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ABSTRACT
Machine learning applications on Spark suffers from poor scalabil-
ity. In this paper, we reveal that the key reasons is the non-scalable
reduction, which is restricted by the non-splittable object program-
ming interface in Spark. This insight guides us to propose Sparker ,
Spark with Efficient Reduction. By providing a split aggregation
interface, Sparker is able to perform split aggregation with scalable
reduction while being backward compatible with existing appli-
cations. We implemented Sparker in 2,534 lines of code. Sparker
can improve the aggregation performance by up to 6.47× and can
improve the end-to-end performance of MLlib model training by
up to 3.69× with a geometric mean of 1.81×.

CCS CONCEPTS
•Computingmethodologies→Distributed computingmethod-
ologies;Machine learning; • Information systems→Data an-
alytics.
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1 INTRODUCTION
Spark is one of the most popular big data processing frameworks
nowadays. Spark connects various data analytics domains via its
Resilient Distributed Dataset (RDD) programming model [24] [25].
Spark’s machine learning framework - MLlib [14], is widely used
since it can be easily integrated into Spark’s data analytics work-
flow.

However, we found that the scalability of machine learning
through MLlib is far from satisfactory. For example, we tested the
performance of three typical machine learning algorithms on real-
world datasets with MLlib. Details of algorithms and datasets can
be found in Section 2.1. As shown in Figure 1, on a 8-node cluster,
the average speedup over a single-node is only 1.25×.

To understand the reasons behind MLlib’s poor scalability, we
further investigate the time breakdown of different stages of MLlib’s
execution. We found that treeAggregate (referred as tree aggrega-
tion later) occupies a geometric mean of 67.18% for end-to-end time,
as shown in Figure 2. Thus, tree aggregation is a major hot-spot of
MLlib is worth to investigate in detail.

Tree aggregation in Spark can be roughly divided into two suc-
cessive steps: computation and reduction. We next analyze the
performance data to see which part is the bottleneck. In compu-
tation step, the value of current partition is computed locally. In
reduction step, the computed values, called aggregators are further
reduced globally into a single aggregator. We found that although
computation scales as expected, reduction time increases signifi-
cantly, making overall performance not to scale, as illustrated in
Figure 4.

Canwe improve the scalabiltiy of redution in Spark significantly?
The answer seems obvious. State-of-the-art reduction algorithms [2,
4, 7, 21] (referred as Scalable Reduction later), such as Rabenseifner’s
reduction algorithm, perform much better than treeAggregate
because they employ larger parallelism than the tree reduction
algorithm used by Spark. The question is why Spark uses a slow
algorithm instead of a fast one?

We reveal that the current Spark programming interface is the
reason. Scalable reduction requires to split the objects to be reduced
to gain parallelism. However, in Spark, the objects are of User-
Defined Type (UDT) represented by a generic type, which lacks
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information to be split. We believe that the key to improve the
scalability problem is latent in this interface.

In this work, we design a new programming interface to enable
scalable reduction in Spark. The key idea to allow programmers to
specify how to split objects to be reduced into small pieces to gain
more parallelism. The interface should also be general enough to
support various machine learning models in MLlib.

Another opportunity we find to optimize the performance of
Spark reduction is to reduce aggregators inside the same executor
in memory locally to avoid unnecessary serialization and commu-
nication overhead. We call this technique In-memory Merge (IMM).

To evaluate our idea, wemake a prototype system called Sparker,
which enhances Spark with split aggregation to support more scal-
able machine learning.

The contributions of this work are as follows:

• We observe that the scalability of MLlib is poor and the
bottleneck lies in reduction.

• We reveal that the non-splittable object interface in Spark
prevents MLlib from adopting fast reduction algorithms, and
we propose a general splittable object interface to enable an
fast reduction algorithm.

• We propose an in-memory merge approach to further im-
prove the performance of reduction.

Our evaluation shows that Sparker can improve the aggregation
performance by up to 6.47× and can improve the end-to-end per-
formance of MLlib model training by up to 3.69× with a geometric
mean of 1.81×.

The rest of the paper are organized as follows: Section 2 re-
veals the bottleneck of MLlib’s poor scalability. Section 3 intro-
duces Sparker’s design. Section 4 introduces implementation details.
Section 5 presents the evaluation of Sparker. Section 6 discusses
Sparker’s implication and limitation. Section 7 for related works
and Section 8 for conclusion.

2 SCALABILITY ANALYSIS OF MLLIB
In this section, we present our observations on the scalability of
MLlib. First, we illustrate the poor scalability in MLlib. We then
observe that tree aggregation is a hot-spot and the non-scalable
reduction algorithm used in tree aggregation is the bottleneck. We
further reveal that the existing aggregation interface in Spark is
unable to support scalable reduction algorithms due to the lack of
object-splitting capabilities.

2.1 Experiment Setup
We perform the experiment on two clusters. The first cluster is de-
noted as BIC which is an in-house cluster connected with 100Gbps
Infiniband. The second cluster is denoted asAWSwhich is amedium-
scale cluster on Amazon EC2 with larger number of cores and
connected with 25Gbps Ethernet.

Table 1 shows their configuration in detail. In the following
subsections, we report our results of the experiments.

Table 2 shows all the real-world datasets we examined, denoted
as LDA-E, LDA-N, LR-A, LR-C, LR-K, SVM-A, SMV-C, SMV-K, SVM-
K12 respectively. LR-K12 runs out of memory under both of our
configuration, thus excluded from our selection.

Table 1: Configuration of the two clusters used for experi-
ment
Configuration BIC AWS
Cluster type internal cluster EC2 (m5d.24xlarge)
Number of nodes 8 10
Processor Intel Xeon E5-2680 v4 Intel Xeon Platinum 8175M
Logical cores per node 56 96
Memory per node (GB) 256 384
Network IPoIB EDR (100Gbps) 25Gbps Ethernet
Disks per node 6 4
Disk type 4TB HDD 900GB SSD
Executors per node 6 12
Executor cores 4 8
Executor memory (GB) 30 25
MPI Library MPICH 3.2
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Figure 1: The speedups of different MLlib workloads on 8
nodes with respect to 1-node performance.

