
Int. J. Cloud Computing, Vol. x, No. xxx, xxxx 1

Smile: Streaming Management of Applications
and Data for Mobile Terminals

Yangyang Zhao

Institute of High Performance Computing,
Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China
E-mail: zhaoyy09@mails.tsinghua.edu.cn

Wentao Han

Institute of High Performance Computing,
Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China
E-mail: hwt04@mails.tsinghua.edu.cn

Ruini Xue

School of Computer Science and Engineering,
University of Electronic Science and Technology of China,
Chengdu, 611731, China
E-mail: xueruini@uestc.edu.cn

Wenguang Chen*

Institute of High Performance Computing,
Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China
E-mail: cwg@tsinghua.edu.cn
*Corresponding author

Abstract: With the rapid growth of the mobile phone industry in
recent years, consumer habits in using mobile applications have changed
significantly. Mobile clients have replaced desktop computers as primary
internet access devices. However, mobile phones have limited battery life,
low processing power, and limited storage capacities. As mobile devices
are easily lost or damaged, better data management schemes are also
required. In this paper, a streamed application and data management
system based on Transparent Computing technology is proposed to
support more secure, better managed mobile phones. Experimental
results show that the proposed system is a feasible and efficient solution
for future mobile computing applications.

Keywords: Transparent Computing; Application Streaming; Data
Synchronization; Cache Eviction

Copyright c© 2012 Inderscience Enterprises Ltd.

2 Y. Zhao, W. Han, R. Xue and W. Chen

Reference to this paper should be made as follows: Zhao Y., Han
W., Xue R. and Chen W. (xxxx) ‘Smile: Streaming Management of
Applications and Data for Mobile Terminals’, Int. J. Cloud Computing,
Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Yangyang Zhao received his bachelor in computer
science and technology in 2009 from Tsinghua University, China. He
is now studying in department of computer science and technology in
Tsinghua University for a master degree. His research interests include
transparent computing, mobile cloud and pervasive computing.

Wentao Han received his bachelor degree in computer science from
Tsinghua University in 2008. He is now a PhD student in the Department
of Computer Science and Technology, Tsinghua University. His research
interest is on operating systems, distributed systems and mobile
computing.

Ruini Xue received his PhD in Computer Science in 2009 from Tsinghua
University, China. Currently he is a lecturer at the School of Computer
Science and Engineering in University of Electronic Science and
Technology of China. His research interests includes cloud computing,
distributed systems, and mobile systems.

Wenguang Chen received the B.S. and PhD degrees in computer science
from Tsinghua University in 1995 and 2000 respectively. He was the
CTO of Opportunity International Inc. from 2000-2002. Since January
2003, he joined Tsinghua University. He is now a professor and associate
head in Department of Computer Science and Technology, Tsinghua
University. His research interest is in parallel and distributed computing,
programming model and mobile cloud computing.

1 Introduction

The growing popularity of devices like smartphones and tablets is attributed to
portability, and the availability of tens of thousands of mobile applications (Apple
2011a, Google 2011a).

The portability of such mobile devices makes them indispensable for daily
use, and through applications, they offer functionality comparable to personal
computers. However, application management in mobile terminals is still a challenge
for Managing the installed or purchased applications is an inconvenient process.
Installing an application on mobile devices is a multi-step process. For example, in
Apple devices, this process involves launching the App Store, browsing or searching
for the application, pressing install to start the download, waiting for the download
to complete, and finally activating the application. To install an update for the
application, the user needs to launch the app store again and select UPDATE to
manually download the updated version. Often, security patches for the operating
system (OS) need to be applied. Current security solutions are not suitable for
mobile devices. To perform a system upgrade, all applications first need to be backed
up and restored with the help of the iTunes computer program. As many users

Streaming Management of Applications and Data 3

are unfamiliar with these steps and the available tools, almost 78% of all iPhone
users never install new applications (Ligang 2010). Therefore, the application
management system needs to be simplified.

If the user loses or replaces a device, he/she would want to restore the previous
device environment. For this to be possible, all previously installed applications
should be reinstalled automatically on the new device and all user application data
must be restored to make the applications function properly. This is also a challenge.

• The current application management model is to install applications locally.
If the remaining disk space is insufficient, the user has to remove previously
installed applications or delete local files to make space. This situation is
common as user generated data and applications share the same storage space
in mobile devices. For example in the Android OS, user applications are
installed in the /data/app folder, and all user-generated data; comprising
documents, photos, videos, and songs etc.; are stored in /data/data.
Therefore, when more data are stored, less space is left for applications. Mobile
device users tend to capture a lot of video and photos, which consume a lot
of disk space (Poulsen 2011, Purdy 2010).

Another problem is that if the user wants to use an application, which was
just uninstalled to make room for another. The user then has to uninstall
another application to reinstall the required application. Thus, the user is
caught in an uninstall-install loop. In addition, a user who does not know
how to uninstall applications cannot use new applications. Thus, the current
implementation is neither user friendly, nor resource efficient.

• Managing application data presents a challenge even for users who know how
to uninstall and install applications. For example, a user may have configured
many options in a note taking application or completed several levels of their
favorite game. If these preferences are not restored correctly on the new device,
the user might stop using the application. For most current applications,
users have to identify the application data themselves, which then needs to
be backed up and restored manually. Some tools like iTunes facilitate this
process, but only for the most popular applications.

Due to the rapid widespread deployment of wireless networks, especially 3G
networks, mobile devices can be always connected and use several networked
applications. There is a clear gap between the current application management
schemes in mobile terminals and user requirements. For simplicity, we define
application state as the application binary and its associated data. The problem
then is to manage the application state transparently. The property of transparency
here denotes the following: (1) User installed applications are always available and
directly accessible through clickable shortcuts. Users do not have to be concerned
about the location used for data storage; (2) In most cases, users should be able to
open an application and use it instantly; (3) Users should not detect any difference
between the current and previous environments after switching to a new device.

