
A Novel Memory Subsystem Evaluation Framework
for Chip Multiprocessors

Fucen Zeng, Lin Qiao, Mingliang Liu, and Zhizhong Tang
Department of Computer Science and Technology

Tsinghua University
Beijing, China

Email: zengfucen@gmail.com, qiaolin@tsinghua.edu.cn, liuml07@gmail.com, tzz-dcs@tsinghua.edu.cn

Abstract—This paper presents a fast and cycle-accurate mem-
ory subsystem modeling and evaluating framework for Chip
Multiprocessors (CMPs), called TSIM (Tsinghua SIMulator),
which gives a flexible and extensible approach to evaluating ar-
chitecture designs, models or algorithms, including the network-
on-chip interconnection, cache hardware prefetcher, memory
system protocol, replacement policy, etc. TSIM is trace-driven,
adopting a dynamic binary instrumentation technique to generate
the running trace information of applications on-the-fly. After
receiving the trace information, TSIM will reappear the on-chip
memory behaviors of applications. By introducing the concept
of statistical meta metrics, TSIM separates the analysis stage
from the simulation process per se, and this provides a great
facilitation for a user to count and sample the performance
metrics. Compared to the real cache system, TSIM achieves an
accuracy of 90.66% at the average speed of 327 KIPS. Meanwhile,
TSIM accelerates the simulating speed by 10 to 100 times,
compared to the traditional cycle-accurate cache simulators. On
the other hand, when TSIM is used to characterize the on-
chip memory system behaviors of SPEC CPU 2000 benchmarks,
experimental results about the on-chip memory behaviors are the
same as others.

I. INTRODUCTION

With more and more cores packaged in a Chip Multi-
processor (CMP), memory hierarchy is becoming one of
the key design problems. But unfortunately, for almost all
of computer architectures, quantitative evaluation of memory
subsystems is possibly only by using simulators [1]. In other
words, simulation is indispensable for a computer architect.
Yet even as many simulators and other simulating methods
have been presented for CMP researchers, to date there is still
some main problems remained unsolved.

One such a problem is unbearable simulating speed. It is
virtually impossible to simulate all benchmarks of a whole
suite to completion, especially by using those full-system
simulators [1]. Typically, an architect simulates a subset of
benchmarks, using a reduced or truncated input set or a
representative set instead, to minimize the simulating time. As
a result of trading speed for accuracy, these simulators bring
out the second problem: poor accuracy, while an evaluation
with poor accuracy is untrusted. Besides, these simulators are
often hard to use or to implement new architecture solutions.

This work is supported by the National High Technology Research and De-
velopment Program of China (863 Program) under Grant No. 2008AA01Z108,
and National Science Foundation under Grand No. 60773149.

To address these problems, this paper proposes a fast and cy-
cle accurate memory subsystem evaluation framework, called
TSIM (Tsinghua SIMulator). TSIM focuses on CMP systems
and supports multithread workloads. As a sequel to [2] and [3],
TSIM uses a dynamic instrumentation tool, pin, as its front-
end to generate trace files of running workloads. After per-
missible reduction, a reduced trace is sent into the simulation
core to generate performance statistical result for a specific
architecture. Then, a user can use some post-processing tools
to parse the statistical result and to analyze the performance of
the workload. The statistics and sampling technique in TSIM,
based on the statistical meta metrics (SMM), makes a user
totally free to get any performance metrics. More significantly,
TSIM presents an extensible approach to exploring behaviors
of on-chip subsystems. A TSIM user can configure simulation
parameters freely, such as cache level, cache size, block size,
number of cores, cache associativity, cache resources, hit
latency, replacement policy and cache protocol.

Unlike other simulation methods, TSIM has been trying to
find the right balance among speed, accuracy and flexibility.
By simulating the delays caused by various types of events,
TSIM performs cycle-detailed simulation, and this ensures
the accuracy of the simulation results. At the same time, by
simplifying pipelines and highly optimizing codes, TSIM also
provides relatively higher simulating speed with little accuracy
loss. Compared to some traditional simulatiors, TSIM accel-
erates the memory subsystem simulation speed by 10 to 100
times, with only 9.34% accuracy loss.

