VSENSOR: Leveraging Fixed-Workload Snippets of
Programs for Performance Variance Detection

Xiongchao Tang
Tsinghua University
txc13@mails.tsinghua.edu.cn

Bingsheng He
National University of Singapore
hebs@comp.nus.edu.sg

Abstract

Performance variance becomes increasingly challenging on
current large-scale HPC systems. Even using a fixed number
of computing nodes, the execution time of several runs
can vary significantly. Many parallel programs executing
on supercomputers suffer from such variance. Performance
variance not only causes unpredictable performance require-
ment violations, but also makes it unintuitive to understand
the program behavior. Despite prior efforts, efficient on-line
detection of performance variance remains an open problem.

In this paper, we propose VSENSOR, a novel approach for
light-weight and on-line performance variance detection.
The key insight is that, instead of solely relying on an exter-
nal detector, the source code of a program itself could reveal
the runtime performance characteristics. Specifically, many
parallel programs contain code snippets that are executed
repeatedly with an invariant quantity of work. Based on
this observation, we use compiler techniques to automati-
cally identify these fixed-workload snippets and use them
as performance variance sensors (v-sensors) that enable ef-
fective detection. We evaluate VSENSOR with a variety of
parallel programs on the Tianhe-2 system. Results show
that vSENSOR can effectively detect performance variance on
HPC systems. The performance overhead is smaller than 4%
with up to 16,384 processes. In particular, with vSENSOR, we
found a bad node with slow memory that slowed a program’s
performance by 21%. As a showcase, we also detected a severe
network performance problem that caused a 3.37x slowdown
for an HPC kernel program on the Tianhe-2 system.
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1 Introduction

Performance variance is a serious problem on current High-
Performance Computing (HPC) systems [9, 21, 23]. The ex-
ecution times of different runs for the same program on
current large-scale HPC systems could vary significantly
due to the performance variance of a system [34]. This phe-
nomenon is quite common on large-scale super-computing
centers. Figure 1 shows an example of performance variance
on a real HPC system. A program (NPB-FT, CLASS=D) with
1024 processes is repeatedly executed on a fixed set of nodes
of Tianhe-2 supercomputer [3]. Figure 1 shows a contiguous
piece of a much longer completed log. The background noise
was probably caused by the system itself or by other jobs.
We find that the performance variance among different runs
is severe, — the maximum execution time is more than three
times of the minimum.

The prevalent performance variance can impact both nor-
mal system users and program developers in negative ways.
For normal users, it may cause unpredictable performance
for a running program, leading to more performance require-
ment violations and more resource consumption. Moreover,
measuring and comparing the performance of different pro-
grams become more difficult with unstable performance. For
program developers, the benefit of a new optimization can
be hidden by the background performance variance. Based
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Figure 1. Performance variance on fixed nodes. The execu-
tion time of NPB-FT with 1024 processes on fixed nodes of
Tianhe-2 system varies considerably among different runs.

on previous studies [12, 21, 26], performance variance is
due to a number of reasons, e.g., network contention, OS
schedule, zombie processes, hardware faults, etc. Depending
on the cause, certain kinds of performance variance can be
effectively avoided while others are inevitable. For example,
if the performance variance is caused by a bad node, users
can replace it with a good one and then resubmit the job.
On the contrary, users have few options to avoid variance
due to network contention, since the network is normally
shared by many users. Therefore, before blaming the system
or resubmitting a job, we need to understand two main
questions: 1) the amount of the performance variance and 2)
its root cause.

So far, there have been four major approaches to detect
and handle performance variance but none of them are
sufficient in answering the two above-mentioned questions.
1) Rerun. A straight-forward method to detect performance
variance is to run a program for multiple times and com-
pare the execution times of different runs. Obviously, this
approach is both time and system resource-consuming for
long-running programs. 2) Performance Model [11, 23]. An
accurate performance model can predict the execution time
of a program, based on which performance variance can
be estimated by comparing predicted performance and mea-
sured performance. Unfortunately, most performance models
can only predict the amount of overall performance variance,
but cannot identify where such variance comes from. More-
over, a performance model is not portable: a model built
for one application may not achieve good prediction results
for a different application. 3) Profiling and Tracing [14, 28].
While widely used, they bring key drawbacks: profiling-
based methods cannot detect the performance variance in
the time dimension because time sequence information is
omitted; trace-based methods usually generate large volume
of traces, especially as applications scale up in problem
size and job scale [36]. Moreover, the tracing overhead pre-
vents its application in on-line variance detection. Even with
trace compression [10, 39], knowledge of applications is
required to analyze trace data, which is quite difficult for
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non-expert users. 4) Benchmark [12]. Performance variance
can be detected with fixed-work quanta (FWQ) benchmarks.
When a fixed quantity of work is executed repeatedly, a
performance variance is detected if execution time for the
same work changes. For example, repeatedly performing and
observing the same communication can detect the perfor-
mance variance of network. The key problem is that this
approach is intrusive: due to the resource contention among
the benchmarks and the original program, they can introduce
extra performance variance. Therefore, it is not suitable for
production runs.

Despite the significant prior work on detecting perfor-
mance variance and identifying the root cause for different
variances, effective on-line variance detection for a large-
scale parallel program is still an open problem.

To overcome the drawbacks of existing approaches, this
paper proposes VSENSOR, a novel approach for light-weight
and on-line performance variance detection. The key in-
sight is that many parallel programs contain code snippets
with the same behavior of FWQ benchmarks. For example,
some code snippets inside a loop have the same quantity
of work among different iterations. Those fixed-workload
snippets can be considered as FWQ benchmarks embedded
in a program. We call such a snippet a v-sensor, which can
sense performance variance at runtime without introducing
additional performance overhead. Leveraging v-sensors in-
side programs to detect performance variance brings three
benefits. 1) No performance model is required, which by itself
can be quite complex for a real application. 2) Low overhead
and interference. VSENSOR requires no external programs
launched during the program execution, which avoids the
performance overhead for monitoring daemon or resource
contention due to external benchmarks. 3) v-sensors makes
it easier to locate the root causes of performance variance.

