, which makes our
approach more scalable for a large-scale system.

Using above encoding, each group can tolerate a single
node failure. We can apply more complex encoding methods,
such as RAID-6 [21] and Reed-Solomon [33], to tolerate
more node failures. For a higher degree of fault tolerance,
in-memory checkpoint methods can be also combined with a
multi-level checkpoint framework [3, 11, 23].

2.2 Calculating Checksums
We use MPI Reduce to calculate checksums of checkpoints,
taking full advantage of underlying well-tuned MPI library.

MPI Reduce (datatype, operator, ...)

Supported by most MPI implementations, both exclusive
or (XOR) and numeric addition (SUM) encoding methods
are supported in our approach:

MPI Reduce (MPI LONG LONG, MPI BXOR, ...)

MPI Reduce (MPI DOUBLE, MPI SUM, ...)

On some platforms, the logical XOR operation is much
faster than the numerical SUM. Our implementation uses
XOR by default, but SUM is also supported.

2.3 Keeping Checkpoints in Memory
Data saved in in-memory checkpoints needs to be accessible
after applications restart. However, in most modern operating
systems like Linux and Windows, a normal memory region
will be freed after its owner exits. The data saved in the freed
memory region is no longer accessible. To keep the data
always in memory, one method is to mount an in-memory
file system (e.g., ramfs and tmpfs in Linux) and write
the checkpoint into that file system. Alternatively, Linux
provides a shared memory mechanism (SHM) 2 . A memory
region allocated through SHM will not be automatically
freed by OS, even though no process is attached to it. In our
framework, we use the shared memory mechanism to allocate
memory regions for checkpoints. With this mechanism, all
the checkpoint data in healthy nodes is still accessible after a
node failure.

3. Self-Checkpoint Mechanism
3.1 Methodology
In this subsection, we elaborate our proposed self-checkpoint
mechanism. To demonstrate its advantage over previous
approaches, we firstly give a short introduction about single
checkpoint and double checkpoint mechanisms.

Figure 2 shows the strategy of single in-memory check-
point. The main advantage of the single checkpoint strategy
is its low memory consumption. Almost half of the memory
can be used for useful computation. The user’s data of the
original program is represented by rectangle A. B stands for
the memory space for checkpoint, and C is the checksum

2 More information about SHM can be found at http://man7.org/linux/man-
pages/man2/shmget.2.html

403

A

B C

checksum of (B)

failure in computing failure in checkpointing

data to be saved

space for checkpoint

A

B C

roll back to last
checkpoint

A

B C

A

B C

saved data(B) and checksum(C)
are inconsistent so cannot
recover

CASE 1 CASE 2

Figure 2. The strategy of single in-memory checkpoint. This
method cannot recover data from a failure during checkpoint
updating.

of B. The single checkpoint strategy can handle a node fail-
ure during the program’s computation by rolling back the
program using the checkpoint B and checksum C (CASE 1
in Figure 2). However, the single checkpoint cannot tolerate
a node failure while updating a checkpoint or a checksum
(CASE 2 in Figure 2), because at this time, the checkpoint B
and checksum C are in an inconsistent state.

B

A

B C

checksums of
(B) and (b)

data to be saved

space for checkpoint

b csecond checkpoint

failure in checkpointing

A

C

b c

B

A

C

b c

(B) and (C) are inconsistent

(b) and (c) are consistent

recover from a consistent checkpoint

Figure 3. The strategy of double checkpoints. While updat-
ing checkpoints, at least one checkpoint and its checksum
which are consistent can be used for recovery. Its main disad-
vantage is that too much memory space is wasted.

To tolerate the node failure during checkpointing, a
straight-forward solution is to maintain two copies of check-
points and overwrite the old one when making a new check-
point, as shown in Figure 3. Since there are two checkpoints
and at least one is available when updating, this strategy can
tolerate a node failure at any time. This strategy is widely
used in traditional checkpoint methods, which use disks and
have sufficient storage space for checkpoints. The state-of-
the-art in-memory checkpoint systems [37, 38] also adopt

this strategy. However, this strategy has high memory con-
sumption and significantly reduces available memory space
for useful computation (only 1/3), which is prohibitive in
a system with limited memory resources. Another solution
is to flush the old checkpoint into a permanent device like
hard-disks, but it will lose the performance advantage of the
in-memory checkpoint.

A

B C

checksum of (A)
data to be saved

space for checkpoint

D

failure in calculating
new checksum (D)

A

B C

D

recover from (B) and (C)

A

B C

D

failure in flushing
new checkpoint

A

B C

D

recover from
(A) and (D)

A

B C

D

CASE 1 CASE 2

Figure 4. The strategy of self-checkpoint. In CASE 1, if
there is a failure during calculating a new checksum, the
program can recover from B and C. In CASE 2, if there is a
failure while updating checkpoints, the program can recover
from A and D

To address above problems, we propose a novel self-
checkpoint strategy, which can significantly increase the
available memory space while tolerating a node failure during
checkpointing. Instead of maintaining two copies of check-
points as shown in Figure 3, we store two copies of check-
sums in memory. This method is inspired by an observa-
tion that a checksum is much smaller than a checkpoint in
a group encoding method. More specifically, a checksum is
only 1/(N − 1) of the checkpoint size when a group has N
processes. Figure 4 illustrates an ideal case using the self-
checkpoint strategy to handle different situations of failures.

When making a new checkpoint, a checksum D is firstly
calculated for the user’s data A, and then the memory space
of A and D is flushed into B and C. As shown in CASE 1 of
Figure 4, when a node failure is detected when calculating the
checksumD, we can recover the program with the checkpoint
B and checksumC. How do we recover the program if a node
failure is incurred while updating checkpoints? As shown in
CASE 2 of Figure 4, we can recover the program using the
user’s data A and its checksum D. In other words, the user’s
memory space for computation itself is served as a checkpoint.
Therefore, we call our proposed method a self-checkpoint
mechanism.

