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ABSTRACT
A proper understanding of communication patterns of parallel ap-
plications is important to optimize application performance and de-
sign better communication subsystems. Communication patterns
can be obtained by analyzing communication traces. However, ex-
isting approaches to generate communication traces need to exe-
cute the entire parallel applications on full-scale systems that are
time-consuming and expensive.

In this paper, we propose a novel technique, called FACT, which
can perform FAst Communication Trace collection for large-scale
parallel applications on small-scale systems. Our idea is to reduce
the original program to obtain a program slice through static analy-
sis, and to execute the program slice to acquire the communication
traces. The program slice preserves all the variables and statements
in the original program relevant to spatial and volume communica-
tion attributes. Our idea is based on an observation that most com-
putation and message contents in message-passing parallel appli-
cations are independent of these attributes, and therefore can be re-
moved from the programs for the purpose of communication trace
collection.

We have implemented FACT and evaluated it with NPB programs
and Sweep3D. The results show that FACT can preserve the spatial
and volume communication attributes of original programs and re-
duce resource consumptions by two orders of magnitude in most
cases. For example, FACT collects the communication traces of the
Sweep3D for 512 processes on a 4-node (32 cores) platform in just
6.79 seconds, consuming 1.25 GB memory, while the original pro-
gram takes 256.63 seconds and consumes 213.83 GB memory on
a 32-node (512 cores) platform. Finally, we present an application
of FACT.

Keywords: Communication Pattern, Communication Trace, Mes-
sage Passing Program, Parallel Application

1. INTRODUCTION
Communication performance is a key factor affecting the per-

formance of message-passing parallel applications. Different ap-
plications exhibit different communication patterns, which can be
characterized by three key attributes: volume, spatial and tempo-
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ral1 [10, 21]. Figure 1 presents the spatial and volume communi-
cation attributes of CG in NAS Parallel Benchmark (NPB) [4] with
64 processes.
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Figure 1: The communication spatial and volume attributes of
NPB CG program (CLASS=D, NPROCS=64). The gray level
of a cell at the xth row and yth column represents the commu-
nication volume (in Byte) between two processes x and y.

Proper understanding of communication patterns of parallel ap-
plications is important to optimize the communication performance
of these applications [8, 29]. For example, with the knowledge of
spatial and volume communication attributes, MPIPP [8] optimizes
the performance of Message Passing Interface (MPI) programs on
non-uniform communication platforms by tuning the scheme of
process placement. Besides, such knowledge can also help de-
sign better communication subsystems. For instance, for circuit-
switched networks used in parallel computing, communication pat-
terns are used to pre-establish connections and eliminate the run-
time overhead of path establishment [11]. Furthermore, a recent
work shows spatial and volume communication attributes can be
employed by replay-based MPI debuggers to reduce replay over-
head significantly [41].

In this paper, we focus on MPI-based parallel applications due to
their popularity, but our approach can be applied to other message
passing parallel programs.

Previous work on communication patterns of parallel applica-
tions mainly relies on traditional trace collection methods [21, 28,
38]. A series of trace collection and analysis tools have been devel-
oped, such as ITC/ITA, KOJAK, Paraver, TAU and VAMPIR [19,

1The communication volume is specified by the number of mes-
sages and the message size. The spatial attribute is characterized
by the distribution of message source and destination. The tempo-
ral behavior is captured by the message generation rate.
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22, 24, 26, 33]. These tools need to instrument original programs at
the invocation points of communication routines. The instrumented
programs are executed on full-scale parallel systems and communi-
cation traces are collected during the execution. The collected com-
munication trace files record type, size, source and destination etc.
for each message. The communication patterns of parallel applica-
tions can be easily generated from the communication traces [28].
However, traditional communication trace collection methods have
two main limitations:

Huge Resource Requirement Typically, parallel applications
are designed to solve complex scientific computational problems
and tend to consume huge computing power and memory. For ex-
ample, ASCI SAGE routinely runs on 2000-4000 processors [20]
and FT program in the NPB consumes more than 600 GB mem-
ory for Class E input [4]. Therefore, it is impossible to use tradi-
tional trace collection methods to collect communication patterns
of large-scale parallel applications without full-scale systems.

Long Trace Collection Time Although traditional trace collec-
tion methods do not introduce significant overhead to collect com-
munication traces, they do require to execute the entire parallel
applications from the beginning to the end. This results in very
long trace collection time. Again we use ASCI SAGE as an ex-
ample, which takes several months to complete even on a system
with thousands of CPUs. It is prohibitive long for trace collec-
tion and prevents many interesting explorations of using communi-
cation traces, such as input sensitivity analysis of communication
patterns.

We have two observations on existing communication trace col-
lection and analysis approaches: (i) Many important applications
of communication pattern analysis, such as the process placement
optimization [8, 43] and subgroup replay [41], do not require tem-
poral attributes. (ii) Most computation and message contents in
message-passing parallel applications are not relevant to their spa-
tial and volume communication attributes.

Motivated by the above observations, we expect to address the
following problem in this paper: If we can tolerate missing the
temporal attributes in communication traces, can we find a way to
collect communication traces which still include all spatial and vol-
ume attributes in a more efficient way? For purposes of illustration,
we use communication patterns in the rest parts of the paper to rep-
resent spatial and volume attributes of communications.

We propose a novel technique, called FACT, which can perform
FAst Communication Trace collection for large-scale parallel ap-
plications on small-scale systems. Our idea is to reduce the original
program to obtain a program slice through static analysis, and to ex-
ecute the program slice to acquire communication traces. The pro-
gram slice preserves all the variables and statements in the original
program relevant to the spatial and volume attributes, but deletes
any unrelated parts. In order to recognize the relevant variables
and statements, we propose a live-propagation slicing algorithm
(LPSA) to simplify original programs. By solving an inter-procedural
data flow equation, it can identify all the variables and statements
affecting the communication patterns.

We have implemented FACT and evaluated it with 7 NPB pro-
grams as well as Sweep3D. The results show that FACT can pre-
serve the spatial and volume communication attributes of original
programs and reduce resource consumptions by two orders of mag-
nitude in most cases. For example, FACT collects the communica-
tion traces of the Sweep3D for 512 processes on a 4-node (32 cores)
platform in just 6.79 seconds and using 1.25 GB memory, while the
original program takes 256.63 seconds and consumes 213.83 GB
memory on a 32-node (512 cores) platform.

This paper is organized as follows. Section 2 gives a discussion

of related work. In Section 3, we present an overview of our ap-
proach followed by our live-propagation slicing algorithm in Sec-
tion 4. Section 5 describes the implementation of FACT. Our ex-
perimental results are reported in Section 6. Section 7 presents an
application of FACT. We discuss our work in Section 8. Finally, we
conclude in Section 9.