However, to realize the idea of v-sensors in a real perfor-
mance variance detection tool, we face two challenges. 1)
v-sensors identification. It is non-trivial to pinpoint v-sensors
from a large amount of source code, e.g., branches may take
different paths, functions may be invoked with different
arguments, and importantly, many snippets may have dif-
ferent workloads over iterations. Although developers have
the best understanding of program semantics and can po-
tentially annotate the fixed-workload snippets as v-sensors,
doing it manually is not realistic for complex programs. 2)
minimizing overhead for on-line detection. While v-sensors
are parts of original programs, additional instrumentation
and analysis are still required to detect performance variance.
The overhead must be small enough to avoid slowing down
production run or introducing additional variance.

To overcome the challenges, we adopt a hybrid approach
with a combination of static and dynamic analysis. At compile-
time, to automate v-sensors identification, we propose a
dependency propagation algorithm to analyze a program
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then generate and select appropriate v-sensors for instru-
mentation. At runtime, we propose a lightweight on-line
analysis algorithm to detect performance variance based on
the instrumented v-sensors. We leverage the intrinsic prop-
erties of v-sensors to detect performance variance through
comparing the current performance of v-sensors with history.
For a large-scale parallel program, performance variance
across processes is detected by comparing the performance
of the same v-sensor on different processes.

To evaluate the effectiveness of the proposed approach,
we implement VSENSOR as a complete tool chain with LLVM
compiler [17]. It currently supports MPI [1] parallel pro-
grams, which are widely used in the HPC domain. We evalu-
ate VSENSOR on the Tianhe-2 system with up to 16,384 MPI
processes. Experimental results show that vSENSOR can iden-
tify v-sensors accurately, and the on-line variance detection
method only introduces less than 4% performance overhead.
Moreover, the effectiveness of VSENSOR is demonstrated with
real usage cases: it identified a bad node in the Tianhe-2,
which slowed the performance of the program CG by 21%.
It also detected a severe network performance problem that
caused a 3.37X slowdown for the program FT.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a high-level architecture and workflow of our
approach. Section 3 describes the method of searching for
v-sensors at compile time. Section 4 discusses the rules of
choosing v-sensors for instrumentation. Section 5 presents
our on-line detection algorithm. Section 6 shows the experi-
mental results. Section 7 discusses related work. Section 8
concludes the paper.

2 VSENSOR Overview

The core idea of VSENSOR is to identify fixed-workload snip-
pets, i.e., v-sensors, in programs, then analyze their actual
execution time at runtime. Due to the fixed workload of a v-
sensor, its time variance must be caused by performance vari-
ance, instead of workload variance. With various v-sensors
inside a program, we can estimate the performance variance
during the program execution through the time variance of
v-sensors. VSENSOR is implemented as a complete tool chain
for large-scale parallel programs on HPC systems.

VSENSOR consists of a static module and a dynamic one.
The static module applies compiler techniques to automati-
cally identify v-sensors and instrument programs. In current
implementation, we use the LLVM [17] compiler to search
for v-sensors. This process is done by analyzing LLVM-
IR, thus programs of different languages (C/C++/Fortran)
can be handled in a uniform manner. We notice that most
HPC programs do not use LLVM, instead they use vendor
compilers for special performance optimization. Therefore,
VSENSOR maps v-sensors from LLVM-IR to source code, in
which instrumentation is performed, allowing programs to
use their original compilers.
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The dynamic module collects and analyses performance
data at runtime, giving a final performance report at the
end. During program execution, the performance report
is updated periodically, thus users can notice performance
variance without waiting for a program to finish.

Executable File

6 Run

Performance Data

7 Analyze

A
Detection Results

8 Visualize

Variance Report

7 Analyze
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Figure 2. The Workflow of VSENSOR.

The detailed workflow of our approach is shown in Fig-
ure 2. We describe each step of the workflow as follows.
1. Compile. Compiling the source code of a program into
intermediate representation (LLVM-IR) with LLVM.
2. Identify v-sensors. In LLVM-IR, a program is repre-
sented with basic blocks and instructions. Our v-sensors
identification algorithm is performed on this level (Section 3).
First, it processes the program call graph to handle special
cases like recursive invocations. Then, loop analysis and
function call analysis are performed. Since VSENSOR aims at
multi-process parallel programs, we also analyze the behav-
ior of v-sensors in different processes.
3. Map to source. The v-sensors obtained in step 2 are
represented in LLVM-IR. In this step, we pinpoint v-sensors
locations in source code.
4. Instrument. Source code instrumentation is performed
based on the information in step 3. Several rules are used to
guide the appropriate selection of v-sensors for instrumen-
tation (Secton 4).
5. Compile. We use original compilers to compile the in-
strumented source code and generate the modified program,
thus special compiler optimization options can be preserved.
6. Run. Run the modified programs on a real HPC system.
With the customized instrumented functions, performance
data will be generated at runtime.
7. Analyze. The performance data is preprocessed before
being used for variance detection. For each process, an on-
line algorithm detects performance variance by comparing
current performance data with history (Section 5). The per-
formance of the same v-sensors of different processes is used
to detect variance across different processes.
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8. Visualize. Finally, figures are produced to demonstrate
the distribution of performance variance. Since new data
is generated while a program is running, and the variance
detection is performed on-line, figures can be updated peri-
odically.

Step 2 (Identifying v-sensors) and Step 7 (Analyze) are the
two most challenging steps in VSENSOR. We elaborate them
in the following sections.

3 Identifying v-sensors

In this section, we concretely define v-sensors and then
present v-sensor identification using our dependency propa-
gation algorithm. Although the algorithm works on LLVM-
IR, we explain the key ideas with C-style pseudo code for
clarity. Since MPI [1] is widely used in HPC, we use MPI
code in our examples, though our approach can be applied
to other message passing parallel programs.