To address these problems, we propose a method called Smile(Streaming
Management of Applications and Data for Mobile Terminals), which adopts the
transparent computing paradigm (Zhang et al. 2010, Tian et al. 2009, Zhang and
Zhou 2006, 2009). Smile deploys a subscription model to manage applications.

4 Y. Zhao, W. Han, R. Xue and W. Chen

Users can subscribe to applications without being limited by the local storage
capacity. Smile always shows all subscribed applications to the user, and updates
them automatically. Thus, users no longer need to manually download, install,
upgrade, backup, and restore applications. Subscribed applications include both
free and purchased applications. As the mobile terminal has limited storage and
computing power, it only stores some application states; all states of the users’
applications are stored in the remote server. However, the device shows all the
applications to the user, making it appear as if they are all installed locally. The
device caches a user’s most frequently used applications locally, which can be
replaced if a user accesses an application that is not stored locally During this
process, data associated with the application being replaced will be synchronized
with the server for future retrieval. The new application will be downloaded with its
associated data automatically. This mitigates the problem of data loss if the device
is lost. Smile streams remote applications to local storage based on user requests,
while the physical location of application data is abstracted and hidden from the
user. Streaming in Smile is coarse-grained in terms of the entire application; the
application cannot be launched before the streaming finishes. Application data is
always transferred along with the application. Therefore, the server always stores
the latest data, which can be retrieved on demand for the ease of the user.

It is difficult to make Smile function transparently. The three challenges
involved in ensuring transparency are:

• Seamless Application Scheduling. Subscribed applications may not all be
stored locally, but this does not affect the user who is able to see and use
all subscribed applications. Current mobile application management systems
can only provide access to local applications. In contrast, Smile provides
a unified interface where the user cannot distinguish between local and
remote applications. Smile keeps track of the physical location of applications
and can remove old applications, and stream new applications and data
automatically.

• Seamless Application Management. Users of Smile will be able to install,
uninstall, and update applications as they are used to doing, regardless
of whether applications are stored locally. Smile offers a mechanism to
manage cached or un-cached applications seamlessly. Installation and update
operations in Smile are smoother and better managed.

• Efficiency. If local storage is very limited, and the user often changes
applications, Smile has to reduce the overhead of application replacement to
avoid frequent re-installation and to control the volume of data transferred
over the network. Smile is able to devise a simple but effective application
replacement strategy by investigating the application usage frequency. The
system is based on the Least Recently Used algorithm, but takes application
characteristics into consideration, and is better suited for mobile terminals.

The three contributions of this paper are as follows:

• Novel mechanism to manage application states. Smile differs from current
application management models as it streams the entire application and its
data. Smile is also unique in having the ability to access a virtually unlimited

Streaming Management of Applications and Data 5

Streaming Management

Figure 1 Infrastructure of Smile.

number of applications from a mobile device, and to restore the complete
device environment without user intervention.

• Application caching and replacement strategy. This strategy involves having
a higher probability of local caching for frequently used applications to reduce
streaming time.

• An implementation of Smile on Android with extensive evaluation. A
prototype of Smile was implemented on Android to demonstrate the
proposed system and extensive experiments were carried out for evaluation.
Experimental results show that the performance of Smile is adequate and it
is a feasible solution for future mobile computing devices.

The paper is organized as follows. Section 2 details the principles of application
streaming and the system design. In Section 3, application management with Smile
is discussed. Section 4 describes the issues and problems associated with the server.
Section 5 details the implementation in Android, which is followed by an evaluation
of the system performance in Section 6. Finally, Section 7 summarizes related work
while the conclusion forms in Section 8.

2 Design

2.1 Principles of Application Streaming

Smile offers a new paradigm for mobile applications in a network-connected
environment. Several application meta servers store the application data and
user application data. Front servers handle requests from mobile clients, while

6 Y. Zhao, W. Han, R. Xue and W. Chen

Client

Local Storage

Uniform Application Presentation

On-demand
Application
Execution

Application
Updating and
Replacement

Local App Meta
Data

Instant
Application
Subscription

Figure 2 Client Modules.

maintenance servers manage the update and addition of new applications to the
meta servers.

Mobile devices like smartphones or tablets connect to the servers over the
network. Applications and their data are stored on servers, and the device only
holds part of the data as show in Figure 1. All subscribed applications are visible on
the mobile device, regardless of where they are stored. Users can launch subscribed
applications like local applications. Users do not have to know the storage location of
an application, or worry about losing application data. Furthermore, the proposed
system automatically updates and replaces subscribed applications as required.

The Smile system distinguishes itself with the following features:

• Convenient and effective user experience: The subscribe/unsubscribe options
in Smile are more convenient and take less time to use than similar options
in other systems. In addition, users can access more applications than what
the local storage can hold, without any extra effort or complications.

• Transparent application scheduling: Although not all applications are stored
locally, users do not need to know the actual storage location, they can
continue to access applications as before.

2.2 System Architecture

We designed client and server components for our system. Each client can be a
mobile device, and the servers can be regular PCs or servers than runs the required
software. The server and client are connected through Wi-Fi or 3G. Users can
connect to this system after some basic configuration and account creation.

2.2.1 Client

The client architecture is composed of four parts as shown in Figure 2: the Instant
Application Subscription, Uniform Application Presentation Layer, On-demand
Application Executor, and the Application Update and Replacement module.