2. RELATED WORK
Communication patterns of parallel applications have been stud-

ied extensively by many research groups [10, 13, 21, 38, 42]. Typ-
ically, these studies have mainly relied on instrumentation-based
trace collection methods. A series of trace collection and analy-
sis tools have been developed by both academia and industry, such
as ITC/ITA [19], KOJAK [24], Paraver [22], VAMPIR [26] and
TAU [33]. These tools instrument original programs and execute
them to acquire communication traces. Additionally, mpiP [37] is
a lightweight profiling library for MPI applications and only col-
lects statistical information of MPI functions. However, all these
traditional trace collection methods require the execution of the en-
tire instrumented programs, which restricts their wide usage for
analyzing large-scale applications. Our method adopts the sim-
ilar technique to capture the communication patterns at runtime
as the traditional trace collection methods. However, our method
only requires executing the program slice rather than the entire pro-
gram. Therefore, our method can analyze large-scale applications
on small-scale systems.

A few studies have tried to compute a symbolic expression of the
communication patterns for a given parallel program through data
flow analysis [17, 32]. Shao et al. proposed a technique named
communication sequence to present communication patterns of ap-
plications [32]. Ho and Lin described an algorithm for static analy-
sis of communication structures in the programs written in a channel-
based message passing language [17]. Since these approaches only
employ static analysis techniques trying to represent communica-
tion patterns of applications, they suffer from intrinsic limitations
of static analysis. For example, they cannot deal with program
branches, loops and the effects from input parameters. In fact,
our approach is a hybrid method of static analysis and traditional
trace collection methods. In our approach, program slicing is used
to simplify the original program at compile time, and then a cus-
tom communication library is used to collect communication traces
from the program slice at runtime. Therefore, our approach can ad-
dress above limitations of static analysis.

Our approach exploits the technique of program slicing in the
compiler. Program slicing was first proposed by Mark Weiser [40].
Traditionally, it has been used to assist in tedious and error prone
tasks such as program debugging, software testing and software
maintenance in sequential programs [6, 15, 16, 39]. It has also
been used to hide I/O latency for parallel applications [9].

3. DESIGN OVERVIEW
FACT consists of two primary components, a compilation frame-

work and a runtime environment as shown in Figure 2. The compi-
lation framework is divided into two phases, intra-procedural anal-
ysis followed by inter-procedural analysis. The program is sliced
based on the results of the inter-procedural analysis. Finally, the
communication traces are collected in the runtime environment.

During the intra-procedural analysis phase, FACT parses the source
code of an MPI program and identifies the invoked communication
routines. The relevant arguments of these routines that determine
communication patterns are collected. Information about control
dependence, data dependence and communication dependence for
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Figure 2: Overview of FACT

each procedure is gathered, which will be explained in detail in Sec-
tion 4.2. During the inter-procedural analysis phase, the program
call graph is built based on the information of call sites collected
during the intra-procedural phase. LPSA is used to identify all the
variables and statements that affects the communication patterns.
The output of the compilation framework is the program slice as
well as directives for usage at runtime.

A program slice is a skeleton of the original program that cannot
be executed on the system directly. Runtime environment of FACT

provides a custom MPI communication library to collect the com-
munication traces from the program slice based on the directives
inserted at compile time. The program slice is linked to the custom
communication library and executed on a small-scale system. The
communication traces of applications are collected during the ex-
ecution according to the specified problem size, input parameters
and number of processes.

Figure 3 uses an example to illustrate the differences between the
sliced program and the original program. The example program is a
parallel matrix-matrix multiplication program C = A×B based on
the domain decomposition algorithm. The problem is decomposed
by assigning each worker task a number of consecutive columns of
matrix B, and replicating matrix A to all tasks. Each worker task
computes one or more columns of the result matrix C. Process 0 is
the master task, which is in charge of distributing the matrices and
collecting the results, but does not take part in the calculation. The
main differences after slicing in FACT are as follows:

1. Line 4, the declaration of arrays A, B, and C, is replaced with
dummy arrays at Line 5.

2. Lines 14-20, the source codes for initializing matrices A and
B are deleted.

3. Lines 41-49, the main computation codes for the matrix mul-
tiplication on each worker task are deleted.

4. Lines 23 and 31, the value of the variable offset has no ef-
fect on the communication patterns and these two lines are
deleted.

5. Additional directives for usage at runtime are added for MPI
routines at Lines 7, 8, 24, 26, 32, 37, 39 and 50 (M means
marked and U means unmarked)2.

The sliced program is linked with the custom communication li-
brary and the communication traces are collected at runtime. At

2The marked MPI routines will be executed at runtime and the un-
marked will not be executed at runtime. Specific definitions of them
will be given in Section 4.

1 program MM

2 include ’mpif.h’

3 parameter (N = 80)

4 real A(N,N), B(N,N), C(N,N)

5 ⇒ real A(1,1), B(1,1), C(1,1)

6 call MPI_Init(ierr)

7 [M] call MPI_COMM_Rank(MPI_COMM_WORLD,myid,ierr)

8 [M] call MPI_COMM_Size(MPI_COMM_WORLD,nprocs,ierr)

9 cols = N/(nprocs-1)

10 size = cols*N

11 tag = 1

12 master = 0

13 if (myid .eq. master) then

14 C Initialize A and B

15 do i=1, N

16 do j=1, N

17 A(i,j) = (i-1)+(j-1)

18 B(i,j) = (i-1)*(j-1)

19 end do

20 end do

21 C Send matrix data to the worker tasks

22 do dest=1, nprocs-1

23 offset = 1 + (dest-1)*cols

24 [U] call MPI_Send(A, N*N, MPI_REAL, dest,

25 & tag, MPI_COMM_WORLD, ierr)

26 [U] call MPI_Send(B(1,offset),size,MPI_REAL,

27 & dest, tag, MPI_COMM_WORLD, ierr)

28 end do

29 C Receive results from worker tasks

30 do source=1, nprocs-1

31 offset = 1 + (source-1)*cols

32 [U] call MPI_Recv(C(1,offset),size,MPI_REAL,

33 & source,tag,MPI_COMM_WORLD,status,ierr)

34 end do

35 else

36 C Worker receive data from master task

37 [U]call MPI_Recv(A, N*N, MPI_REAL, master, tag,

38 & MPI_COMM_WORLD, status, ierr)

39 [U]call MPI_Recv(B,size, MPI_REAL, master, tag,

40 & MPI_COMM_WORLD, status, ierr)

41 C Do matrix multiply

42 do k=1, cols

43 do i=1, N

44 C(i,k) = 0.0

45 do j=1, N

46 C(i,k) = C(i,k) + A(i,j) * B(j,k)

47 end do

48 end do

49 end do

50 [U]call MPI_Send(C, size, MPI_REAL, master,

51 & tag, MPI_COMM_WORLD, ierr)

52 endif

53 call MPI_Finalize(ierr)

54 end

Figure 3: A parallel Fortran Matrix-Matrix Multiplication
program. The source codes in the boxes are deleted after slic-
ing and Line 4 is replaced by Line 5. And additional directives
for usage at runtime are added for the MPI routines (M means
marked and U means unmarked). All the variables and state-
ments affecting the communication patterns are preserved.

runtime, the library will judge the state of each MPI communica-
tion routine based on the directives. In this example, six unmarked



communication routines at Lines 24, 26, 32, 37, 39 and 50 are not
executed at runtime, since the contents of these messages do not
affect the communication patterns.