As discussed in Subsection 2.3, we use SHM to keep
data in memory. For dynamic variables allocated in heap,
we can change their allocation. For example, a malloc state-
ment p=malloc(...) is transferred into an SHM statement
p=shmget(...). For statically allocated variables, such as

404

checksum of (B)

dynamically allocated
variables (A1)

static and local variables(A2)

A1

B C

D

A2

B2 checksum of (A1&B2)

A1

B C

D

A2

B2

1 New data in (A1) (A2) is ready.
(A1) is allocated in SHM.

A1

B C

D

A2

B2

2 (A2) is copied into (B2).

A1

B C

D

A2

B2

3 Calculating (D) as the checksum
of (A1) and (B2).

A1

B C

D

A2

B2

4 Flushing (A1)(A2)(D) into (B)(C).

Figure 5. The complete workflow of self-checkpoint strategy.
Most data is allocated in the shared memory, represented by
A1 and little data is stored in the user’s space, represented by
A2. D is the checksum of A1 and B2.

global and local variables, we can also manually transfer re-
lated code to use shared memory. In our experience, large
data structures are usually dynamically allocated in heap. For
example, almost all data structures of HPL are dynamically
allocated. As a result, if the size of statically allocated vari-
ables (A2 in Figure 5) is small, such as loop iterators or other
scalar variables, we can allocate a small second-buffer (B2 in
Figure 5) for simplicity.

Figure 5 illustrates the complete workflow of the self-
checkpoint mechanism. A1 denotes the data which is stored
in the shared memory. A2 denotes the data which is stored
in the user’s space and we need additional checkpoint space
for A2, but the size of A2 can be much smaller than A1.
The workflow of the self-checkpoint mechanism is listed as
below:

1. Most of the user’s data A1 is stored in the shared memory.
2. Copy the data of A2 into B2.
3. Calculate D, which is the checksum of A1 and B2.
4. Copy (A1, A2) into B, and copy D into C.

Before the last step, we can recover the program from
the old checkpoint B and checksum C. Once we get the
checksum D, the program can be recovered from A1, B2,
and D. In summary, a single node failure can always be
tolerated with our proposed self-checkpoint mechanism.

More detailed analysis about the memory usage is dis-
cussed in Subsection 3.2. Section 6 gives the detailed perfor-
mance data of the self-checkpoint mechanism.

3.2 Analysis of Memory Usage
Selecting a suitable strategy for group partitioning is impor-
tant for the performance of the self-checkpoint mechanism. In
this subsection, we discuss the relationship between the group
size and memory usage for different in-memory checkpoint
methods.

Suppose that each group has N processes, and each
process needs M units of memory for the user’s computation.
In the self-checkpoint mechanism, as we save most of data
in the shared memory (A1 in Figure 5) and only partial local
variables in the user’s space (A2 in Figure 5), so the size of
A2 and B2 is negligible.

Item A1+A2 B C D Total
Size M M M

N−1
M

N−1
2MN
N−1

Table 1. The memory usage of the self-checkpoint mecha-
nism for each part in Figure 5. The group size is N .

Table 1 lists the memory usage for each part of the self-
checkpoint mechanism. Each process uses M of memory
size for the original work (A1 and A2 in Figure 5) and
B is also M . Due to the negligible size, B2 is omitted for
simplicity. According to the encoding method described in
Subsection 2.1, a checksum has the size of M/(N − 1).
Therefore, the total memory usage of the self-checkpoint
mechanism is the sum of A1, A2, B, C, and D, so it is
2MN/(N − 1). The available memory for application with
the self-checkpoint mechanism is

Uself ≈
M

2MN/(N − 1)
=
N − 1

2N
(2)

Similarly, we can calculate the available memory space of
the double checkpoint method shown in Figure 3.

U2ckpt =
M

M + 2MN/(N − 1)
=

N − 1

3N − 1
(3)

And the available memory with the single checkpoint shown
in Figure 2 is

Usingle =
M

M +MN/(N − 1)
=

N − 1

2N − 1
(4)

We illustrate the available memory space of different in-
memory checkpoint methods with several typical group sizes
in Figure 6. The single checkpoint has the least memory
consumption and most available memory space among three
methods, but it is not fully fault tolerant and cannot recover
from a failure during checkpointing updating. The double
checkpoint method is fully fault tolerant but has much less
available memory (less than 1/3). The available memory of
our self-checkpoint method is slightly less than the single
checkpoint but much higher than the double checkpoint. At
the same time, our method is fully fault tolerant. For a large
group size, our method has more available memory space
than the double checkpoint, up to nearly 50%.

405

2 3 4 8 16 32

Group Size

0

10

20

30

40

50

A
v
a
ila

b
le

 M
e
m

o
ry

 (
%

)

single-checkpoint

self-checkpoint

double-checkpoint

Figure 6. The memory usage of different in-memory check-
point methods with group sizes of 2, 3, 4, 8, and 16.

3.3 Grouping Strategy
In this subsection, we give our strategies in determining suit-
able group partitioning in a large-scale system. From Figure 6,
we can find that a larger group size always has more available
memory, but a larger group is not good for the data encoding.
The communication time during the data encoding is posi-
tively correlated with the group size. Therefore, a smaller
group size introduces much lower communication overhead.
Furthermore, a small group size is also beneficial for the sys-
tem’s reliability. Currently, our system only tolerates a single
node failure in each group. The more processes a group has,
the more likely more than one process will fail. In an extreme
case, if a group includes the whole system, only a single
failure can be tolerated. If each group has only two processes,
the system can tolerate failures for half of the processes at
the same time.

As a consequence, a large group is good for the memory
space, but increases the communication overhead and is
more likely to fail. Conversely, a small group encodes the
checkpoint quickly, but less memory space is left for useful
computation. In our experiments, we select the group size
of 16. The available memory of a group with 16 processes
is 47% and is close to the upper bound of 50%. We find that
in a large system a larger group size provides little benefit
for available memory space but causes much overhead in
communication.