3.1 Definition of v-sensors

In our approach, v-sensors are used to denote performance
benchmarks embedded inside a program. A v-sensor must
be a snippet of code inside a loop, so that it can be executed
repeatedly. There can be many snippets inside a loop. A v-
sensor of a loop is defined as a snippet with fixed quantity of
work over loop iterations. For example, snippet-2 in Figure 3
is a v-sensor of the for loop.

for (...) { for (...) {
(snippet-2 (fixed-worklLoad) | Tick()
3 :->[snippet-2 (v-sensor) |
b oo Vo ! Tock()

1
| Snippet-2 is a v-sensor of the for loop. L
| Tt is instrumented and used at runtime. 1

(snippet-3 ]
}

Figure 3. Example of v-sensors and snippets.

Based on the definition, a snippet can be as small as a
statement, but the granularity of v-sensors has to be carefully
chosen to ensure an acceptable instrumentation overhead
for on-line detection. In VSENSOR, only loops and function

calls are considered as v-sensor candidates.
int main() { int GLBV = 40;
int n, k, value = 0; int foo(int x, int y) {
[L1] for (n=0; n<100; ++n) { int i, j, value = @;
[2]for (k=0; k<10; ++k) { [La]for (i=0; i<x; ++i) {
[c1] foo(n, k); value += y;
[€2] foo(k, n); [L5]for (j=0; j<10; ++j)

} value -= 1;
[3]for (k=0; k<10; ++k) }
count ++; if (x > GLBV)
[C3]MPI_Barrier(MPI_COMM_WORLD) ; value -= x*y;
} return value;
} }

Figure 4. Example code illustrating VSENSOR ideas.
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We use the sample code in Figure 4 to explain the ideas
of VSENsOR. In Figure 4, loops and function calls are labeled
with ID numbers. Global variables, loop variables, and func-
tion arguments are highlighted. In this example, Call-1 and
Call-2 are v-sensor candidates of Loop-2. Loop-5 is a v-sensor
candidate of Loop-4. However, the statement count++ is not
a v-sensor candidate of Loop-3 because it is not a loop or a
call.

Next, we elaborate the notion of quantity of work. We
classify code snippets into three types based on their pur-
poses: computation, network, and I0. Loop-4 and Call-3
in Figure 4 are computation and network snippet, respec-
tively. Each type of snippet has a different standard of fixed-
workload. Even for snippets of the same type, the standard
to measure the quantity of work depends on users expecta-
tion. In the following, we list our default decision rules, and
VSENSOR allows users to add more constraints.

e Computation. If a computation snippet corresponds to
the same sequence of instructions over iterations, then it
is a computation v-sensor.

o Network. If the message size and message type of a com-
munication operation do not change over iterations, then
it is a network v-sensor.

o 10.If the input/output size of an IO operation is unchanged,
then it is an IO v-sensor.

To ensure flexibility, vSENsOR allows users to specify other
factors to be used in determining v-sensor. For example,
the same instruction sequences with different cache misses
could have different performance. Users can decide whether
a constant cache miss rate should be used as an additional
requirement for v-sensors. For network and IO snippets,
there are more factors such as communication destination,
network distance, IO frequency, etc. The factors can be either
static rules, which can be known at compile time, or dynamic
rules, which depend on runtime information.

Compile-Time

XX©@DX Ex
S~

v-sensor candidates

GOGHWE

Identify with default rules. Apply additional static rules.

performance records @ @ @

dynamicmetic A A O A O O A A O O

/ Classify with dynamic rules. \
A o
LDUEEE BEEEE

Detect performance variance for each group.

Runtime

Figure 5. Static and Dynamic Rules.

Figure 5 shows how additional rules could affect v-sensor
selection. At compile-time, static rules are used to identify v-
sensors from candidates. Intuitively, more strict static rules
produce less v-sensors. Dynamic rules allow further clas-
sification of v-sensors based on runtime information. As
illustrated in Figure 5, at compile-time VSENSOR ignores all
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dynamic rules and identifies v-sensors according to static
rules; at runtime, v-sensors are further classified into two
groups according to performance data of a v-sensor that can
be only known during execution. With dynamic rules, it is
possible to detect performance variance for each group.
For real-world MPI programs, network destination in MPI
communications can be used in static rules since it is known
at compile time. On the contrary, cache miss rate is a factor
that needs to be considered in dynamic rules. At runtime, the
performance records can be classified into different groups
based on the range of cache miss rates, e.g., 0-10%, 10%-20%.

3.2 Intra-Procedural Analysis

In this section, we describe the intra-procedural analysis of
snippets inside a procedure which has no function invoca-
tions. Since network and IO operations are performed by
calling functions in most programs, all v-sensor candidates
considered in this analysis are loops with pure computation.
According to the rules described in Section 3.1, if the instruc-
tion sequence of a snippet is not changed over iterations,
then the snippet has a fixed-workload. In other words, the
quantity of work is determined by the control expressions
of the loop and branch statements. If a candidate has control
expressions that are affected by some variables between two
executions, it is not a v-sensor. The dependency between
variables is analyzed using a compiler technique — use-define
chain analysis.

1
[Ln] for (n=0; n<100; ++ { !
a1 for (k=0; k< ) Vo .
count ++; 'n changes over :
! iterations of Loop-n !
L 1| for (k=0; k¢Z0; ++k) STTTTTTmTeTes !
if (k <
count ++; Work changes in Loop-n

For (i=0; 103 ++k)
count ++;
¥
Figure 6. Intra-Procedural Analysis Example.