The original program consumes about 3N2 memory, does 2N3/
(P − 1) floating point computations and performs 3 times com-
munication operations for each worker process, performs 3(P −1)
times communication operations for the master process (where N
is the size of the matrix for each dimension and P is the number
of processes). These memory consumption and computation time
are reduced in the sliced program. Meanwhile, the communication
time is reduced at runtime.

4. LIVE-PROPAGATION SLICING ALGO-
RITHM

From a formal point of view, the definition of program slice is
based on the concept of slicing criterion [40]. A slicing criterion is
a pair 〈p, V 〉, where p is a program point, and V is a subset of the
program variables. A program slice on the slicing criterion 〈p, V 〉
is a subset of program statements that preserve the behavior of the
original program at the program point p with respect to the pro-
gram variables in V . Therefore, determining the slicing criterion
and designing an efficient slicing algorithm according to the actual
problem requirements are two key challenges in the compilation
framework.

4.1 Slicing Criterion
Since our goal is to collect communication traces for analyzing

spatial and volume communication attributes, we record the fol-
lowing communication properties in LPSA for a given parallel pro-
gram:

• For point-to-point communication, we record message type,
message size, message source and destination, message tag
and communicator id.

• For collective communication, we record message type, send-
ing message size, receiving message size, root id (if exist)
and communicator id.

Message size, source and destination are used to compute spatial
and volume communication attributes, while message type, mes-
sage tag and communicator id are useful for other communication
analysis.

In an MPI program, these properties can be acquired directly
from the corresponding parameters of the MPI communication rou-
tines. For example, in the routine MPI_Send in Figure 4, the
parameters count and type determine the message size. The pa-
rameters dest and comm determine the message destination. The
message tag and communicator id can be acquired from the pa-
rameters tag and comm. The parameter buf does not affect the
communication patterns directly. However, sometimes it may af-
fect the communication patterns indirectly through data flow prop-
agation and we will analyze it in the following subsections. Comm
Variable is defined in this paper to represent those parameters that
determine the communication patterns directly.

DEFINITION 4.1 (COMM VARIABLE). Comm Variable is a pa-
rameter of a communication routine in a parallel program, the
value of which directly determines the communication patterns of
the parallel program.

As MPI is a standard communication interface, we can explicitly
mark Comm Variables for each MPI routine. In Figure 4, Comm
Variables in the routine for MPI_Send are marked. All the pa-
rameters, except buf , are Comm variables. When a communi-
cation routine is identified in the source code, the corresponding

MPI_Send(buf, count, type, dest, tag, comm)

buf : initial address of send buffer

[Comm] count: number of elements in send buffer

[Comm] type : datatype of each buffer element

[Comm] dest : rank of destination

[Comm] tag : uniquely identify a message

[Comm] comm : communication context

Figure 4: Comm variables in the routine for MPI_Send. The
variables marked with Comm directly determine the commu-
nication patterns of the parallel program.

Comm Variables are collected. For each procedure P , we use a
Comm Set, C(P ), to record all the Comm Variables. C(P ) =
{(�, v) | � is the unique lable of v, v is a Comm Variable}. For ex-
ample, the Comm Set for the parallel matrix multiplication program
in Figure 3 is (note that we use the line number of the variable as its
unique label): C(P ) = {(7, myid), (8, nprocs), (24, N), (24,
dest), (25, tag), (26, size), (27, dest), (27, tag), (32, size),
(33, source), (33, tag), (37, N), (37, master), (37, tag), (39,
size), (39, master), (39, tag), (50, size), (50, master), (51,
tag)}. The Comm Set C(P ) is the slicing criterion for simplifying
the original program in LPSA, which will be optimized during the
phase of data dependence analysis.

4.2 Dependence of MPI Programs
For convenience, we assume that a control flow graph (CFG) is

built for each procedure and the program call graph (PCG) is con-
structed for the whole program. To describe our slicing algorithm
easily, we use statement instead of basic block as a node in the
CFG. We assume that each statement in the program is uniquely
identified by its label � and is associated with two sets: DEF[�], a
set of variables whose values are defined at �, and USE[�], a set of
variables whose values are used at �.

In an MPI program, there are three main types of dependence for
statements and variables that would change the behavior for a given
program point, data dependence (dd), control dependence (cd) and
communication dependence (md).
Data Dependence Data dependence between statements means that
the program’s computation might be changed if the relative order
of statements were reversed [18]. To analyze the data dependence,
we must first calculate the reaching definitions for each procedure.
We define the GEN and KILL sets for each node in the CFG.
Then we adopt the iterative algorithm presented in [2] to calculate
the reaching definitions. The data flow graph (DFG) can be con-
structed based on the results of the reaching definitions analysis.
The node in the DFG is either a statement or a predicate statement.
The edge represents the data dependence of the variables. The data
dependence information computed by the reaching definitions is
stored in the data structures of DU and UD chains [1].

DEFINITION 4.2 (DU AND UD CHAIN). Def-use (DU) Chain
links each definition of a variable to all of its possible uses. Use-def
(UD) Chain links each use of a variable to a set of its definitions
that can reach that use without any other intervening definition.

EXAMPLE 4.3. The DU chain for (10, size) and UD chain for
(32, size) in Figure 3 are, DU(10, size) = {26, 32, 39, 50},
UD(32, size) = {10}.

