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Abstract Transaction processing performance council benchmark C (TPC-C) is the de facto standard for

evaluating the performance of high-end computers running on-line transaction processing applications. Differing

from other standard benchmarks, the transaction processing performance council only defines specifications for

the TPC-C benchmark, but does not provide any standard implementation for end-users. Due to the complexity

of the TPC-C workload, it is a challenging task to obtain optimal performance for TPC-C evaluation on a

large-scale high-end computer. In this paper, we designed and implemented a large-scale TPC-C evaluation

system based on the latest TPC-C specification using solid-state drive (SSD) storage devices. By analyzing the

characteristics of the TPC-C workload, we propose a series of system-level optimization methods to improve the

TPC-C performance. First, we propose an approach based on SmallFile table space to organize the test data in

a round-robin method on all of the disk array partitions; this can make full use of the underlying disk arrays.

Second, we propose using a NOOP-based disk scheduling algorithm to reduce the utilization rate of processors

and improve the average input/output service time. Third, to improve the system translation lookaside buffer

hit rate and reduce the processor overhead, we take advantage of the huge page technique to manage a large

amount of memory resources. Lastly, we propose a locality-aware interrupt mapping strategy based on the

asymmetry characteristic of non-uniform memory access systems to improve the system performance. Using

these optimization methods, we performed the TPC-C test on two large-scale high-end computers using SSD

arrays. The experimental results show that our methods can effectively improve the TPC-C performance. For

example, the performance of the TPC-C test on an Intel Westmere server reached 1.018 million transactions per

minute.
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1 Introduction

High-end computers [1] play an important part in running IT’s most mission-critical applications, such

as finance, telecommunication, and banking. The market for typical high-end computers is dominated by

several big company models, such as the HP Superdome series, IBM x3850, and so on, which feature large

processor and memory scales, and high levels of reliability, availability, and serviceability. For example,
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HP Superdome-2 servers use highly reliable Intel Itanium 9500 processors and support up to 256 processor

cores, as well as have 8 TB of memory.

The on-line transaction processing (OLTP) workload [2] is an important type of application that runs

on high-end computers. For instance, telecommunication companies use OLTP applications to handle

tens of thousands of telephone communication service orders every second. To evaluate the performance of

high-end computers executing OLTP workloads, the Transaction Processing performance Council (TPC)

releases the TPC-C benchmark [3]. Due to its widespread usage, TPC-C has become the de facto standard

for evaluating OLTP performance on high-end computers.

The TPC-C benchmark is different from other standard benchmarks such as SPEC CPU2006 [4]. The

TPC organization is only responsible for creating TPC-C evaluation standards, but does not provide any

specific implementation or optimization strategies for a given high-end computer. Computer manufactur-

ers need to design and implement the TPC-C benchmark according to the TPC-C standard specification.

Also, the evaluation process should be in strict compliance with the standard, and evaluation results

should be certified by the TPC organization before release.

Despite previous efforts, it is still a challenging task to get optimal performance results for TPC-C

evaluation on large-scale high-end computers. The TPC-C workload has large computational and memory

requirements, frequent I/O accesses for small file blocks, and large-scale concurrent user requests. All of

these features make it challenging to obtain optimal results. Below is a list of the main challenges of the

TPC-C evaluation.

• High demand on system capability of I/O processing. TPC-C workloads feature a large

quantity of I/O accesses, each for very small file blocks. For example, when the TPC-C performance is

about 1 million transactions per minute (TPMC), there are about 370000 physical I/O accesses per second.

According to the TPC-C standard, these I/O requests should be completed within a specified time.

Therefore, the requirement for I/O operations per second is very high. Traditional TPC-C evaluation

systems typically require tens of thousands of hard disks to meet the test requirements. As a result, the

total cost of the traditional test systems is very high.

• Large-scale test data. According to the TPC-C standard, a large quantity of test data must

be preloaded into the storage systems to achieve a given testing objective. For example, the top-ranked

Oracle SPARC system in the TPC-C released results requires approximately 250 TB of pre-loading test

data [5]. The effective organization of the test data to make full use of the underlying storage systems is

a challenging problem.

