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Abstract
Temporal graphs capture changes in graphs over time and
are becoming a subject that attracts increasing interest from
the research communities, for example, to understand tem-
poral characteristics of social interactions on a time-evolving
social graph. Chronos is a storage and execution engine de-
signed and optimized specifically for running in-memory it-
erative graph computation on temporal graphs. Locality is
at the center of the Chronos design, where the in-memory
layout of temporal graphs and the scheduling of the itera-
tive computation on temporal graphs are carefully designed,
so that common “bulk” operations on temporal graphs are
scheduled to maximize the benefit of in-memory data lo-
cality. The design of Chronos further explores the interest-
ing interplay among locality, parallelism, and incremental
computation in supporting common mining tasks on tempo-
ral graphs. The result is a high-performance temporal-graph
system that offers up to an order of magnitude speedup for
temporal iterative graph mining compared to a straightfor-
ward application of existing graph engines on a series of
snapshots.

1. Introduction
Graphs can naturally capture connections and relationships.
Real world graphs often evolve over time as the connections
and relationships change [13]. There is growing interest in
analyzing not only the static structure of graphs, but also
their time-evolving properties. For example, to study diam-
eter changes of an evolving social network [13], to charac-
terize social relationships according to changing user activi-
ties in online social networks [32], and to observe how web-
page ranks change over time [33]. New algorithms are also
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proposed specifically for evolving graphs to extract new in-
sights [12, 32].

Many graph mining algorithms are designed for a static
graph, e.g., to compute PageRank or weakly connected com-
ponents. Understanding the evolution of graphs over time
often involves running those graph mining algorithms on a
series of snapshots, which we refer to as temporal graph
mining. Here a snapshot corresponds to the static graph at a
particular time point. Chronos is a parallel in-memory graph
engine designed to enable efficient temporal graph mining
both on multi-core machines and in distributed settings. The
addition of the time dimension in Chronos gives rise to inter-
esting and rich new opportunities, beyond the existing graph
engines that work on static graphs [7, 16, 17, 23, 27].

Fundamentally, the design of Chronos centers on two is-
sues: the in-memory layout of a temporal graph and the
scheduling of the graph computation. Rather than taking the
straightforward approach of applying an existing graph en-
gine on each snapshot of a temporal graph, Chronos pro-
poses locality-aware batch scheduling (LABS) with the fol-
lowing two key observations.

First, locality in data layout matters greatly in graph com-
putation. For a temporal graph, the data layout can exhibit
either time(-dimension) locality, where the states of a vertex
(or an edge) at two consecutive time points are laid out con-
secutively, or structure(-dimension) locality, where the states
of two neighboring vertices at the same time point (i.e., in
the same graph snapshot) are laid out close to each other.
Time-locality and structure-locality are not created equal:
time-locality can be arranged “perfectly” because time pro-
gresses linearly, but structure-locality can only be approxi-
mate because it is challenging to project a graph structure
into a linear space. The design of Chronos therefore favors
time-locality when it lays out multiple snapshots of a graph
in memory.

Second, Chronos schedules graph computation to lever-
age the time-locality in the in-memory temporal graph lay-
out. Such co-design of scheduling and layout is essential to
maximize the benefits of locality. Traditional graph engines
arrange computation around each vertex (or each edge) in a
graph; while temporal graph engines, in addition, calculate
the result across multiple snapshots. Chronos makes a deci-



sion to batch operations associated with each vertex (or each
edge) across multiple snapshots, instead of batching opera-
tions for vertices/edges within a certain snapshot.

These seemingly simple observations have proven effec-
tive on different graph computing implementations, whether
it is stream-based, push-based, or pull-based, as described
with more details in Section 5.

To execute efficiently on a multi-core server, the design
of Chronos further considers issues related to parallelism,
such as the impact of locking to avoid conflicts. Chronos also
examines the interplay with incremental graph computation
that might help speed up iterative graph mining on multiple
snapshots [5].

We perform extensive evaluations using 5 graph com-
putation algorithms on 4 real-world temporal graphs with
billions of edges and hundreds of millions of vertices. The
result shows the effectiveness of Chronos: with LABS,
Chronos can achieve more than 10 times the speedup on a
single-thread execution, compared to the straightforward ap-
proach of running the same graph mining algorithm on each
snapshot. On a 16-core machine, Chronos outperforms the
embarrassingly parallel execution of the same graph min-
ing on multiple snapshots by more than a factor of 2 due
to LABS despite the need for locking in Chronos. The ben-
efits of LABS extend to our small distributed deployment
of Chronos. Our in-depth analysis reports details such as
cache/TLB miss counts, overheads from lock contentions,
inter-core communication overheads, to reveal the underly-
ing reasons for the superior performance of Chronos.