This paper is organized as follows. Section II discusses
related work. Motivation and mechanism of TSIM are reported
in Section III, while design and implementation of TSIM
are further elaborated in Section IV. Section V provides
experimental results and Section VI concludes.

II. RELATED WORK

During the past decades, many simulators have been
used in architecture performance evaluation and optimiza-
tion field. Practically, there are three main types of them:
execution-driven simulation, instrumentation-driven simula-
tion and trace-driven simulation.

Execution-driven simulation relies on existing functional
performance models to execute a binary application [4], [5],

[6], [7]. The functional performance model provides the mem-
ory addresses in real time. A cache simulation model starts
after receiving the access information. GEMS [4], as a simu-
lation tool set, is a typical case of execution-driven simulator,
created by Wisconsin Multifacet Project, to characterize and
evaluate the performance of multiprocessor hardware systems.
Fahringer et al. [5] have used an execution-driven model to
analyze performances of distributed and parallel systems. Woo
et al. [6] have also used an execution-driven simulating model
with the Tango Lite Tracing tool [7].

An instrumentation-driven simulator uses a dynamic binary
instrumentation tool to gather the running information of
an application at any expected instrumented point [8], [9].
Then, after receiving the running information such as memory
addresses, the cache model works. A binary instrumentation
approach is relatively faster, suitable for conducting accurate
memory performance studies. Jaleel et al. [8] have described
an instrumentation-based approach to characterize memory be-
haviors of workloads. They use CMP$im, an instrumentation-
driven memory simulator, to evaluate the memory perfor-
mance. Since binary instrumentation normally occurs at native
execution speed, an instrumentation-driven simulator can run
at MIPS (Million Instructions Per Second) speed. However,
they do not simulate a detailed timing model, and do not
provide a prefetcher either. Above all, CMP$im is not available
to public.

A trace-driven simulator uses some specific tool(s) to collect
the memory references (called an address trace) of a running
application, and applies the trace sequence to the simulation
model to mimic the way that a real processor might exercise
the design [10], [11]. A trace-based simulation method is
conceptually simple, and easy to reappear experimental results.
Since functional models of modern ISAs are considerable
slow and complicated to be built. Trace-driven simulation is
more popular for conducting memory subsystem performance
studies [10], such as the performance characterization and
performance optimization. Uhlig et al. [10] have made a
detailed survey for existing trace-driven simulators. They have
investigated more than 50 trace-driven simulators and showed
that none of them is best when all criteria (including accuracy,
speed, memory, flexibility, portability, ease-of-use, etc.) are
considered together. SimpleScalar [11] is one of the hugely
popular set of simulation tools during the past 15 years. But
in this multicore era, on-chip cache access model cannot be
applied to it directly.

Other researchers have also proposed simulation environ-
ments to meet their own research needs. Li et al. [12] use
IBM’s TurandotPowerTimer to generate single-core L2 cache-
access traces that are annotated with timestamps and power
values, then feed these traces to a cache simulator developed
by themselves. The simulator uses hits and misses to shift the
time and power values in the original traces. They propose
joint optimization across multiple design variables. Bononi
et al. [13] use OMNeT++ simulation Framework to analysis
some architectures for network on chip. Sun et al. [14]
construct a prototype using a public domain network simulator

ns-2 and evaluated design options for a specific network-on-
chip (NoC) architecture.

In summary, to our knowledge, few researchers have com-
prehensively considered many cores and mutual effects of
timing components under the CMP environment; namely, CMP
researchers still lack of a useful timing-detailed memory sub-
system performance model to support the x86 CMP platform.
Some full system simulators such as SIMICS [15] and M5
[16] do support x86 ISA, but they are bulky and emulate the
whole system with peripherals and the operating system: apt
to be accurate but much slower. It is expected that this paper
fills the gap.