For better performance and reliability, an appropriate
process mapping strategy should be considered. To tolerate
a permanent node loss, processes within a group must be
distributed onto different physical nodes. At the same time,
for better communication performance, a group tends to
select some neighboring nodes. But for high reliability, a
group should also spread its nodes as far as possible to
tolerate a single rack or switch failure. Based on previous
studies [14, 29], as most failures in HPC systems are single
node failures, and rack and network failures are minor, we
give high priority to the performance in our current grouping
strategy. Exploring more mapping strategies within one group
is left for future work.

4. Importance of More Available Memory
The core idea of self-checkpoint is to use less memory for
fault-tolerance, and leave more memory for applications. As
mentioned in Section 1, more available memory has different
meanings to different applications. In extreme cases, available
memory space determines whether an application can be
launched. For some applications, more available memory
means that programs can run for larger problem sizes with
the same nodes. For some others, they can solve fixed-size
problems with fewer nodes.

HPL belongs to the former case. It has an adjustable
problem size, thus larger problem can be solved with more
available memory. Also, HPL has a characteristic that it
can achieve better performance with a larger problem size.
Therefore, we use HPL as an example to show the potential
performance benefits of more available memory.

In the rest of this section, we present the derivation of HPL
efficiency model and give our observation on the relationship
between available memory space and HPL efficiency. Our
model indicates that more available memory leads to higher
performance in HPL. This also confirms our opinion that an
in-memory checkpoint method should occupy as little space
as possible.

For a given system, the efficiency of HPL is a ratio between
HPL test performance and the system’s theoretical peak
performance. For example, if the test performance of HPL is
80 GFlops and the system’s theoretical peak performance is
100 GFlops, the efficiency is 80%.

The kernel of HPL is to solve a dense linear equation
Ax = b, where A is an N × N matrix. The computational
complexity of HPL is O(N3) and its communication volume
and memory access are O(N2) [25]. Therefore, if we omit
the linear and constant computational work in HPL, the main
work of HPL can be modeled by an O(N3) part plus an
O(N2) part.

Since the total computational work in HPL is O(N3), the
theoretical execution time without including any communi-
cation or memory access overhead can be modeled as γN3.
Considering various performance overhead and loss, the ac-
tual execution time of HPL can be modeled as αN3 + βN2,
where α > γ. And βN2 is an estimation for memory access
and communication overhead. Therefore, the HPL efficiency
E(N) can be calculated as follows:

E(N) =
γN3

αN3 + βN2
=

N

aN + b
(5)

Here we have a = α/γ > 1 and b = β/γ. In this model,
given an invariant system and fixed process mapping, the
parameters a and b are independent of the problem size.

Figure 7 shows that this model fits well with real experi-
mental data on a local cluster. The dots in Figure 7 represent
the real data when executing 192 MPI ranks on a local cluster
with different problem sizes. The line is fitted with our model.

406

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Memory Usage per Core (GB)

60

65

70

75

80

H
P
L

E
ff

ic
ie

n
cy

 (
%

)

model

experimental data

Figure 7. Fitting of the efficiency model with experimental
data. Experiments are conducted with 192 MPI ranks on a
local cluster with Xeon E5-2670(v3) and 100Gbps Infiniband
network.

In Subsection 6.5, we will validate this model in two larger
systems.

From above efficiency model, we can get an interesting
finding for the HPL performance. For a given system, the
HPL performance increases with the input problem size.

Next, we analyze the efficiency of HPL when reducing
available memory space. Suppose that a system has an
efficiency e1 for the problem size of N1 with the total
available memory, then we have

e1 = E(N1) =
N1

aN1 + b
(6)

Thus the value of b is

b =
(1− ae1)N1

e1
(7)

If only partial memory is available for HPL, and ratio
is k(0 < k < 1), then the problem size N2 is

√
kN1.

Combining Equation 5, 6 and 7, we have the efficiency
for the problem size of N2 as

e2 =

√
ke1

1− (1−
√
k)ae1

>

√
ke1

1− (1−
√
k)e1

(8)

The last step is because a > 1. Equation 8 gives a lower
bound of HPL efficiency for different problem sizes.

To make the relationship between available memory space
and HPL efficiency more clear, Figure 8 shows the efficiency
of HPL for the top 10 supercomputers in the latest TOP500
list with different available memory space according to our
model. We can find that these systems can achieve higher
performance using more memory and improve 11.96% of the
efficiency on average from one third of the memory to half of
the memory. In consequence, it would be much better if an
in-memory checkpoint method uses less memory space and
leaves more for applications.

TaihuLight

Tianhe-2
Tita

n

Sequoia
Cori

Oakforest-
PACS K

Piz D
aint

Mira
Trin

ity
0

20

40

60

80

100

H
P
L

E
ff

ic
ie

n
cy

 (
%

)

original

k=1/2

k=1/3

Figure 8. Modeled HPL efficiency of the top 10 supercom-
puters with different available memory space. The green mesh
bars represent officially reported performance. The hatched
bars and red bars are results only using one third and half of
the memory size respectively, drawn by our model.

5. SKT-HPL Implementation
In this section, we discuss some details of implementing
SKT-HPL on a large-scale system.

5.1 SKT-HPL Overview
The kernel of HPL is to solve a linear equation Ax = b, where
A is an N ×N matrix. This equation is solved by Gaussian
Elimination with Partial Pivoting (GEPP). In general, HPL
can be divided into the following four steps:

1. Initialization The first step is to initialize MPI runtime,
and generate and partition data. The coefficient matrix A
and vector b are allocated at runtime and filled by random
numbers.

2. Elimination The original equation Ax = b is then trans-
formed into an upper triangle equation Ux = y. This is
the most time-consuming part in HPL, and its computa-
tional complexity is O(N3). This step is done in a loop
that iterates over all rows of A.

3. Back Substitution This step finally obtains the solution
of x = U−1y = A−1b. Solving the upper triangle
equation Ux = y is much easier, and the computational
complexity is only O(N2).

4. Report After solving above equation, HPL verifies the
solution of x and then reports the final performance. The
computational complexity of this step is O(N2).