We can further optimize the Comm Set based on the results of
data flow analysis. If there are no other intervening definitions for



the consecutive Comm Variables, we keep only the last Comm Vari-
able. Therefore, the Comm Set for the program in Figure 3 can be
optimized as: C(P ) = {(7, myid), (8, nprocs), (27, dest), (33,
source), (37, N), (50, size), (50, master), (51, tag)}.
Control Dependence If a statement X determines whether state-
ment Y is executed, statement Y is control dependent on statement
X . For example, the statement at Line 32 in Figure 3 is control
dependent on the if statement at Line 13 and the do while state-
ment at Line 30. The DFG does not include information of control
dependence. Control dependence can be computed with the post-
dominance frontier algorithm [14]. In this paper, we convert the
control dependence into data dependence by treating the predicate
statement as a definition statement and then incorporating the con-
trol dependence into the UD chains.

EXAMPLE 4.4. After converting the control dependence of Lines
13 and 30 into data dependence, the UD chain for size at Line 32
in Figure 3 is: UD(32, size) = {10, 13, 30}.

Communication Dependence Communication dependence is an
inherent characteristic for MPI programs due to message passing
behavior. MPI programs take advantage of explicit communication
model to exchange data between different processes. For example,
sending and receiving routines for the point-to-point communica-
tions are usually used in pairs in the programs.

DEFINITION 4.5 (COMMUNICATION DEPENDENCE). Statement
x in process i is communication dependent on statement y in pro-
cess j, if

1. Process j sends a message to process i through explicit com-
munication routines.

2. Statement x is a receiving operation and statement y is a
sending operation (x �= y).

For example, in Figure 3 MPI_Recv routine at Line 37 is com-
munication dependent on the MPI_Send routine at Line 24. In
MPI programs, both point-to-point communications and collective
communications can introduce communication dependence. Due
to limitations of space, we do not list more examples in this paper.

Communication dependence can be computed through identify-
ing all potential matching communication operations in MPI pro-
grams. Although in general, it is a difficult problem for static anal-
ysis to determine the matching operations, we find it is sufficient
to deal with this problem using simple heuristics in practice. We
conservatively connect all potential sending operations with a re-
ceiving operation, and adopt some heuristics, such as mismatched
tags or data types of message buffer, to prune edges that cannot
represent real matches. We will further discuss the communication
dependence issues in Section 4.5.

In MPI programs, the message is exchanged through the message
buffer variable, buf . The communication dependence can be rep-
resented with the message buffer variable. msg_buf(�) is used to
denote the message buffer variable in the communication statement
�. Additional considerations for non-blocking communications will
be presented in the implementation of runtime environment.

DEFINITION 4.6 (MD CHAIN). Message-Dependence Chain
(MD Chain) links each variable of message receiving buffer to all
of its sending operations.

EXAMPLE 4.7. The MD chain for variable A at Line 37 in Fig-
ure 3 is: MD(37, A) = {24}. The message buffer variable in MPI
communication routine of Line 24 is: msg_buf(24) = {A}.

DEFINITION 4.8. The slice set of an MPI program (M ) with
respect to the slicing criterion C(M), denoted by S(C(M)), con-
sists of all statements � on which the values of variables in C(M)
directly or indirectly dependent. More formally:

S(C(M)) = { � |� d1−→ ...
dn−−→ �, � ∈ C(M), n > 0, for 1 ≤

i ≤ n, di ∈ {cd, dd, md}}
We use the symbol → to denote the dependence between vari-

ables and statements. For computing the program slice with re-
spect to the slicing criterion C(M), we define LIVE Variable to
record dependence relationship between the variables of programs.
A Comm Variable itself is also a LIVE Variable based on the defi-
nition of LIVE Variable.

DEFINITION 4.9 (LIVE VARIABLE). A variable x is LIVE,
if the change of its value at statement � can affect the value of any
Comm Variable � directly or indirectly through dependence of MPI
programs, denoted by � →∗ (�, x). There is a LIVE Set for each
procedure P , LIVE[P ]. LIVE[P ] = {(�, x) |� →∗ (�, x), � ∈
C(P )}.

4.3 Intra-Procedural Analysis
During the intra-procedural analysis phase, data dependence, con-

trol dependence and communication dependence are collected and
put into corresponding data structures. Each procedure P is asso-
ciated with two sets, WL[P ] and LIVE[P ]. WL[P ] is a worklist
that holds the variables waiting to be processed and LIVE[P ] holds
the LIVE Variables for procedure P . As program slicing in this
paper is a backward data flow problem, we use a worklist algo-
rithm to traverse the UD chains and iteratively find all the LIVE

Variables. We put the statements that define LIVE Variables into
slice set S(P ) and mark MPI statements that define LIVE Variables
or have communication dependence with marked MPI statements.
The main body of the analysis algorithm is given in Algorithm 1.
receive_buf denotes the message buffer variables in the receiving
operations. The worklist WL[P ] for each procedure is initialized
with its Comm Set and LIVE[P ] is initialized with null set.

Algorithm 1 Compute LIVE Set and Mark MPI statements for
intra-procedure

1: procedure INTRA-LIVE(P )
2: input: worklist WL[P ] and LIVE set LIVE[P ]
3: output: program slice set of procedure: S(P )
4: Change ← False
5: while WL[P ] �= φ do
6: Remove an item (�i, v) from WL[P ]
7: if (�i, v) /∈ LIVE[P ] then
8: Change ← True
9: LIVE[P ] ← {(�i, v)} ∪ LIVE[P ]

10: /* Process communication dependence! */
11: if (�i, v) ∈ receive_buf then
12: for each �j ∈ MD(�i, v) do
13: Mark MPI statement �j

14: S(P ) = S(P ) ∪ {�j}
15: WL[P ]← {(�j , msg_buf(�j))} ∪WL[P ]

16: else /* Process control and data dependence! */
17: for each �k ∈ UD(�i, v) do
18: if �k ∈ MPI_Routines then
19: Mark MPI statement �k

20: S(P ) = S(P ) ∪ {�k}
21: for each x ∈ USE[�k] do
22: WL[P ] ← {(�k, x)} ∪ WL[P ]

23: end if
24: return S(P )
25: end procedure



EXAMPLE 4.10. After computing by Algorithm 1, the final LIVE

Set for the program in Figure 3 is: LIVE[P ] = {(7, myid), (8,
nprocs), (27, dest), (33, source), (37, N), (50, size), (50,
master), (51, tag), (22, nprocs), (30, nprocs), (13, myid),
(13, master), (10, cols), (10, N), (9, N), (9, nprocs)}. The slice
set of program is: S(P ) = {3, 7, 8, 9, 10, 11, 12, 13, 22, 30}. The
MPI routines at Lines 7-8 are marked by the algorithm.