III. FRAMEWORK METHODOLOGY

As a cycle-accurate memory subsystem performance eval-
uation framework, TSIM is based on both of a trace-driven
technique and a dynamic binary instrumentation one. TSIM
separates the hardware timing logics into several flexible
modules, provides a unified interactive simulation method
under the same timing scheduling. Simulation of many cores
has also been supported in the TSIM framework.

There are three main stages in the TSIM framework. First,
TSIM collects a trace of a running workload in the front-end
stage. Second, in the back-end stage the reduced trace will be
sent into the simulation core to generate performance statistical
result for a specific architecture. In order to decrease storage
cost and to shorten simulation time, permissible reduction may
be made without losing accuracy. Last, in the analysis stage a
user can use some post-processing tools to parse the statistical
result and analyze the performance of the workload. TSIM
is, in fact, a fast and efficient tool for researchers who are
interested in CMP on-chip memory subsystems.

A. Front-end Basis

TSIM adopts a binary instrumentation tool, pin, as its front-
end. Pin [17] is a well known dynamic instrumentation tool for
Linux and Windows binaries, which supports the instruction
set of IA32, IA32E, ARM, and Itanium processors. Similar to
the ATOM [18], Pin can instrument at any point of the target
application, by using the just-in-time compiling technique to
insert and optimize codes.

In addition to those common optimization techniques in a
dynamic instrumentation system, including code caching and
trace linking, Pin employs lots of other techniques to optimize
object codes compiled on-the-fly, such as register reallocation,
inlining, liveness analysis and instruction scheduling. Pin
also supports a certain degree of transparency, which ensures
the completeness and correctness of the trace information
collected by the instrumentation tool.

As a trace generator, the front-end module uses the APIs
of Pin to interact with binary code, collects the trace of the
running application, and then tells Pin to control the execution
of the application if necessary. In order to provide the memory
access information to the TSIM back-end modules, the trace
generator mainly collects the memory references and the
information of the memory accessing instructions. As the

input of the whole simulation process, each record in the
trace contains thread id, accessed memory address, data size,
memory access type (read or write), and so on.

B. The Structure of the Target Memory Subsystem

Figure 1 shows the structure of the target memory subsys-
tem modeled in TSIM. Caches or other objects on chip are
connected through the interconnection network.

TSIM front-end

C C C ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ C C C

Network-on-Chip Interconnection

Thread Id, Addresses, Size, etc.

Fig. 1. The structure of the target memory subsystem in TSIM

Several components have already been built in the TSIM
framework as fixed modules that can be assembled and config-
ured but not removed (e.g., Cache Module and Pipeline Mod-
ule), while other modules as flexible ones, such as Network-
on-Chip Interconnection (NCI) Module, Cache Prefetcher (CP)
Module, Replacement Policy (RP) Module, Memory System
Protocol (MSP) Module. In the TSIM framework these flexible
modules are extensible: a user can not only assemble or
configure the existing implementation of these modules but
also replace a module with a new one.

While complicated out-of-order pipelines have been a hot
point for decades, recent studies [3] have shown that simple
in-order cores would be the next attractive resort for CMPs.
Thus, the TSIM adopts simplified pipelines to design the
detail of the memory model, which brings little accuracy loss.
Also, it is easy for TSIM to be extended under more detailed
investigation.

IV. DESIGN AND IMPLEMENTATION

The TSIM models the hardware timing of the processor
and on-chip memory subsystem. Also, it constructs upper-
most abstraction layers of common research hot-points, such
as network-on-chip interconnection, cache prefecther, cache
coherence policy and replacement policy. Since the statistical
strategy has already been built in the uppermost abstraction
layer of each module, the performance statistics can be com-
pleted automatically when a TSIM user implements a new
algorithm as a substitute for a predefined one. It is flexible
enough for the TSIM user to make changes of modules to
implement new improvements and innovations.

A. Network-on-Chip Interconnection

The NCI module models performance effects caused by
network-on-chip interconnection of memory sub-systems on

CMPs. Two major characteristics are modeled: network struc-
ture (topology) and latency of messaging.