• High demand for computing and memory resources. TPC-C workloads also place large

demands on computing and memory resources, requiring systems to meet tens of thousands of concurrent

transaction requests per second from different users. It is a hard problem to effectively use the system’s

memory resources and reduce the processing overhead.

To address the above problems, we designed a large-scale TPC-C evaluation system using solid-state

drive (SSD) storage devices and further proposed a series of system-level optimization methods. In

summary, we make the following contributions:

1. We propose an approach based on SmallFile table space to organize the test data in a round-robin

method on all of the disk array partitions. This can make full use of the concurrent processing capabilities

of the underlying disk arrays.

2. According to the characteristics of the TPC-C workload, we propose using a NOOP-based disk

array scheduling algorithm to reduce the utilization rate of processors and to improve the average service

time of each I/O process.

3. To improve the translation lookaside buffer (TLB) hit rate and reduce the processor overhead, we

take advantage of the huge page technique to manage a large amount of memory resources in high-end

computers.

4. We propose a new interrupt mapping strategy to improve system performance. According to the

locality of interrupt requests, we map different types of interrupts on different processors based on the

asymmetry characteristic of the Non-Uniform Memory Access (NUMA) systems to reduce the interrupt
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interference on user processes.

In this study, we performed a number of experiments on different high-end servers to validate the

above optimization strategies. The experimental results show that our methods can effectively improve

the TPC-C performance. For example, the performance of the TPC-C test on an Intel Westmere server

reached 1.018 million TPMC.

This paper is organized as follows: Related work is discussed in Section 2; An overview of our TPC-C

evaluation system is given in Section 3; The TPC-C workload characteristic is described in Section 4; We

present our optimization strategies in Section 5; Experimental results are reported in Section 6; And our

conclusion is presented in Section 7.

2 Related work

TPC-C implementations. There are some open-source implementations of the TPC-C benchmark,

such as Hammerora [6], TPCC-UVa [7], and DBT-2 [8]. Commercial implementations include Benchmark

Factory [9], and Orastress [10].

TPCC-UVa [7] is a TPC-C implementation developed by the University of Valladolid. TPCC-UVa

only supports the PostgreSQL database system [11], and the current implementation cannot perform the

TPC-C test on large-scale systems. DBT-2 [8] was developed by Portland State University. DBT-2 is

similar to TPCC-UVa and currently only supports the PostgreSQL database system. Hammerora [6]

is another open-source implementation of the TPC-C benchmark and supports most popular database

systems, including MySQL, PostgreSQL, Oracle, and Microsoft SQL Server. However, it does not use

any database middleware to manage database transactions between clients and database servers. User

requests are directly dispatched to the database server without needing to queue up for better utilization of

server resources, making it difficult to extend to larger-scale high-end computers. London Linxcel Europe

Company’s Orastress Suite [10] is a TPC-C commercial implementation, which is primarily designed as

an Oracle database evaluation software. However, this software only realizes two read-only transactions

in the TPC-C test, Stock-Level and Order-Status. At the same time, Orastress requires all the test

data to be stored in the memory, which is not in accordance with the TPC-C specifications. Benchmark

Factory [9] was developed by QUEST Company. It is similar to Hammerora in that it does not use

any database middleware management technology, and the simulation clients only support Windows

platforms.

OLTP analysis and optimization. Hsu et al. [2] analyzed the characteristics of the production

database workloads of 10 of the world’s largest corporations and also compared them with TPC-C and

TPC-D. However, their evaluation platform is based on hard disk drives, whileas our evaluation sys-

tem only uses SSD devices. Delimitrou et al. [12] proposed a modeling and generation framework that

greatly reduces the time it takes to set up and perform storage experiments in large-scale instances of

TPC benchmarks. Barham et al. [13] described a Magpie system, which can take stand-alone events

generated by the operating system, middleware, and application components, correlate related events,

and finally produce a workload model. Kim et al. [14] proposed a hybrid storage architecture, Hetero

Drive. HeteroDrive can actively reshape random writes to sequential writes.

Chen et al. [15] compared the I/O access patterns of both TPC-C and TPC-E using two disk traces.