In summary, the paper makes the following contribu-
tions: 1) a novel scheme to jointly design the data layout
and scheduling for temporal graph; 2) a complete system to
implement the ideas and demonstrate the significant perfor-
mance improvement; 3) an in-depth evaluation and compar-
ison of alternative design choices.

2. Temporal Graph Mining Overview
A temporal graph tracks all the information relevant to the
evolution of a graph, including every graph edit activity,
such as addition of a vertex or deletion of an edge, along
with its timestamp. Such information may grow infinitely
over time, hence Chronos assumes that the temporal graph
data is initially available in persistent storage such as disk
or flash. Before the temporal graph computation, Chronos
extracts the on-disk data into the desired in-memory layout,
we defer the discussion of the on-disk layout to Section 4.

2.1 Motivating Examples
Chronos supports all applications that are also targets of
existing graph engines [7, 16, 17, 23, 27] with the additional
graph mining capability in the time dimension. This includes
the graph mining at some point-in-time or within a time
range.

One example of point-in-time graph mining is to compute
the diameter of a graph at time t, which involves traversing
the graph snapshot at t to find the longest shortest path.
Current graph engine can handle point-in-time analysis only
at “now”.

An example of graph mining in a time range is to study
the change of the PageRank of each vertex over a given
period of time. This often involves computation on a series
of graph snapshots at a few given time points within the
given time range. Such graph mining in a time range receives
more attention from the data mining community [13] and
hence is the focus of Chronos.

2.2 Temporal Iterative Graph Computation
Existing graph engines support static graph mining with a
scatter-gather iterative computation model [7, 16, 17, 23,
27]. Such a model performs computation in multiple itera-
tions. Each iteration includes a scatter phase that propagates
a local value (e.g., a rank) associated with a vertex to its
neighbors, followed by a gather phase that accumulates up-
dates from neighbors to compute the new local value of a
vertex.

In order to understand the evolution of graphs over time
(e.g., to understand how rank values of web pages were
changing over a period of time), users need to run scatter-
gather iterative computation on a series of graph snapshots
representing the states of a temporal graph at different points
in time. Supporting such temporal iterative graph mining
efficiently is the design goal of Chronos.

At first glance, it might seem that the straightforward
way of applying an existing scatter-gather graph engine on
each snapshot, which we use as the baseline for our eval-
uations, would simply work. Our observation suggests that
this straightforward solution is far from optimal and leaves
significant room for performance improvement.

To support iterative graph computation over a series of
snapshots, Chronos must address the following design is-
sues.

First, it must decide on the in-memory layout of snap-
shot series. Our experiences with real world large temporal
graphs have shown that different in-memory data structure
leads to great difference in the performance of graph com-
putation (see Section 6.1). A series of graph snapshots have
two dimensions: one is the time dimension across snapshots
and the other is the graph-structure dimension among neigh-
bors within a snapshot.

Second, Chronos must decide how to schedule the com-
putation. The computation spans multiple snapshots and,
for each snapshot, involves propagation among neighbors
within that snapshot. There are different ways of schedul-
ing the computation. One obvious choice is to schedule iter-
ative computation for each snapshot, while an alternative is
to run iterative computation on multiple snapshots together.
That is, the propagation from one vertex to its neighbors on
multiple snapshots can be scheduled together.
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Figure 1. Propagation pattern when data is grouped by
snapshot.
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Figure 2. Propagation pattern when data is grouped by ver-
tex.

Third, Chronos must enable parallelism of the computa-
tion on multi-core or distributed machines. One obvious op-
tion is to assign different snapshots to different cores, while
an alternative is to assign different graph partitions (aligned
across multiple snapshots) to different cores. While the for-
mer exhibits embarrassing parallelism since no synchroniza-
tion required in the computation, our results show that the
latter strategy, when carefully designed, can produce notice-
ably better performance.

Finally, Chronos should also consider the effect of incre-
mental computation, where it is sometimes feasible and ef-
fective to continue computing from the result of the previous
snapshot, especially when the computation is proportional to
the numbers of changes between two snapshots and signifi-
cantly lower than computing from scratch.

These design choices have intrinsic dependencies among
them and have to be considered together.

3. Chronos Design
Chronos proposes Locality-Aware Batch Scheduling (LABS),
which makes two fundamental design choices: one is to fa-
vor time locality over structure locality when laying out a
temporal graph; the other is to match scheduled access pat-
tern with data locality.