In Algorithm 1, the statements not in slice sets except MPI rou-
tines are deleted, while all the MPI routines are retained. For un-
marked MPI routines by Algorithm 1, it means that no LIVE Vari-
able is defined or no communication dependence exists in these
routines. The retained unmarked MPI routines are served for run-
time environment of FACT to collect communication traces. For
example, the six unmarked communication routines in Figure 3 do
not need to transfer the messages over the network actually. We
only need to collect the values of their Comm Variables at runtime.
Therefore, the communication time of the original program can be
significantly reduced. In contrast, for marked MPI routines by Al-
gorithm 1, LIVE Variables are defined or communication depen-
dence exists in these routines. For MPI routines used for message
passing, it means that the contents of messages are relevant to the
communication patterns. In Figure 5, the LIVE Variable, num, is
defined in MPI_Irecv of Line 5 that is communication dependent
on MPI_Send of Line 2. Therefore, both MPI routines are marked
by the algorithm and will be executed at runtime.

1 if(myid == 0){

2 [M] MPI_Send(&num, 1, MPI_INT, 1, 55,...)

3 MPI_Recv(buf, num, MPI_INT, 1, 66,...)

4 }else{

5 [M] MPI_Irecv(&num, 1, MPI_INT, 0, 55,..., req)

6 MPI_Wait(req,...)

7 size = num

8 MPI_Send(buf, size, MPI_INT, 0, 66,...)

9 }

Figure 5: Marked MPI point-to-point communication routines
by Algorithm 1 (M means marked).

Algorithm 1 is sufficient for the MPI program with one function,
such as the program in Figure 3. In the real parallel application,
the program is always modularized with several procedures. In the
following subsection, we will present additional considerations for
inter-procedural analysis.

4.4 Inter-Procedural Analysis
Slicing across procedure boundaries is complicated due to the

necessity of passing the LIVE Variables into and out of procedures.
Because program slicing in this paper is a backward data flow prob-
lem and the slicing criterion can arise either in the calling procedure
(caller) or in the called procedure (callee), the LIVE Variable can
propagate bidirectionally between the caller and the callee through
parameter passing. To obtain a precise program slice, we adopt
a two-phase traverse over the PCG, Top-Down phase followed by
Bottom-Up phase. Additionally, the UD chains built during the
intra-procedural phase are refined to consider the side effects of
procedure calls. In this paper, we assume that all the parameters
are passed by reference and our algorithm can be extended to the
case that they are passed by value.
MOD/REF Analysis To build precise UD chains we use the re-
sults of inter-procedural MOD/REF analysis. For example, in Fig-
ure 6, before incorporating the information from the MOD/REF

analysis, UD(4, a) = {2, 3}. We compute the following sets
in the MOD/REF analysis for each procedure [5]: GMOD(P) and
GREF(P). GMOD(P) is a set of variables that are modified by an
invocation of procedure P , while GREF(P) is a set of variables that
are referenced by an invocation of procedure P [25]. The infor-
mation from the MOD/REF analysis tells us whether a variable is
modified or referenced due to the procedure calls. With these re-
sults, we can refine the UD chains built during the intra-procedural
analysis. For example, UD(4, a) = {3}.
Extension of MD Chains The MD chains collected during the
intra-procedural phase do not include inter-procedural communica-
tion dependence. During the inter-procedural analysis phase, MD
chains are extended to consider cross-procedural dependence. At
the same time, Algorithm 1 is extended to Algorithm 2 that will be
invoked by Algorithm 3. Only the different parts from Algorithm 1
are listed here. P ′ : �j denotes the statement �j in procedure P ′.

Algorithm 2 Extension of INTRA-LIVE(P)
1: procedure INTRA-LIVE-EXT(P)

...
12: for each P ′ : �j ∈ MD(�i, v) do
13: Mark MPI statement P ′ : �j

14: S(P ′) = S(P ′) ∪ {�j}
15: WL[P ′] ← {(�j , msg_buf(�j))} ∪ WL[P ′]

...

Top-Down Analysis The Top-Down phase propagates the LIVE

Variables from the caller to the callee over the PCG by binding
the actual parameters of the caller to the formal parameters of the
callee. As the LIVE Variable can be modified by the called pro-
cedure via parameter passing, we need to find the corresponding
definition of this variable in the called procedure. For example, in
Figure 6 we can compute from the intra-procedural analysis, that
(3, a) is a LIVE Variable. This calling context is then passed into
the procedure bar. The corresponding formal parameter in bar is
the parameter b. There may be several definitions of b in procedure
bar, however we only care about the last definitions (it is a set due
to the effects of control flow) of variable b due to the property of
the backward data flow analysis. This definition appears in state-
ment 9 in bar. In addition, we put this statement into slice set and
put its USE variables into the worklist of procedure bar. Other
LIVE Variables in procedure bar can be computed iteratively by
Algorithm 2. In procedure foo the actual parameter (3, a) is no
longer put into its worklist. We define the LIVE_Down function to
formalize this data flow analysis.

1 foo(){

2 a = 5

3 call bar(a)

4 size = a

5 call MPI_Send(...,size,...)

6 }

7 bar(b){

8 m = 4

9 b = m

10 }

Figure 6: An example of LIVE Variable propagation from the
caller to the callee

DEFINITION 4.11 (LIVE DOWN). Procedure P invokes pro-
cedure Q, v is a LIVE Variable and also an actual parameter at



callsite � in procedure P , v′ is the corresponding formal parame-
ter in procedure Q, LIVE_Down(P, �, v, Q) returns statement set
(L is the label set) of the last definitions of v′ in procedure Q:
LIVE_Down(P, �, v, Q) = L.

Bottom-Up Analysis The Bottom-Up phase is responsible for prop-
agating the LIVE Variables from the callee to the caller. For a LIVE

Variable in the called procedure, if its definition is a formal parame-
ter, we need to propagate the LIVE information by binding the for-
mal parameters to the actual parameters. For example, in Figure 7,
the formal parameter of b in procedure bar is a LIVE Variable com-
puted by the intra-procedure analysis. We need to propagate this
information into the calling procedure foo. The corresponding ac-
tual parameter is the parameter a in foo. We put this variable into
the worklist of procedure foo and Algorithm 2 is used for com-
puting other LIVE Variables. The LIVE_Up function is defined as
follows:

1 foo(){

2 n = 5

3 a = n

4 call bar(a)

5 }

6 bar(b){

7 size = b

8 call MPI_Send(...,size,...)

9 ...

10 }

Figure 7: An example of LIVE Variable propagation from the
callee to the caller

DEFINITION 4.12 (LIVE UP). Procedure Q is invoked by pro-
cedure P , v is a LIVE Variable and also a formal parameter (the
label of procedure entry point is �0) in procedure Q, v′ is the corre-
sponding actual parameter in procedure P at callsite �′, LIVE_Up
(Q, �0, v, P ) returns the label of the callsite and the actual param-
eter pair: LIVE_Up(Q, �0, v, P ) = (�′, v′).