They found that TPC-E is more read intensive than TPC-C. In their work, they only analyzed I/O

patterns for both benchmarks. However, we optimized the performance of TPC-C on a large-scale SSD

machine. Ash et al. [16] investigated how to optimize traditional database storage structures to take

advantage of the new characteristic offered by SSDs. However, they only analyzed two basic operations

in OLTP workloads. Yao et al. [17] conducted a performance evaluation of two public Clouds. They used

TPC-C to evaluate three types of instances provided by the two public Clouds, respectively, and found

that both Clouds could provide elastic processing ability to meet the demand of increasing workload. Zhai

et al. [18] proposed a performance prediction model for parallel programs. Chen et al. [19] introduced a

functional workload model for building a big data benchmark from the TPC-C benchmark. The authors
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Figure 1 TPC-C system framework.

Figure 2 TPC-C evaluation system.

argued that a big data benchmark built with this model could be representative, portable, scalable,

and relatively simple. Tozun et al. [20] studied the evolution of the OLTP benchmarks throughout the

decades, including TPC-B, TPC-C, and TPC-E. Their results showed that TPC-E exhibited similar

microarchitectural behavior to TPC-B and TPC-C.

In this study, we analyzed the characteristics of the TPC-C workload on a real large-scale system using

only SSD arrays and performed a series of system-level optimization strategies on this system. To the

best of our knowledge, our paper is the first to implement a real TPC-C evaluation environment using

only SSD devices.

3 TPC-C overview

We have designed and implemented a TPC-C evaluation system based on the latest TPC-C standard

specification of Version 5.5. The framework of the TPC-C evaluation system is shown in Figure 1, which

consists of several main modules, a driver system, clients, a database server, and a storage system.

Driver system. The driver system is used to simulate the behavior of end-users, which includes

filling out an order list, submitting a transaction request, receiving processing results, and recording the

processing time and statistical results for each transaction.

Clients. Clients receive transaction requests from different end-users, then submit the transactions

to database servers and wait for processing results from the servers. At the same time, they are also

responsible for scheduling transactions. The final results from the database servers are returned to the

end-users. Our system currently uses Tuxedo middleware to monitor and schedule database transaction

requests.

Database server. It executes various database system software and handles requests from end-users.

To support large-scale data processing and evaluation on high-end computers, our system uses the Oracle

database system. The driver system, client, and database server are connected by an Ethernet network.

Storage system. It is used to store testing data for the TPC-C evaluation. Normally, disk storage

arrays are widely used, which are connected to the database server through fiber switching devices.

Figure 2 shows our TPC-C evaluation system, which includes dozens of clients and driver systems, and
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Table 1 Data operation statistics of five transactions in the TPC-C database tables (R means read, W means write)

DB Tables NEW-ORDER PAYMENT ORDER-STATUS DELIVERY STOCK-LEVEL

WAREHOUSE R R,W – – –

DISTRICT R,W R,W – – R

CUSTOMER R R,W R R,W –

HISTORY – W – – –

NEWORDER W – – R,W –

ORDER W – R R,W –

ORDER-LINE W – R R,W R

ITEM R – – – –

STOCK R,W – – – R

a set of SSD storage systems. Client and database servers are connected by a Gigabit Ethernet network.

Each storage array consists of 24 60 GB Single-Level Cell (SLC) SSD disks. There are a total of 26 disk

arrays, which are connected to the database server by fiber switches.

4 TPC-C workload characteristics

To optimize the TPC-C evaluation system, we analyzed the workload characteristics of the TPC-C

benchmark, including database transaction types, database operation modes for different tables, and

underlying data access patterns.

4.1 TPC-C transactions

TPC-C is a complex OLTP evaluation program, which contains a large number of disk I/O operations.

The data distribution of transaction accesses is also very complex. The TPC-C benchmark simulates a

wholesale supplier owning a number of geographically distributed warehouses. It includes five types of

database transactions, New-Order, Order-Status, Payment, Delivery, and Stock-Level.