Figure 6 shows an example of pure-computation snippets.
The outermost loop (Loop-n) has three subloops (Loop-1,2,3).
We can see that the index variable n of the outermost loop is
used in some control statements of Loop-1 and Loop-2. Since
variable n changes between multiple executions of Loop-1
and Loop-2, these two subloops are not v-sensors of Loop-
n. On the other hand, the control expression of Loop-3 is
independent of n, so the work quantity of Loop-3 is invariant
over iterations of Loop-n. Therefore, Loop-3 is a v-sensor of
Loop-n.

Based on this intra-procedural analysis, we can identify
two v-sensors in Figure 4: Loop-3 is a v-sensor of Loop-1,
and Loop-5 is a v-sensor of Loop-4.

3.3 Inter-Procedural Analysis

Figure 7 explains the principles of our proposed inter-procedural

analysis. Suppose there are three calls C1, C2, C3 to function
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L:for (...)

Cl:Call F(...)

C2:Call F(...)

C3:Call F(...)

{ variables }

Figure 7. The Principle of Inter-Procedural Analysis.

F inside a loop L, and there is a snippet S in F. Snippet S is a
v-sensor of L if the following two conditions are satisfied.

e Snippet S is a v-sensor for all its parent loops inside func-
tion F. This condition ensures that the work quantity of S
does not change during an execution of F.

o If the work quantity of S is affected by some arguments of
F or global variables, their values must not change over
iterations of L, for all invocations of F inside L (C1, C2, C3).
Therefore, the work quantity of S is the same in different
invocations of F.

int main() {

int GLBV = 40;

[B]for (k=0; k<10; ++k) }
count ++; if X > GLBV)
[©3]MPI_Barrier (MPI_COMM_WORLD) ; value -= x*y;
} return value;
} }

Figure 8. Inter-Procedural Analysis Example.

We use the sample code in Figure 8 as a concrete example
of our inter-procedural dependency propagation analysis.
In this example we analyze whether a function call is a v-
sensor. An inter-procedural dependency chain is shown in
Figure 8. For each function, we need to analyze the relation-
ship between its arguments and workload. In Figure 8, the
the workload of function foo is determined by its argument
x and a global variable GLBV. If the values of x and GLBV do
not change between invocations, then function foo have the
same quantity of work. We can see that Call-1 is a v-sensor
of Loop-2, because the changing value of k does not affect
any control statements of function foo. However, since the
value of n changes over iterations of Loop-1, Call-1 is not a
v-sensor of Loop-1. Similarly, we can see that Call-2 is not a
v-sensor of Loop-1 or Loop-2.

Next, we consider Loop-5 in Figure 8, which is a v-sensor
of Loop-4. Furthermore, because it does not depend on any
function arguments or global variables, Loop-5 is also a v-
sensor of Loop-1 and Loop-2. According to our definition,
Loop-4 is not a v-sensor of Loop-2 because the argument x
will change between different invocations of Call-2.
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3.4 Analysis for Multiple Processes

L1

count ++; Workload differs in processes
k=0; k ; +t+k
[for (k=8; k<10; ) Same workload for processes |
count ++;

}

Figure 9. Analysis for Different Processes.

For parallel programs running with multiple processes
(e.g., MPI programs), it is necessary to analyze the work-
load for different processes. Figure 9 shows an example for
which the workload of a snippet is invariant over iterations
but differs between processes. The function MPI_Comm_rank
gives a unique rank (i.e., ID) to each process. For Loop-1, the
workload is affected by the process rank. Although Loop-1’s
workload is fixed over iterations with a given rank, it is not
the same for different processes. In particular, processes with
odd ranks calculate the count++ statement while others with
even ranks do not. In VSENSOR, snippets with fixed-workload
across processes will be used for runtime inter-processes
variance detection.

We use a similar mechanism to analysis the dependency
between workload and process ID. Firstly functions that gen-

erate process identifications, e.g., MPI_Comm_rank, gethostname,

are specially handled. Then we can analyze whether the
quantity of work is related to the process ID variables, e.g.,
rank and host names. If workload is not affected by process
ID variables, then a snippet is considered fixed-workload
across processes.

3.5 Analysis for a Whole Program

To efficiently analyze each procedure, we make a topological
sort on a program call graph to determine the analysis order.
In essence, we perform a bottom-up analysis over the pro-
gram call graph. A callee is analyzed before its callers so that
we can efficiently propagate the information of the callee to
its callers and perform inter-procedural v-sensor detection.

Topological sort. @
1

®@0bao

Figure 10. Whole Program Analysis.

Several special cases need to be handled properly. Recur-
sive invocations generate cycles in a program call graph,
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which prevent a topological sort. Some programs have func-
tion pointers, whose call targets are difficult to identify at
compile time. So recursive invocations and invocations to
function pointers are removed from a program call graph.
This process is shown in Figure 10.

Many programs have invocations of external functions
whose source code is not available. For example, printf,
fopen, and MPI functions are used in many programs. With-
out the source code, we cannot analyze their behavior at
compile-time. We use a conservative strategy by default. An
external function without any user-defined description will
be treated as never-fixed workload. It means that all snippets
containing calls to those never-fixed-workload functions are
never considered as v-sensors. This strategy may miss some
potential v-sensors, but it avoids false positives, which is
more harmful. Optionally, users can describe the behavior of
external functions, i.e., what arguments affect the workload.
VSENSOR provides default descriptions for common functions
in Lib-C and MPI library.

4 Instrumentation

With a set of v-sensors identified in Section 3, we next discuss
how to select appropriate v-sensors for instrumentation. Our
discussion is based on the example in Figure 11.

e Scope. The scope indicates the loops that a snippet is
considered as a v-sensor. For example, there are two loops
(L1, L2) and two v-sensors (S1, S2) in Figure 11. S2 has
a bigger scope (L1) than S1 (L2). The workload of S1 is
fixed over iterations of L2, but is not fixed over iterations
of L1. In each iteration of L1, v-sensor S1 cannot use the
data of previous L1 iterations, since the data is no longer
valid. As a result, the data collected by a v-sensor with a
bigger scope are more durable, thus can be used to detect
performance variance in a longer period. If a snippet is a
v-sensor in an out-most loop, then it has a whole program
scope, or global scope. We call those snippets global v-
sensors. In current VSENSOR implementation, only global
v-sensors will be chosen for instrumentation.

