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Abstract: 

By live migration technology, multiple virtual machines (VMs) can be consolidated 
into a fewer physical servers and the idle ones can be shut down or switched to 
low-power mode, thus reducing the energy consumption of cloud data centers. 
However, live migration can result in performance degradation of migrated VMs, or 
even interrupting their services. At the same time, live migration can also aggravate 
the overheads of data transmissions and produce additional energy consumption in 
cloud data centers. All these negative influences belong to migration cost (MC) 
caused by VM migration, which becomes an important cost factor that can’t be 
ignored. Otherwise, another important concern, remaining runtime of the migrated 
VM, also has influence on the efficiency of VM consolidation, which is not well 
addressed as well. This paper investigates MC-aware VM consolidation problem and 
formulates the problem as a multi-constraint optimization model by considering 
migration cost and remaining runtime of VMs. Based on the proposed model, a 
heuristic algorithm, called MC-aware VM consolidation (MVC) algorithm, is 
developed. Finally, based on a real-world cloud trace, we conduct extensive 
experimental studies to verify the validity of the proposed model and algorithm. 
Experimental results show that, compared with some popular algorithms, MVC 
algorithm can effectively decrease the migration cost and, at the same time guarantee 
the energy consumption within a certain low level. 

 
Keywords: live migration; migration cost; remaining runtime; virtual machine 
consolidation 
 
1. Introduction 

Cloud computing is a large-scale distributed computing paradigm supported by 
state-of-the-art data centers, in which a pool of computing resources is available to 
users via the Internet [1]. In recent years, increasing demand for computational 
resources has led to a significant growth in the number of physical servers, along with 
almost a double of the energy consumed by these servers and cooling infrastructures 
that support them [2]. Their share of power consumption is approximately between 
1.1% and 1.5% of the total electricity used worldwide and is projected to rise even 
more [3]. High energy consumption gives rise to a large amount of operational cost 
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which can accumulate more than the construction cost of servers and infrastructures in 
a short period [4]. Data center providers are going to great lengths to minimize their 
cooling costs, with some providers installing their data halls in cold weather climates 
[5, 6].This indicates the need for cloud service providers to adopt energy efficient 
resource management approach to ensure that their profit margin is not dramatically 
reduced due to high energy costs [7]. 

Virtualization technology allows cloud providers to create multiple VMs on a 
single physical server (PS) and provides performance isolation between applications 
running on the different VMs, which is widely adopted in modern cloud data centers 
(CDCs) [8]. By using live migration [9, 10], VMs distributed on multiple 
low-utilization servers can be dynamically consolidated on a fewer PSs and the idle 
ones can be switched to low-power modes to reduce energy consumption. This 
approach is known as VM consolidation, which is seen as an efficient solution to cut 
down electric cost of CDCs [11, 12]. However, VM migration may depress the 
performance of the migrated VM, or even temporarily interrupting its service [13]. At 
the same time, this process also aggravates the overheads of data transmissions and 
results in additional energy consumption of a CDC. All these negative influences 
belong to the migration cost (MC) caused by VM migration.  

It is note that different types of VMs occupy different amount of physical resources 
(such as compute, memory, storage and bandwidth, etc.) and execute different 
applications, thus the migration costs caused by heterogeneous VMs are 
distinguishing heavily [14]. Although the MC of a single migrated VM is relatively 
low, the comprehensive MC of a modern CDC is quite considerable due to the fact 
that frequent VM migrations may be needed in the daily management of a CDC [15]. 
Sometimes, the MC is even higher than the benefit of energy saving by VM 
consolidation. Therefore, the migration cost caused by VM consolidation has become 
an important cost factor in CDCs and can’t be ignored any more. 

Otherwise, another concerned factor, remaining runtime of VMs to be migrated, 
also has impact on the efficiency of VM consolidation. For example, if a VM with 
short remaining runtime is selected to be migrated, the MC of migrating the VM 
cloud be larger than the cost saving of consolidating the VM.  

From above discussions, it can be seen that, in VM consolidation, migration costs 
and remaining runtimes of the migrated VMs are two important aspects, which can 
significantly influence the efficiency of VM consolidation. The two aspects shall be 
considered and properly addressed so that a more comprehensive VM consolidation 
algorithm for CDCs can be developed, which could help to decrease the energy 
consumption and electric cost of cloud providers, leading to a sustainable and green 
cloud system [15]. 

Many efforts have been focused on VM consolidation in CDCs [2, 3, 10-13] 
(details are given in Section 2). In the literature, most common methods to select VMs 
to be migrated are according to the factors of the number of migrations [2, 16], 
occupied resources of VMs [4, 17], or load balancing [17, 18] and etc. Migration cost 
and remaining runtime, as two important restraining aspects in VM consolidation, are 
still not well addressed. To the best of our knowledge, none of the existing VM 
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consolidation algorithms has taken into account the factor of remaining runtime so far 
and only few research works on VM consolidation consider the factor of MC, which 
deserves further research. Therefore, in this paper, we make an endeavor to 
investigate the problem of MC-aware VM consolidation in CDCs by considering the 
influence of the two important impacted aspects. The studied problem is thus 
formulated as a multi-constraint optimization model. Then, a multi-step heuristic 
algorithm, called MC-aware VM consolidation (MVC) algorithm, is developed. 
Finally, extensive experimental studies have been conducted based on a real-world 
cloud trace. Experimental results show that, compared with some popular algorithms 
(i.e., algorithms presented in [17] and [19]), the proposed MVC algorithm can 
effectively decrease the migration cost and, at the same time, guarantee the energy 
consumption within a certain low level at the cost of slightly relaxing 0.12 percentage 
point of SLA violation. 