• New-Order. The New-Order transaction completes the entire order creation through a complete

database transaction. It is a middle-weight frequent read write operation transaction, and its proportion

in the TPC-C test is about 45%. The number of new-order transactions completed per minute successfully

represents the final TPC-C testing performance (TPMC).

• Payment. The Payment transaction is used to update the account balance of customers, and it

reflects the changes in sales of different warehouses. It is a light-weight transaction with a mix of reading

and writing operations. Its proportion in the TPC-C test is about 43%.

• Order-Status. The Order-Status transaction is used to query the state of customer orders. It is

a middle-weight read-only database transaction. The execution frequency is relatively low and accounts

for 4% of all TPC-C transactions.

• Delivery. The Delivery transaction is a batch transaction process and processes 10 new orders

each time. Each processing is a mixed read write transaction. The frequency of the delivery transaction

is relatively low and accounts for about 4% of total transactions. The delivery transaction is implemented

through a delayed queue. The other four transactions are implemented through interactive modes.

• Stock-Level. The Stock-Level transaction analyzes whether the inventory status for recent sales

of the products (the latest 20 selling products) is below a given threshold and also calculates the quantity

of the commodity below that threshold. It is a read-only database transaction, and its percentage in the

TPC-C evaluation test is about 4%.

Table 1 shows the data operation results of five types of transactions on the TPC-C database tables.

The transactions of New-Order need to operate on almost all of the database tables and it is a mixed read

write transaction. According to the TPC-C standard, a certain percentage of New-Order and Payment

transactions should access remote database tables randomly, which will reduce the locality of data access

to simulate real-life conditions. Both Order-Status and Stock-Level are read-only transactions.



Zhai J D, et al. Sci China Inf Sci September 2016 Vol. 59 092104:6

(a) (b)

Figure 3 Disk utilization for the data partition and the log partition. (a) The data partition; (b) the log partition.

(a) (b)

Figure 4 The data access patterns for the data partition. (a) I/O access frequency; (b) the block size for each I/O

operation.

4.2 TPC-C data access pattern

In this section, we will analyze the data access pattern of the TPC-C workload. In the following analysis,

the data in the TPC-C test were only stored on a disk array, which contained 24 SLC SSD disks and

2 disk controllers, A and B. The redo and undo log files were stored on 8 SSD disks, and the data files

and index files were stored on 10 SSD disks. Controller A was used to manage log files and controller

B was used to manage the data files and index files. The database server has 4 Itanium processors and

128 GB of memory. We perform a small-scale TPC-C test to analyze main characterization of the TPC-C

workload and further present a large-scale TPC-C test in Subsection 6.5.

Figure 3 shows the disk utilization for the data partition and the log partition. It can be seen that

the disk utilization of the data partition is about 80%, whileas the disk utilization of the log partition is

only about 12%. This indicates that the TPC-C workload is an I/O-intensive OLTP application. In the

following analysis, we focus on the data access patterns for the data partition.

Figure 4(a) shows the I/O access frequency for the data partition. We can see that the I/O access

frequency is relatively high for the data partition. There are about 1300 reading operations per second

on the data partition, and 600 writing operations per second. The number of reading operations is about

twice that of writing operations.

Figure 4(b) shows the distribution of the read/write block size for each I/O operation and the I/O

volume on the data partitions. From the figure, we can see that the average I/O read size is about

4 kB and that the average I/O write size is about 5 kB; this block size is relatively small. There is about

4 MB of data per second read from the disk array and 3 MB of data per second written into the disk

array.

In summary, the data access frequency on the disk partitions is relatively high. Most of the accessed
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Figure 5 SmallFile table space-based storage management.

data blocks are small, ranging from 4 kB to 5 kB. The TPC-C workload is a mixed read write operation

application, but the reading operations account for most of the I/O operations. The average number of

reading operations is twice the number of writing operations.