L1:for (...)
L2:for (...)
I S1: v-sensor of L2

The scope of S2 is bigger
than the scope of S1.

| s2: v-sensor of L1 and L2 |

L1 start ! Data is invalid across scopes. !
L2 start L2 stop L2 start L2 sto|
1 ‘ B ' P

Il:l:ll IM % % %I Data of S2 is

1 S1 Scope [ S1 Scope I more durable

. — . than data of S1.
W W W W W e

S2 Scope

v

Time

Figure 11. Scope of v-sensors.
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e Granularity. We need to consider the trade-off between
detection capability and overhead. Small snippets can de-
tect fine-grained performance variance, but bring large
overhead. On the contrary, big snippets may miss high-
frequency performance variance. In vSENSOR implemen-
tation, we allow users to specify a max-depth parameter.
An out-most loop is depth-0, and its direct subloops are
depth-1, and so on. Only the v-sensors with a depth less
than max-depth will be chosen for instrumentation.
However, this compile-time strategy is only an estimation,
the actual execution time of a v-sensor is determined at
runtime. Therefore, we also apply runtime optimizations
to reduce the overhead brought by fine-grained v-sensors
(see details in Section 5).

e Nested v-sensors. For nested v-sensors, if the outside one
is selected for instrumentation, inside v-sensors will not
be used, and vice versa. This is because our instrumenta-
tion functions themselves are not fixed-workload snippets.
If we instrument v-sensors inside, then the outside v-
sensor will contain our instrumentation function, thus
is no longer a v-sensor. In our implementation, we prefer
to choose the outermost v-sensors for instrumentation.

To measure execution time of v-sensors, customized func-
tions are instrumented at compile time (Function Tick and
Tock in Figure 3) before and after each v-sensor. The perfor-
mance variance detection algorithm is triggered inside these
Tick/Tock functions.

5 Runtime Detection

In this section, we describe how the performance data gener-
ated from instrumented v-sensors are used for performance
variance detection.

5.1 Data Smoothing

Most computer systems have high frequency but short dura-
tion noise usually caused by OS interruptions. The system
noise is typically periodical and is inevitable for common
users since it comes from the kernel [12]. In this work we
regard system noise as a characteristic of systems rather than
performance variance. vSENSOR focuses on more durable and
repairable performance variance. However, some v-sensors
have very short execution time so they will be affected
by system noise then generate false alerts of performance
variance. To avoid false positive results, we aggregate and
average performance data during a small time slice (1000us
by default) to smooth data.

Figure 12 shows background noise under different time
resolutions. A v-sensor with approximately 10us workload
is executed repeatedly on Tianhe-2 system, and we record
the wall time for each execution. With a high resolution
(10us), its performance data appear to be chaotic. However,
if we plot the average of longer intervals (1000 us), the curve
becomes smoother. The smoothed data can filter out a lot of
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Figure 12. Filtering out background noise.

background system noise and let us focus on more durable
and more severe performance variance. Also, data analysis
algorithm is triggered only once for a time slice, this reduces
the overhead introduced by fine-grained v-sensors.

5.2 Performance Normalization

In Subsection 3.1 we mention that v-sensors have types
of Computation, Network, or IO. The type of the v-sensor
helps us to locate the root cause of the detected performance
variance. Actually, different v-sensors of the same type rep-
resent the performance of the same system component, so
their performance data can be merged to improve detection
accuracy. For example, there are 10 network v-sensors each
executes per 1000us, then we can analyze their performance
per 1000us. After data merging, we can analyze the net-
work performance per 100us, thus it is easier to catch a
network performance variance. Since different v-sensors
have different workloads, we cannot compare their execution
time directly, instead we use normalized performance. Each
v-sensors compare their records to the fastest record. The
fastest record will be normalized to 1.00, and a record with
double execution time has a normalized performance of 0.50.
The normalized performance of v-sensors with the same
type represents the performance of a certain component
of a system. Low normalized performance indicates that a
component has performance degradation.

5.3 Comparing with History

To ensure low storage overhead of analysis, VSENSOR records
the historical performance data (e.g., wall-time) and detects
variance by comparing current performance data with his-
tory. For a given v-sensor, its work quantity should never
change. Instead of saving a long list, only a scalar value
of standard time needs to be saved for each v-sensor. As
discussed in Subsection 5.1, there is a record for each time
slice, which represents the average execution time during
the past time slice. The standard time of each v-sensor is
dynamically updated to the execution time of the fastest
record. Besides the elapsed time, more metrics such as cache
miss and memory access can be obtained through processors’
performance monitor unit (PMU [22]).

To further reduce the overhead due to fine-grained v-
sensors, VSENSOR will turn off the analysis for v-sensors
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that are too short at runtime. In other words, the Tick/Tock
functions wrapped those v-sensors will not trigger analysis.

Wall-Time (s) 3 3 7 3 5 3 7 3 3 3
Record ID @@@
CacheMiss (Highktow) L L H L L L H L L L

Case 1  Cache miss is expected to be constant.
33 7 3 5 3 7 3 3 3

@ @ @ @ Record 2, 4, 6 are variance.

Case 2 | Cache miss as a dynamic rule.

T TR S S T B B :"7"'7".
1

OHEOEDGEE: 2 6!

JL L L L L L L L LH _H)

Records with low cache miss.
Record 4 is variance.

Records with high cache miss.
No variance is detected.

Figure 13. Online Detection Example.