2.2 Poor Scalability of MLlib
Based on our prior usage onMLlib to train machine learningmodels,
we experienced MLlib’s unsatisfactory performance. Even worse,
its performance seems not to scale as we add more computing
power. This makes us wonder if MLlib is a highly-scalable machine
learning framework. To answer this question, we design a set of
experiments. The experiments include 9 combination of workloads
including 3 machine learning models (LDA, SVM, LR, shown in
Table 3) with and 6 real-world datasets (shwon in Table 2) on a
8-node proprietary cluster (shown in Table 1). We measure both
the 1-node and the 8-node performance for each workload. The
8-node speedup over 1-node performance is shown in Figure 1. All
of the workloads fall far from the perfect speedup 8. The highest
speedup shows up in the workload LDA-N, which is only 2.49× of
the performance of a single node. The workload LR-K scales the
worst with a speedup of 0.73×. In other words, adding machines
even slows down the performance of LR-K. The average speedup
of all 9 workloads is 1.25×, which is only 15.58% to the perfect
speedup.

2.3 Non-scalable Reduction is the Bottleneck
To find out the limiting factors preventing MLlib from scaling, we
analyzed Spark’s history logs produced by those workloads and
found that the tree aggregation of Spark is a hot-spot. Among those
9 workloads with the 8-node configuration illustrated in Figure
2, the time spent in tree aggregation occupies 67.69% (geometric
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Table 2: Real-world datasets used in the experiment

Dataset Scale Task Source
avazu 45,006,431 samples with 1,000,000 features classification libsvm
criteo 51,882,752 samples with 1,000,000 features classification libsvm
kdd10 8,918,054 samples with 20,216,830 features classification libsvm
kdd12 149,639,105 samples with 54,686,452 features classification libsvm
enron 39,861 documents with 28,102 dictionary size topic model uci
nytimes 300,000 documents with 102,660 dictionary size topic model uci

Table 3: MLlib machine learning model used in the experi-
ment

Name Parameter Task
Logistic Regression regParam=0,elasticNetParam=0 classification
SVM miniBatchFrac=1.0,regParam=0.01 classification
LDA K=100 topic model
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Figure 2: Time is decomposed into aggregation, non-
aggregation and non-scalable computation per workload on
MLlib.
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Figure 3: The decomposed end-to-end time of LDA-N with
varying number of cores on BIC

mean) of the overall end-to-end time. Thus, tree aggregation is
indeed a hot-spot and worth further investigation.

We first perform strong scalability tests on BIC illustrated in
Figure 3. Driver and Non-agg denote non-scalable computation
in the driver and scalable computation irrelevant to aggregation,
respectively. We further decompose the tree aggregation time into
computation and reduction. Agg-compute denotes the computation
time, which is the time of the first stage of tree aggregation and
represents roughly the time to compute the values of aggregators,
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Figure 4: The decomposed end-to-end time of LDA-N with
varying number of cores on AWS

while Agg-reduce denotes the reduction time, which is the time
of the subsequent stages and represents the time to reduce the
aggregators globally into a single aggregator in the driver. Figure 3
indicates that as the number of nodes increases from 1 (24 cores)
to 8 (192 cores), Spark’s computation time reduced from 1152.38s
to 342.43s (4.47×), which suggests that the computation scales as
expected. However, the reduction time has increased from 111.05s
to 187.48s (1.69×), which is a scalability bottleneck.

Moreover, it shows that there is room for further scale. To shed
some light, we conduct strong scalability tests on AWS ranging
the number of cores from 4 to 960 for LDA-N and decompose the
end-to-end time into 4 components for LDA-N, as shown in Figure 4.
We have reduced the max number of iterations from 40 to 15, thus
the AWS result has smaller absolute end-to-end time comparing to
the BIC result. As the number of cores increases from 8 to 960, the
computation has been reduced from 272.36s to 58.39s (4.66×), while
the reduction time has increased from 26.38s to 111.23s (4.22×) and
the portion of reduction time has increased from 6.95% to 44.55%.
We observe that reduction gradually dominates the end-to-end time
of the application and limits its scalability with the increasing of
scale. From the trend showing in Figure 4, the reduction time would
be a significant bottleneck at large scale.

Actually, reduction algorithms [17, 21] and using scalable reduc-
tion algorithms in a machine learning system [1, 12, 13] are well
studied in earlier works. The fundamental difference between a
non-scalable reduction algorithm and a scalable reduction algo-
rithm is that scalable reduction can split the aggregators to extract
more parallelism, as shown in Figure 5. Both sides represent the
reduction of four aggregatorsV1,V2,V3,V4 into a single aggregator
V∗. The left side shows that a non-scalable reduction algorithm
treats the aggregators as non-splittable objects, while the right side
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Figure 5: Demonstration showing how scalable aggregation
splits aggregators to gain parallelism
shows that a scalable reduction algorithm will employ the fact that
each aggregator is splittable andVi can be split into three segments
Vi,1,Vi,2,Vi,3. Each segment can be reduced independently to form
the results V∗,1, V∗,2, V∗,3. Comparing to non-scalable reduction,
scalable reduction gains 3× parallelism, thus more scalable.

2.4 The Aggregation Interface in Spark does
not Support Fast Reduction

Splittable object is a prerequisite to use scalable reduction. However,
we observe an interesting fact that Spark RDD’s existing aggrega-
tion interface excludes us from using scalable reduction, due to
its lacking in object-splitting functionalities. The treeAggregate
in Figure 6 demonstrates the existing aggregation interface. The
generic type U denotes the type of aggregators and two callbacks
are provided. The seqOp describes how to compute an aggregator
while the reduceOp describes how to reduce two aggregators into
one aggregator. There are nothing to describe whether aggregators
are of a splittable type and how to split the aggregators. Lacking
in object-splitting functionalities, aggregators can only be treated
as an indivisable object. As a result, only non-scalable reduction
algorithms could be used.