The final algorithm for program slicing based on live-propagation
is given in Algorithm 3 that invokes Algorithm 2. The output of
LPSA is the program slice set as well as directives for MPI routines.
Our experimental results show that LPSA can converge within 3-4
iterations for the outer loop. Let C(M) be the slicing criterion for
a given MPI program M ; Let S(M) be the slice set computed by
LPSA. Then the correctness of the algorithm can be stated by The-
orem 4.13. A sketch of the proof of this theorem is given in [36].

THEOREM 4.13. S(C(M)) = S(M)

4.5 Discussions
A common question to our algorithm is that how it works with

applications whose communication behavior is dependent on mes-
sage data, or even input data. As demonstrated by Theorem 4.13,
LPSA algorithm can always guarantee that the generated program
slice will preserve these message data or input data and related
computation statements.

We perform experiments with 7 NPB programs and Sweep3D.
There are a few marked MPI communication routines. For ex-
ample, in NPB-BT program of Figure 8, MPI_Bcast is used to
broadcast the iteration count and datatype to slave processes. In

Algorithm 3 Pseudo code for Live-Propagation Slicing Algorithm
(LPSA)

1: input: An MPI program M
2: output: Program slice S(M) and marked information
3: For each procedure P : Build UD and MD Chains
4: For each procedure P : Build Comm Set C(P )
5: MOD/REF analysis over the PCG
6: For each procedure P : Refine UD and MD chains
7: For each procedure P : WL[P ] ← C(P )
8: For each procedure P : LIVE[P ] ← ∅
9: Change ← True

10: while (Change = True) do
11: Change ← False
12: /* Top-Down Phase */
13: for each procedure P in Pre-Order over PCG do
14: call INTRA-LIVE-EXT(P )
15: for each Q ∈ successor(P ) do
16: for each parameter v at callsite � do
17: if ((�, v) ∈ LIVE[P ]) then
18: L = LIVE_Down(P, �, v, Q)
19: for each �′ ∈ L do
20: if �′ ∈ MPI_Routines then
21: Mark MPI statement �′
22: S(Q) = S(Q) ∪ {�′}
23: for each x ∈ USE[�′] do
24: WL[Q] ← {(�′, x)} ∪ WL[Q]

25: /* Bottom-Up Phase */
26: for each procedure Q in Post-Order over PCG do
27: call INTRA-LIVE-EXT(Q)
28: for each P ∈ predecessor(Q) do
29: for each formal parameter v at �0 in Q do
30: if ((�0, v) ∈ LIVE[Q]) then
31: (�′, x) = LIVE_Up(Q, �0, v, P )
32: WL[P ] ← {(�′, x)} ∪ WL[P ]
33: S(P ) = S(P ) ∪ {�′}
34: For each procedure P : return S(P )

134:[M] call MPI_Bcast(niter, 1, MPI_INTEGER,

> root, comm_setup, error)

136:[M] call MPI_Bcast(dt, 1, dp_type,

> root, comm_setup, error)

...

191: do step = 1, niter

...

217: endo

...

Figure 8: Marked MPI collective communications by LPSA,
program snippet is from NPB-3.3/bt.f (M means marked).

order to not affect the communication patterns, these routines will
be executed at runtime.

An interesting observation is that all the marked MPI communi-
cation statements are collective communications and none of point-
to-point communications is marked in these programs, i.e. the mes-
sage contents of all the point-to-point communications are irrel-
evant to communication patterns. This can be explained by the
fact that in mature MPI applications, collective communications
are generally more preferred than point-to-point communications.
Thus, although our approach for matching communication routines
is quite conservative, we find it works well for all benchmark ap-
plications we have tested.

There is some work on more accurate communication matching
algorithms. MPI-ICFG [35] is considered an effective approach to
identify potential matching operations. Recently Bronevetsky [7]



has also proposed an uniform data flow framework to address this
problem. We are studying more MPI applications and may include
them when there is a demand. In addition, we are defining some
annotation constructs that programmers can use to tag the matching
communication operations.

5. IMPLEMENTATION

5.1 Compilation Framework
We have implemented LPSA for FACT in the production com-

piler, Open64 [31]. Open64 is the open source version of the SGI
Pro64 compiler under the GNU General Public License (GPL). As
shown in Figure 9, the major functional modules of Open64 are the
front end (FE), pre-optimizer (PreOPT), inter-procedural analysis,
loop nest optimizer (LNO), global scalar optimizer (WOPT) and
code generator (CG). To exchange data between different modules,
Open64 utilizes a common intermediate representation (IR), called
WHIRL. WHIRL consists of five levels of abstraction, from very
high level to lower levels. Each optimization module works on a
specific level of WHIRL.
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Figure 9: FACT in the Open64 infrastructure.

FACT is implemented in the PreOPT and inter-procedural analy-
sis modules as shown in Figure 9. In the PreOPT phase, the CFG
is created for each procedure. Control dependence analysis is car-
ried out on the CFG in reverse dominator tree order while the data
dependence is collected into the DU and UD chains. The inter-
procedural analysis module can be further divided into three main
phases: Inter-Procedural Local Analysis (IPL), Inter-Procedural An-
alyzer (IPA), and Inter-Procedural Optimizer (IPO). During the IPL
phase, we parse the WHIRL tree and identify the communication
routines. Communication dependence is collected into MD chains
and Comm Variables are stored in the form of summary data. Dur-
ing the IPA phase, the PCG is constructed. MOD/REF analysis is
performed on this and the DU and UD chains built in the IPL phase
are refined. MD chains are extended to consider cross-procedural
communication dependence. By solving an inter-procedural data
flow equation during the IPA phase, we compute the LIVE sets and
slice sets for each procedure and mark necessary MPI statements.
During the IPO phase, we delete all the statements that are not in
slice sets except MPI routines and remove the variables that are not
in the LIVE sets from the symbol table. The marked information
for MPI communication routines are retained in the program slice.
Currently, we only support Fortran programs in FACT and support-
ing other languages remains as our future work.