Figure 9 illustrates the workflow of SKT-HPL. The white
blocks stand for operations in the original HPL as described
above, and the shadow ones are added by SKT-HPL. SKT-
HPL makes checkpoints during the elimination step at the end
of loop iterations, the main computational step in HPL. After
a node failure is detected, some necessary data structures
need to be rebuilt in the initialization step and SKT-HPL can
restore the program’s data from the checkpoint. SKT-HPL
do not make checkpoints for the other steps, because they
normally take far less time than MTBF and even less than a
typical checkpoint interval.

407

initialization

back substitution

report

elimination

eliminate more

new checkpoint
if necessary

elimination
done

NO

YES

restore data

checkpoint exists?

data generation

NO YES

Initialization

Elimination

Figure 9. The workflow of SKT-HPL. Checkpoints are made
at the end of a certain iteration during the elimination step. If
a node failure is detected, SKT-HPL restores the data from
the checkpoint in the initialization step.

Although the current implementation of SKT-HPL does
not use accelerators, self-checkpoint can be used to imple-
ment fault-tolerant HPL that supports accelerators. Accelera-
tors usually have data in their own memory, but operations
like checkpointing and recovering are normally performed in
main memory. As a result, updated data in accelerators’ mem-
ory should be explicitly transferred back to main memory
before making a new checkpoint.

5.2 Failure Detection and Restart
During an SKT-HPL test, a daemon runs on a master node
that is assumed not to fail. Since the master node is a single
node, its MTBF is very long and this assumption is reasonable.
Deploying the daemon on a reliable distributed system is an
alternative choice. If one MPI process aborts, the daemon can
detect it by checking the return value of mpirun command
or the output of a job management system in a typical
supercomputer.

To recover the program, SKT-HPL should restart and put
each process in the right position. Most MPI implementa-
tions support specifying the layout of processes. Normally a
ranklist file is used to assign each process to a certain node.
After all the MPI ranks exit due to a node failure, the daemon
checks the connection for each node in the ranklist. Lost n-
odes are replaced by other healthy nodes, which can be spare
nodes or repaired nodes.

Next, the daemon restarts SKT-HPL according to a new
ranklist file. All the processes that ran on healthy nodes
continue to run on the same nodes and just attach to the
checkpoints saved in their local memory. The processes that
ran on the failed node will be restarted on a fresh node where
there is no checkpoint. With the same configure file, matrix
A and b are always the same since the HPL test uses a fixed
random seed. SKT-HPL can skip the generation of matrix A
and b, because they are already in the checkpoints. However,

some data structures need to be rebuilt in the initialization
step.

Tianhe-1A node Tianhe-2 node

CPU
Dual Xeon X5670

2×6 cores @2.93GHz
Dual Xeon E5-2692(v2)
2×12 cores @2.20GHz

Peak Performance 140 GFLOPS 422 GFLOPS
Memory 48GB 64GB

P2P Bandwidth 6.9GB/s 7.1GB/s

Table 2. Node configuration of Tianhe-1A and Tianhe-2.

6. Evaluation
6.1 Methodology
We perform our evaluation on two large-scale HPC systems,
Tianhe-1A and Tianhe-2 [1]. The configuration of a single
node for both platforms is listed in Table 2. Table 2 shows that
Tianhe-2 has more powerful CPUs and larger memory size
than its predecessor, Tianhe-1A. However, each processor
core of Tianhe-1A has more memory than that of Tianhe-2
(4GB/core vs. 2.4GB/core). The bandwidth of point-to-point
communication is similar to both systems. Besides these two
large systems, we also use a local cluster connected by EDR
Infiniband network for experiments that need to power-off
computing nodes. Each node is equipped with 2-way Xeon
E5-2670 v3 processors (24 processor cores in total) and 64GB
of memory size.

Compared to a double-checkpoint method, self-checkpoint
provides more available memory for applications. It is a
general method and not tied to any specified application.
However, some usual benchmarks such as NPB are fixed-size,
or have multiple sizes that differ too much. As a result, 50%
more available memory does not enable a larger-size problem,
so they are not proper for demonstrating our idea. Instead, we
use HPL, which has an adjustable problem size, to verify our
idea.

6.2 Comparison with State-of-the-Art Methods
In this subsection, we compare SKT-HPL with state-of-the-
art methods for fault-tolerant HPL, including an algorithm-
based fault tolerant HPL (ABFT-HPL) [36], a traditional
checkpoint-and-restart method (BLCR) [19], and a multi-
level checkpoint system (SCR) [23]. As some experiments
have special requirements, e.g., mounting ramfs, installing
SSD (Solid-State Drive), and powering-off computing nodes,
which are not allowed on supercomputing centers, we per-
form these experiments on our local cluster. We compare
different methods for fault-tolerant HPL and report their per-
formance. Moreover, to validate the reliability of different
methods under a permanent node failure, we power off a
computing node during HPL tests. All tests of fault-tolerant
HPL are run with 128 MPI processes. Each process has 4GB
of memory space, and the group size is set to 8. Table 5.2
shows experimental results.

408

Problem
Size

Runtime (sec.)
(no checkpoint)

Checkpoint
Time (sec.)

GFLOPS and Checkpoints
(checkpoint per 10min)

Available
Memory(GB)

Normalized
Efficiency

Recover after
node powered-off?

Original HPL 234240 2338.64 - 3669.81 (0 chkpt) 4.00 100.00% NO
ABFT 212224 2208.55 - 2885.00 (0 chkpt) 3.28 78.61% NO

BLCR+HDD 234240 2338.64 295.20 2661.83 (3 chkpt) 4.00 72.53% YES
BLCR+SSD 234240 2338.64 111.92 3209.08 (3 chkpt) 4.00 87.45% YES

SCR+Memory 129280 426.18 4.33 3380.02 (0 chkpt) 1.22 92.10% YES
SKT-HPL 154880 709.84 6.21 3467.64 (1 chkpt) 1.75 94.49% YES

Table 3. Comparison between different methods of fault-tolerant HPL.

In our experiment, ABFT-HPL [36] fails to tolerate a
power-off event, because MPI runtime cannot recover the
user program’s data structures after a node loss. The overhead
of such fault-tolerant algorithms is inversely proportional to
the number of processes. So its performance is not good in
this small-scale experiment and it only achieves 78.61% of
the original performance.