The rest of this paper is organized as follows. Section 2 introduces a review of the 
related references. Section 3 presents the details of MC-aware VM consolidation 
problem and its formulation. The descriptions of the developed MVC algorithm are 
presented in Section 4. Simulations, results and analyses are given in Section 5. 
Finally, we conclude this paper and present the future work in Section 6. 
 
2. Related Work 

Extensive attentions have been paid on energy-aware resource management in 
cloud computing environments. VM consolidation is seen as an efficient solution to 
improve resource utilization and reduce electric cost of CDCs. Recently, many studies 
have explored VM consolidation in CDCs and some VM consolidation methods have 
been proposed. For example, Beloglazov and Buyya [33] introduced a modified best 
fit decreasing (MBFD) algorithm by first sorting the VMs in the decreasing order and 
PSs in the increasing order on the basis of CPU processing capacity and then 
dynamically migrating VMs on PSs with suitable resources by using first fit 
decreasing algorithm. Sharma et al. [32] proposed a hybrid approach, HGAPSO, to 
minimize the energy consumption by saving the wastage of resource in a CDC. 
Perumal and Subbiah [20] proposed a worst fit heuristic VM placement algorithm to 
place the VMs over the PSs and a VM consolidation algorithm to improve power 
conservation while Mastroianni et al. [27] developed a probability-based VM 
consolidation algorithm, ecoCloud, in self-organization clouds. Marotta et al. [28] 
developed a simulated annealing based algorithm to solve VM consolidation problem 
by evaluating the attractiveness of the possible VM migrations. Cui et al. [35] studied 
policy-based VM consolidation problem under a multi-tier tree topology DC network 
environment and proposed a synergistic scheme to jointly consolidate network 
policies and VMs. 

Guo et al. [11] and Zhao et al. [38] further took into account the association 
between VMs. In [11], the authors proposed a VM migration algorithm based on a 
group selection method, which is according to the degree of connectivity of the 
partitioned VM groups. Zhao et al. [38] developed a power-aware and 
performance-guaranteed VM placement algorithm to balance between saving energy 
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cost and avoiding VM performance degradation in CDCs. While Fioccola et al. [27] 
introduced an energy-aware resource orchestration framework and a green migration 
based VM consolidation algorithm to minimize the overall power consumption and, at 
the same time, satisfy users’ QoS requirements. 

Moreover, Gutierrez-Garcia et al [17] and Xu et al. [18] further took load balance 
into account. In [17], a load balancing and energy-aware consolidation protocol 
algorithm was proposed to consolidate heterogeneous VMs in a distributed manner. 
While in [18], the authors developed a greedy-based load balance consolidation 
algorithm to minimize the number of active PSs and at the same time, balance the 
loads among these PSs. Although these research works have shown the effectiveness 
in saving energy consumption of CDCs, the algorithms presented above mostly 
ignored the impact of VM migrations.  

Some studies aimed to reduce energy consumption while keeping the number of 
migrations as small as possible. For example, Beloglazov et al. [28] investigated the 
problem of energy-aware resource allocation of cloud data centers and proposed 
several heuristic algorithms to reduce the energy consumption via dynamic allocation 
of VMs. Ye et al. [29] tried to eliminate the performance degradation due to VM 
co-location and migration. They proposed a profiling-based VM consolidation 
framework and a polynomial time algorithm to minimize both the numbers of used 
PSs and VM migrations. Wolke and Pfeiffer [30] adopted several well-known vector 
bin-packing heuristics (such as first fit and best fit) to address this issue. Tao et al. [31] 
further took communications between VMs into account, formulated the problem of 
dynamic VM migration as a triple-objective optimization model and designed a 
binary graph matching-based bucket-code learning algorithm. Mann [32] studied VM 
consolidation in multi-core cloud environments by also taking into account three 
aspects: the number of used PSs, the number of migrations and the number of 
overload CPUs. The author adopted a constraint programming method to solve the 
proposed weighted cost function of the three aspects. However, these methods 
estimate the migration cost only in terms of the number of VM migrations, without 
considering the inherent heterogeneity of VM migration cost [14, 33].  

Only few woks consider migration cost in VM consolidation. For example, Wu et 
al. [19] investigate how to minimize energy cost at low migration cost by designing a 
consolidation score function, in which the two conflicting objectives are normalized 
and summed up with different preference weights. They proposed an improved 
grouping genetic algorithm (IGGA) to obtain the maximum value of consolidation 
score by dynamic VM consolidation.  

From above-mentioned review of the related works, it can be seen that many efforts 
have been focused on tackling the VM consolidation problem and proposed some 
effective approaches based on random selection migration (RSM), minimization 
number of migrations (MUoM), minimum migration time (MMT), resource-based 
migration (RbM), or balance-based migration (BbM) and evolution-based algorithms 
[34, 35]. However, the impact of migration cost, as an important concern in CDCs, 
has not been well solved and none of the existing approaches considers the impact of 
remaining runtimes of migrated VMs [36]. To overcome these disadvantages, this 
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paper studies MC-aware VM consolidation problem and formulates the problem as a 
multi-constraint optimization model by considering the impact of migration cost and 
remaining runtimes of migrated VMs.  
 