5 Optimization strategies

5.1 SmallFile table space based storage management

Since the TPC-C test requires a large amount of testing data and a large number of storage devices, it

is critical to effectively manage and organize these to get optimal TPC-C test results. Logical volume

manager (LVM) [21] is widely used in Linux systems to manage a number of physical disks, and it

organizes the underlying physical disk partitions using a hierarchical method. The main modules in

the LVM architecture are physical volumes, volume groups, and logical volumes. LVM can organize a

group of physical disk partitions into a single large logical partition. Users can create their own logical

partitions and file systems under LVM volume groups, and they can also rename and repartition the

logical partition according to their needs. However, the management functions of LVM are implemented

in a software layer. This can result in large performance overhead during the TPC-C test.

To reduce the system overhead caused by disk management software, we propose using raw devices

to manage the underlying disk partitions. Raw devices are also called raw partitions, which are special

character devices. Applications perform read/write operations directly from the raw partitions without

going through the file systems. Using raw devices, data can be directly sent from disk partitions to

database buffers, skipping the operating system layer. As a result, we can effectively improve the data

access efficiency.

To effectively leverage the parallelism of the underlying disk arrays and improve the I/O access effi-

ciency, we propose a new method to manage the underlying storage devices, called SmallFile table space.

We created the small partitions of the same size on all the disk arrays and used the round-robin method

to build the database table spaces on these small partitions. The partition size that we used was 8 GB.

As shown in Figure 5, our method has two main advantages: (1) Using the round-robin method to

create the table spaces on all the disk partitions, the parallelism of the underlying storage arrays can

be fully exploited and (2) the database table spaces can be distributed uniformly on all the disk arrays.

This will allow all the disk partitions to achieve better load balance during the TPC-C test.

5.2 NOOP-based I/O scheduling for SSD devices

There are a large number of disk I/O requests during the TPC-C test, and so the efficient scheduling of

I/O requests can greatly improve associated performance. Currently, the default disk scheduling strategy

on Linux systems is completely fair queuing (CFQ) [22]. CFQ creates separate queues to manage all the

I/O requests generated by different processes. CFQ uses a time slice mechanism to guarantee that each

process can be assigned proper I/O bandwidth. The length of the time slice for each process and the

number of I/O requests allowed in each process depend on its priority.

CFQ scheduler is efficient on systems running multiple tasks that require equal access to I/O resources.

However, it can create a bottleneck when used in the TPC-C test, which has a strict deadline for each

transaction. To achieve fair scheduling, each process is assigned the same time slot in CFQ, but in the

TPC-test, what is actually needed is a short response time and a fast I/O processing speed. Also, the I/O
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Table 2 The number of memory pages compared with common pages and huge pages

Server name Architecture Memory size (GB) Number of common pages Number of huge pages

DELL T710 X86 64 72 9× 221 9× 212

Itanium server IA64 256 1× 226 1× 210

Intel Westmere server X86 64 1024 1× 228 1× 219

processing time of the underlying SSD storage devices is very short, and therefore, complex scheduling

algorithms can lead to higher processor overhead [23].

To improve the response time of each I/O process and reduce the processor overhead caused by the

complex scheduling algorithm, we propose using the NOOP scheduling mechanism to manage all the I/O

requests. NOOP submits all the I/O requests to the underlying storage system in accordance with the

principle of first in first out (FIFO). At the same time, the NOOP scheduler also merges adjacent I/O

requests based on FIFO, thereby not completely satisfying the FIFO principle.

To keep the fairness for different tasks, the TPC-C clients can guarantee that each task generates equal

I/O requests for the evaluated server. We do not need extra fairness mechanism in the disk scheduling.

In this study, we compared the performance of both the NOOP scheduler and the CFQ scheduler on SSD

storage devices and found that the NOOP scheduler was better than the CFQ scheduler in terms of the

system overhead and I/O response time. There is not any fairness issue in our TPC-C implementation.

5.3 Huge-page-based memory system optimization

The TPC-C workload can consume a large amount of memory resources. For example, the TPC-C test

on Oracle’s SPARC Super Cluster can use around 13.5 TB in memory resources [5]. On current Linux

systems, the default page size is 4 kB. According to the management mechanism of the virtual memory,

a smaller page size can result in a larger number of page numbers for a given program [24]. For a

memory-intensive application, frequent translations between virtual addresses and physical addresses can

significantly increase the processor overhead. At the same time, a smaller page size means that many

more translations between virtual addresses and physical addresses must reside in the system, which will

increase the TLB miss rate and cause the application’s performance to decrease further.