Figure 2 shows the structure of the NCI module in TSIM.
Every component on chip, such as data cache (DC), instruction
cache (IC) of each core and other logic objects, can intercon-
nect with each other via the NCI module. The NCI module
is responsible for creating a logical network interface card
(NIC) for those objects connected to the NCI, while an NIC
is in charge of packaging, sending, and receiving packages for
the corresponding node.

Network-on-Chip Interconnetion

NICNIC

ICDC

NICNIC

ICDC

NICNIC

ICDC⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Core 1 Core 2 Core N

NIC NIC NIC ⋅ ⋅ ⋅ NIC

chip

offchip
memory

Fig. 2. The Structure of the NCI in the TSIM framework

The TSIM provides a flexible and extensible support for
the NCI research. Not only those components on chip can
connect to the NCI module, but also some off-chip components
can do either; for example, the off-chip memory, as shown in
the figure 2. Basically, there is no limits for the number of
the network nodes, if only the memory of the host machine
permits.

The NCI module simulates details of real packet transfer
processes with a routing algorithm, or just facilitates the
processes by directly using the average transfer cycles to
complete the packet transfer simulation. Both of the average
throughput of network and the throughput of each network
node are obtained.

In addition, Wang et al. have investigated various on chip in-
terconnection network structures in CMPs [19]. Their research
has suggested that for a small-scale and low-load op-chip sys-
tem a multi-ring network works well, but for a very-large-scale
on-chip system it is very difficult to get good performance
by just adopting any NoC interconnection structure though a
mesh grid is better than a ring one. That is, strictly speaking,
how to choose a proper NoC interconnection structure is still
open. TSIM displays a possibility, an opportunity of making
researches on NoC interconnection. Both of mesh and a bus-
based interconnect network have already been implemented in
the code repository, while networks based on others next.

B. Cache Prefetcher

On-chip cache prefetching operations may be at any access
or just when access-miss occurs. It is a very important way to
optimize the on-chip cache performance. The TSIM provides

an independent module to satisfy the needs of cache hardware-
prefetcher researches.

For the CP module, two operations are untrivial: Notify
and SendPrefetchRequest. Memory access information at every
cycle is passed to the prefetcher module via the Notify oper-
ation. Then, the prefetcher instance updates its internal data
structure and calculates the prefetch-packets. At the same time,
the prefetcher instance sends a request to the targeted cache
to load the prefetch via the SendPrefetchRequest operation if
conditions are satisfied.

In the current version of TSIM several cache hardware-
prefetcher algorithms have been implemented:

∙ A sequential prefetcher, which just prefetches the next
block at the next cycle when a miss happens [20],

∙ Global History Buffer Prefetcher (GHB), which
prefetches based on the information recorded in a global
history buffer [21],

∙ Adaptive CZone/Delta Correlations Prefetcher (AC/DC),
based on GHB prefetcher, which divides the memory ad-
dress space into equal-size concentration zones (CZones)
and uses a global history buffer to track and detect
patterns in miss address deltas (differences between con-
secutive addresses) within each CZone [22],

∙ Markov Prefetcher, which makes use of the miss ad-
dress stream as the prediction source and models the
miss address stream as a Markov graph: informally, a
probabilistic state machine [23],

∙ Stride Prefetcher, which depends on stride distance and
degree, where the stride distance is the distance of two
consecutive memory addresses and the degree the number
of prefetch requests issued one time [24], and

∙ Tag Correlating Prefetcher (TCP), which works with tags
instead of cache-block addresses is significantly more
resource-efficient [25].

C. Replacement Policy

Replacement policy is one of the main optimization tar-
gets to achieve high performance. In TSIM, the uppermost
abstraction has been given, accompanied by several existing
replacement policies, such as LRU and Random replacement
policy.

The RP module works when the cache has received a
memory request. A user who wants to evaluate a replacement
algorithm just needs to implement only one operation to access
the cache. This operation is responsible for accessing the cache
set, updating it and returning the access result or a victim cache
block if a miss occurs.

D. Memory System Protocol

In TSIM, memory system protocol only means coherence
protocol, but actually the cache control logic, which defines
various status transitions based cache control behaviors includ-
ing cache coherence.