3. MC-aware VM consolidation Problem 
3.1 Problem description 

In a normal operation period (T) of a CDC, VM consolidation is to dynamically 
adjust the mapping of VMs to suitable PSs, according to the dynamic nature of the 
CDC, such as arrivals of new VM requests, completed execution of VMs, changing of 
occupied resources of running VMs, and so on. Before presenting the details of the 
studied MC-aware VM consolidation problem, some definitions should be explicitly 
understood. 

Definition 1: Time Slot (TS). Without loss of generality, assume that the whole 
normal operation period of a cloud data center is T. As shown in figure 1, the whole 
period of time T can be divided into |T| equal time units. The length of each time unit 
is t△. One time unit is called a time slot, which can be seen as the essential process 
unit of time, and thus T can be represented by T={1,2,…,|T|}.  

0 tΔ 3tΔ2tΔ (T-1)tΔ4tΔ TtΔ…… (T-2)tΔ

Time Slot: T={1, 2, 3, …, |T|} 
 

Fig. 1 the division of the whole normal operation period of a cloud data center, T 

Definition 2: Cloud Data Center (CDC). Without loss of generality, suppose that a 
CDC consists of M heterogeneous PSs, denoted by PS={PS1, PS2,…, PSj,…, PSM}, in 
which PSj (1≤j≤M) represent j-th PS. Denote by Ωj and Γj the number of CPU cores 
and memory size provided by physical server PSj, respectively. In a certain time slot 
t(1≤t≤|T|), if there is at least one VM running on a PS, we call the server as an active 
server. All the active servers in time slot t constitute an active server set, represented 
by AS(t). Denote by m(t) the number of active servers in AS(t). Thus, AS(t) and m(t) 
satisfy the following relations: AS(t)�PS and m(t)≤M. 

Definition 3: Virtual Machine (VM). All the VM requests arrival to the CDC 
during the whole period of time T constitute a VM set V. Denote by N=|V| the number 
of VM requests in V. All the running VMs in time slot t constitute a running VM set 
V(t). Denote by n(t) the number of VMs in V(t). Thus, V(t) and n(t) satisfy the 
following relations: V(t)�V and n(t)≤N. Let Vi represent the i-th VM in V(t), thus 
Vi∈V(t) and )(1 tni dd . Denote by ωit and γit the amounts of CPU cores and memory 
required by VM request Vi during time t respectively. According to some real-life 
cloud environments [37], the occupied resources of VMs have a strong dynamic 
nature. Therefore, in order to improve the applicability, this paper deal with the 
scenario that the occupied resource capacities of VM requests are varied during 
different time slots, which means that the values of ωit and γit are changing with time. 
Denote by at(Vi) and rt(Vi) the arrival time and runtime of VM request Vi respectively, 
and then the running VM set V(t) in time slot t can be formally described as: 
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V(t)={Vi| at(Vi)<t and at(Vi)+rt(Vi)>t}.      (1) 
where expression at(Vi)<t means that VM request Vi is submitted to the CDC by a 
certain cloud user before time slot t and expression at(Vi)+rt(Vi)>t means that the 
execution of VM request Vi is not completed before time slot t.  

Definition 4: Hot Servers (HSs). For a certain PS, if the sum of the occupied 
resources of all VMs running on it exceeds its resource capacity for any kind of 
resources (such cores of CPU, Memory, etc.), then we call the PS as a hot server (HS). 
Once a physical server becomes a HS, it will inevitably violate the service level 
agreement (SLA), in which the cloud provider guarantees to provide the negotiated 
quality of service (QoS) to cloud users. The situation will result in loss of profit for 
the cloud provider. In order to prevent the time of violating SLA from increasing, one 
or more VMs running on the HS should be migrated to other PSs with adequate 
amounts of resources.  

Definition 5: VM Mapping Policy (VMP). For any time slot t (1≤t≤|T|), a mapping 
of VMs in V(t) to PSs in PS(t) is a VMP in time slot t, which can be denoted by a 
matrix X(t)=(xij)n(t)×m(t). If VM request Vi is running on physical server PSj, then xij=1; 
otherwise, xij=0. n(t) and m(t) are the numbers of running VMs and active PSs in the 
CDC during time slot t, respectively.  

Definition 6: States of PSs. Suppose that all the PSs in the CDC can only be in 
normal-power state or low-power state. For any physical server PSj�PS, if there is at 
least one VM running on the server, then PSj is an active server and in normal-power 
state; otherwise, PSj is in low-power state. Denote by sj(t)(1≤j≤M) the state of 
physical server PSj during time slot t. The states of all the PSs in CDC during time 
slot t constitute a m-dimensional state vector S(t)=(s1(t), s2(t),..., sM(t)), where sj(t)=1 
indicates that physical server PSj is in normal-power state and sj(t)=0 indicates that 
physical server PSj is in low-power state. S(t) can be calculated by the obtained VM 
mapping policy X(t), so we have 
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From the above-mentioned definitions, the MC-aware VM consolidation (MVC) 
problem can be formally described as follows: for any time slot t (1≤t≤|T|), all the 
running VMs in the CDC constitute a set V(t) and n(t)=|V(t)|; all the active PSs in the 
CDC constitute a set PS(t) and m(t)=|PS(t)|; the current VMP is X(t)=(xij)n(t)×m(t); then 
the MVC problem is how to dynamically adjust the mappings of VMs in V(t) to 
minimization number of PSs in normal-working state to decrease the energy 
consumption of the CDC under and some given constraints, according to the dynamic 
characters of CDC. The mentioned dynamic characters include arrivals of new VM 
requests, changing of required resources of VMs and the completions of VM requests.  
 