The Instant Application Subscription module controls the installation and
removal of applications in the Smile system. Unlike current app stores or markets,
it does not download or remove the application directly to the mobile device. This
module only imports/changes minor information (called metadata) into the system
and enables convenient trial and removal of applications .

Streaming Management of Applications and Data 7

Front End Front End Front End

Metadata
Server

Application
Repository

Application
Repository

User Data Store

User Data Store

User Data Store

Server Side

Client Client Client ...

Figure 3 Server-side architecture.

The Uniform Application Presentation module displays all applications
associated with the current account on the device uniformly, irrespective of the
storage location.

The On-demand Application Execution module controls the execution of
applications in SmileṪhis module is in charge of launching cached applications and
the loading of un-cached applications.

The Application Update and Replacement module keeps track of the
applications and their status. It contributes to the process of updating, removing,
or recycling applications. Through this module, application content and status are
seamlessly mirrored on the client and server.

2.2.2 Server

The server side of Transparent Application Streaming is composed of four
components, namely, the Front End (FE), the Metadata Server (MDS), the
Application Repository (AR), and the User Data Store (UDS), as shown in Figure 3.
The Front End communicates with clients; it dispatches requests from the clients
to the corresponding components behind the Front End, and sends back responses.
The partition layout of applications and user data are stored on the Metadata
Server. Application packages (.apk files under Android) are stored in Application
Repositories, and user data are stored in User Data Stores. These four components
form the server side of Transparent Application Streaming, and together provide
services to clients.

The Front End is the only component that the clients directly communicate
with. It isolates clients from other server side components. Clients send various kinds
of requests to FE, and wait for responses. To optimize performance, FE leverages
a caching mechanism and responds immediately if the information requested is
entirely cached. Otherwise, it requests the location of the required data from MDS,
and then fetches data from the appropriate AR or UDS.

8 Y. Zhao, W. Han, R. Xue and W. Chen

Each application stored in AR has its own identifier (aid), which is the package
name of the .apk file in this study. Each user of this system has a unique identifier
(uid), too. Thus, the (uid, aid) pair identifies the user data for application aid
belonging to user uid. These identifiers are used to partition applications and user
data across different ARs and UDSes.

MDS has two main functions: The first is tracking the partition layout of
applications and user data. FEs query MDSes to obtain the location of the requested
application and the required user data. New applications or user data added to the
system are allocated a location by MDS; this location is a specific AR or UDS.
The other function of MDS is to administer all server side components. It monitors
heartbeats from the FEs, ARs, and UDSes. If a component is lost, MDS alerts the
system administrators.

ARs and UDSes are essentially key-value stores. Applications and user data are
fetched and stored according to identifiers, either aid or (uid, aid).

3 Client

In this section, we discuss several client side components, including Instant
Application Subscription, Uniform Application Presentation, On-demand
Application Executing, Application Replacement and Updating strategy.

3.1 Instant Application Subscription

The Instant Application Subscription module acts as the application market for
the client. It retrieves the application information list from the FE, and sends back
subscribe and unsubscribe instructions.

In a conventional mobile system, subscribing to an application means
downloading and installing the application package file and being constrained by
space limitations. In comparison, subscribing and unsubscribing to an application
with Smile is relatively painless. Users can subscribe to any application irrespective
of size and the application is available to use immediately.

This subscription process is more efficient because only the metadata (explained
in Section 3.2) is downloaded, not the whole application.

However, applications will not always just store the metadata locally. In fact, in
most cases, the client device will have to store all the application content. Section
3.3 and 3.4 provide details of how an application switches between these two storage
options.

Unsubscribing from applications is very similar to conventional mobile
environments. All data stored locally is deleted, whether it is just metadata or the
complete application, which can be deleted through a regular remove process.

3.2 Uniform Application Presentation

In a conventional mobile device environment, all applications are stored locally
either in the ROM or in external storage. In the proposed system, a subscription
does not necessarily install the whole application, but the subscribed application
needs to be visible to the user. Thus, our application presentation layer needs to
be different.

Streaming Management of Applications and Data 9

In conventional mobile devices, applications are shown on the home screen,
and the home screen itself is an application that queries the package manager
for available application packages. Thus, the home screen application arranges the
application shortcuts depending on the number of packages available. It retrieves
the icon and label of those packages when they have to be displayed. In the proposed
system, locally cached applications are displayed in the same way. The challenge
is to display non-local applications. An application consists of several components,
of which the execution code takes up the most space in the application bundle.
The components needed to display the shortcut take up very little space. All these
display components are collectively referred to as the metadata.

For a subscribed application, this metadata is stored locally for display.
Every component of metadata is displayed on the home screen, and the non-
local application can be launched and deleted exactly like a local application.
Local applications can be displayed unchanged. Thus, the Uniform Application
Presentation module is a combination of the original and metadata presentation
modules.

3.3 On-demand Application Execution

The last section suggests that an application’s status can be cached or un-cached,
where cached applications are stored just like applications in current mobile
environments, whereas un-cached applications only store metadata locally. To
create a seamless experience, a special execution module is needed to launch cached
and un-cached applications.

A mobile application in conventional mobile environments is executed as follows:

• User to system action transportation: The home screen will store the
application presentation data (label, icon) and corresponding package
information (package name, storage position, etc.) in its memory. When the
user taps an application icon from the home screen, the package information of
the destination application is found by calculating the coordinates of the tap
event. A system action with the application entry point and launch parameters
is then performed.

• Application data loading: The system action launches the appropriate
application. The application data will be loaded into memory and the
application will execute.

Application execution in the Smile system occurs as follows:

• User action to system action transportation: The Smile system home screen
also first creates a system action for each application launched. However, the
system action for un-cached applications is formed differently, as a special
action calling for a remote load process, which will be used in next step.