To implement a new memory system protocol in TSIM, a
user has to define the cache block statuses used in the protocol
and the status transitions within those status classes. When a

protocol is instantiated, a set of status objects (e.g., Modified,
Shared and Invalid) is created.

TSIM now supports two protocols: MESI (known also as
Illinois protocol due to its development at the University of
Illinois at Urbana-Champaign) [26] and a simple invalidate-
based cache coherence protocol. The support of MOESI based
cache coherence protocol is part of the on-going work. These
protocols work with the network interconnection which is
simulated in the NCI module. All of coherence behaviors,
cache controlling commands and network traffic caused by
these operations can be collected in TSIM.

E. Statistics and Sampling

The task of the statistics and sampling (SS) module is to
provide a way to collect or sample statistical information
and then to print them out in a certain format. In TSIM,
the principle of recording statistical information is that only
basic accumulative statistical data which can be sampled from
hardware event counter (e.g. number of L1D cache access) are
maintained, while others that can be derived from the basic
statistical data are discarded. As described above, these basic
statistical data are called SMMs.

A TSIM user can get any performance metrics from these
SMMs. For example, the number of the cache access hits
(CAH) and the number of cache access (CA) are two SMMs,
a user can get the miss-rate via (CA − CAH)/CA. In this
way, TSIM treats the statistical recording process and analysis
process as two independent functions.

Furthermore, in order to be extensible enough, the statistical
data are organized as a tree, which can be dumped out to a
output stream in an XML file. It is very convenient for a TSIM
user to gather the statistical meta data with an XML parser or
a shell script in the analysis stage. It can also be done if extra
computation of the performance metrics is needed.

The TSIM sampling tool also allows a user to get a general
view on the data changes of statistical meta nodes. Sometimes,
the changing information of the statistical meta node is very
useful to research into application behaviors under the on-chip
memory environment. Consequentially, however, additional
huge I/O operations slowdown the simulating speed. Hence, it
is suggested that the sampling interval should be larger than
10,000 cycles.

V. EXPERIMENTAL EVALUATION

This section evaluates TSIM by using SPEC2000 and NPB-
OMP benchmarks, which are representative of a large subset
of the benchmarks normally used in the computer architecture
literature.

A. Experimental Testbeds

All experiments run at a 4-way SMP system, and the oper-
ating system is linux. The detailed experimental configuration
is listed in Table I.

TSIM is used to characterize data cache (first level) behav-
iors of the NPB-OMP (Nas Parallel Benchmarks 3.2, OpenMP
version), to give out a speed illustration. NPB is a widely used

Fig. 3. The simulating time of the six NPB-OMP benchmarks on TSIM

TABLE I
THE EXPERIMENT CONFIGURATION SUMMARY

Configuration Name Value
CPU clock frequency 2.33GHz
Cache size of host system 6144KB
Operating System Linux-2.6.22-15
Cache Size of simulator 32KB
Cache Block Size 64B
Cache Ports 4 ports for wr
Number of MSHRs 4
Hit Latency 3 cycles
Load Latency 1 cycles
Way of Associativity 4-way
Replacement Policy LRU

set of programs designed to help evaluate the performance of
parallel supercomputers. To analysis the accuracy of TSIM,
the misses per thousand instructions (MPKI) of the SPEC
CPU 2000 benchmarks are compared to the value of the real
machine under the same configuration.

MPKI =
Total Misses

Total Instructions/1000
(1)

Finally, as an example, the TSIM sampling tool is used to
get a continuous view of the miss rate of six SPEC CPU 2000
benchmarks selected randomly. In order to make the analysis
brief, the simulator has been set up to skip the first one billion
instructions and then to simulate the following one billion

Fig. 4. Speed of simulating the SPEC CPU 2000

Fig. 5. MPKI comparison of TSIM and the real machine.

ones.

B. Speed and Accuracy

Figure 3 shows simulation results of the six NPB-OMP
benchmarks. Each of the six programs executes three times
with 1, 2, 4, and 8 threads, both on the locale machine and
in TSIM, respectively. For the sake of clarity, one thread per
core is assumed.