BLCR [19] is a classic checkpoint-and-restart framework.
We perform our experiments on both hard disk drives (HDDs)
and SSD devices. When the checkpoints are written into hard
disk drives, the HPL performance is very poor, only achieving
72.53% of the original HPL, shown with BLCR+HDD in
Table 5.2. Therefore, it is not practical to use the traditional
CR method as a performance benchmark.

When replacing the HDDs with SSD devices, the BLCR
method gets much better performance for the HPL test. The
performance of BLCR+SSD achieves 87% of the original
HPL. In our experiments, both BLCR+HDD and BLCR+SSD
write checkpoints into local devices. It would be much slower
if a distributed file system is used.

SCR [23] is a state-of-the-art multi-level checkpoint sys-
tem developed by Lawrence Livermore National Laboratory
(LLNL), which can write checkpoints to RAM, Flash, or
disk of computing nodes in addition to a parallel file system.
In our experiments, we only present its best performance
of writing checkpoints into RAM. Because SCR needs to
save double in-memory checkpoints to tolerate a node failure
during checkpoint updating, there is only 1.22GB available
memory (30.5% of the total size) for each process to do the
HPL test. Therefore, the problem size SCR solves is the s-
mallest among these methods. Since our local cluster has
very large memory size per core, it also achieves 92.1% of
the original HPL performance.

Thanks to the self-checkpoint mechanism, SKT-HPL has
1.75GB memory for the HPL test, which is 43% higher than
the SCR method. Among these methods, SKT-HPL achieves
the best performance for the HPL test and it is 94.49% of the
original performance. There are two main reasons for the best
performance of SKT-HPL. One is that it has much shorter
checkpoint time than traditional checkpoint methods. The
other is that it has much more available memory space than
previous in-memory checkpoint methods.

6.3 Validation on Large-Scale Systems
Validation experiments on Tianhe-1A and Tianhe-2 are per-
formed by manually removing several computing nodes dur-
ing SKT-HPL tests. We kill the SKT-HPL processes of those
nodes and remove those nodes from the resource pool of the
job management system. Those nodes are permanently lost
since SKT-HPL can no longer launch processes on them.

In our experiments, SKT-HPL is able to replace the lost
nodes using spare nodes, recover the lost data, continue
running, and finally pass verification. We therefore argue
that SKT-HPL can tolerate real permanent node losses on two
systems.

detect the failure
and kill the job

replace lost nodes
by spare nodes

restart SKT-HPL

recover data

job exits

re-submit SKT-HPL

SKT-HPL
continues previous work

checkpoint

more computation
and checkpoint

63s

10s

9s

20s

16s

fail

Figure 10. Time for each phase during a work-fail-detect-
restart cycle. All results are measured on Tianhe-2 with
24,576 MPI processes. The time value for each phase is
presented in the small green rectangles.

We further measure the time for each phase during a work-
fail-detect-restart cycle, as shown in Figure 10. The time for
detecting a failure depends on underlying job management
systems. The failure detection time varies largely on Tianhe-
1A, and it is about 30 seconds on average, while the detection
time on Tianhe-2 is about 63 seconds. The time for replacing
lost nodes and restarting SKT-HPL is about 10 seconds and 9
seconds respectively. The recovery process is similar to that
used to calculate the checksum. But due to some additional
computation, the recovery time (20 seconds) is a little longer
than that to make a checkpoint (16 seconds).

409

6.4 Performance of SKT-HPL
We perform the original HPL test on both systems with
typical configurations. We obtain 15.55 TFLOPS (86.38%
of the theoretical peak performance) with 1,536 processes
on Tianhe-1A. On Tianhe-2, we do not run HPL from the
beginning to the end, since it consumes too much time
and power. Instead, we run HPL for minutes and record its
actual FLOPS value. The performance on Tianhe-2 is 367.04
TFLOPS (84.94% of the theoretical peak performance), with
24,576 processes.

Tianhe-1A Tianhe-2
0

20

40

60

80

100

H
P
L

E
ff

ic
ie

n
cy

 (
%

)

Theoretic peak

Original HPL

SKT-HPL

Figure 11. The efficiency of the original HPL and SKT-HPL
(without making checkpoint). The original HPL uses full
memory and SKT-HPL uses near half of the memory.

To analyze the performance of SKT-HPL, we test SKT-
HPL on both systems with near half of the memory, no
checkpoint is written. The group size for Tianhe-1A is 16
and 8 for Tianhe-2. Therefore, with the self-checkpoint
mechanism, the available memory is 47% and 44% of the
total memory on both systems respectively. SKT-HPL obtains
15.21 TFLOPS (97.81% of the original HPL) on Tianhe-1A
and 351.60 TFLOPS (95.79% of the original HPL) on Tianhe-
2. Figure 11 shows the performance of the original HPL and
SKT-HPL.

6.5 Benefits of Self-Checkpoint
To verify the efficiency models presented in Section 4 and
demonstrate the benefits of the self-checkpoint mechanism,
we run SKT-HPL with different memory size on two large
systems. Figure 12 shows test results and fitting results by our
model. The squares and triangle dots represent the measured
results of Tianhe-1A and Tianhe-2 respectively. Results show
that our efficiency models can fit the test results very well and
also verify the nonlinear behavior between problem size and
HPL efficiency. Using the self-checkpoint can get 5% higher
performance than using the double-checkpoint on Tianhe-2
because of its much more available memory (44% vs. 30%).

6.6 Overhead of Building Checkpoints
The time cost of building checkpoints in the self-checkpoint
mechanism includes two parts, calculating checksums or
encoding (network communication) and overwriting old
checkpoints (local memory copying). The local overwriting

10 15 20 25 30 35 40 45 50

SKT-HPL Memory Utilization (%)

70

75

80

85

90

95

100

N
o
rm

a
liz

e
d
 E

ff
ic

ie
n
cy

 (
%

)

model

Tianhe-1A

Tianhe-2

Figure 12. The relationship between Memory space used
for computation and the normalized efficiency. The memory
space and efficiency are compared with a typical run of the
original HPL with full memory. The impact of memory space
is more significant on Tianhe-2 than on Tianhe-1A.