5.2 Runtime Environment
Runtime environment is in charge of collecting communication

traces from the program slice. It provides a custom MPI wrapper
communication library which differentiates MPI routines based on
their functions. For MPI routines used to create and shut down
MPI runtime environment, such as MPI_Init, MPI_Finalize,
they are not modified and executed directly in the library. For
MPI routines used to manage communication contexts, such as
MPI_COMM_Split, MPI_COMM_Dup, the library requires exe-
cuting these routines and collecting information about the relation
for process translation between different communicators. For MPI
routines used for message passing, such as MPI_Send, MPI_Irecv,
MPI_Bcast, the library first judges the state of the MPI routine
based on the results of LPSA analysis. If the communication rou-
tine is marked, we need to execute it and meanwhile collect com-
munication property information. Otherwise only related informa-
tion is recorded. In addition, for unmarked non-blocking communi-
cation routines, the parameters request of these routines are set so
that the library guarantees that corresponding communication oper-
ations are not be executed, such as MPI_Wait or MPI_Waitall.

MPI_Send(buf, count, datatype, dest, tag,comm){

If the routine is marked by LPSA

PMPI_Send(buf, count, datatype, dest, tag, comm)

Endif

typesize = PMPI_Type_size(datatype)

Record the following information:

message type : MPI_Send

message source : myid

message destination : dest

message size : typesize * count

message tag : tag

communicator ID : comm

}

Figure 10: Pseudo code for collecting the communication traces
for MPI_Send routine at runtime.

We use the MPI profiling layer (PMPI) to capture the communi-
cation events, record the communication traces to a memory buffer,
and eventually write them on local disks. Figure 10 gives an exam-
ple of collecting the communication traces for MPI_Send routine.
In Figure 10, myid is a global variable computed with PMPI_Comm
_rank. Our runtime environment also provides a series of com-
munication trace analyzers which can generate the communication
profiles of applications, such as the distribution of message sizes,
communication topology graph.

6. EVALUATION

6.1 Methodology
We evaluate the FACT with 7 NPB programs [4], BT, CG, EP,

FT, LU, MG, SP and ASCI Sweep3D (S3) [23]. NPB is a set of
scientific benchmarks derived from computational fluid dynamics
applications. We use version 3.3 of NPB and the Class D data
set. Sweep3D is an application in the ASCI Purple suite which
is used to solve a three-dimensional particle transport problem. In
our experiments, the problem size in the Sweep3D is fixed for each
process (150 × 150 × 150).

We perform our experiments on two platforms: test platform and
validation platform. The test platform is a small-scale system used
to collect communication traces with FACT, while the validation
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Figure 11: The memory consumption (in GigaByte) of FACT for collecting the communication traces of NPB programs (Class D) and
Sweep3D (150 × 150 × 150) on the test platform. Traditional trace collection methods cannot achieve this on the test platform due to
the memory limitation. The memory consumption of the original programs are collected on the validation platform.

platform is a large-scale system used to validate the communica-
tion traces collected with FACT and record memory requirements
and execution time of the original programs. Details of the two
platforms are given below:

• Test Platform (32 cores): Small cluster of four nodes, where
each node is a 2-way Quad-Core with Intel Xeon E5345 2.33
GHz CPUs and 8 GB memory, and connected with a Gigabit
Ethernet. Our custom communication library is implemented
based on mpich2-1.0.7 [3].

• Validation Platform (512 cores): A cluster consisting of 32
nodes. Each node is a 4-way Quad-Core with AMD8347 1.9
GHz CPUs and 32 GB memory, and connected with a 20
Gbps Infiniband network. MPI library is mvapich-1.1.0 [27].

6.2 Validation
The proof of our algorithm can be found in [36]. In addition, we

also validate the implementation of FACT by comparing the com-
munication traces collected by FACT with traces collected by tra-
ditional trace collection methods on the validation platform. We
perform comparison for the 7 NPB programs and the Sweep3D for
different numbers of processes (64, 128, 256, and 512). They are
identical except that the traces collected by FACT do not include
time stamp.

6.3 Performance

6.3.1 Memory Consumption

To present the advantages of FACT over the traditional trace col-
lection methods, we collect communication traces of NPB pro-
grams (Class D) and Sweep3D (150 × 150 × 150) with a large
date set on a small-scale system, the 4-node test platform which
has only 32 GB memory in all. The memory requirements of these
programs except EP and LU for 512 processes exceed the mem-
ory capacity of the test platform. For example, the NPB FT with
Class D input for 512 processes will consume about 126 GB mem-
ory size. Therefore, the traditional trace collection methods cannot
collect the communication traces on such a small-scale system due

to the memory limitation.
Our experimental results shown in Figure 11 demonstrate that

FACT is able to collect the communication traces for these pro-
grams on the test platform. Moreover, it consumes very little mem-
ory resources. The memory requirements of the original programs
are collected on the validation platform. In most cases, the memory
consumption for collecting the communication traces with FACT is
reduced by two orders of magnitude compared to the original pro-
grams. For example, Sweep3D only consumes 0.13 GB memory
for 64 processes, 1.25 GB memory for 512 processes with FACT

while the original program consumes 26.61 GB and 213.83 GB
memory respectively.

Figure 12: The memory consumption of FACT compared
to Null micro-benchmark when collecting the communication
traces for different programs. AV G is the arithmetic mean for
all the programs.

Figure 12 shows the memory consumption of the FACT com-
pared to the Null benchmark. Null is a micro-benchmark which
only contains the invocations of MPI_Init and MPI_Finalize,
and no other computation or communication operations. Null is
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Figure 13: The execution time (in Second) of FACT when collecting the communication traces of NPB programs and Sweep3D on the
test platform (32 cores). The execution time of original programs are collected on the validation platform (512 cores).

used to provide a lower bound on memory consumption for an MPI
program with different numbers of processes. Note that the mem-
ory consumption of Null grows when the number of processes in-
creases. It is because that the MPI communication library itself
consumes a certain memory for process management. As shown in
Figure 12, the memory consumption of FACT for all the programs
is close to the Null benchmark with different numbers of processes.
Among these programs, BT and SP consume relatively more mem-
ory resources than others. In contrast, EP and CG consume the
least memory. For example, with 512 processes, the Null bench-
mark consumes 1.04 GB memory, while EP and CG consume 1.11
GB and 1.22 GB memory respectively. Additionally, the memory
buffer in our runtime library of FACT will also consume a certain
memory, no more than 320 KB for each process. The results prove
that LPSA algorithm in FACT can effectively reduce memory re-
quirements of the original programs.

6.3.2 Execution Time

Figure 13 lists the execution time of FACT when collecting the
communication traces on the test platform. As the traditional trace
collection methods cannot collect the communication traces on the
test platform, the execution time of the original programs is col-
lected on the validation platform. In addition, as the problem size
is fixed for each process in the Sweep3D, its execution time in-
creases with the number of processes.

Since FACT deletes irrelevant computations of the original pro-
gram at compile time and only executes necessary communication
operations at runtime, the execution time of the original program
can be reduced significantly. For example, FACT just takes 0.28
seconds for collecting the communication traces of BT for 64 pro-
cesses, while the original program running on the 512-core valida-
tion platform takes 1175.65 seconds yet. As few of communication
operations are used in the EP program, its execution time is negli-
gible after slicing.