Intuitively, the rate per second at which addresses are
processed can be employed to measure the speed of trace-
driven simulators, but actually, it is very difficult to use this
metric to compare simulators or processors that have been
implemented on different hardware platforms. Because the
number of addresses processed per second by a particular
platform is a function of the speed of the host hardware,
it is not meaningful to compare this rate to that obtained
by a different processing method implemented on another
host system. To overcome this difficulty, we use the term of
Slowdown, the times that the simulator is slower than the local
machine on which simulation is taken place. Mathematically,

slowdown is defined as follows:

Slowdown =
Simulation T ime

Host System Execution T ime
(2)

Thus, an approximate comparison to other methods imple-
mented on different hosts could be made via the definition
described in Equation 2. Very few papers have reported overall
slowdowns because most of them tend to focus on just one
aspect of trace-driven simulation, such as trace collection or
the results, not the speed of their simulations. It has been
shown that the speed slowdown which a common cycle-
accurate simulator brings in is between 10,000 and 1,000,000
times [3]. In the experiments, TSIM is compared to traditional
trace-driven simulators with this metric.

As illustrated in Figure 3, the Native denotes the time
running on the locale machine, while the Simulation the
time running in TSIM, and the Slowdown the ratio of
Simulation/Native. Many research work were impeded
by the slow cycle-accurate simulators. On the average, the
slowdown which TSIM brings in is between 10,000 and

 0

 0.1

 0.2

 0.3

 0 600 1200 1800 2400

m
is

s
ra

te

million cycles

bzip2.graphic

 0

 0.002

 0.004

 0 800 1600 2400 3200

m
is

s
ra

te

million cycles

eon.cook

 0

 0.2

 0.4

 0.6

 0 1000 2000 3000 4000

m
is

s
ra

te

million cycles

gcc.166

 0

 0.03

 0.06

 0 600 1200 1800 2400

m
is

s
ra

te

million cycles

gzip.source

 0.006

 0.012

 0 600 1200 1800 2400

m
is

s
ra

te

million cycles

perlbmk.957

 0

 0.04

 0.08

 0 600 1200 1800 2400

m
is

s
ra

te

million cycles

vortex.lendian1

Fig. 6. Miss rate changes of the six selected SPEC CPU 2000 benchmarks running on TSIM

100,000 times. Besides, for multi-thread applications, some
extra speedup can be achieved. This shows that TSIM in-
creases the speed of cache simulation by 10 to 100 times,
compared to the traditional cycle-accurate simulators, for the
analyzed benchmarks.

Figure 4 shows the speed of all the SPEC CPU 2000
benchmarks running in TSIM, in thousand instructions per
second (KIPS). The average speed of these 48 benchmarks
is 327 KIPS, better than many cycle-detailed simulators. The
wupwise.ref benchmark runs at the highest speed of 500 KIPS.

To evaluate the accuracy of TSIM, the MPKI of TSIM is
compared to the real value of the real machine. Figure 5 shows
the experimental result. It can be found that the MPKI value of
TSIM is very close to the real one. And for those benchmarks
whose MPKI are larger than 1, the average MPKI relative error
rate is 9.34%. That is, TSIM achieves an accuracy of 90.66%.

On the other hand, there is subtle differences between
the two results for the benchmarks. The reasons are, first,
the number of the instructions counted by the performance
monitoring tool on a real machine is different from that in
TSIM, and second, the replacement policy of the real machine
is not an LRU algorithm strictly, but a substitutional one, such

as pseudo LRU. In general, the cache performance of TSIM
is almost as same as the real cache system.

C. Detecting Performance Phase

Figure 6 shows the miss rate changes of the six selected
representative benchmarks of the SPEC CPU 2000, via the
TSIM’s sampling tool, where a clear panorama of the work-
loads’ cache behaviors can be observed. For example, the
behavior phase of the workload bzip2.graphic occurs every
1,000 Million cycles in the truncated instruction interval, while
eon.cook’s phase every 800 million cycles, gcc.166’s phase
every 2,800 million cycles, gzip.source’s phase every 1,200
million cycles, perlbmk.957’s phase every 700 million cycles,
and the vortex.lendian1’s phase every 700 million cycles. The
rest benchmarks of the SPEC CPU 2000 are similar to these
in the experiment.