In order to mitigate the MLlib’s scalability bottleneck, we pro-
pose to create a new interface of aggregation and enable the new
interface with object-splitting capability. In the next section, we will
introduce our new interface and illustrate how this new interface
enable us to fix the scalability issue of MLlib.

3 DESIGN OF SPARKER FOR FAST
REDUCTION

In this section, we first introduce the design of split aggregation
interface to enable fast reduction algorithm in Spark. Section 3.1
discusses the rationale behinds the interface design. Figure 6 shows
the comparison between tree aggregation and our split aggrega-
tion. Figure 7 is an example of using split aggregation. Section 3.2
presents the technique of in-memory merge which is an additional
optimization for fast reduction and reduces expensive serialization
and communication’s overheads.

3.1 Split Aggregation Design
The current reduction interfaces for fast reduction in paralle pro-
cessing systems other than Spark, such as MPI_Reduce in the MPI
standard [22], typically take an Array of Struct (AoS) from the user.
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splits aggregators to gain parallelism

has been reduced from 272.36𝑠 to 58.39𝑠 (4.66×), while the
reduction time has increased from 26.38𝑠 to 111.23𝑠 (4.22×)
and the portion of reduction time has increased from 6.95%
to 44.55%. We observe that reduction gradually dominates
the end-to-end time of the application and limits its scalabil-
ity with the increasing of scale. From the trend showing in
Figure 4, the reduction time would be a significant bottleneck
at large scale.

Actually, reduction algorithms [17, 21] and using scalable
reduction algorithms in a machine learning system [1, 12, 13]
are well studied in earlier works. The fundamental difference
between a non-scalable reduction algorithm and a scalable
reduction algorithm is that scalable reduction can split the
aggregators to extract more parallelism, as shown in Figure 5.
Both sides represent the reduction of four aggregators𝑉1,𝑉2,
𝑉3, 𝑉4 into a single aggregator 𝑉∗. The left side shows that
a non-scalable reduction algorithm treats the aggregators
as non-splittable objects, while the right side shows that a
scalable reduction algorithm will employ the fact that each
aggregator is splittable and𝑉𝑖 can be split into three segments
𝑉𝑖,1, 𝑉𝑖,2, 𝑉𝑖,3. Each segment can be reduced independently
to form the results 𝑉∗,1, 𝑉∗,2, 𝑉∗,3. Comparing to non-scalable
reduction, scalable reduction gains 3× parallelism, thus more
scalable.

2.4 The Aggregation Interface in Spark does not
Support Fast Reduction

Splittable object is a prerequisite to use scalable reduction.
However, we observe an interesting fact that Spark RDD’s ex-
isting aggregation interface excludes us from using scalable
reduction, due to its lacking in object-splitting functionalities.
The treeAggregate in Figure 6 demonstrates the existing
aggregation interface. The generic type U denotes the type
of aggregators and two callbacks are provided. The seqOp
describes how to compute an aggregator while the reduceOp
describes how to reduce two aggregators into one aggregator.
There are nothing to describe whether aggregators are of
a splittable type and how to split the aggregators. Lacking
in object-splitting functionalities, aggregators can only be

abstract class RDD[T] {
def treeAggregate[U](zeroValue: U)(
seqOp: (U, T) => U,
reduceOp: (U, U) => U,
depth: Int = 2): U

def splitAggregate[U, V](zeroValue: U)(
seqOp: (U, T) => U,
splitOp: (U, Int, Int) => V,
reduceOp: (V, V) => V,
concatOp: IndexedSeq[V] => V,
parallelism: Int = 4): V

}

Figure 6. API for tree aggregation and our proposed split
aggregation

treated as an indivisable object. As a result, only non-scalable
reduction algorithms could be used.

In order to mitigate the MLlib’s scalability bottleneck, we
propose to create a new interface of aggregation and enable
the new interface with object-splitting capability. In the next
section, we will introduce our new interface and illustrate
how this new interface enable us to fix the scalability issue
of MLlib.

3 Design of Sparker for Fast Reduction
In this section, we first introduce the design of split ag-
gregation interface to enable fast reduction algorithm
in Spark. Section 3.1 discusses the rationale behinds the in-
terface design. Figure 6 shows the comparison between tree
aggregation and our split aggregation. Figure 7 is an example
of using split aggregation. Section 3.2 presents the technique
of in-memory merge which is an additional optimization
for fast reduction and reduces expensive serialization and
communication’s overheads.

3.1 Split Aggregation Design
The current reduction interfaces for fast reduction in par-

alle processing systems other than Spark, such as MPI_Re-
duce in the MPI standard [22], typically take an Array of
Struct (AoS) from the user. This interface allows object easily
to be split. However, we found that this AoS style of interface
is not general enough to represent objects in MLlib. An exam-
ple is shown in Figure 7, the class for aggregator is denoted
as Aggwhich is a struct with two arrays( sum1 and sum2) and
can not be presented by the AoS styled interface easily. A
more general interface is wanted to support splittable objects
for fast reduction in MLlib.
As shown in Figure 6, we design a general interface for

aggregation called Split Aggregation Interface (SAI).
The rationale behinds this design is to allow users to define
the the objects to be split then reduced. The type of aggre-
gator is denoted as U, and the type of aggregator-segment is

Figure 6: API for tree aggregation and our proposed split ag-
gregation ICPP ’21, August 9–12, 2021, Lemont, IL, USA