To reduce the processor and memory overhead and to also reduce the TLB miss rate, we propose using

the huge page technique during the TPC-C test. In Linux kernel 2.6, the maximum page size on the

x86 64 platform is 2 MB, which is about 500 times the size of the default page. For the Itanium platform,

the maximum page size is 256 MB. Therefore, the huge page technique can reduce the number of pages

in the TPC-C test and effectively increase the TLB hit rate. Table 2 shows the comparative number of

pages when using common pages versus huge pages across three different servers. It can be seen that the

huge page technique can effectively reduce the number of actually used memory pages.

5.4 Locality-aware interrupt mapping

During the TPC-C test, since database transactions require frequent access of disk arrays, large interrupt

requests are generated by the I/O devices. Also, a large number of clients commit database transactions

through network interfaces, so the database server will receive a number of network interrupt requests.

During the TPC-C test on the Itanium server (when the row number of the “warehouse” table was 16000),

we recorded the number of interrupt requests per second processed by the database server. The results

show that the system processes about 140000 interrupt requests per second from the I/O devices and

network interfaces.

A large amount of interrupt requests can not only interfere with the execution of user processes but

also affect TPC-C test performance. In the Linux system, the interrupt scheduling strategy dispatches

all the interrupt requests uniformly to each processor core. However, we find that this strategy does not

take into account the locality of the interrupt requests and possible interference with user processes.

We propose a locality-aware interrupt mapping strategy to handle the above problems. Our strategy

is described as follows: First, we map the interrupt requests from different devices to particular processor
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Table 3 The configurations of database servers used in the TPC-C test

Server name Processor # of cores Mem size OS Storage array Fiber card

Itanium server 4 Intel Itanium 9350 16 256 GB Redhat EL 5.3 8 sets of disk arrays 4 8GB fiber cards

Intel Westmere server 4 Intel Westmere-EX 40 1024 GB Redhat EL 6.1 11 sets of disk arrays 4 8GB fiber cards
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Figure 6 The disk partition utilization for both BigFile mode and SmallFile mode. (a) BigFile mode; (b) SmallFile mode.

cores separately, thus the interference resulting from interrupts from different devices can be reduced;

Second, according to the characteristics of the NUMA system, we map the interrupts to their closest

processor cores; And lastly, we map the interrupt requests to the idle processor cores as much as possible

to reduce interference with critical user processes. From our experimental results, it can be concluded

that we can effectively improve the server interrupt processing efficiency using the above methods.

6 Evaluation

In this section, we will report on a series of experiments conducted to verify the performance of the

previously mentioned optimization strategies on real systems.

6.1 Experimental platforms

Here, we give a detailed description of our experimental platforms. The clients and driver systems of the

TPC-C test were deployed on the same servers in our evaluation. The clients and driver systems used

two-way Intel Xeon X5650 processors, with a memory size of 32 GB. The network was Gigabit Ethernet.

There were two database servers in our evaluation, and their detailed configurations are shown in Table 3.

Each disk array included 24 SLC SSD disks and each disk drive was 60 GB. The database used in our

servers was Oracle 10g.

6.2 Storage system optimization

We set up two storage systems for the TPC-C test. In the first storage environment, we used LVM

to manage the underlying disk partitions, and Oracle BigFile to organize all the data files. Each table

space in the Oracle database was allocated to a set of disk arrays according to the size of the database

tables (we use BigFile to denote this mode in the figures). In the second storage environment, we used

our proposed SmallFile table space method to manage the underlying disk arrays. Each disk array was

partitioned into a number of 8 GB blocks. We used the round-robin method to establish table spaces on

all the small blocks as described in Subsection 5.1 and managed the underlying storage devices using the

raw devices approach (we use SmallFile to denote this mode in the figures).