• Application data loading: The loading process for cached applications is again
similar to conventional devices. For un-cached applications, the information
in the action will be converted to a remote address for a loading service,
implemented as a system service to retrieve the application content from the
meta server. Once the data is fully retrieved, it is installed like a normal
application. The rest of the process is the same as for local applications.

10 Y. Zhao, W. Han, R. Xue and W. Chen

• Application post launch action: This step is only required for un-cached
applications. After an un-cached application is downloaded, it will become a
cached application. The home screen will update its data so that the system
action for these applications is not an action call for a remote load process.
Subsequent application calls will happen exactly like cached applications.

The proposed system shares many steps with the conventional approach.
However, the loading process has a delay between the subscription stage and the
execution stage. We also have different actions for different type of applications,
and the binding of applications and actions is not fixed.

3.4 Application Replacement Strategy

The previous section described the execution of cached and un-cached applications.
If the user subscribes to too many applications, he/she cannot all be cached locally
and we need to decide which ones to cache locally. When there is not enough space
for a new application, some cached application will have to be replaced.

The replacement strategy is an important component of our system as there is
no limit on the number of subscriptions available to a user. Our goal is to allow
users to try out several applications even with limited storage space, which having
a low penalty in terms of waiting time and network traffic cost.

First, we define the granularity of replacement. Like the replacement policy used
by CPUs to deal with the cache lines, we can opt for a coarse grain or a fine grain.
For the coarsest grain, we may replace all the applications in one operation, while for
the fine grain we would replace only one or a small number of applications. Under a
coarse grain policy, if a new application needs to be cached, we would replace several
applications with new applications. We would be doing some prefetch work in the
process, with the expectation that the user will use those prefetched applications.
However, unlike a memory cache, the usage pattern of applications is irregular and
unpredictable, although we can gather information on the usage frequency of each
application.

Thus, a fine grain policy was chosen for the Smile system, which uses one
application as the basic unit for replacement. When a new un-cached application
is launched and there is inadequate storage space remaining, we will remove one or
more of the least expensive applications to make room for the new one.

We first check the frequency of use of all cached applications and retain the
applications used most frequently. The size of the applications is also an important
factor. If a large application that is used infrequently is removed, then there will be a
very large waiting time and network traffic penalty if the application is re-launched.

Mobile application usage analyses indicates that a user generally uses a very
small subset of installed applications. Algorithm 1 is formulated based on the latter
consideration.

The actual approach used is slightly different due to an additional updating
strategy, described in Section 3.5.

In our system, the application replacement module executes this strategy.
This module is a system service that collects the execution information for each
application, and stores it in a private storage area. When the remaining storage
space is not enough for a new application, this service will use Algorithm 1 to

Streaming Management of Applications and Data 11

Algorithm 1: Replacement(Appa)

Input: Appa

Totol Size = 0;
initializing Application Penalty;
initializing Cached Applications;
for i = 1 to Appa.len do

if Appa[i].id not in Cached Applications then
Application Penalty[Appa[i].id] =
Application Penalty[Appa[i].id] + Appa[i].size;
Total Size = Total Size + Appa[i].size;
while Total Size > MAX STORAGE SIZE do

Pick p from Application Penalty where Application Penalty[p] is
smallest;
Cached Applications.remove(p);
Uninstall p;
Total Size = Total Size− p.size;

end
Cached Applications.add(Appa[i].id);

end

end

perform the remove operation. Meanwhile, it will back up the user application data
to the remote server.

3.5 Application Updating Strategy

Applications are updated efficiently and seamlessly in our system. This section
describes the update strategy of our proposed system.

Both cached and un-cached applications can receive updates at any time. An
application update is initiated by the server side; the mechanism is described in
Section 3.4.

To update an un-cached application, a lazy update is performed the next time
the application is launched. The user will be notified about the update on the home
screen. One of the following options is chosen when a cached application is updated.

• For frequently used and/or small applications, a quick update is performed if
the change is minor. For a major change, a notification is issued instead of a
direct update in case there are compatibility problems with the application
data.

• For less frequently used and/or large applications, the application is marked
as updated. The policy of replacement was described in Section 3.4. An
additional application replacement rule is that applications marked as
updated will be considered for removal first.

12 Y. Zhao, W. Han, R. Xue and W. Chen

4 Server

In this section, we discuss server side challenges, including user identification,
application subscription and update, storage management, performance, as well as
consistency and integrity.

4.1 User Identification

In our system, each user has a logical user identifier uid. In mobile computing,
every mobile device has a unique IMEI number. To be able to connect to
telecommunication networks and for identification, a mobile device needs to have a
SIM card, with a unique IMSI number.

When a device runs our proposed system for the first time, a new uid is
generated, which is associated with both the IMEI and IMSI numbers. These two
numbers will subsequently be used for identification, to ensure that the same device
and subscriber are using the system. When either of the two numbers changes, the
user has to register the new numbers in the system to use their original account.

4.2 Application Subscription and Update

As described in Section 3.1, users need to subscribe to applications in Smile in
order to use them. On the server side, the application subscription information is
stored in the MDS. The MDS then generates a subscribed application list for the
user, and checks whether the user is authorized to use the applications when the
client requests applications and user data.

On server side, when an application is updated by the administrator through
the MDS, notifications of application update will be pushed to clients. Then clients
will take action according to the policies described in Section 3.5.

4.3 Storage Management

As described in Subsection 2.2, Smile identifies the user data of an application for
a specific user by the (uid, aid) pair, and stores this piece of user data as a large
binary object. Objects are stored among the UDSes in key-value form.