4 8 16

Group size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
h
e
ck

p
o
in

t
si

ze
 (

G
B

/p
ro

ce
ss

)

Tianhe-1A

Tianhe-2

4 8 16

Group size

0

2

4

6

8

10

12

14

16

18

T
im

e
 f

o
r

E
n
co

d
in

g
 (

s)

Tianhe-1A

Tianhe-2

Figure 13. The encoding time of calculating checksums
(left) and checkpoint size (right) with different group sizes.
Encoding time grows slowly with group size. Checkpoint
size is not very sensitive to group size.

time is normally less than one second, and is insignificant
compared with the communication time used for the encoding.
Figure 13 shows the encoding time and checkpoint size for
different group sizes. As a checkpoint is close to half of
the memory as shown in Equation 2, the checkpoint size is
similar for different group sizes. The encoding time on both
systems increases slowly with the group size.

From Table 2 we know that the point-to-point commu-
nication performance of Tianhe-2 is better than Tianhe-1A.
But the encoding time of Tianhe-2 is much longer even with
smaller checkpoints than Tianhe-1. It is because a network
port of Tianhe-2 is shared by 24 processes, while in Tianhe-
1A one port is only shared by 12 processes. As a result, the
bandwidth per process of Tianhe-1A is much higher.

7. Related Work
Checkpoint-and-restart (CR) [13] is a classic fault tolerance
method, which saves the intermediate states of an application
(i.e., a checkpoint) into a reliable storage, and recovers data
from a checkpoint after a failure. As traditional CR methods
save checkpoints to a parallel file system [30] and introduce

410

large storage overhead, they are only suitable for medium-
scale systems.

Diskless or in-memory checkpoint, which saves check-
points in memory and uses error-correcting codes to pro-
tect data, was proposed since it has much lower overhead
than disk-based CR and is a potential solution for large-scale
systems [27]. Plank et al. proposed an incremental diskless
checkpoint system [26] to reduce memory consumption. In
their method, the size of a checkpoint buffer does not need
to be equal to workspace. Instead, a buffer should be large
enough to save the original version of data modified during
a checkpoint interval. This incremental checkpoint method
is good for applications with small memory footprint. It is
a double-checkpoint method that requires two buffers for
checkpoint, while one buffer is needed in our self-checkpoint
method. To improve scalability, Zheng et al. proposed an
in-memory checkpoint scheme using a buddy system, which
is scalable by dividing nodes into many two-node group-
s [37, 38]. This scheme can only use one third of the memory,
making it more suitable for applications with little memory
consumption.

Besides in-memory checkpoint, multi-level CR models
have been proposed, such as SCR [23], 3D-PCRAM [11],
and FTI [3]. Multi-level CR saves checkpoints to fast devices
like memory, PCRAM, and local SSD in a short interval, and
to slower devices (e.g., global file system) in a long interval.
These studies focus on a general CR framework for parallel
applications, while our method focuses on improving the
available memory space of in-memory checkpoint. Therefore,
we can integrate our method into a multi-level CR framework
for better performance.

Some numerical algorithms can obtain redundancy by
pre-processing the original input data. Huang and Abraham
studied algorithm-based fault tolerance (ABFT) for classic
matrix operations such as matrix-matrix multiplication and
LU decomposition [20]. Yao et al. proposed a fault toleran-
t HPL [35]. Besides HPL, some other algorithms such as
iterative methods and QR decomposition have also been s-
tudied with ABFT [7, 34]. Fault tolerant applications based
on ABFT usually have low overhead. Chen et al. proposed
Online-ABFT [8], which can detect soft errors in the widely
used Krylov subspace iterative methods. Li et al. [22] co-
ordinated ABFT and error-correcting code (ECC) for main
memory, to improve performance and energy efficiency of
ABFT-enabled applications. ABFT methods highly rely on
underlying MPI runtime. If the MPI runtime cannot recover
from a failure, ABFT has no chance to recover its data.

To the best of our knowledge, no MPI runtime can tol-
erate node failure with negligible overhead. MPICH-V [5],
MPICH-V2 [6], and RADICMPI [12] are implemented based
on message logging and checkpoints. Thus the performance
overhead is not trivial. Some MPI runtime environments such
as Intel MPI can keep running after a process is aborted, in-
stead of forcing all processes to exit. But the aborted process

is permanently lost and cannot be recovered. FT-MPI [15]
extends the semantic of MPI by trying to repair MPI data
structures and restart lost processes after a failure. Based on
our experiments, neither Intel MPI nor FT-MPI can restart
the lost processes after a node being powered off. Bland et
al.’s work [4] shows that a standard MPI runtime can tolerate
permanent node losses with the help of network configuration.
However, their method introduces overhead to MPI library,
and it is not practical for non-privileged users to change the
configuration of supercomputers.

The idea of redundant execution uses multiple processes
for a logical MPI rank. Both computation and communication
are duplicated. Ferreira et al. proposed a prototype system
rMPI [16]. Fiala et al. proposed redMPI [17], which can
not only tolerate fail-stop errors, but also detect and correct
silent data corruption. Similar to ABFT methods, redundant
execution is good at detecting soft-errors but also cannot
tolerate node failures. Unlike ABFT, a redundant execution
model has no requirement on algorithms. Nevertheless, its
overhead is much heavier than ABFT. Redundant execution
only uses half of the CPU and memory and has an efficiency
less than 50%.

8. Conclusion
To reduce the memory usage of in-memory checkpoint, we
propose a new strategy, called self-checkpoint. The self-
checkpoint not only achieves the same reliability of in-
memory checkpoint using two copies of checkpoints, but
also increases available memory space for applications by
almost 50%. Based on the self-checkpoint mechanism, we
further implement SKT-HPL, a fault-tolerant HPL, which
can not only tolerate a real node failure on a large-scale
supercomputer, but also achieve very close performance with
the original HPL. Experimental results show that with 24,576
processes on Tianhe-2, the self-checkpoint method improves
the available memory size by 47% than the state-of-the-art
in-memory checkpoint. Moreover, SKT-HPL achieves over
95% of the original HPL’s performance, and is 5% higher
than using previous in-memory checkpoint methods.