3.2 Optimization Model 

VM consolidation is generally used to optimize resource usage and reduce the 
energy consumption of CDCs. Reducing the number of active PSs in cloud data center 
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to serve the same amount of VM requests with similar performance is of great 
attractions for cloud providers. Similar to other research on VM consolidation [2, 11, 
16-19], this paper uses the number of active PSs as the main metric to measure the 
degree of energy consumption of a cloud data center. Different with existing studies, 
we investigate the MVC problem in a long run of the whole normal operation period 
of a CDC, by conducting VM consolidation in each time slot according to the 
dynamic natures of the data center. Therefore, the studied problem is formulated as 
follows:  

Min   ¦
 

M

j
j ts

1

)(   |}|,,1,0{ Tt }�� .          (3) 

The optimization objective is to minimize the number of active physical servers in 
each time slot. Besides energy optimization, we also consider the other two important 
influencing factors (i.e., migration cost and remaining runtimes) in MVC and the 
proposed optimization model is subject to following constraints: 

C1). Range of variables: the values of decision variables xij and sj can only be 0 or 1. 
Formally: 

)(tVi V�� , )(tPSi PS�� : xij�{0,1} and sj(t)�{0,1}.    (4) 

C2). VM mapping constraint: each VM request can only be allocated to exactly one 
PS to execute. Formally: 

)(tVi V�� : ¦
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C3). Resource capacity constraint: the total CPU/memory requirements of VMs 
allocated on a physical server should not exceed its CPU/memory capacity. Formally: 
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C4). SLA violation percentage (SVP) constraint: The maximum duration of a PS to 
be allowed to violate SLA must not be longer than one time slot. As the occupied 
resources vary with time, it could result in a situation that the total resource 
requirements of VMs allocated on a physical server exceed its resource capacity and 
violate the SLA. To decrease the time of SLA violation, one or more VMs running on 
the hot server need to migrate to other physical servers with adequate amounts of 
resources. Denote by SLAj(t) whether physical server PSj violates SLA during time 
slot t and it can be given by: 
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For the purpose of improving the QoS, the duration of SLA violation must be as 
short as possible during the whole operation period T. Therefore, in the proposed 
optimization model, we restrict that the sustained time of SLA violation for a PS must 
not be longer than a time slot.  
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C5). Remaining runtime constraint: as the analysis presented in section 1, the MC 
of a VM with short remaining runtime cloud be larger than the cost saving of 
consolidating the VM. In order to avoid unnecessary VM migrations, the proposed 
optimization model restricts that the VMs whose remaining runtimes are less than a 
time slot will not be migrated. 

Overall, the studied MC-aware VM consolidation is formulated as an optimization 
model with multiple constraints, i.e., minimizing the number of active PSs in each 
time slot (Eq.(3)) and constraints C1)-C5). From the first two constraints, it can be 
seen that this problem is actually a variant of the combinatorial optimization problem. 
Due to the NP-hardness of the studied problem, approximation algorithms that suffice 
to find a near optimal solution are more promising. Therefore, we propose a heuristic 
algorithm which is presented in next section. 
 
4. MC-aware VM Consolidation (MVC) Algorithm  

In this section, we present the details of the developed MVC algorithm, which 
consists of four steps, i.e, pre-processing step, hot server removing step, VM 
placement step and VM consolidation step.  

4.1 Pre-Processing (PP) step  
In this step, MVC algorithm mainly addresses two issues: firstly, for each VM 

running in the previous time slot, judging whether it has been completed or not, if yes, 
then MVC algorithm should release its occupied physical resource free; secondly, 
adjusting the occupied resources of the running VMs in current time slot t, according 
to their real-time resource requirements. The two aspects are realized by a 
pre-processing (PP) function whose pseudo-code is shown in algorithm 1. The inputs 
of the PP function are the current time slot t and the set of running VMs in time slot 
(t-1), V(t-1). The output is the set of running VMs in time slot t, V(t). The detailed 
processes of the PP function are as follows: 

Algorithm 1: Pre-Processing (PP) Function 
Input: current time slot t, V(t-1) 
Output: V(t) 
1  initialization: V(t)= V(t-1); 
2  foreach VM Vi in V(t) do 
3    if at(Vi)+rt(Vi)≥(t-1) && at(Vi)+rt(Vi)<t then 
4      free the occupied resource of VM Vi; 
5      V(t)= V(t)-{Vi}; 
6    end if 
7  end foreach 
8  if t %5==0 then //changing occupied resources of running VMs every 5 time slots 
9    foreach VM Vi in V(t) do 
10     change the occupied resources of Vi according to its current requirements; 
11   end foreach  
12 end if 
13 return V(t); 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Firstly, before the starting of each time slot t, PP function should free the occupied 
resources of VMs completed in time slot (t-1) and shutdown the completed VMs 
(lines 2-7, algorithm 1). The judging condition in line 3, at(Vi)+rt(Vi)≥(t-1) and 
at(Vi)+rt(Vi)<t, means that VM Vi is still running in the start of time slot (t-1) and 
completed before the start of time slot t. It indicates that VM request Vi is completed 
during time slot (t-1).  