In order to save on storage space, Smile computes message digests for all the
objects stored in the UDSes. We introduce an indirection here: The keys are first
mapped to digest values, and then digest values to objects. This process could find
identical objects, and remove redundancy in storage space.

4.4 Performance

To optimize performance, the Front End provides a caching mechanism for
applications and user data. When FE receives a request for application or user data,
it first checks the cache, and returns the data immediately if there is a hit in the
cache. In case of a cache miss, FE queries the MDS for the site of the requested
data, and then requests the required data from the target AR or UDS.

Multiple FEs can be installed in the system to reduce the workload per FE.
Cached data on FEs should be treated carefully here, as application or user data
updates may introduce inconsistency. Cached data should be invalidated when it

Streaming Management of Applications and Data 13

0

10

20

30

40

50

60

[0, 4K] (4K, 32K] (32K, 256K] (256K, 2M] 2M+

A
p

p
lic

at
io

n
 N

u
m

b
er

Application Data Size

Figure 4 Distribution of size of user data for daily-used applications.

is modified by application upgrades or user data updates. Copies of the data on
other FEs should be invalidated as well. We use the write-through policy because
the modification of one specific piece of data is rare in practical use.

4.5 Consistency and Integrity

In the context of mobile computing, the data connection can sometimes be slow or
unavailable. As mentioned in Section 3, the user data of one application needs to be
synchronized on the server side when the application has been replaced. Statistics
from a study of several smartphones which were in daily use that analyzed over 150
applications show that user data are typically small (as shown in Figure 4). About
50% of the applications have user data size up to 32kB, and 80% are below 256kB.
Smile transfers data in packets with 32kB in size. This size has been chosen keeping
in mind the trade-off between the time overhead due to control packets, and the
cost of re-transmission due to communication failure. If the transfer does not go
through, the remaining packets will be retransmitted once the data connection is
stable again.

According to the data synchronization policy described in Subsection 3.4, user
data only needs to be synchronized after the corresponding application has been
replaced. Thus, user data is not modified during synchronization, which ensures its
consistency.

5 Implementation

The Smile system can be implemented in several mobile operating systems. For
this study, we implemented and evaluated the proposed system on the Android
Gingerbread platform with a Wi-Fi network. We used Nexus S smartphones for the
experiments. Our implementation is above framework level; therefore, many other
Android devices can be supported by our system.

14 Y. Zhao, W. Han, R. Xue and W. Chen

Home Screen

App

App Dalvik VMIntent B

Intent A BroadcastReceiver

Loading Service

Local Storage

Remote Storage

(1)

(6)

(2)

(3) (4)
(5)

(3)
Replace Service

(1)

(2)

Figure 5 Control flow of On-demand Execution and Replacement.

The Instant Application Subscription is implemented as an application in the
Android OS, installed like an App from the Android Market. In this application,
users can complete a simple registration to get unique account numbers based
on their devices’ IMEIs. They can then see the list of all applications and
their subscribed applications. Subscribing to an application will result in a quick
download of metadata saved to the data directory of TransparentPackageManager.
The user can unsubscribe from an application by uninstalling it.

Uniform Application Presentation: In a normal Android system, all application
information is collected by the PackageManager, which is an important system
manager component inside the runtime framework. We considered changing the
implementation for PackageManager to make it retrieve transparent application
information through the network. However, this component is very critical for the
framework, and any bugs or errors will make the whole system unstable.

Thus, this layer was implemented in the home screen of Launcher, an Android
application that creates a new home screen in Android. Launcher directly renders
the application labels and icons. We injected our code in the Launcher source
code to make it display applications from two different sources. The first source
was the original PackageManager, through which cached application information is
provided, which the unmodified Launcher supports. The other was our Transparent-
PackageManager, a fake package manager that provides the un-cached application
information, using only the small metadata retrieved from the server after the first
download of the application lists.

Intent is an important component in Android as every icon in the home screen
is bound to Intent in memory. The Intent contains the package name and the
entry point for an application, which will be used by Dalvik VM to load the
application’s contents. Under our On-Demand Application Execution paradigm,

Streaming Management of Applications and Data 15

there are different Intents for cached and un-cached applications. The Intents
for cached applications are unchanged from the default. Intents for un-cached
applications contain basic application data and the remote address of the execution
code to be fetched. When an un-cached application is launched, Intent A will be
sent and a BroadcastReceiver will handle the intent to start a loading Service, which
will retrieve the rest of the application data. After the retrieve process, the loading
Service will install the application data, create an Intent B containing only the
package name and entry point, and then launch it. Thus, the un-cached application
is launched.

When an un-cached application is launched, it becomes a cached application.
To avoid repeating the loading process during subsequent executions, we replace
the Intent bound to the icons in the home screen with Intent B, just like other
cached applications.

The implementation of the replacement service is the reverse of the process
of transparent application execution. First, the replacement service decides which
application(s) are to be deleted from the cache, which are then uninstalled. Finally,
the Intent bound to this application is replaced with an Intent of the type that
references an un-cached application.

The implementation of the application update process is based on push
notifications. The update message is pushed to the client. As described in Section
3.5, the quick update is a reinstall, and the lazy update is just like a normal
replacement in the Smile system.

6 Evaluation

The Smile system was evaluated through experiments performed in a test
environment. PC servers, Android Phones, and WLANs were used to demonstrate
the Transparent Application Streaming system.

Samsung Nexus S smartphones were used as clients running Android OS version
2.3. The ROM size for the Nexus S is 512 MB, and the RAM size is also 512MB.
The PC servers had Intel i5 processors and 4GB DDR3 RAM. The PC servers were
equipped with 7200 rpm Western Digital hard disks.