1 type AD = Array[Double]
2 def splitA(A: AD, i: Int, n: Int): AD = /* omitted */
3 def concatA(Aseq: Seq[AD]): AD = /* omitted */
4 abstract class Agg(val sum1: AD, val sum2: AD) {
5 def add(elem: T): Agg
6 def merge(agg: Agg): Agg = {/* omitted */}
7 }
8 class AggSeg(val sum1: AD, val sum2: AD) {
9 def merge(agg: AggSeg): AggSeg = {/* omitted */}
10 }
11 val data: RDD[T] = /* dataset to be aggregated */
12 val resTA: Agg = data.treeAggregate(zeroValue)(
13 (agg, t) => agg.add(t),
14 (l, r) => l.merge(r))
15 val resSA: AggSeg = data.splitAggregate(zeroValue)(
16 (agg, t) => {agg.add(t)},
17 (agg, i, n) => new AggSeg(
18 splitA(agg.sum1, i, n),
19 splitA(agg.sum2, i, n)),
20 (l, r) => {l.merge(r)},
21 segs => new AggSeg(
22 concatA(segs.map(_.sum1)),
23 concatA(segs.map(_.sum2)))
24 )

Figure 7. Example code adapted from the RDDLossFunction
in MLlib to illustrate the concept of split aggregation inter-
face and justify the design of split aggregation interface. For
simplification, some of the code are omitted. splitA gets a
slice from the given array. concatA concatenates a sequence
of arrays into a single array. Both merge in Agg (aggregators
type) and AggSeg (aggregator-segments type) perform the
element-wise sum for each of their two arrays.

denoted as V. Different from the interface of tree aggregation,
its reduceOp is defined on aggregator-segments, rather than
aggregators. In addition, it takes another two callbacks from
the users. First, splitOp describes how to get a segment with
specified index from a given aggregator. Second, concatOp
describes how to concatenate a sequence of segments into a
single segment.
We illustrate the usage of our split aggregation interface

with an example code, as shown in Figure 7. The example
code is simplified from logistic regression for the purpose
of demonstration. Val resTA at line 12 represents the result
of tree aggregation while val resSA at line 15 represents
the result of split aggregation. There are several points that
worth attention.

First, the type of aggregator-segment (V) and the type of
aggregator (U) can be different. This is because that if we re-
quire them to share the same type, MLlib is unable to perform
split aggregation. As shown in the example, the aggregator
class (Agg, line 4) is an abstract class that relies on its sub-
classes to define add (line 5), which denotes the behavior of
adding an sample into this aggregator. Because an abstract

Executor

BlockManager

Task

Local FS Memory

Mutable Object Manager

Task Task Task

Spark: Serialize each task result   and store into block manager

IMM: Each task read, update,   write to mutable object manager

Driver

IMM: Fetch 
all task 

results in the 
next stage

Spark: Fetch 
each task 

result upon 
completion

Figure 8. in-memory merge reduces serialization and com-
munication overheads by deferring the driver’s result fetch-
ing and merging task results within the same executor in
memory

class is non-constructable, it is hard to define a splitOp that
can split an instance of Agg and returns Agg-typed segments.
As a result, if the type of aggregator-segment (V) is not dis-
tinguished from U, it is hard to define a splitOp under this
scenario. With our design, this problem can be easily solved
by introducing a new class AggSeg (line 8) that only concerns
its role as a merge-only aggregator and its merge shares the
same behavior to Agg’s merge (line 6). It is easy to implement
splitOp as shown in line 17.

Second, the function splitOp is defined to return a single
specified segment. An alternative design would be return-
ing a sequence of segments within a single call. We choose
the former one because multiple threads can split a single
aggregator in parallel.

The split aggregation requires the user to provide splitting-
related logic. Thus, framework users have to write more
code in order to enjoy the benefit of split aggregation. The
implication behind is a trade-off between code complexity
and performance. However, we argue that such increment
in code complexity would not affect the end users most of
the time. A library, such as MLlib, can use split aggregation
but does not expose such detail to the user. In our case of
adapting MLlib to split aggregation, MLlib users only need
a configuration parameter to control whether to use split
aggregation or not.
We have successfully adapted 3 machine learning algo-

rithms, LR, SVM and LDA, in MLlib for split aggregation by
adding 327 lines of code totally.

3.2 In-Memory Merge
Spark allows a single executor to use multiple CPU cores in
its resource model. As a result, there would be multiple tasks
in the same stage scheduled to the same executor, as shown
in Figure 8. Under existing Spark’s execution model, each
task serializes its result into byte array immediately upon
task completion, which will be further fetched by the driver.
However, serialization may dominate Spark’s overhead [16].
Therefore, it is important to reduce serialization overhead to

Figure 7: Example code adapted from the RDDLossFunction
in MLlib to illustrate the concept of split aggregation inter-
face and justify the design of split aggregation interface. For
simplification, some of the code are omitted. splitA gets a
slice from the given array. concatA concatenates a sequence
of arrays into a single array. Both merge in Agg (aggregators
type) and AggSeg (aggregator-segments type) perform the
element-wise sum for each of their two arrays.

This interface allows object easily to be split. However, we found
that this AoS style of interface is not general enough to represent
objects in MLlib. An example is shown in Figure 7, the class for
aggregator is denoted as Agg which is a struct with two arrays(
sum1 and sum2) and can not be presented by the AoS styled inter-
face easily. A more general interface is wanted to support splittable
objects for fast reduction in MLlib.
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As shown in Figure 6, we design a general interface for aggrega-
tion called Split Aggregation Interface (SAI). The rationale
behinds this design is to allow users to define the the objects to
be split then reduced. The type of aggregator is denoted as U, and
the type of aggregator-segment is denoted as V. Different from the
interface of tree aggregation, its reduceOp is defined on aggregator-
segments, rather than aggregators. In addition, it takes another
two callbacks from the users. First, splitOp describes how to get
a segment with specified index from a given aggregator. Second,
concatOp describes how to concatenate a sequence of segments
into a single segment.