When collecting communication traces for 512 processes, the
execution time with FACT has a slight increase for a few programs.
This is caused by the following two reasons: (1) Besides the com-
putation time in the program slice, the execution time with FACT

also includes the time of recording the communication traces into

the memory buffer and eventually writing them into the disk files.
When the number of processes is small enough, the buffer of the
file system can hold all the trace files in the memory. When the
number of processes increases, the size of communication trace
files will exceed the buffer limitation of the file system. The file
system will flush the buffer to the hard disk. As a result, the I/O
time increases dramatically for a large number of processes. (2) As
the marked communication operations at compile time would be
executed at runtime, such as the MPI_Bcast invocation of the BT
program in Figure 8, the communication time will also increase on
such a small-scale system for a large number of processes due to
network contention.

Figure 14: The execution time when collecting the communica-
tion traces of MG with 512 processes and BT with 400 processes
by using more nodes on the test platform.

Overall, the execution time with FACT is acceptable for most de-
velopers to study the communication patterns on such a small-scale
system. In addition, FACT can benefit when more nodes are avail-
able. Figure 14 illustrates the results when collecting the communi-
cation traces of MG with 512 processes and BT with 400 processes
by using more nodes on the test platform. FACT represents good
scalability with the number of nodes. For example, with 12 nodes
FACT only takes 2.43 seconds and 3.46 seconds to collect the com-
munication traces for MG and BT respectively. This is because
both the I/O time and the communication time mentioned before



are reduced with the increase of number of nodes.

7. APPLICATION
There are arguments on the usage of communication traces, just

like any other profile-based analysis, that communication traces are
in fact dependent on input parameters. Thus, it is important to re-
veal the relationship between input parameters and communication
patterns. Traditionally, developers manually express the applica-
tion specific knowledge of the parallel applications, but it is very
time consuming and error-prone. It is greatly desired that we can
perform sensitivity analysis of communication patterns to key input
parameters automatically.

Because of the prohibitive resource and time requirements of tra-
ditional methods, it is too expensive to get communication traces
even for a single input, not to mention the sensitivity analysis which
requires multiple executions. FACT enables us to explore the sen-
sitivity analysis in a cost-effective way. We use Sweep3D as an
example.
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Figure 15: The sensitivity of communication spatial locality of
Sweep3D to input parameters: i and j. The gray level of a cell
at the xth row and yth column represents the communication
volume (in Byte) between two processes x and y.

Sweep3D has four key input parameters affecting the commu-
nication performance of the program: i, j, mk and mmi. The
values of i and j determine the mapping shape of the processes.
The number of processes must be equal to the product of i and j.
The computation granularity of the pipeline is determined by a k-
plane blocking factor (mk) and an angle blocking factor (mmi).
In our experiments, it takes less than 1 second for collecting 7 sets
of communication traces by FACT with different input parameters
on the test platform. The process number is 64. Figure 15 exhibits
the communication locality [21] of Sweep3D when varying the in-
put parameters, i and j. Note that the two sets of input parameters
present different communication localities for the application. For
example, in Figure 15(a), Process 8 communicates with Processes
0, 9, 18 frequently, while in Figure 15(b), Process 8 communicates
with Processes 4, 9, 12 more frequently.

Table 1: The sensitivity of message size (msg_size) in byte and
message count (msg_count) to the input parameters: mk and
mmi.

Input Paras
mk=10 mk=20 mk=10 mk=20 mk=50
mmi=1 mmi=1 mmi=3 mmi=3 mmi=6

msg_size 12000 24000 36000 72000 360000
msg_count 17280 9216 5760 3072 576

Table 1 shows that when increasing the value of mk, the message
size will increase. It is the similar for the parameter of mmi. When

“mk=50" and “mmi=6", the message size changes to 360000 Byte
and the message count is 576 in the Sweep3D. This information is
very important for understanding the communication behavior of
the Sweep3D.

8. LIMITATIONS AND DISCUSSIONS
Absence of temporal attributes The FACT framework is based

on the observation that there are many applications of communi-
cation trace analysis that can be done without temporal attributes.
We reiterate some known applications here: MPI process mapping
optimization [8, 43], communication subsysetm design [12], and
subgroup replay-based MPI debuggers [41]. In addition, FACT can
also be used to do performance prediction as described in [34]. We
do not intend and it is impossible to list all potential applications
of FACT, but we believe these known applications are sufficient to
support its usefulness.

FACT can not be used to support performance optimization and
performance debugging that require temporal information. For ex-
ample, traces collected by FACT can not be used with performance
tuning tools such as Intel Trace Analyzer [19] to get the overhead
of a message transfer. Some automatic performance tuning algo-
rithms, such as the critical path analysis [30], can not be supported
by FACT either.

However, we would like to mention that although traces col-
lected by FACT do not include temporal attributes, they do include
more than spatial and volume attributes. One important attribute
we preserve in FACT framework is the order attribute. Traces col-
lected by FACT have all the message operations and their sequences
in addition to statistics on volume and spatial attributes. The order
attribute has many potential applications. For example, they can be
used in identifying similarity between MPI processes. Due to the
limitation of space, we omit more discussion on this issue.

Communication non-determinism Like any trace-based approa-
ches, FACT also has its limitation in representing many executions
with one trace. One possible way to address the problem is to ob-
tain traces for more than one execution and observe the sensitivity
of communication patterns to different executions. In this sense,
FACT has significant advantage over traditional trace collection ap-
proaches because it costs much less in acquiring traces.

FACT may also affect communication patterns of non-deterministic
applications in a more subtle way. Because FACT may remove
computation from original programs, it changes the load balanc-
ing characteristics that may result in the change of communication
patterns. We will perform more investigation on this direction and
see if this is a real problem in practice.

9. CONCLUSIONS
In this paper, we propose a novel approach, called FACT, to ac-

quire communication traces of large parallel message passing ap-
plications on small-scale systems. Our approach can preserve the
spatial and volume communication attributes while greatly reduc-
ing the time and memory overhead of trace collection process. We
have implemented FACT and evaluated it with several parallel pro-
grams. Experimental results show that FACT is very effective in
reducing the resource requirements and collection time. In most
cases, we get 1-2 orders of magnitude of improvement. To the best
of our knowledge, FACT is the first work that can collect commu-
nication traces of large-scale parallel applications on small-scale
systems. With FACT, we are enabled to explore more applications
of using communication patterns. In the future, we will evaluate
FACT with more parallel applications.
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