Figure 6 shows the disk partition utilization for both BigFile mode and SmallFile mode during the

TPC-C test. For BigFile mode, the disk utilization shows great inconsistency. The utilization of disk
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Figure 8 (Color online) The average I/O queue length (a) and service time (b) of each disk partition for both storage

modes.

partitions ranges from 5% to 100%, for which it is difficult to make full use of all the underlying disk

arrays, and which can lead to relatively large latency when reading data from certain disk arrays. In our

proposed storage system, the utilization of all the disk partitions is well balanced. The utilization for

most of the disk partitions was about 90%, and only the utilization of the sdf, sdg, and sdh disk partitions

was relatively low. The sdc partition was used to store redo logs in the Oracle database and experiences

only sequential write operations, which is why its utilization was relatively low.

Figure 7 shows the average number of I/O requests in both storage modes. We can see that for the

BigFile mode, the number of I/O requests from each disk partition is non-uniform, ranging from 0 to

75. However, for the SmallFile mode, the number of I/O requests from all the disk partitions is well

balanced. The average number of I/O requests in SmallFile mode was about 20.

Figure 8 shows the average I/O queue length and the average I/O service time of each disk partition

for both storage modes. We can see that the SmallFile mode outperforms the BigFile mode in both

aspects. For example, the average service time for the SmallFile mode was about 0.3 ms, whereas for the

BigFile mode, it ranged from 0.01 to 1.06 ms.

Note that the average queue length of disk partition 10 in the left part of Figure 8 is about 10 times

larger than those of other disk partitions. This is because the BigFile mode cannot uniformly distribute

data on all the disk partitions, the disk partition with relatively high user requests will generate a longer

waiting queue. Based on our analysis, the BigFile mode would randomly cause a long waiting queue for

each disk partition. In contrast, the SmallFile mode can use all the disk partitions uniformly.

With our proposed storage optimization strategy, the disk I/O requests can be uniformly distributed

between all the disk partitions. Each disk partition demonstrated good performance in terms of the

average I/O queue length and the average I/O service time. The performance of underlying disk storage

arrays can be maximized using our method.
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Figure 9 (Color online) The disk partition utilization for different scheduling strategies.
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Figure 10 (Color online) The average I/O queue length (a) and service time (b) for the different scheduling strategies.

6.3 I/O scheduling optimization

In this section, we analyze the impact of both CFQ and NOOP I/O schedulers on TPC-C performance.

We performed the TPC-C test on an Itanium server, and the row number of the warehouse table was

16000. Except for the I/O scheduling strategies, the other parameters of the operating systems remained

the same for both configurations.

Figure 9 shows the disk partition utilization for both CFQ and NOOP scheduling strategies during the

TPC-C test. We can see that the average disk partition utilization was about 40% and the maximum was

69.3% for the CFQ scheduling strategy, whereas for the NOOP scheduling, the disk partition utilization

was 80% on average and the maximum was 96.5%. In summary, the NOOP scheduling strategy can

effectively improve the utilization of each disk partition.

Figure 10 shows the average I/O queue length and service time of each disk partition for the two

scheduling strategies. We can see that the I/O queue length was too long for some disk partitions using

the CFQ scheduling strategy. It can also be seen that long I/O queues randomly appeared on different

disk partitions during the test process. This is mainly because the CFQ strategy needs to submit a group

of I/O requests to the disk devices according to the time slice. As a result, in a short time, the disk

partitions accumulate a number of disk I/O requests. The average queue length for the NOOP scheduling

strategy was about two, which is much shorter than the CFQ strategy. Also, the average service time for

the NOOP scheduling strategy was 0.13 ms, but was 0.24 ms for the CFQ strategy.
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Figure 11 (Color online) Processor utilization for different page management strategies.

6.4 Memory optimization

We analyzed the performance of different memory optimization strategies on the Itanium server. The row

number of the warehouse table in the TPC-C test was 16000. On the Itanium platform, the huge page was

256 MB and we used 990 huge pages in total. Figure 11 shows the processor utilization in the user mode for

different page management strategies. Using the huge page technique, the average processor utilization for

user processes was 37.8%. When the huge page was disabled, the average processor utilization increased

to 42.1%. In our system, the huge page optimization technique can reduce processor utilization by an

average of 4.3%. As a result, the system TPC-C performance can be improved by saving processor

resources.