Acknowledgments
We would like to thank our shepherd Prof. Narayanasamy
and the anonymous reviewers for their insightful comments
and suggestions. Also, we thank Yi Yang, Zhen Zheng, Heng
Lin, Haojie Wang for their valuable feedback and suggestions.
This work is partially supported by National Key Research
and Development Program of China 2016YFB0200100, Na-
tional High-Tech Research and Development Plan of China
(863 project) No.2015AA01A301, National Natural Science
Foundation of China No.61232008, Tsinghua University Ini-
tiative Scientific Research Program, and Microsoft Research
Asia Collaborative Research Program FY16-RES-THEME-
095. The corresponding author of this paper is Jidong Zhai
(Email: zhaijidong@tsinghua.edu.cn).

411

References
[1] top500 website. http://top500.org/.

[2] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira. Adaptive
incremental checkpointing for massively parallel systems. In
Proceedings of the 18th annual international conference on
Supercomputing, pages 277–286. ACM, 2004.

[3] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka. FTI: High Performance
Fault Tolerance Interface for Hybrid Systems. In Proceed-
ings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, pages
32:1–32:32, New York, NY, USA, 2011. ACM. ISBN 978-1-
4503-0771-0. doi: 10.1145/2063384.2063427.

[4] W. Bland, P. Du, A. Bouteiller, T. Herault, G. Bosilca,
and J. Dongarra. A Checkpoint-on-Failure Protocol for
Algorithm-Based Recovery in Standard MPI. In Springer-
Link, pages 477–488. Springer Berlin Heidelberg, Aug.
2012. URL http://link.springer.com/chapter/10.

1007/978-3-642-32820-6_48. DOI: 10.1007/978-3-642-
32820-6 48.

[5] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak,
C. Germain, T. Herault, P. Lemarinier, O. Lodygensky, F. Mag-
niette, V. Neri, and A. Selikhov. MPICH-V: Toward a Scalable
Fault Tolerant MPI for Volatile Nodes. In Supercomputing,
ACM/IEEE 2002 Conference, pages 29–29, Nov. 2002. doi:
10.1109/SC.2002.10048.

[6] A. Bouteiller, F. Cappello, T. Herault, G. Krawezik,
P. Lemarinier, and F. Magniette. MPICH-V2: A Fault Tolerant
MPI for Volatile Nodes Based on Pessimistic Sender Based
Message Logging. In Proceedings of the 2003 ACM/IEEE
Conference on Supercomputing, SC ’03, pages 25–, New Y-
ork, NY, USA, 2003. ACM. ISBN 1-58113-695-1. doi:
10.1145/1048935.1050176.

[7] Z. Chen. Algorithm-based recovery for iterative methods with-
out checkpointing. In Proceedings of the 20th International
Symposium on High Performance Distributed Computing, H-
PDC ’11, pages 73–84, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0552-5. doi: 10.1145/1996130.1996142.

[8] Z. Chen. Online-ABFT: An Online Algorithm Based Fault
Tolerance Scheme for Soft Error Detection in Iterative Methods.
In Proceedings of the 18th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’13,
pages 167–176, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-1922-5. doi: 10.1145/2442516.2442533. URL
http://doi.acm.org/10.1145/2442516.2442533.

[9] Z. Chen, G. E. Fagg, E. Gabriel, J. Langou, T. Angskun,
G. Bosilca, and J. Dongarra. Fault tolerant high performance
computing by a coding approach. In Proceedings of the
Tenth ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’05, pages 213–223, New
York, NY, USA, 2005. ACM. ISBN 1-59593-080-9. doi:
10.1145/1065944.1065973. URL http://doi.acm.org/10.

1145/1065944.1065973.

[10] T. Davies, C. Karlsson, H. Liu, C. Ding, and Z. Chen. High per-
formance linpack benchmark: a fault tolerant implementation
without checkpointing. In Proceedings of the international
conference on Supercomputing, pages 162–171. ACM, 2011.

[11] X. Dong, N. Muralimanohar, N. Jouppi, R. Kaufmann, and
Y. Xie. Leveraging 3d pcram technologies to reduce checkpoint
overhead for future exascale systems. In Proceedings of
the Conference on High Performance Computing Networking,
Storage and Analysis, SC ’09, pages 57:1–57:12, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-744-8. doi:
10.1145/1654059.1654117.

[12] A. Duarte, D. Rexachs, and E. Luque. An Intelligent Man-
agement of Fault Tolerance in Cluster Using RADICMPI. In
B. Mohr, J. L. Trff, J. Worringen, and J. Dongarra, editors, Re-
cent Advances in Parallel Virtual Machine and Message Pass-
ing Interface, number 4192 in Lecture Notes in Computer Sci-
ence, pages 150–157. Springer Berlin Heidelberg, Sept. 2006.
ISBN 978-3-540-39110-4 978-3-540-39112-8. URL http://

link.springer.com/chapter/10.1007/11846802_26.

[13] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen. A survey of
fault tolerance mechanisms and checkpoint/restart implemen-
tations for high performance computing systems. The Journal
of Supercomputing, 65(3):1302–1326, Sept. 2013. ISSN 0920-
8542, 1573-0484. doi: 10.1007/s11227-013-0884-0.

[14] N. El-Sayed and B. Schroeder. Reading between the lines
of failure logs: Understanding how HPC systems fail. In
Dependable Systems and Networks (DSN), 2013 43rd Annual
IEEE/IFIP International Conference on, pages 1–12. IEEE,
2013.

[15] G. E. Fagg and J. J. Dongarra. FT-MPI: Fault Tolerant MPI,
Supporting Dynamic Applications in a Dynamic World. In
J. Dongarra, P. Kacsuk, and N. Podhorszki, editors, Recent
Advances in Parallel Virtual Machine and Message Passing
Interface, number 1908 in Lecture Notes in Computer Science,
pages 346–353. Springer Berlin Heidelberg, 2000. ISBN 978-
3-540-41010-2, 978-3-540-45255-3.