Figure 13 shows an example of online detection. A v-
sensor is executed ten times, and we record its wall-time
and cache miss rate. For simplicity, cache miss rate has two
values: high and low. If cache miss rate is expected to be
constant, then records 2,4,6 will be detected as variance
since their execution time is much longer than other records.
However, when cache miss rate is used as a dynamic rule,
the records can be clustered into two groups, for high and
low cache miss, respectively. After this refinement, record
4 is a variance in low-cache-miss group, and no variance is
detected in high-cache-miss group.

5.4 Analysis for Multiple Processes

In our implementation, VSENSOR uses a dedicated process
(called analysis-server) for inter-process analysis. It collects
performance data from all processes to detect inter-process
performance variance by comparing the performance of the
same v-sensor on different processes. This can be done by
processes sending messages to analysis-server or by updat-
ing shared files. Experimental results in Section 6 show that
the data transferred to server is quite small and will not cause
severe network or IO congestion. To reduce overhead, each
process buffers its data locally and periodically transfers
them in batch to analysis-server. Instead of sending many
small messages, it generates smaller number of network-
friendly batched messages.

5.5 Reporting Performance Variance

A visualizer is used to make performance detection results
easier for developers to understand. In our implementation,
a performance matrix can be generated for each type and
represent the performance of each component (Computation,
Network, IO). Figure 14 is a visualized performance matrix
generated by VSENSOR with v-sensors of computation type.
It shows the computational performance of 128 processes
during 100 seconds.
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Figure 14. An example of performance matrix.

The horizontal axis represents time, with a resolution
of 200ms. The vertical axis represents the MPI rank, i.e.,
process ID. We use different colors to represent the relative
performance, deep blue means the best performance and
white means the performance is only half of the best. As a
result, performance variance will be shown as white blocks
in a performance matrix figure. Although there are scattered
white dots in Figure 14, the whole program has a good per-
formance in total. We will see figures for severe performance
variance from real cases in Section 6.

The position of white blocks indicates the time and lo-
cation of performance variance, and the v-sensor type tells
which component caused the variance. For example, if vSEN-
SOR reports that some processes are slower than others,
that may imply potentially buggy hardware in those nodes.
VSENSOR is designed to detect performance variance with low
performance overhead and low manual intervention. After
VSENSOR identifies the source of performance variance and
points out the corresponding time, processes, and component
in a coarse-grain fashion; it is the users’ choice to repair the
system, or to resubmit the job, or to launch more accurate
but larger overhead diagnosis tools.

6 Evaluation
6.1 Methodology

We evaluate VSENsOR with eight typical HPC programs: five
benchmark programs (BT, CG, FT, LU, and SP from NPB
benchmark suite [6]) and three applications (LULESH [15],
AMG [37], and RAXML [24]). We perform all experiments
on the Tianhe-2 supercomputer, with up to 16,384 processes.
Each node of the Tianhe-2 has two Xeon E5-2692(v2) pro-
cessors (24 cores in total) and 64GB memory. The Tianhe-2
uses a customized high-speed interconnection network.

The current implementation uses LLVM-3.5.0 for v-sensors
identification; and uses Clang-3.5.0, Dragonegg-3.5.0, and
ROSE for source code instrumentation. The framework of
VvSENSOR and the visualizer are built on Python scripts. Al-
though the current implementation does not yet include
all features described in previous sections, it can detect
various forms of performance variance, as we will see in
the following subsections.

In the experiments, we firstly provide a detailed analy-
sis of the identified v-sensors with VSENSOR, validate their
correctness, and show the performance overhead of on-line
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Code Number of Number of Instrumentation | Workload Performance Sense-time Frequency
Program .

(KLoc)  snippets  v-sensors number and type | max error ~ overhead coverage (MHz)
BT 11.3 476 190 87Comp 4.78% 2.31% 87.08% 5.759
CG 2.0 83 25 7Comp+5Net 0.07% 2.37% 14.52% 0.107
FT 2.5 162 49 17Comp+3Net 3.91% 3.73% 42.64% 11.369
LU 7.7 328 168 83Comp 3.82% 2.08% 64.03% 0.484
SP 6.3 554 85 61Comp+6Net 3.76% 0.22% 45.32% 5.346
AMG 75.0 4695 555 143Comp+3Net 0.86% 1.62% 0.18% 0.004
LULESH 5.3 1401 333 21Comp+3Net 3.14% 0.21% 15.88% 1.197
RAXML 36.2 2742 677 277Comp+24Net 4.84% 3.46% 17.23% 7.077

Table 1. Results for vSENsOR validation (with 16,384 MPI processes and 15,625 processes for LULESH).

detection algorithms. Then, we discuss VSENSOR’s ability to
detect performance variance. Finally, we give several case
studies using VSENSOR to detect real performance variance
on the Tianhe-2.

6.2 Validation and Overhead

Table 1 lists several basic metrics of compile-time analysis
and runtime detection. Columns on the left are compile time
analysis results. Columns on the right are runtime results
with 16,384 MPI processes (15,625 processes for LULESH).

The results includes the lines of source code, the number of
snippets, the number of identified v-sensors, and the number
and type of instrumented v-sensors. In our experiments,
most of the instrumented v-sensors are of type Computation.
As discussed in Section 3.1, loops and calls are candidate
snippets of v-sensors. For example, AMG has 75K lines of
source code and 4695 candidates. After compile-time analysis,
555 snippets in AMG are identified as v-sensors. Among
them, only 146 v-sensors are finally selected to instrument
for on-line detection. This result show that VSENSOR can
filter out many snippets with not-fixed workload, thus avoid
unnecessary instrumentation.