The following aspects were evaluated:

• Application Loading Performance: whether the execution of an application
is transparent to the user, so they do not know if the application is cached
locally or stored remotely. We evaluate the loading performance to check if
the system is usable.

• Application Replacement Penalty: The case where users have subscribed to
more applications than they can store locally. Launching applications will
require additional loading time for network communication. We measure the
average penalty under overload to evaluate the usability of the Smile system.

We used the 461 top free Android applications from the Android Market(Google
2011a) as test applications, and constructed a histogram based on size. Figure 6
shows that most applications are smaller than 16 MB. The average size of the 461
applications was calculated to be 3.55MB.

16 Y. Zhao, W. Han, R. Xue and W. Chen

0

50

100

150

200

250

0K-16K 16K-64K 64K-256K 256K-1M 1M-4M 4M-16M 16M-64M

A
p
p
lic

a
ti
o
n
 N

u
m

b
e
r

Application Size

Figure 6 A Histogram of the application size.

6.1 Application Fist Time Loading Performance

As loading speed is very important in terms of the user experience, we conducted
experiments to test the performance of loading applications for the first time in our
system. We set up the application server and the test clients in a local network, and
tested the applications’ first loading time on the Nexus S phones running Android
version 2.3.7 connected through Wi-Fi. The results are shown in Figure 7.

In Figure 7, every dot represents an application. The X axis is the application
size and the Y axis is the application loading time. The following observations can
be made:

• The loading time for applications increases linearly with size.

• Most applications take under 10 seconds to load. This waiting time is
considered reasonable for the users. Certainly, this test is under very ideal
condition, the real situation might be slower. But since the mobile network
technology is developing very fast, the future wireless network bandwidth
must be much better.

6.2 Application Replacement Penalty

To test the replacement penalty, we first define the usage model. As our system is
not deployed widely, we had to test performance through simulation experiments.

First, we define the penalty. We evaluate the penalty under different overload
scenarios. Suppose a user subscribes to a set of applications, and their total size
is less than the storage limit. In this case, there will be no penalty except when
the application is first launched. When the total size of all applications exceeds
the storage limit, there will most probably be a cache miss in the local cached list.

Streaming Management of Applications and Data 17

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35

L
o
a
d

in
g
 T

im
e
 (

s
)

Application Size (MB)

Figure 7 Application Loading Time.

This will impose a penalty of extra loading time and network traffic. We define the
penalty as following figures.

Pr =

∑n
i=0 T (Ai)

n

Here Pr represents the penalty, which is the extra average loading time spent on
each application load operation for an overload rate equal to r. The overload rate is
the ratio between the total size of all subscribed applications and the local storage
space available. Ai represents the application picked for the ith iteration of the
simulation. T (Ai) represents the loading time of application Ai.

Since Figure 7 indicates a linear relationship between the loading time and
application size, a secondary penalty equation does not need to be defined. The
final equation is given by:

Pr =

∑n
i=0 S(A−

i)

n ∗Davg

Here A−
i is the application that is not cached in the ith iteration of the simulation.

S(A−
i) is the size of the Application Ai and Davg is the average download speed.

As our experiments are simulations, we do not assume an average download
speed. Instead, we use the cache miss rate to show the effect of a replacement, which
is defined as:

Cr =

∑n
i=0 S(A−

i)∑n
i=0 S(Ai)

where, Cr is the cache miss rate under overload ratio r. The denominator denotes
the total of all application sizes in the loading sequence. Once the sequence is
generated,

∑n
i=0 S(Ai), n and Davg are fixed, which implies that Cr and Pr have a

linear relationship.
Next, we have to define the application characteristics. As we do not have access

to the real usage data, we make our own hypothesis. We generate the application
size distribution to fit the distribution in the Figure 6, where the average size is
3.55MB.

18 Y. Zhao, W. Han, R. Xue and W. Chen

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 32 64

C
a

c
h

e
 m

is
s
 r

a
te

 /
 %

Normalized Total Application Size

Figure 8 Cache miss rate under overload conditions.

To find the usage frequency of each application, we use the research results from
(Verkasalo 2009). The data in abstract of this paper tells us that the top 5% of
applications typically represent over 90% of the total application usage, and the
bottom 80% of applications represent just 2.10% of the total usage. We chose an
exponential distribution function that is close to the observed results presented in
this paper:

f(x) = 20e−20x

Under this distribution, the top 5% applications will represent 60% of the
total application usage while the bottom 80% applications represent 20% of the
application usage, which is a little more conservative than the distribution discussed
in (Verkasalo 2009).

In our test bed, thousands of dummy applications of various sizes and frequency
attributes were generated. We then generate the sequence of launching applications
by using Round-robin scheduling, applications with higher frequency will be
probably used more frequently. We then simulated the sequence involved in
launching applications as given in Algorithm 1. We record the cache miss penalty
for each iteration of application execution, under specific overload situations.

The curve in Figure 8 represents the relationship between the overload
percentage and replacement penalty. The X-axis represents the normalized total
application size that ranges from 1 to 100. This means that the total size of all
subscribed applications is 1 to 100 times larger than the local storage space. The
Y -axis represents the cache miss rate.

The results show that for an overload ratio below 10, the cache miss rate is
around 10%. This represents a user with a 16GB Android device using the Smile
system for application storage, who has subscribed too many applications, whose
total size is around 160GB. The user will incur an average extra loading penalty
of 0.35MB if their usage pattern is as described in (Verkasalo 2009), based on our
experimental results. If we assume that the average download speed is the same as
the result in Section 6.1, them it means it will averagely cause an extra load time
around 0.1 to 0.2 seconds when we launch an application.