Secondly, for every 5 time slots, PP function changes the occupied resources of 
each running VM according to its current resource requirements (lines 8-12, algorithm 
1). The purpose of this step is to accommodate to the dynamic natures of the real-life 
cloud scenarios. In google cluster-usage traces (version 2) which is one of the popular 
real-life cloud traces reported by Google Inc in 2014, the occupied resources of each 
VM change every five minutes periodically. Therefore, in the developed algorithm, 
we choose to dynamically change the required resources of running VMs for every 
five time slots as well.  

4.2 Hot Server Removing (HS-Removing) step  
After the PP step, the MVC algorithm gets into HS-Removing step whose main 

assignment is to cut down the resource utilization of hot servers by migrating one or 
more VMs form them. The assignment is realized by HS-Removing function (as 
shown in algorithm 2). The inputs of the HS-Removing function are: t-the current 
time slot t, V(t)-the set of running VMs, PS(t)-the set of active physical servers in 
time slot t, and the current VM mapping policy X(t). The output is a new VM 
mapping policy X′(t) after removing hot servers in time slot t.  

In HS-Removing function, two important factors, MC and remaining runtime, are 
taken into account when chooses the VMs to migrate. The MC of VM Vi includes four 
parts, i.e., migration time Tmig(Vi), downtime Tdown(Vi), migration energy Emig(Vi) and 
performance degradation caused by migrating VM Vi [2, 9, 13, 14]. The fourth part is 
equal to increase the runtime of the migrated VM by 10% of its migration time 
because, in the migration process, the average performance degradation can be 
estimated as approximately 10% of the CPU utilization [2]. The other three parts are 
different in both unit and weight of their values. Thus, in order to find the suitable VM 
with minimal MC in the hot server, the HS-Removing function defines a parameter of 
cost factor, shown in definition 7. 

Definition 7: Cost Factor (CF). The cost factor of migrating a VM is a weighted 
normalization value of migration time, downtime and migration energy. If physical 
server PSj violates SLA in time slot t, denote by Vj(t) the VMs running on PSj. For 
each VM Vi in Vj(t), the cost factor of migrating VM Vi, denoted as CFmig(Vi), can be 
given by: 
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represent the maximum of migration time, downtime and migration energy of 
migrating all the VMs in Vj(t), respectively. α, β and γ are weighting coefficients of 
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three aspects and α+β+γ=1. 

Algorithm 2: Hot Server Removing (HS-Removing) Function 
Input: current time slot t, V(t), PS(t) and X(t) 
Output: new VM mapping policy X′(t) 
1  initialization: X′(t)= X(t); 
2  foreach physical server PSj in PS(t) do 
3    if PSj is a hot server according to Eq.() then 
4      foreach VM Vi in Vj(t) do  
5        if Vi can be completed during in time slot t then  
6          add Vi to its completed VM set CVj(t);  
7        end if  
8      end foreach  
9      if PSj is not a hot server after freeing the occupied resources by CVj(t) then 
10       continue; 
11     foreach VM Vi in Vj(t) do  
12       if PSj is not a hot server after migrating Vi then 
13         calculate CFmig(Vi);   
14         mark the VM with minimum CF as Vk;  
15       end if 
16     end foreach   
17     mark VM Vk as the VM to migrate;   
18     PSd m PS_Selection(Vk);   
19     migrate Vk from PSj to PSd;   
20     change the value of VMP X'(t): x'kj=0、x'kd=1; 
21   end if 
22 end foreach 

The detailed processes of the HS-Removing function are as follows: 
Initially, the values of elements in X'(t) are set as the values of corresponding 

elements in X(t).  
Then, for each physical server PSj in PS(t), the HS-Removing function judges 

whether PSj is a hot server or not, according to Eq.(9). If yes, it will get into the 
following procedures (lines 3-21, algorithm 2): First, for all VMs running on PSj, 
HS-Removing function finds out the VMs that can be completed during time slot t 
and then judges whether PSj can remove SLA violation when these VMs free their 
occupied resource; if yes, the HS-Removing function can guarantee the constraint of 
SLP without any VM migration and continue to judge next PSs (lines 4-10, algorithm 
2); otherwise, the HS-Removing function selects the VM, which has the minimum 
MC and can satisfy the SLA violation constraint after migration, and migrates the VM 
to other PSs with adequate resource capacity (lines 11-20, algorithm 2). 
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In line 18 of algorithm 2, PS_Selection(Vk) function is used to select a destination 
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PS for VM Vk, which needs to migrate. The pseudo-code of the function is shown in 
algorithm 3 whose inputs are VM Vk and PS(t), and output is the selected destination 
server PSj. The detailed processes of the PS selection function are as follows: The 
function firstly selects the destination server for VM Vk from active server set PS(t) 
(lines 1-6, algorithm 3). However, if there is no suitable PS exists in PS(t) to 
accommodate Vk, the function will start a new PS (lines 7-11, algorithm 3). 