Next we validate the correctness of the identified v-sensors,
i.e. to check if their workloads are really fixed. We validate
the correctness of network v-sensors by recording their
message sizes, and the experimental results show those ar-
guments are unchanged. However, it is more complicated
to validate the correctness of identified v-sensors, we use
the hardware Performance Monitor Unit (PMU) to record
the instruction counts of computation v-sensors and check
whether the workload is fixed over iterations. For each v-
sensor, we get a sequence of instruction count for each
execution: vy, vy, ..., Uy. Let Py = MAX(v;)/MIN(v;). Theo-
retically, all values for a v-sensor should be the same and Ps =
1. Since PMU measurement is not perfectly accurate [32],
Ps is approximately equal to 1 in our experiments. Let P, =
MAX(Ps) denote the maximum difference of all v-sensors.
And let P,, = MAX(P,) denote the maximum difference
for all processes. We list the values of P, — 1 in Column
Workload max error of Table 1, which denotes the error of
VSENSOR. We can see that the average error is less than 5%.

Considering the PMU precision, these results indicate that
our compile-time analysis algorithm works well.

The performance overhead is measured by comparing
the execution time of the original with the instrumented
programs. Since the Tianhe-2 has a significant performance
variance, we run them repeatedly and use the shortest time
for comparison. Table 1 also shows that the performance
overhead for instrumented programs are less than 4%. It
indicates that our instrumentation strategy is effective and
the on-line detection algorithm is light-weight.

6.3 Distribution of v-sensors

VSENSOR’s ability to detect performance variance highly
depends on the distribution of v-sensors. Figure 15 illus-
trates key notions related to v-sensors distribution. The total
execution time of a program is represented horizontally. A
red color block means a v-sensor is executing, and we call it
a sense. The length of a single red block is called the duration
of a sense. Sense-time is the sum of all senses’ duration and
interval is the length between two senses. We define the
coverage of v-sensors as the ratio between sense-time and
total-time. The average frequency of v-sensors is defined as
the ratio between sense-count and total-time.

M sense-time duration | interval

I W ENT 10

total-time

Figure 15. The distribution of v-sensors.

The right-most two columns in Table 1 list coverage and
frequency for each program. We see that most programs have
a coverage over 10% and frequency higher than 100KHz. For
example, the sense frequency for CG is 107KHz, which means
there is a sense for each 10us.

To analyze the duration and interval of senses, we cluster
them into four groups according to their length: (1) less
than 100us; (2) 100us to 10ms;(3) 1ms to 1s; (4) more than
1s. Figure 16 and Figure 17 show the length of duration and
interval for each program.

We see that the duration time of most senses are shorter
than 100us, none of them is longer than 1s. It means most
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Figure 16. The duration of senses.

v-sensors are fine-grained snippets, which implies the neces-
sity of aggregation (Section 5.1).
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Figure 17. The interval between senses.

For most programs, intervals are shorter than 1s, thus
vSENSOR would not miss performance variance longer than
1s. Some programs have several long intervals (longer than
1s). For LULESH, its long intervals are caused by a big non-
fixed snippet in its main loop. However, there are enough
v-sensors spanning across the whole program, so VSENSOR
can still detect performance variance. On the contrary, v-
sensors in AMG only appear in a portion of lifetime, and
there is no v-sensor for almost half of lifetime. We can also
see AMG’s low coverage and frequency in Table 1. This
behavior is due to the adaptive mesh refinement algorithm
used in AMG, which leads to runtime workload changes, so
there are only few fixed workload snippets. Nevertheless,
many HPC programs have static work partition and vSENSOR
works well for these programs.

6.4 Noise Injection

We use VSENSOR and a profiler (mpiP [31]) to study a manual
noise injection example. The program is c¢g.D.128, with 128
MPI processes. Due to the difficulty of controlling the Tianhe-
2 system, this injection experiment is done on a local cluster
with dual Xeon E5-2670(v3) and 100Gbps 4XEDR Infiniband.

Figure 18 shows the mpiP profile result for a normal run
without noise injection. All processes spend about 50 seconds
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Figure 18. mpiP profile result for a normal run.

on MPI communication and about 75 seconds on computa-
tion. The slight time difference between processes may be
due to different workloads or different node performance,
which can not be distinguished with this profile result only.
Then we re-run the program with noise injection. The noise
injection is done as following. While the program is running,
we launch another program (noiser) on some nodes, thus
the program will compete with noiser for CPU and memory
resource. We inject noise twice and it lasts for 10 seconds
each time. With noise injection, the program becomes slower.

80

Time (s)

O Computation
e MPI

I I
100 120

Process ID

Figure 19. mpiP profile result for a noise-injected run.
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Figure 20. vSENSOR result for a noise-injected run.

Figure 19 is the mpiP profile result for the noise injected
run. Comparing Figure 19 with Figure 18, the MPI time
increases from about 50 seconds to about 65 seconds, while
the computation time is almost the same. If we only look at
Figure 19, we cannot tell whether the program is affected
by performance variance. Even worse, we are mislead to
suspect the network since the MPI communication becomes
longer. After carefully reading the mpiP output and the
source code of the program CG, we try to give an explanation
for those counter-intuitive results: The injected workload is
likely to be scheduled inside MPI function calls, since cpu
cores are more idle during communication. As a result, the
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computation is only stretched a little, but the communication
on some processes is delayed a lot. Then the slowed processes
cause communication waiting between processes, and this
waiting time is calculated as MPI time by the mpiP profiler.
Nevertheless, this is a non-trivial analysis especially for users
who are not MPI experts.

While mpiP profile results fail to point out what and where
the noise is injected, VSENSOR can detect and locate the
injected noise. The computation performance matrix of a
normal run has been shown in Figure 14. Injected noise is
illustrated clearly as two white blocks in Figure 20. Figure 20
indicates that the noise is injected to process 24-47 at 34
second, and to process 72-96 at 66 second. As a conclusion,
comparing with a profiler, vSENsoR has an advantage on
detecting and locating performance variance.