Streaming Management of Applications and Data 19

7 Related Work

Application streaming is one of several approaches proposed for application
management improvement in mobile devices. This section compares Smile with
existing approaches, and evaluates it in the context of mobile/pervasive computing,
especially automatic partitioning, and remote execution.

Transparent computing stores the entire user environment externally, including
the operating system, user applications, and, user data, and the thin client
translates each disk operation into a network event (Zhang et al. 2010, Tian
et al. 2009, Zhang and Zhou 2006, 2009). Although Smile is mainly designed
based on transparent computing principles, the application cache policies are
its distinguishing feature. As transparent computing streams every bit over the
network, it involves heavy network traffic, and hence, is more suitable for wired
networks (e.g. LAN) (Liu et al. 2010). Smile is targeted at mobiles and wireless
networks, and therefore, network latency, bandwidth, and power consumption are
important factors. Smile caches the most frequently used applications to improve
user experience even when there is no network connection.

The Apple App Store (Apple 2011a) and the Android Market (Google 2011a)
track which applications are installed by users, but they do not install or backup
applications automatically. Thus, users need to have the knowledge and skills
needed to synchronize applications and data manually. Smile greatly simplifies this
process and reduces the effort required. It also guarantees that user applications
and data will always be available when the device is connected to a network.

Furthermore, there has been substantial prior research on the topics of
partitioning and remote execution. The CloudClone (Chun et al. 2011, Chun
and Maniatis 2010) partition applications uses a framework that combines static
program analysis with dynamic program profiling, and executes remote analysis
using a virtual machine. The MAUI (Cuervo et al. 2010) requires programmers
to annotate methods as REMOTABLE to tell the runtime process to perform remote
code execution. Smile complements such systems. CloudClone and MAUI assume
that all applications are already present in the local flash memory, whereas Smile
abstracts them to make it appear that they are.

Remote execution addresses the problem of executing resource-intensive
applications on resource-poor hardware. These applications are pre-partitioned
between local and remote execution (Balan et al. 2007, 2002)(Su and Flinn 2005,
Flinn et al. 2003, Balan et al. 2002, Flinn et al. 2001). ISR (Satyanarayanan et al.
2005) leverages the checkpointing and restart ability of the virtual machine to allow
an application to be suspended on one machine and resume on another machine. As
mentioned earlier, Smile considers the application as a whole and does not conflict
with the remote execution process.

Dropbox (Dropbox 2011), iCloud (Apple 2011b), and Google Sync (Google
2011b) are three representative services providing user data management in mobile.
Dropbox provides a cloud storage service that lets users store and share files
across the Internet using file synchronization. Dropbox, when installed on desktops
and laptops, can synchronize local files and directories, and mirror the content
between local and cloud storage. On mobile platforms, Dropbox maintains a cache
of the most accessed files, according to the user’s preferences. However, Dropbox

20 Y. Zhao, W. Han, R. Xue and W. Chen

is unaware of the application that the data belongs to, while Smile knows which
application owns which files.

iCloud (Apple 2011b) aims to provide a service for storing personal music,
photos, documents, and more, and wirelessly pushes the content to all devices,
automatically, and seamlessly. Programmers have to use dedicated APIs to
enable iCloud data synchronization for a particular application. Google sync only
synchronizes information inside the Android system, including contacts, emails,
calendars, and other content. It also provides a backup service for Android, which
allows developers to copy persistent application data to remote cloud storage, to
provide a restore point for the application data and settings. If a user performs a
factory reset or moves to a new Android-powered device, the system automatically
restores the previously backed up data when the application is re-installed. In
contrast to iCloud and Google Sync, Smile synchronizes data transparently for both
users and programmers, and enables the automatic reinstallation of applications.

8 Conclusion and Future Work

In this paper, we proposed a new paradigm for mobile cloud computing. The
Smile system lets users use all subscribed applications transparently, as if they are
all installed locally. Applications are also updated efficiently and promptly, with
guaranteed data synchronization. A prototype system was developed and evaluated
to demonstrate the feasibility of our proposed system. The experimental results
demonstrate that our system is very effective in handling significant amounts of
overload in terms of installed applications. Thus, Smile is a feasible system for
future mobile cloud computing infrastructure.

However, our system has some limitations. One limitation is that all application
metadata is stored locally (the icon, label etc.). When the number of applications
grows significantly, the size of metadata will become significant and lead to wasted
storage space.

Our future work may include improvements to metadata storage, cache
granularity and replacement policy, improved power management and support for
other operating systems (such as iOS). Finally, further research is needed to provide
security and data protection for the communication and cloud storage systems.

Acknowledgement

We thank the anonymous reviewers for their useful feedback. The research was
partially supported by National Key Science and Technology Initiative Grant
No. 2009ZX01039-001-001, National Natural Science Foundation of China Grant
61073175, 61035004, and National 863 High Tech Plan Grant 2012aa012601.

References

Apple (2011a), ‘App Store’, http://www.apple.com/iphone/from-the-app-

store/.

Streaming Management of Applications and Data 21

Apple (2011b), ‘iCloud’, https://www.icloud.com/.

Balan, R. K., Flinn, J., Satyanarayanan, M., Sinnamohideen, S. and Yang, H.-I.
(2002), The case for cyber foraging, in G. Muller and E. Jul, eds, ‘Proceedings
of the 10th ACM SIGOPS European Workshop, Saint-Emilion, France, July 1,
2002’, ACM, pp. 87–92.

Balan, R. K., Gergle, D., Satyanarayanan, M. and Herbsleb, J. D. (2007),
Simplifying cyber foraging for mobile devices, in E. W. Knightly, G. Borriello
and R. Cáceres, eds, ‘Proceedings of the 5th International Conference on Mobile
Systems, Applications, and Services (MobiSys 2007), San Juan, Puerto Rico,
June 11-13, 2007’, ACM, pp. 272–285.