Algorithm 3: PS_Selection function 
Input: VM Vk and PS(t) 
Output: destination physical server 
1  sort the physical servers in PS(t) in ascending order by the sum of residual CPU 

and memory capacity, such as P′1, P′2, …, P′m(t); 
2  for j=1 to m(t) do 
3     if there is adequate resource capacity on P′j to allocate to VM Vk then 
4       return P′j; 
5     end if  
6  end for    
7  if j>m(t) then  //no suitable physical server exists in PS(t) to accommodate Vk 
8    start a new physical server in low-power state with maximum sum of CPU and 

memory capacity, such as PSj;  
9    add physical server PSj to active physical server set PS(t);  
10 end if  
11 rerurn PSj; 

4.3 VM Placement Step  
Denote by Vin(t) the set of VM requests submitted to CDC by users during time slot 

t. For each VM request Vi in Vin(t), its arrival time satisfies the following expression: 
t≤at(Vi)<(t+1). VM placement step is invoked at the start of time slot t and its main 
task is to deploy all the new VMs requests submitted during time slot (t-1) to suitable 
PSs. The algorithm of this step is called VM placement (VMP) function whose 
pseudo-code is shown in algorithm 4. The inputs are the current time slot t, Vin(t-1), 
PS(t) and X(t). The output is a new VM mapping policy X'(t) after deploying the VM 
requests in Vin(t-1) to PSs in PS(t). The detailed processes of the VMP function are as 
follows: 

Initially, the values of elements in X'(t) are set as the values of corresponding 
elements in X(t) (line 1, algorithm 4).  

Then, VMP function sorts the active PSs in ascending order on the basis of the sum 
of residual CPU and memory capacity, such as PS′1, PS′2, …, PS′m(t) (line 2, algorithm 
4). 

Third, for each new VM request Vk, VMP function first checks whether there is a 
suitable PS to deploy Vk from active server set PS(t) (line 4, algorithm 4). If yes, VMP 
function deploys VM request Vk to the selected physical server PS′j and add Vk to the 
running VM set V(t) (lines 5-10, algorithm 4). Otherwise, the VMP function will start 
a new physical server and deploys VM request Vk to the new started server (lines 
12-18, algorithm 4). 
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Algorithm 4: VM Placement (VMP) Function 
Input: current time slot t, Vin(t-1), V(t), PS(t) and X(t) 
Output: new VM mapping policy X′(t) 
1  initialization: X′(t)= X(t); 
2  sort the physical servers in PS(t) in ascending order by the sum of residual CPU 

and memory capacity, such as PS′1, PS′2, …, PS′m(t); 
3  foreach VM Vi in Vin(t-1) do   
4    for j=1 to m(t) do 
5      if PS′j can satisfy Vi’s resource requirements then  
6        deploy Vi to physical server PS′j;  
7        V(t)= V(t)∪{Vi};  
8        change the value of VMP X'(t);  
9        break; 
10     end if 
11   end foreach  
12   if there is no suitable physical server in PS(t) to deploy VM Vi then 
13     start a new physical server in low-power state with maximum sum of CPU 

and memory capacity, such as PSj;  
14     deploy Vi to physical server PSj;  
15     V(t)= V(t)∪{Vi};  
16     PS(t) = PS(t)∪{ PSj };  
17     change the value of VMP X'(t); 
18   end if  
19 end foreach  

4.4 VM Consolidation (VMC) Step  
In VMC step, the proposed MVC algorithm adopts threshold-based approach, 

which has been proven to be an effective approach [21, 28,, 38]. The main task of this 
step is to consolidate VMs running on under-utilized physical servers. Denote by 
SUMTmig(PSj) the overall migration time of physical servers PSj, which is equal to the 
sum of migration times of all the VMs running on PSj. Thus, we have: 
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The inputs of the VMC function include the defined lower utilization threshold 
ULower, PS(t) and X(t). The output is a new VM mapping policy X′(t) after VM 
consolidation in time slot t. The pseudo-code of VMC function is shown in algorithm 
5. When there exists a physical server PSj whose sum of CPU and memory utilization 
is lower than ULower in PS(t), VMC function will execute the following processes(lines 
2-16, algorithm 5): First, calculates the overall migration time SUMTmig(PSj) 
according to Eq.(10). Second, for each VM (such as Vi) running on PSj, VMC 
function will judge whether the remaining runtime of Vi is shorter than SUMTmig(PSj) 
or not. If yes, it means that VM Vi can be completed before SUMTmig(PSj) and there is 
no need to migrate VM Vi. Thus, the function leaves VM Vi continually running on 
physical server PSj until Vi is completed (lines 5-7, algorithm 5). Otherwise, VMC 
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function will migrate VM Vi to a suitable physical server (lines 8-11, algorithm 5). 
Finally, after processing all the VMs running on PSj, VMC function will switch 
physical server PSj to low-power state when there is no VM running on it (lines 14 
and 15, algorithm 5). 

Continue the above-mentioned processes until the resource utilizations of the 
physical servers in PS(t) are all higher than ULower. 