We illustrate the usage of our split aggregation interface with an
example code, as shown in Figure 7. The example code is simplified
from logistic regression for the purpose of demonstration. Val resTA
at line 12 represents the result of tree aggregation while val resSA
at line 15 represents the result of split aggregation. There are several
points that worth attention.

First, the type of aggregator-segment (V) and the type of aggre-
gator (U) can be different. This is because that if we require them
to share the same type, MLlib is unable to perform split aggrega-
tion. As shown in the example, the aggregator class (Agg, line 4)
is an abstract class that relies on its sub-classes to define add (line
5), which denotes the behavior of adding an sample into this ag-
gregator. Because an abstract class is non-constructable, it is hard
to define a splitOp that can split an instance of Agg and returns
Agg-typed segments. As a result, if the type of aggregator-segment
(V) is not distinguished from U, it is hard to define a splitOp under
this scenario. With our design, this problem can be easily solved by
introducing a new class AggSeg (line 8) that only concerns its role
as a merge-only aggregator and its merge shares the same behavior
to Agg’s merge (line 6). It is easy to implement splitOp as shown
in line 17.

Second, the function splitOp is defined to return a single speci-
fied segment. An alternative design would be returning a sequence
of segments within a single call. We choose the former one because
multiple threads can split a single aggregator in parallel.

The split aggregation requires the user to provide splitting-
related logic. Thus, framework users have to write more code in
order to enjoy the benefit of split aggregation. The implication
behind is a trade-off between code complexity and performance.
However, we argue that such increment in code complexity would
not affect the end users most of the time. A library, such as MLlib,
can use split aggregation but does not expose such detail to the
user. In our case of adapting MLlib to split aggregation, MLlib users
only need a configuration parameter to control whether to use split
aggregation or not.

We have successfully adapted 3 machine learning algorithms,
LR, SVM and LDA, in MLlib for split aggregation by adding 327
lines of code totally.

3.2 In-Memory Merge
Spark allows a single executor to use multiple CPU cores in its
resource model. As a result, there would be multiple tasks in the
same stage scheduled to the same executor, as shown in Figure 8.
Under existing Spark’s execution model, each task serializes its
result into byte array immediately upon task completion, which
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Figure 8: in-memory merge reduces serialization and com-
munication overheads by deferring the driver’s result fetch-
ing and merging task results within the same executor in
memory

will be further fetched by the driver. However, serialization may
dominate Spark’s overhead [16]. Therefore, it is important to reduce
serialization overhead to achieve better performance. We present
in-memory merge, which is a method that merges task results in the
same executor in memory before they are serialized. To be specific,
each task updates its task result directly to an in-memory value
which is shared among tasks. Thus, all the task results in the same
executor will be merged into a single value before serialization to
reduce overheads.

In case of the failure of any task with IMM, we simply clean
up the failed stage which is stored in the shared in-memory value.
Then, we re-submit the failed stage again. This is different from the
existing RDD, which requires all tasks to be independent from each
other. The benefit of this is that any failure of a task would only
result in the restart of this task. However, we argue that workloads
of in-memory machine learning typically consist with multiple
iterations, and each has a short duration. Hence, to restart a whole
stage would not bring in large overheads.

4 IMPLEMENTATION
In this section, we lay out the logic behind the implementation of
split aggregation and in-memory merging. Then we integrate them
into Spark to form our prototype system Sparker. Figure 9 gives
an overview to Sparker. Sparker extends Spark executors with two
components: scalable communicator and mutable object manager.
Scalable communicator enables direct inter-executor communi-
cation and provides scalable communication primitives required
by split aggregation. Mutable object manager stores intermediate
states shared by tasks on the same executor, which is useful for
in-memory merge to store currently merged values. First, we in-
troduce how we build a ring-based communication infrastructure
for scalable communicator to support scalable reduction based on
JeroMQ, which is the Java-binding of the communication library
ZeroMQ [8]. Second, we introduce the reduction algorithm and how
we implement this algorithm for scalable communicator upon the
ring-based topology, and discuss design choices such as topology-
awareness and parallelism of the scalable communicator. Third, we
discuss the Spark-specific implementation details, including the
changes we make to support split aggregation and IMM.
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4.1 Communication Infrastructure
Since existing Spark communication mechanisms are not suitable
for split aggregation, we introduce a new inter-executor commu-
nication mechanism for Spark. Currently there are two kinds of
mechanisms in Spark that could potentially used for communica-
tion: Spark RPC and Spark BlockManager. The former provides
an abstraction of remote procedure call and is excluded from our
candidates because it is primarily for driver-executor communica-
tion. The latter provides an abstraction of distributed key-value
store and could be used for inter-executor communication. In the
earlier stage of our work, we actually had adapted Spark BlockMan-
ager into a versatile communication library supporting send and
receive, which provides similar semantic as MPI [22]’s point-to-
point communication. However, the performance result, as shown
in Figure 12, demonstrates that it has a latency of 3861.25us , which
is 242.24× slower than the result measured by MPI. Its poor latency
shadowed the benefit of scalable reduction because the ring-based
scalable reduction is sensitive to latency. As a result, we have to
make our own communication infrastructure from scratch.

Fortunately, there are existing libraries saving us from low-level
network programming. We choose to use ZeroMQ, which is a cross-
platform communication library that provides a high-level network
abstraction. We use its pure Java binding called JeroMQ, which
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Figure 11: Ring-based reduce-scatter algorithm

is fully implemented in JVM and can be used without any native
library requirement. This is intended for not breaking Spark’s porta-
bility. JeroMQ has a latency of 73.23us , which performs much better
compared with Spark BlockManager. As shown in Figure 10, ex-
ecutors are arranged in the form of a parallel directed ring (PDR).
Each executor is assigned a unique id called rank in the range of
[0,N − 1] (N denotes the number of executors). Executor i can
send to its next neighbor (ranked (i + 1)modN ) and receive from its
previous neighbor (ranked (i − 1 + N )modN ). There are multiple
parallel connections between each pair of executors in order to
fully utilize the bandwidth in a TCP/IP network. Figure 13 justifies
the parallelism in PDR design and shows that certain amount of
parallelism is necessary to fully utilize the bandwidth of TCP/IP.