Observation above is as same as the research result of
Jaleel et al. [9]. They get the result by analyzing the miss
rate changes with the number of instructions increasing, while
TSIM analyzes it with the number of cycles increasing. Of
course, TSIM also provides such a function to sample the
miss rate changes with the number of instructions increasing.

Actually, TSIM treats these operations as a part of the analysis
process since in TSIM the simulating process and simulation
analysis are two functions, independent each other.

There are so many sampling statistical meta nodes, which
have been supported by the TSIM’s current version, that
a TSIM user can get much more statistical results of the
performance metrics via these statistical meta data, not limited
to the miss rate, MPKI, IPC, etc.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a fast and cycle-accurate on-chip mem-
ory subsystem performance simulation framework, TSIM. It
focuses on the support of the CMP environment on x86
platform to meet the current needs. The framework is trace-
driven, with the time-efficient Pin-tool-based trace generator.
TSIM is cycle-detailed since it models the details of an
on-chip memory subsystem. It is also easy-to-use, flexible,
configurable and simple-to-modify. By introducing the concept
of statistical meta metrics, the Statistics and Sampling Module
of TSIM provides a great facilitation to count and sample the
performance metrics.

It is shown that TSIM achieves an accuracy of 90.66%, at
the average speed of 327 KIPS. It accelerates the simulating
speed by 10 to 100 times, compared to the traditional cycle-
accurate cache simulators.

To demonstrate the use of TSIM to characterize the on-
chip memory subsystem performance, six representative SPEC
CPU 2000 benchmarks have been selected randomly; and
the miss rate changes with the number of cycles increasing
have been sampled. The experimental results about the on-
chip memory behaviors are the same as others. Besides the
performance studies mentioned above, TSIM is also designed
to explore the research of other directions: network-on-chip
interconnection, replacement policy, cache coherence protocol,
prefetching mechanism, optimization solutions for on-chip
memory subsystem, etc.

In the future, authors are going to try to increase the speed
of TSIM to MIPS (Million Instructions Per Second) and to
simulate more details for on-chip memory subsystems. At the
same time, it is always the on-going work to enhance the
support of multithread and multiprocess applications. Last but
not the least, The source code of TSIM is expected to be
released in public soon.

REFERENCES

[1] J. J. Yi and D. J. Lilja, “Simulation of computer architectures: Simula-
tors, benchmarks, methodologies, and recommendations,” IEEE Trans-
actions on Computers, vol. 55, pp. 268–280, March 2006.

[2] M. Liu, L. Qiao, Y. Chen, F. Zeng, and C. Zhang, “An extensible memory
simulation framework for chip multi-processors,” in Proceedings of
the 2nd International Conference on Computer Science and Software
Engineering (CSSE2009), 2009.

[3] Y. Chen, “Research on cache optimizations for streaming accesses and
sharing behaviors on chip-multiprocessors,” Tsinghua University PhD.
thesis, 2009.

[4] M. Martin, D. J. Sorin, B. M. Beckmann, and M. R. Marty, “Multifacet’s
general execution-driven multiprocessor simulator(gems) toolset,” ACM
SIGARCH Computer Architecture News, vol. 33, n.4, Nov. 2005.

[5] T. Fahringer, B. Scholz, and X.-H. Sun, “Execution-driven performance
analysis for distributed and parallel systems,” in In 2nd International
ACM Sigmetrics Workshop on Software and Performance (WOSP 2000),
Ottawa, Canada, Sep 2000.

[6] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
splash-2 programs: Characterization and methodology considerations,”
in Proceedings of the 22nd International Symposium on Computer
Architecture (ISCA), Santa Margherita Ligure, Italy, 1995.

[7] S. R. Goldschmidt and J. L. Hennessy, “The accuracy of trace-driven
simulations of multiprocessors,” Tech References Rep. CSL-TR-92-546,
Stanford University, Sept. 1992.