When we analyzed the completion time for each TPC-C transaction, we found that the huge page

technique can effectively reduce the processing time of each transaction. The experimental results show

that the average processing time for each transaction was less than 1 s when we took advantage of the

huge page technique, but was more than 1 s when it was disabled.

6.5 TPC-C results

Lastly, we investigated the TPC-C results on two high-end computers when all of the above optimization

methods were used.

Figure 12 shows the TPC-C test results on the Itanium server. This server includes four Itanium

processors with 256 GB of memory and eight sets of disk storage arrays. When the row number of the

warehouse table was 24000, the TPC-C test reached its maximum performance of 291000 TPMC. The

processor utilization in user mode, kernel mode, and iowait was about 56%, 23%, and 14%, respectively.

Also, idle processor resources were about 7%. The main bottleneck of this server was memory latency.

Through analyzing the Oracle Automatic Workload Repository report, we found that the hit rate of the

latch hit event was very low for the Oracle database.

Figure 13 shows the TPC-C test results for the Intel Westmere server, which is a 4-way Xeon server

with 1 TB of memory and 11 sets of disk storage arrays. When the row number of the warehouse table

was 85700, the TPC-C test reached its maximum performance of 1.018 million TPMC.

Figure 14 shows the average number of I/O requests per second for each disk partition on the 11 disk

arrays during the TPC-C test on the Intel Westmere server. We found that the average number of read

requests per second was about 10000, and that the average number of write requests per second was

about 5000. The number of read requests was twice the number of write requests. The disk partition

sdc was used for redo logs in the Oracle database and there were only sequential write requests for this

partition.

The processor utilization of the Intel Westmere server in user mode, kernel mode, and iowait was about

55%, 19%, and 18%, respectively. Idle processor resources were about 8%. The TPC-C performance on

this server can be improved further. Figure 15 shows the disk partition utilization of the Intel Westmere

server. We can see that the distribution of the disk utilization of each disk partition using our proposed
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Figure 12 TPC-C test results for the Itanium server

(warehouse = 24000).

Figure 13 TPC-C test results for the Intel Westmere

server (warehouse = 85700).
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Figure 14 (Color online) I/O requests number per second

for each disk partition on the Intel Westmere server.

Figure 15 The utilization of each disk partition on the

Intel Westmere server.

SmallFile table space method was very uniform. Note that the partition sdc was used to store log files

in the Oracle database, and so the utilization for this partition was relatively low.

7 Conclusion

In this paper, we designed and implemented a TPC-C benchmark based on the latest TPC-C standard

specification and built a large-scale TPC-C evaluation environment using SSD arrays. Through analyzing

the TPC-C workload characteristics, we proposed a series of system-level optimization methods and

performed the TPC-C test on two high-end computers. The experimental results show that our proposed

methods can effectively improve TPC-C performance, with the performance of the Intel Westmere server,

for example, reaching 1.018 million TPMC. In summary, we make the following key conclusion.

• Effective data distribution is a key factor for a large-scale TPC-C test. Due to a large amount of

test data stored in storage devices, uniformly partitioning all the data on the storage devices is necessary.

The SmallFile table space-based approach can effectively organize and use underlying disk arrays.

• A NOOP-based disk scheduling mechanism is more effective than a complex one, such as CFQ, to

reduce processor overhead and improve the average service time for each I/O process in the TPC-C test.

• For an application using a large amount of memory, the huge page technique can effectively improve

processor utilization, as well as the TLB hit rate.

• On NUMA systems, a fine-grained interrupt mapping strategy is necessary to reduce interrupt

interference. We need to adjust interrupt mapping according to both the locality of interrupt requests

and the asymmetry characteristics of NUMA systems.
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What is more, in-memory processing system [25] has become more popular recently, but TPC-C is an

I/O intensive benchmark. According to the TPC-C specification, it is very difficult to load all the data

into memory on current commodity servers. For example, there are about 8 TB of TPC-C data on our

Intel Westmere server whose memory size is already 1 TB. Although we can use more servers for the

TPC-C test, the performance of current distributed database system needs to be significantly optimized.
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