4.2 Scalable Reduction
Since aggregators can now be split via split-aggregate interface,
we are able to implement a scalable reduction based on this in-
terface. We choose to use ring-based reduction algorithm [17] as
our design foundation due to its high scalability when the data
size is large. Scalable reduction involves two steps. The first step
is to perform a communication pattern called reduce-scatter. We
re-use Figure 5 to demonstrate reduce-scatter. Initially, there are
4 executors, and the aggregator Vi is inside executor i . The post-
condition of reduce-scatter is that each executor i has a segment of
the reduced aggregator V∗,i . The second step is to gather the seg-
ments in each executor into the driver. We can use action collect
provided by Spark to implement the second step. Thus, the scalable
communicator only concerns the scalable reduce-scatter. Figure 11



Sparker: Efficient Reduction for More Scalable Machine Learning with Spark ICPP ’21, August 9–12, 2021, Lemont, IL, USA

demonstrates the concept of ring-based reduce-scatter by an ex-
ample to perform reduce-scatter for the 4 executors, each with a
single aggregator. First, for each executor i , it splits the aggregator
into 4 segments with splitOp, denoted as Vi, j . For each iteration,
executors send the current value to their next executors, while at
the same time, receive a value from their previous executors and
merge it into the next value. After 3 iterations, each of the segments
has traversed across all the 4 executors and forms a final value in
one of the executors as shown in the green block in iteration 2.

There are several issues that need attention when fitting the
above algorithm into the PDR topology. First, the PDR topology has
multiple parallel message channels and those channels should be
used in order to fully utilize the network bandwidth. Thus, given
the number of parallel channels, i.e., parallelism of the scalable com-
municator (denoted as P ), we split each aggregator into P × N seg-
ments, rather than N segments. P threads perform reduce-scatter
in parallel. To be specific, thread i uses i-th channel to commu-
nicate and perform reduce-scatter on segments in the range of
[i ∗N , (i + 1) ∗N − 1]. Figure 10 shows the topology of scalable com-
municator with 2-parallelism. In our result, 8-parallelism reduce-
scatter has a 3.06× speedup over 1-parallelism reduce-scatter. Sec-
ond, the mapping between the executor to physical nodes matters
for performance. Sorting the executors by their hostname, which is
called topology-awareness, is an effective way to minimize inter-
node communication amount. In our result, the reduce-scatter with
topology-awarness has a 2.76× speedup over the reduce-scatter
without topology-awareness.

4.3 Spark-specific Details
In order to implement In-MemoryMerge upon Spark, we implement
a new stage called reduced-result stage based on Spark’s existing
ResultStage. While a ResultStage serializes and reports each
completed task’s result to the driver, a reduced-result stage merges
the task result locally into the mutable object manager and just
returns the executor id and the object id to the driver. We integrate
the creation of reduced-result stage into SparkContext with an
interface similar with runJob, but with an additional closure-typed
argument describing how to reduce the results.

In order to perform scalable reduction on those aggregators
materialized in executors, we implement a new RDD class called
SpawnRDD. SpawnRDD enables task creation with static scheduling.
Given a closure describing the task and a list of executor ids describ-
ing the task locations, SpawnRDDwill launch tasks exactly according
to the executor list. Split aggregation begins with a reduced-result
stage to materialize the results in memory while ensuring that there
is exactly one aggregator in each executor. And a SpawnRDD is cre-
ated to perform reduce-scatter and each partition in the SpawnRDD
represents a segment of the final aggregator. Those segments are
further concatenated via concatOp.

5 EVALUATION
5.1 Experiment Design
First, we measure the point-to-point latency and throughput be-
tween a pair of executors of scalable communicator. Second, we
measure the scalability of the reduce-scatter primitive provided
by the scalable communicator under different message sizes. We
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Figure 12: Comparing point-to-point communication la-
tency of BlockManager-based message passing, scalable
communicator and MPI

also measure the performance of the reduce-scatter primitive under
the largest scale varying the parallelism number. Third, we make
a micro-benchmark to evaluate the performance of RDD aggrega-
tion, then measure and compare the scalability of tree aggregation,
tree aggregation with IMM, and split aggregation under different
message sizes. We denote the length of each of the array asmessage
size. Forth, we compare the end-to-end performance of Sparker
and Spark with 9 combinations of MLlib applications as shown in
Table 3 and real-world datasets as shown in Table 2. The config-
uration of the two clusters used for these experiments is listed in
1.

5.2 Micro-benchmarks
We evaluated both micro-benchmarks and end-to-end applications
performance in both platforms. Due to space limitation, we only
showmicro-benchmark results on BIC. The result on AWS is similar.

5.2.1 Point-to-point performance. To evaluate the basic perfor-
mance of underlying communication library, we make a micro-
benchmark to measure the latency and throughput between a pair
of executors. As a reference for the ideal performance of underlying
network, we also measure the latency and bandwidth from OSU
Micro-Benchmarks [15] as MPI’s performance is considered closest
to optimal network performance.

As shown in Figure 12, MPI achieves a latency of 15.94us on
BIC. Scalable communicator (denoted as SC) achieves a latency
of 72.73us on BIC, which is 4.56× slower than MPI’s latency. The
latency of communication library based on Spark BlockManager
(denoted as BM) achieves a latency of 3861.25us on BIC, which
is 242.24× slower than MPI’s latency. The latency result justifies
the necessity of building our own communication library from the
ground up. Re-using existing Spark communication mechanisms
does not satisfy the need of low-latency from split aggregation.