[8] A. Jaleel, “Memory characterization of workloads using instrumentation-
driven simulation - a pin-based memory characterization of the spec
cpu2000 and spec cpu2006 benchmark suites,” tech. rep., VSSAD, 2007.

[9] A. Jaleel, S. R. Cohn, C.-K. Luk, and B. Jacob, “Cmp$im: A binary
instrumentation approach to modeling memory behavior of workloads
on cmps,” tech. rep., UMD-SCA, 2006.

[10] R. A. Uhlig and T. N. Mudge, “Trace-driven memory simulation: A
survey,” ACM Computing Surveys, vol. 29, 1997.

[11] T. Austin, E. Larson, and D. Ernst, “Simplescalar: An infrastructure for
computer system modeling,” IEEE Computer, vol. 35(2), 2002.

[12] Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron, “Cmp design
space exploration subject to physical constraints,” in 12th International
Symposium on High Performance Computer Architecture (HPCA-12),
2006.

[13] L. Bononi and N. Concer, “Simulation and analysis of network on
chip architecture: Ring, spidergon and 2d mesh,” in Proceedings of the
conference on Design, automation and test in Europe: Designers’ forum,
2006.

[14] Y. Sun, S. Kumar, and A. Jantsch, “Simulation and evaluation for
a network on chip architecture using ns-2,” in 20th IEEE Norchip
Conference, 2002.

[15] P. Magnusson, M. Christensson, J. Eskilson, and D. Forsgren, “Simics:
A full system simulation platform,” IEEE Computer, vol. 35(2), Feb.
2002.

[16] N. L. Binkert, R. G. Dreslinski, J. Eskilson, and D. Forsgren, “The m5
simulator: Modeling networked systems,” in IEEE Micro, vol. 26, no.
4, July/August, 2006.

[17] C.-K. Luk, R. Cohn, R. Muth, and H. Patil, “Pin: Building customized
programanalysis tools with dynamic instrumentation,” in Proceedings of
the 2005 ACM SIGPLAN conference on Programming language design
and implementation, ACM New York, NY, USA, pp. 190–200, 2005.

[18] A. Srivastava and A. Eustace, “Atom: A system for building customized
program analysis tools,” in Proceedings of the ACM SIGPLAN 1994
conference on Programming language design and implementation. ACM
New York, NY, USA, 1994.

[19] W. Wang, L. Qiao, G. Yang, and Z. Tang, “Performance analysis of the
2-d networks-on-chip,” Journal of Computer Research and Development,
vol. 46(10), 2009.

[20] F. Dahlgren and P. Stenstrom, “Evaluation of hardware-based stride
and sequential prefetching in shared-memory multiprocessors,” IEEE
Transactions on Parallel and Distributed Systems, vol. v.7 n.4, 1996.

[21] K. J. Nesbit and J. E. Smith, “Data cache prefetching using a global
history buffer,” in International Symposium on High-Performance Com-
puter Architecture, Madrid, Spain, Feb. 2004.

[22] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith, “Ac/dc: An adaptive data
cache prefetcher,” in Proceedings of the 13th International Conference
on Parallel Architecture and Compilation Techniques, 2004.

[23] D. Joseph and D. Grunwald, “Prefetching using markov predictors,” in
ISCA ’97: Proceedings of the 24th annual international symposium on
Computer architecture, 1997.

[24] F. Dahlgren and P. Stenstrom, “Effectiveness of hardware-based stride
and sequential prefetching in shared-memory multiprocessors,” in HPCA
’95: Proceedings of the 1st IEEE Symposium on High-Performance
Computer Architecture, 1995.

[25] Z. Hu, M. Martonosi, and S. Kaxiras, “Tcp: Tag correlating prefetchers,”
in HPCA ’03: Proceedings of the 9th International Symposium on High-
Performance Computer Architecture, 2003.

[26] P. Sweazey and A. J. Smith, “A class of compatible cache consistency
protocols and their support by the ieee futurebus,” in Proceedings of the
13th annual international symposium on Computer architecture, 1986.