Algorithm 5: VM Consolidation (VMC) Function 
Input: ULower, PS(t) and X(t) 
Output: new VM mapping policy X′(t) 
1  initialization: X′(t)= X(t); 
2  while there exists a physical server PSj whose sum of CPU and memory 

utilization is lower than ULower in PS(t) do 
3    calculate SUMTmig(PSj) according to Eq.();  
4    foreach VM Vi running on PSj do   
5      if the remaining runtime of VM Vi is shorter than SUMTmig(PSj) then  
6        VM Vi doesn’t need to be migrated;  
7        SUMTmig(PSj)=SUMTmig(PSj)-Tmig(Vi);  
8      else  
9        PSd m PS_Selection(Vi); 
10       migrate Vi from PSj to PSd; 
11       change the value of VMP X'(t): x'ij=0 and x'id=1;  
12     end if 
13   end foreach 
14   switch physical server PSj to low-power state; 
15   PS(t) = PS(t) - {PSj};  
16 end while  

Hereinbefore, we introduce the four steps of the developed MVC algorithm in 
details. The overall flow of MVC algorithm is as follows: at the start of each time slot 
t (1≤t≤|T|), MVC algorithm firstly executes pre-processing function to free the 
occupied resources of VMs which are completed in time slot (t-1), and dynamically 
changes the occupied resources of running VMs according to their current 
requirements at each time slot t, where t%5=0. After changing the occupied resources, 
some physical servers may become hot servers and violate SLA. Once a physical 
server violating SLA, MVC algorithm will call HS-Removing function to migrate one 
or more VMs from the hot server to avoid going against the SVP constraint of the 
proposed optimization model. Then MVC algorithm invokes VMP function to deploy 
the new VM requests, submitted by users during time slot (t-1), to suitable physical 
servers. Finally, MVC algorithm execute VMC function to consolidate VMs running 
on low-utilization servers and switch the ideal ones to low-power state to cut down 
the energy consumption of the cloud data center. 

 
5. Performance Evaluation 

A series of experiment studies has been conducted to verify the feasibility of the 
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proposed optimization model and the performance of the proposed MVC algorithm. 
The experimental configurations and result analyses are presented in the following 
sections. 

 
5.1 Experimental Configurations 

Our experiments are conducted based on CloudSim toolkit [39], which is a modern 
and extensible cloud simulation framework and widely adopted by most related 
research. The setups of cloud infrastructure and VM requests used in the experiments 
are extracted from a real-life cloud scenario, Google cluster-usage traces [37]. The 
reported traces contain the records from a cluster of about 12.5k machines over about 
a month-long period. From which, we generally choose 29944 task records from task 
event tables generated in first twelve hours and 1046 physical machine records from a 
machine event table. Each task record, which can be seen as a VM request, contains 
attributes of arrival time, runtime, dynamic CPU requests and memory requests that 
change every five minutes. The last two attributes are normalized values from 0 to 1, 
in which 1 represents the maximum value of the CPU/memory request in the task 
event table. Each machine record can be seen as a physical server, which contains 
attributes of machine ID, states, CPU and memory capacity, which are also 
normalized from 0 to 1. These normalized values are directly used in the experiment 
because the CPU/memory capacities of physical servers are about 4-10 times as large 
as the CPU/memory requests. The total length of simulation time continues 12 hours 
and the time slot defined in definition 1 is set as 1 minute. Thus the whole normal 
operation period (12 hours) of the simulated cloud data center is divided into 720 time 
slots. The three weighting coefficients in Eq.(8), i.e., α, β and γ, are set as 0.3, 0.3 and 
0.4 respectively. The lower utilization thresholds of CPU and memory are both set to 
0.2.  

5.2 Analyses of Results  
To evaluate the performance of the developed MVC algorithm, we compare it with 

other two recent and representative algorithms on VM consolidation, i.e., 
energy-aware server consolidation protocol (ESCP) [17] and improved grouping 
genetic algorithm (IGGA) [19], on three aspects of metrics: energy consumption, VM 
migration and SLA violation percentage (SVP). In order to decrease causal factors’ 
influences, each experiment has been run 10 times and the results presented in the 
paper are the mean value of the results obtained by the 10 experiments. 

5.2.1 Energy Consumption 
In this aspect, we compare mainly two energy consumption related metrics, i.e., 

number of active physical servers in each time slot and the total number of active 
physical servers in the whole experimental period, i.e., 12 hours.  

Active physical servers are the physical servers used in each time slot. The smaller 
value of the number of active physical servers, the lower energy consumption of the 
cloud data center. As shown in figure 2, to execute the same number of VM requests 
submitted by users, the number of used physical servers obtained by the proposed 
MVC algorithm is smaller than that of ESCP algorithm, and slightly more than that of 
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IGGA algorithm. More specially, table 1 shows the results of the total number of used 
physical servers during the whole experimental period. The total used physical servers 
of MVC algorithm is 7.5% smaller than that of ESCP algorithm and 2.7% slightly 
more than that of IGGA algorithm. It means that IGGA algorithm and the proposed 
MVC algorithm can be more effective on energy saving than ESCP algorithm in the 
long run. The reason lies in: for a VM to be allocated, MVC algorithm always chooses 
the physical server with the minimal residual resource capacity that can satisfy 
resource requirements of the VM, while ESCP algorithm prefers to select the physical 
server with lowest resource usage, which will have bad impact on the step of VM 
consolidation. Both of the two algorithms don’t tolerate SLA violation and they will 
invoke hot server removing function when a physical server becomes a hot server. 
However, IGGA allows all physical servers execute workloads out of their proceeding 
capacities and thus IGGA needs the smallest physical servers to process the same 
number of VM requests.  

 
Fig. 2 Number of used physical servers in each time slot. 

Table 1 Total no. of used physical servers during the whole experimental period (12 hours). 