[16] K. Ferreira, J. Stearley, J. H. Laros, III, R. Oldfield, K. Pe-
dretti, R. Brightwell, R. Riesen, P. G. Bridges, and D. Arnold.
Evaluating the viability of process replication reliability for
exascale systems. In Proceedings of 2011 International Con-
ference for High Performance Computing, Networking, S-
torage and Analysis, SC ’11, pages 44:1–44:12, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0771-0. doi:
10.1145/2063384.2063443.

[17] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira,
and R. Brightwell. Detection and correction of silent data
corruption for large-scale high-performance computing. In
Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, page 78.
IEEE Computer Society Press, 2012.

[18] L. A. B. Gomez, N. Maruyama, F. Cappello, and S. Matsuoka.
Distributed Diskless Checkpoint for Large Scale Systems.
pages 63–72. IEEE, 2010. ISBN 978-1-4244-6987-1. doi:
10.1109/CCGRID.2010.40.

[19] P. H. Hargrove and J. C. Duell. Berkeley lab checkpoint/restart
(blcr) for linux clusters. In Journal of Physics: Conference
Series, volume 46, page 494. IOP Publishing, 2006.

[20] K.-H. Huang and J. A. Abraham. Algorithm-based fault
tolerance for matrix operations. Computers, IEEE Transactions
on, 100(6):518–528, 1984.

412

[21] C. Jin, H. Jiang, D. Feng, and L. Tian. P-code: A new raid-
6 code with optimal properties. In Proceedings of the 23rd
international conference on Supercomputing, pages 360–369.
ACM, 2009.

[22] D. Li, Z. Chen, P. Wu, and J. S. Vetter. Rethinking Algorithm-
based Fault Tolerance with a Cooperative Software-hardware
Approach. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage and
Analysis, SC ’13, pages 44:1–44:12, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-2378-9. doi: 10.1145/2503210.
2503226. URL http://doi.acm.org/10.1145/2503210.

2503226.

[23] A. Moody, G. Bronevetsky, K. Mohror, and B. De Supinski.
Design, Modeling, and Evaluation of a Scalable Multi-level
Checkpointing System. In High Performance Computing,
Networking, Storage and Analysis (SC), 2010 International
Conference for, pages 1–11, Nov. 2010. doi: 10.1109/SC.2010.
18.

[24] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redun-
dant arrays of inexpensive disks (raid). In Proceedings of the
1988 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’88, pages 109–116. ACM, 1988.

[25] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. HPL -
A Portable Implementation of the High-Performance Linpack
Benchmark for Distributed-Memory Computers. http://www.
netlib.org/benchmark/hpl/.

[26] J. S. Plank and K. Li. Faster checkpointing with N+1 parity.
In Proceedings of IEEE 24th International Symposium on
Fault- Tolerant Computing, pages 288–297, June 1994. doi:
10.1109/FTCS.1994.315631.

[27] J. S. Plank, K. Li, and M. A. Puening. Diskless checkpointing.
Parallel and Distributed Systems, IEEE Transactions on, 9(10):
972–986, 1998.

[28] Y. Robert. Fault-tolerance techniques for computing at scale.
CCGrid2014, 2014.

[29] B. Schroeder and G. Gibson. A Large-Scale Study of Failures
in High-Performance Computing Systems. IEEE Transactions
on Dependable and Secure Computing, 7(4):337–350, Oct.
2010. ISSN 1545-5971. doi: 10.1109/TDSC.2009.4.

[30] C. Wang, F. Mueller, C. Engelmann, and S. Scott. A Job
Pause Service under LAM/MPI+BLCR for Transparent Fault
Tolerance. In Parallel and Distributed Processing Symposium,
2007. IPDPS 2007. IEEE International, pages 1–10, Mar. 2007.
doi: 10.1109/IPDPS.2007.370307.

[31] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott. Hybrid
full/incremental checkpoint/restart for mpi jobs in hpc environ-
ments. In International Conference on Parallel and Distributed
Systems, 2011.

[32] R. Wang, E. Yao, M. Chen, G. Tan, P. Balaji, and D. Buntinas.
Building algorithmically nonstop fault tolerant MPI programs.
In High Performance Computing (HiPC), 2011 18th Interna-
tional Conference on, pages 1–9. IEEE, 2011.

[33] S. B. Wicker and V. K. Bhargava. Reed-Solomon codes and
their applications. John Wiley & Sons, 1999.

[34] P. Wu and Z. Chen. Ft-scalapack: Correcting soft errors on-line
for scalapack cholesky, qr, and lu factorization routines. In
Proceedings of the 23rd International Symposium on High-
performance Parallel and Distributed Computing, HPDC ’14,
pages 49–60, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-2749-7. doi: 10.1145/2600212.2600232.

[35] E. Yao, M. Chen, R. Wang, W. Zhang, and G. Tan. A New
and Efficient Algorithm-Based Fault Tolerance Scheme for
A Million Way Parallelism. arXiv preprint arXiv:1106.4213,
2011.

[36] E. Yao, R. Wang, M. Chen, G. Tan, and N. Sun. A Case
Study of Designing Efficient Algorithm-based Fault Tolerant
Application for Exascale Parallelism. pages 438–448. IEEE,
May 2012. ISBN 978-1-4673-0975-2, 978-0-7695-4675-9. doi:
10.1109/IPDPS.2012.48.

[37] G. Zheng, L. Shi, and L. V. Kale. Ftc-charm++: an in-memory
checkpoint-based fault tolerant runtime for charm++ and mpi.
In IEEE International Conference on Cluster Computing,
pages 93–103, Sept 2004.

[38] G. Zheng, X. Ni, and L. V. Kal. A scalable double in-
memory checkpoint and restart scheme towards exascale. In
Dependable Systems and Networks Workshops (DSN-W), 2012
IEEE/IFIP 42nd International Conference on, pages 1–6. IEEE,
2012.

413