As shown in Figure 13, MPI achieves a maximum throughput
of 1185.43 MB/s on BIC, while scalable communicator achieves a
throughput of 1151.80 MB/s on BIC . Thus, in terms of through-
put, the scalable communicator can achieve 97.1% of the line rate.
Actually, the underlying network is capable to provide 100Gb/s
bandwidth if RDMA can be used in a bare-metal environment,
rather than TCP/IP protocol in a JVM environment. However, as
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256MB and the number of executors are 48.

is irrelevant to this work, we opt to stick to a pure JVM-based
communication library and not to step further. From the figure, we
can observe that multiple pairs of sockets and threads are required
to fully utilize the bandwidth if TCP/IP protocol is used. Another
observation we can see is that with the increasing of message sizes,
the scalable communicator’s bandwidth changes unsmoothly. The
bandwidth even gets worse when the message size is large. We
believe this is due to the GC overheads in JVM.

5.2.2 Reduce-scatter performance. As reduce-scatter is the funda-
mental communication primitive used by the split aggregation, its
performance greatly determines the performance of split aggrega-
tion. We make a micro-benchmark based on scalable communicator
and measure the time to perform reduce-scatter on a randomly-
generated array of 8-byte long integers.

We measure reduce-scatter’s performance varying the paral-
lelism with 48 executors and 256MB message size. The result is
shown in Figure 14. From the result, increasing parallelism inside
an executor reduces the communication time from 3.04s to 0.99s
(3.06×). Figure 14 also demonstrates the effectiveness of topology-
awareness. Comparing with ordering executors by executor id,
ordering executors by host name brings executors in the same node
together in the ring topology and reduces the communication time
from 2.77s to 0.99s (2.76×). Thus, in later experiments, we set 4 as
the number of parallelism and sort the executors by host name.
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Figure 15: The scalability of reduce-scatter of scalable com-
municator, compared with MPI as a reference performance.

We measure the scalability of reduce-scatter of the scalable com-
municator. As a reference, MPI’s reduce-scatter performance is also
measured. The result is shown in Figure 15. When the message size
is large (256MB), scalable communicator achieves a satisfactory
scalability. The communication time increased from 784.13ms to
993.35ms (1.27×) when scaling the number of executors from 6
to 48. When the message size is small (256KB), scalable communi-
cator’s communication time increases nearly proportionally with
the scaling of the number of executors. The communication time
increased from 1.51ms to 7.98ms (5.30×) when scaling the number
of executors from 6 to 48. Scalable communicator even scales better
than MPI. One possible reason is that this MPI implementation
chooses to use a sub-optimal algorithm, leading to worse scalabil-
ity even with MPI’s advantage in point-to-point communication
bandwidth.

5.2.3 Aggregation performance. To evaluate the performance of
split aggregation, we implement a micro-benchmark that performs
summation of an RDD of randomly-generated fixed-length arrays
of 8-byte long integer. The storage level of that RDD is set to
MEMORY_ONLY and pre-loaded by a count action, so that the ar-
rays in that RDD will be materialized in memory. We measure the
end-to-end time of calling tree aggregation, tree aggregation with
IMM and split aggregation respectively on that RDD varying the
message sizes and the number of executors involved in communi-
cation. Each experiment item is performed for three times and we
take the average as the result.

Figure 16 compares the scalability of tree aggregation, tree aggre-
gation with in-memory merge and split aggregation on small (1KB),
medium (8MB) and large (256MB) message sizes by varying the
number of nodes from 1 to 8. Figure 16 shows that split aggregation
matches the performance of tree aggregation for small messages
and significantly better than tree aggregation for large messages.
When the message size is 1KB, those three methods have a simi-
lar performance. When the message size is 8MB, split aggregation
starts to gain advantage to tree aggregation due to the splitting of
aggregator. Split aggregation has a speedup of 1.91× over tree ag-
gregation. However, IMM is still not effective at this size. When the
message size is 256MB, split aggregation scales nearly constantly
with the number of nodes, as the 8-node split aggregation time only
increases to 1.12× to the 1-node time. As a result, split aggregation’s
advantage is amplified by the increasing of the number of nodes.
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Figure 16: Comparing the scalability of tree aggregation
(Tree), tree aggregation with in-memory merge (Tree+IMM)
and split aggregation (Split) on 1KB, 8MB and 256MB mes-
sage sizes.
Split aggregation has a speedup of 6.48× over tree aggregation. As
to IMM, it becomes effective at this size, which has a speedup of
1.46× over tree aggregation. There are two messages from figure 16.
First, split aggregation is significantly more scalable than tree ag-
gregation. Second, although in-memory merge contributes to split
aggregation’s improvement, most of the improvement comes from
the scalable reduction, which is enabled by our split aggregation
interface.

5.3 Real-world applications
Results above show that split aggregation is indeed faster than
tree aggregation. To further evaluate split aggregation, we need to
investigate its end-to-end improvement in real-world workloads.
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Figure 17: The end-to-end time speedup of Sparker over
vanilla Spark on BIC and AWS clusters.

5.3.1 Overall Speedup. Figure 17 shows the speedup of Sparker
over vanilla Spark with 9 combinations of machine learning models
and real-world datasets on both BIC and AWS. Overall, Sparker
achieves a geometric mean speedup of 1.60× on BIC and 1.81×
on AWS. Sparker achieves a larger speedup on AWS in most of
the workloads because Sparker has better scalability and the AWS