Chun, B.-G., Ihm, S., Maniatis, P., Naik, M. and Patti, A. (2011), Clonecloud:
Elastic execution between mobile device and cloud, in ‘European Conference on
Computer Systems, Proceedings of the Sixth European conference on Computer
systems, EuroSys 2011, alzburg, Austria - April 10-13, 2011’.

Chun, B.-G. and Maniatis, P. (2010), Dynamically partitioning applications
between weak devices and clouds, in ‘1st ACM Workshop on Mobile Cloud
Computing and Services (MCS 2010)’.

Cuervo, E., Balasubramanian, A., ki Cho, D., Wolman, A., Saroiu, S., Chandra, R.
and Bahl, P. (2010), MAUI: Making smartphones last longer with code offload, in
S. Banerjee, S. Keshav and A. Wolman, eds, ‘Proceedings of the 8th International
Conference on Mobile Systems, Applications, and Services (MobiSys 2010), San
Francisco, California, USA, June 15-18, 2010’, ACM, pp. 49–62.

Dropbox (2011), ‘Simplify your life’, http://www.dropbox.com.

Flinn, J., Narayanan, D. and Satyanarayanan, M. (2001), Self-tuned remote
execution for pervasive computing, in Proceedings of HotOS-VIII: 8th Workshop
on Hot Topics in Operating Systems, May 20-23, 2001, Elmau/Oberbayern,
Germany Proceedings of HotOS-VIII: 8th Workshop on Hot Topics in Operating
Systems, May 20-23, 2001, Elmau/Oberbayern, Germany (2001), pp. 61–66.

Flinn, J., Sinnamohideen, S., Tolia, N. and Satyanarayanan, M. (2003), Data staging
on untrusted surrogates, in FAST Proceedings of the FAST ’03 Conference on
File and Storage Technologies, March 31 - April 2, 2003, Cathedral Hill Hotel,
San Francisco, California, USA (2003).

Google (2011a), ‘Android Market’, https://market.android.com/.

Google (2011b), ‘Google Sync’, http://www.google.com/mobile/sync/.

Ligang, X. (2010), ‘78% of iphone users never install applications’, http://

xiangligang.blog.techweb.com.cn/archives/210.html?1321668111.

Liu, H., Zhang, Y., Zhou, Y. and Xue, R. (2010), A rate and resource detection
based receive buffer adaptation approach for high-speed data transportation, in
Proceedings of the 19th International Conference on Computer Communications
and Networks, IEEE ICCCN 2010 Proceedings of the 19th International

22 Y. Zhao, W. Han, R. Xue and W. Chen

Conference on Computer Communications and Networks, IEEE ICCCN 2010,
Zürich, Switzerland, August 2-5, 2010 (2010), pp. 1–6.

Poulsen, T. (2011), ‘Installing Android apps to the SD card’, http://developer.
appcelerator.com/blog/2011/07/installing-android-apps-to-the-sd-

card.html.

Proceedings of HotOS-VIII: 8th Workshop on Hot Topics in Operating Systems,
May 20-23, 2001, Elmau/Oberbayern, Germany (2001), IEEE Computer Society.

Proceedings of the 19th International Conference on Computer Communications
and Networks, IEEE ICCCN 2010, Zürich, Switzerland, August 2-5, 2010 (2010),
IEEE.

Proceedings of the FAST ’03 Conference on File and Storage Technologies, March
31 - April 2, 2003, Cathedral Hill Hotel, San Francisco, California, USA (2003),
USENIX.

Purdy, K. (2010), ‘What Should I Do When My Android Runs Out Of App
Space?’, http://www.lifehacker.com.au/2010/10/what-should-i-do-when-
my-android-runs-out-of-app-space/.

Satyanarayanan, M., Kozuch, M., Helfrich, C. and O’Hallaron, D. R. (2005),
‘Towards seamless mobility on pervasive hardware’, Pervasive and Mobile
Computing 1(2), 157–189.

Su, Y.-Y. and Flinn, J. (2005), Slingshot: deploying stateful services in wireless
hotspots, in K. G. Shin, D. Kotz and B. D. Noble, eds, ‘Proceedings of the
3rd International Conference on Mobile Systems, Applications, and Services
(MobiSys 2005), June 6-8, 2005, Seattle, Washington, USA’, ACM, pp. 79–92.

Tian, P., Zhang, Y., Zhou, Y.-Z., Yang, L. T., Zhong, M., Weng, L. and 0002,
L. W. (2009), ‘A novel service evolution approach for active services in ubiquitous
computing’, Int. J. Communication Systems 22(9), 1123–1151.

Verkasalo, H. (2009), Open mobile platforms: Modeling the long-tail of application
usage, in ‘Fourth International Conference on Internet and Web Applications and
Services’, pp. 112–118.

Zhang, Y., Yang, L. T., Zhou, Y. and Kuang, W. (2010), ‘Information security
underlying transparent computing: Impacts, visions and challenges’, Web
Intelligence and Agent Systems 8(2), 203–217.

Zhang, Y. and Zhou, Y. (2006), Transparent computing: A new paradigm for
pervasive computing, in J. Ma, H. Jin, L. T. Yang and J. J. P. Tsai, eds,
‘Ubiquitous Intelligence and Computing, Third International Conference, UIC
2006’, Vol. 4159 of Lecture Notes in Computer Science, Springer, pp. 1–11.

Zhang, Y. and Zhou, Y. (2009), Transparent Computing: Concepts, Architecture,
and Implementation, Singapore: Cengage Learning, 2009.