Algorithms MVC ESCP IGGA 

Total no. of used PSs 39596 42823 38552 

Otherwise, another phenomenon shown in figure 2 is that the results obtained by 
the three compared algorithms fluctuate heavily in different time slots. This is caused 
by the trend of new arrival VM requests to the data center. The number of VM 
requests submitted to the data center in each time slot is presented in figure 3. It can 
be seen easily that the number of active physical servers in each time slot has almost 
the same trend with the new arrival VM requests to the data center.  
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Fig. 3 Number of new arrival VM requests in each time slot. 

5.2.2 VM Migration 
Generally, the VM migration related metrics are the total number of migrated VMs 

(TMV) in the whole experimental period, the total migration cost and the average 
migration cost. The total number of migrated VMs in the whole period equals the sum 
of migrated VMs in each time slot and so does the total migration cost. The average 
migration cost is the total migration cost divided by the total number of migrated VMs. 
These three metrics is mainly used to analysis the negative effective of VM 
migrations of different algorithms.  

Table 2 shows the results of the three studied metrics obtained by the three 
compared algorithms during the whole experimental period. It can be seen that, the 
values of the three metrics obtained by MVC algorithm and IGGA algorithm are near 
the same and both of the two algorithms can both perform well on the three metrics. 
Specially, the results of TMV, total MC and average MC obtained by MVC algorithm 
are 13.6%, 41.7% and 32.7% respectively smaller than these of ESCP algorithm, 
which means that the proposed MVC algorithm can guarantee a relatively low impact 
on the performance of the cloud data center during the process of VM consolidations. 
The reasons are as follows: firstly, when choosing VMs to be migrated in 
HS-Removing step, the proposed MVC algorithm takes the factor of remaining 
runtime into account and if the remaining runtime of a selected VM is less than one 
time slot, then MVC algorithm doesn’t migrate it, and thus can reduce some 
unnecessary migrations; secondly, when there is a need to migrate VM, the proposed 
MVC algorithm choose the VM with lowest migration cost from eligible VMs; 
however, ESCP algorithm selects the migrated VM with maximum occupied 
CPU/memory resource to avoid frequent SLA violation, and thus the average MC 
obtained by MVC algorithm is  44.6% lower than that obtain by ESCP algorithm. 
Therefore, considering the impacts of remaining runtime and migration cost in 
choosing VMs to be migrated can effectively avoid unnecessary migration and reduce 
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additional negative influences caused by VM migrations during the process of VM 
consolidation.  

Table 2 Results obtained by different algorithms during the whole period (12 hours). 

Algorithms MVC ESCP IGGA 

total no. of migrated VMs 1951 2258 1879 

total MC 113469 194712 110483 

average MC 58.01 86.2 58.8 

5.2.3 SLA violation percentage (SVP) 
SVP is the percentage of SLA violation time in the whole period and can be 

calculated by the total SLA violation time of all hot physical servers divided to the 
total running time of all active physical servers in the whole period T, which can be 
given by Eq.(11). The smaller the value is, the lower time that a physical server 
violates SLA. 
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In the conducted experiments, the whole period T is divided to |T| time slots with 
equal length. Thus, in Eq(11), the length of SLA violation for each physical servers 
equals to the times of the server’s violating SLA.  

Table 3 SLA violation percentage of different algorithms during the whole period (12 hours). 

Algorithm MVC ESCP IGGA 

SVP 0.41% 0.29% 5.62% 

Table 3 shows the results of SVP obtained by the compared algorithms during the 
whole experimental period. It can be seen that IGGA algorithm violates SLA more 
frequently than the other two algorithms and the SLA violation percentage is up to 
5.62%. This is because IGGA algorithm doesn’t consider the factor of service level 
agreement and allows a hot server executes workloads out of its proceeding capacities, 
and thus will cause higher probability to violate SLA. While MVC algorithm and 
ESCP algorithm will invoke VM migration immediately once a physical server 
becomes a hot server and violates SLA. Moreover, in MVC algorithm, physical 
servers are permitted to violate SLA within a constrained range. The constraint is that 
the sustainable time of violating SLA for each physical server must not be longer than 
one time slot (1 minute in experiments). With this constraint, once a physical server 
violate SLA, MVC algorithm firstly judges whether there is one or more VMs whose 
remaining runtimes are short than a time slot. If yes, this VM (or these VMs) can be 
completed within a time slot and the hot server will not violate SLA any longer. In 
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this situation, the hot server can satisfy the SVP restrict, constraint C4 of the proposed 
optimization model (in section 3.2), and there is no need to migrate any VM. That is 
why the SVP of the proposed MVC algorithm is slightly higher than that of ESCP 
algorithm.  
 
6. Conclusions 

Energy consumption has become one of the major concerns for the owners of 
CDCs. VM consolidation is seen as an effective approach to improve energy 
efficiency of CDCs, but it may depress the performance of migrated VMs, or even 
temporarily interrupting their services, during the migration period. As a result, these 
negative influences caused by VM migrations should not be ignored. Some studies 
focus on minimizing energy consumption while keeping the number of migrations as 
small as possible. However, these methods estimate the migration cost only in terms 
of the number of migrations and fail to take into account the inherent heterogeneity of 
costs caused by migrating different VMs. In order to decreasing the negative 
influences of VM migrations, this paper develops a MC-aware VM consolidation 
(MVC) algorithm by considering remaining runtime and migration cost when 
choosing VMs to be migrated, Simulation results show that, compared with some 
popular algorithms, MVC algorithm can decrease the migration cost and, at the same 
time guarantee the energy consumption within a certain low level. 
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