cluster is larger than our proprietary cluster. For BIC, the bench-
mark SVM-K achieves the largest speedup of 2.62×. For AWS, the
benchmark SVM-K achieves the largest speedup of 3.69×. Sparker
performs well for LDA-N, LR-K, SVM-K and SVM-K12, as their end-
to-end speedups on AWS are all above 2×, which is because both
kdd10 and kdd12 have significantly a larger number of features and
nytimes has a larger dictionary size, making the size of aggregators
significantly large. As a result, reduction becomes a significant per-
formance bottleneck in those workloads. A counter-intuitive result
is that SVM-A and SVM-C have a slightly lower speedup on AWS.
We investigate SVM-A’s profile and find that the speedup of reduc-
tion alone is indeed improved from 2.40× on BIC to 2.67× on AWS.
This is because that tests on AWS have fewer iterations that lowers
the overall speedup on AWS. In summary, those results confirm the
effectiveness of split aggregation in real-world applications.
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Figure 18: Strong scalability and time decomposition of LDA-
Nwith varying number of cores on AWS. Left bar represents
Spark while right bar represents Sparker.
5.3.2 Strong Scalability. To further investigate why split aggrega-
tion is effective and how it fixes the scalability issue, we perform
the strong scalability tests of LDA-N under both vanilla Spark and
Sparker on AWS. We shrink the number of cores for each executor
to 4 for intra-node configuration in order to get the 4-core perfor-
mance result. When the number of cores is less or equal to 96, all
the executors are placed in the same node. The end-to-end time
has been decomposed into 4 parts, which is similar to the approach
previously used in Section 2. The result is shown in Figure 18. When
the number of cores is 8, where only 2 executors on the same node
involves, the computation time under vanilla Spark is 272.36s while
the computation under Sparker is 272.95s . The computation time of
Sparker is near the computation time of vanilla Spark. The reduc-
tion times of Spark and Sparker are 26.36s and 6.29s respectively,
showing that the scalable reduction is 4.19× faster than the reduc-
tion in tree aggregation. When the number of cores is 960, where
all the 10 nodes with 120 executors involve, the computation time
under vanilla Spark is 58.39s while the computation time under
Sparker is 40.49s . The computation time of Sparker is smaller than
the computation time of vanilla Spark, which is because in-memory
merge reduces the serialization overhead and improves the com-
putation performance. The reduction times of Spark and Sparker
are 111.26s and 15.41s , showing that the scalable reduction is 7.22×
faster than the reduction in tree aggregation. The reduction time
speedup over tree aggregation increases as the number of executors
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scales, and the reason is that Sparker has a better scalability and
performs better at larger scale.

6 DISCUSSION AND LIMITATIONS
In this paper, we provide a case study on how programming in-
terface design may restrict the system from adopting best-known
algorithms. We propose a solution to get better performance and
scalability with more programming efforts.

There are certainly other design choices by making different
tradeoffs between system complexity, user efforts, and performance.
For example, compiler techniques may be used to analyze the ag-
gregator to generate split aggregation code without user-defined
code. We plan to explore this approach in the future.

Another limitation of this work is that we just remove the re-
duction bottleneck for Spark. But as shown in Figure 18, the driver
overhead becomes the new bottleneck, which deserves further in-
vestigation.

7 RELATEDWORKS
Aggregation optimization Aggregation is a fundamental compo-
nent in data-intensive applications and many works have proposed
to optimize it. Yu et. al [23] discuss different interfaces, imple-
mentations, and optimization strategies of aggregation in different
distributed computing systems, pointing out that the choice of
programming interface has a significant effect on the aggregation
performance. Cedar [11] proposes a solution on deciding the wait-
ing time for aggregators. Camdoop [5] is a MapReduce-like system
which improves the performance by using in-network aggregation
to reduce the traffic during the shuffle phase. Amur et. al [3] propose
a data structure called Compressed Buffer Tree (CBT) to improve
the memory efficiency and performance for GroupBy-Aggregation.
Symple [18] can automatically parallelize user-defined aggregations
(UDAs) using symbolic execution to reduce the network communi-
cation and job latency. SwitchML [19] uses in-network aggregation
to reduce the volume of exchanged data. However, the works above
focus on GroupBy-Aggregation for a dataset of key-value pairs, as-
suming that sufficient parallelism exists among the elements, which
is not applicable to global aggregation without a group-by-key.
Sparker focuses on the scalability issue of Spark’s global aggrega-
tion and provides a splittable aggregation interface to overcome
the scalability issue.

Fast reduction algorithms There are a series of fast reduction
algorithms. Thakur et. al [21] improve the reduce operations for
MPI [20] by using multiple algorithms depending on the message
size: for large messages, the ring algorithm is the one with best
performance. Works like [2, 4, 7] also optimize the performance
of reduction. Sparker’s splittable aggregation interface makes it
possible to accelerate Spark’s global aggregation using those state-
of-the-art reduction algorithms.

Machine learning on Spark Spark provides a unified engine
for end-to-end machine learning pipelines. MLlib [14] is a widely
used Spark-based machine learning library, based on non-splittable
aggregation interface of Spark RDD, which limits its scalability
as this paper suggests. BigDL [6] accelerates MLlib but relies on
Spark’s data shuffling for aggregation. Sparker provides a general

interface and is not limited to shuffle-based aggregation and en-
ables faster reduction algorithm, including the ring-based algorithm.
Zhang et al. [26] supports machine learning workloads such as LDA
on compressed data based on Spark.

Standalonemachine learning frameworksTencentBoost [10]
and Jiang et. al [9] propose Gradient Boosting Tree (GBT) frame-
works that are faster than MLlib with a parameter-server archi-
tecture. Although standalone frameworks not based on Spark-like
data-flow frameworks would have higher performance, they also
abandon Spark’s capability of unified big data processing pipelines
and lineage-based fault tolerance.

8 CONCLUSION
Spark delivers poor scalability on machine learning applications.
This paper examines its scalability bottleneck and reveals that the
key to solve the inadequate scalability is the non-scalable reduction
and the restricted interface. We present a new framework Sparker ,
Spark with Efficient Reduction. Sparker is able to perform split ag-
gregation with scalable reduction while being backward compatible
with existing applications. We evaluated Sparker on a proprietary
cluster and a cloud platform with three machine learning algo-
rithms. The measurement shows that Sparker can easily improve
the performance and the scalability of MLlib models. On average,
Sparker improves the aggregation throughput by up to 6.47× and
the end-to-end performance by up to 3.69× (with geometric mean
1.81×).
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