We also use an MPI tracer (ITAC [2]) to collect trace for
analysis. Despite the requirement of expert knowledge to
analyze trace, ITAC generates much more data than VSENSOR
(501.5 MB vs. 8.8 MB). Since trace-based analysis tools gen-
erate much more trace data, which can incur large overhead
in terms of space and time, VSENSOR has better scalability
than traditional tracing tools. In this example run, the data
generation rate for each process is 0.5 KB/s (8.8 MB for 128
processes and 140 seconds). Based on this data generation
rate, even 16,384 processes will only generate data at 8 MB/s,
which is a small network bandwidth consumption.

6.5 Case Studies

Next, we share our experience of using VSENSOR to detect
and locate performance variance on the Tianhe-2 system.
Figure 21 shows the computation performance of CG running
with 256 processes.
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Figure 21. VSENSOR detection result for a CG run.

We notice that there is a white line near process 100, which
means these processes suffer from low computation perfor-
mance for the whole execution. VSENSOR reveals that these
slow processes are all running on the same node, therefore,
the problem is probably caused by a bad node. To confirm
it, we run computation benchmarks to test the performance
of CPU and memory on that node. Benchmark results show
that, while the node has common CPU performance, one of
its processor has low memory access performance, which is
only 55% of other processors. We report this finding to the
administrator and use other nodes to resubmit our job. After
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removing this bad node, the time of running CG reduces
from 80.04s to 66.05s, — a 21% performance improvement.
One could argue that a performance test before launching
programs (pre-test) could avoid this kind of performance
variance. However, as shown in Figure 1, performance vari-
ance exists even if programs run on fixed nodes. In our
experiments, we keep running FT using 1024 processes on
a fixed set of nodes, a performance variance occurs in the
middle of execution, which cannot be detected by pre-test.
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Figure 22. vSENSOR detection result for an FT run.

As shown in Figure 1, a normal run of FT takes 23.31s.
However, an abnormal run may take up to 78.66s, which is
3.37% slower. The performance variance is clearly identified
with VSENSOR, as illustrated by the network performance
matrix in Figure 22. We can see that there is a clear network
performance degradation in the period between 16s and
67s. After reading the source code of FT, we notice that FT
calls MPI_Alltoall for exchanging data among processes.
The function MPI_Alltoall is a complex communication
operation that involves all processes, thus is vulnerable to
network problems. We indeed found that network system
in the Tianhe-2 has occasional performance issue, which is
identified as the root cause of the performance variance we
observed in FT. Unfortunately, this network performance
degradation is probably caused by network congestion, and
is difficult to avoid. In this situation, VSENSOR can timely
detect the performance variance and notify users. Then it is
users’ choice to continue or re-submit the job.

7 Related Work

Performance variance is a major problem for long-running
programs on HPC systems [21]. Skinner et al. [27] examined
variance on large-scale systems and demonstrated perfor-
mance gains by reducing variance. Hoefler et al. [12] quantify
the impact of OS variance on large-scale parallel applica-
tions. They found that application performance is mostly
determined by variance pattern rather than serial variance
intensity. Tsafrir et al. [30] found that periodic OS clock
interrupt was a major source of variance on general-purpose
OS. Co-scheduling of operating system is suggested as a
solution to avoid system variance [13].

Agarwal et al. [4] studied the impact of different perfor-
mance anomaly distributions on the scalability of parallel
applications. They found that a heavy-tailed or a Bernoulli
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noise can cause significantly performance degradation. Fer-
reira et al. [9] used a kernel-based noise injection method to
inject various levels of noise into applications running on a
supercomputer and quantified the interference of noise on
real applications. Beckman et al. [7] reported that synchro-
nizing the system interrupts can largely reduce its influence.
During the optimization of application NAMD on a large
supercomputer, Phillips et al. [25] found that service daemon
processes prevents using all processors on each node for
useful computation effectively.

Models have already been used for performance variance
detection. Petrini et al. [23] used analytic models to identify
the source of a performance problem for SAGE running on
ASCI Q machine. Their method can quantify the total impact
of system noise on application performance. However, their
method is both time- and resource-consuming. For more
generally purpose, Lo et al. [19] build a toolkit for perfor-
mance analysis on a variety of architectures based on roofline
model [33]. Although Calotoiu et al. [8], Jae-Seung Yeom et
al. [38], Lee et al. [18] and many other researchers made
efforts to accelerate model building, it is still challenging to
build an accurate performance model for a complex parallel
application.

Jones et al. [14] utilized the postmortem analysis of de-
tailed system traces to discover the root cause of the source
of performance variance. However, the traces will become
very huge as applications scale up in problem size and job
scale [36]. Collecting huge volume of traces also introduces
large interference with user applications [35, 39]. As a result,
it is impractical to accurately identify system noise through
trace-based methods on a large-scale system. Profilers [31]
and statistical tracers [29] are proposed for less-accurate but
light-weight analysis.

While VSENSOR in this paper focuses on the performance
variance of systems, there are other performance tools such
as STAT [5], AutomaDeD [16] and PRODOMETER [20] aim
at performance faults or functional bugs of programs.

In summary, previous studies are not sufficient to perform
light-weight on-line performance variance detection. vSEN-
SOR leverages the intrinsic characteristics within applications
and allows efficient variance detection with the combined
static and dynamic techniques.

8 Conclusion

This paper proposes VSENSOR, a novel approach for light-
weight and on-line performance variance detection. Instead
of relying on an external detector, we show that the source
code of a program itself could reveal the runtime perfor-
mance characteristics. Specifically, many parallel programs
contain snippets that are executed repeatedly with an in-
variant quantity of work. We use compiler techniques to
automatically identify these fixed-workload snippets and
use them as performance variance sensors (v-sensors) that
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enable effective detection. The evaluation results show that
VSENSOR can effectively detect performance variance on the
Tianhe-2 system. The performance overhead is less than 4%
with up to 16,384 processes. In particular, with VSENSOR,
we found a bad node with slow memory, which slowed a
program’s performance by 21%. We also detected a severe
network performance problem that causes a 3.37x slowdown
for a program.
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