3.1 LABS Illustrated
Figures 1 and 2 illustrate the opportunity brought by LABS
on achieving better data locality. The figures show a tempo-
ral graph with three graph snapshots, G, G′, G′′, represent-
ing the graph states at three different points of time. v0, v′0,
and v′′0 are the three versions of the same vertex in the 3 snap-
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Figure 3. Illustration of time-locality and structure-locality
in-memory layouts for vertices and edges.

shots, respectively (for simplicity, we use the same notations
to denote the associated data of the vertex). The vertex has
three neighbors and thus needs to propagate its value to the
three during the graph computation.

Figure 1 shows a straightforward data organization for a
temporal graph. It arranges the data snapshot by snapshot.
This arrangement, at the expense of scattering different ver-
sions of data of the same vertex (say, v0) away, expects to
place all vertices within the same snapshot close to each
other. However, in a graph structure, it is difficult to en-
sure all the neighbors are placed close to every vertex. If
unfortunately all the three neighbors of v0 are scattered far
from each other, running graph mining snapshot by snapshot
would incur 9 cache misses for the propagations from v0 to
the 3 neighbors in the 3 snapshots within each iteration.

On the other hand, Figure 2 shows another data layout
of the temporal graph, which groups graph data by vertex.
LABS adopts this layout to place different versions of data of
the same vertex together. Through batching the propagations
to multiple versions of the same neighbor of v0, LABS can
decrease the number of cache misses to 3 if the vertex data
size is small enough to fit in the cache line.

In addition to the reduced cache misses, LABS also has
the advantage of decreasing the data access volumes and
offers interesting design choices for parallel graph com-
putation. The following subsections describe the details of
Chronos’ LABS design.

3.2 In-Memory Data Structure
At the beginning of the computation, Chronos loads the on-
disk data that contains the graph snapshots of interest into
the main memory for repeated accesses. The information
is divided into an edge array and a vertex data array (for
application data, such as ranks, associated with each vertex).

The in-memory data structure maintains the reconstructed
states at the specified snapshots and discards any unneces-
sary fields (e.g., timestamps) stored in the on-disk layout.
Our experience show that the in-memory computation often



dominates the end-to-end cost of graph mining. We therefore
focus on optimizing the in-memory data structure.

To lay out a temporal graph in memory, we have the
choice of favoring locality in the graph structure, or locality
in the time dimension. We name the former structure-locality
layout and the latter time-locality layout.

As shown at the top of Figure 3, the structure-locality
layout groups the graph information in the same snapshot
together in a way that maximizes structure locality [23].
It places the data one snapshot after another, which favors
locality on the graph structure. Suppose the computation
propagates Sik, the state of vertex vi in snapshot k, to Sjk,
vertex vj in the same snapshot (designated by the dashed
arrow), this structure-locality layout tries to place Sik close
to Sjk.

The time-locality layout, instead, groups the information
for the same vertex across multiple snapshots and places the
data one vertex after another. As shown in Figure 3, the ver-
tex data in the same snapshot is scattered in this layout, com-
pared to the structure-locality layout. Yet, the time-locality
layout exhibits good data locality in the time dimension. In
Figure 3, Si1, the data of vertex vi in snapshot 1, will always
be placed next to Si0, the corresponding data in snapshot 0.

In the edge array of the time-locality layout, an edge is
uniquely identified by the two vertices it connects and all
the edges are grouped by their source (or destination) ver-
tices. Each element in the edge array represents an edge. It
contains a vertex id to index the corresponding vertex data in
the vertex array. It is also associated with a snapshot bitmap
specifying the snapshots that contain the edge. For exam-
ple, the bottom-right of Figure 3 shows an element in the
edge array that represents an edge eij from vertex vi to vj .
The value of the snapshot bitmap is 110, indicating that the
edge exists in snapshots 0 and 1, but not in snapshot 2. The
snapshot bitmap saves the memory footprint and provides an
efficient way to check whether or not a snapshot contains an
edge. Edge eij may have associated data (e.g., edge weight)
in the corresponding snapshots designated by the snapshot
bitmap. For example, w0

ij in Figure 3 denotes the associated
data of eij in snapshot 0.

Although data locality on the graph structure can be cap-
tured by carefully placing vertices in a static graph snap-
shot [23], the real performance gain of this scheme heavily
relies on the actual structure of graph. After all, the graph
structure is not a linear structure and is hard to be placed
on a linear address space with good locality. In contrast, we
have found it easier to exploit the data locality on the time
dimension because the data access pattern on this dimension
are often linear. Chronos therefore favors the time-locality
layout, coupled with locality-aware batching scheduling that
we describe next.

3.3 Locality Aware Batch Scheduling
Chronos argues for a scheduling mechanism that combines
the considerations on both the execution of the operations

and the underlying data layout strategy. The scheduling
should make the data access pattern aligned with the un-
derlying data layout to achieve better locality. For example,
if the in-memory layout places the states associated with a
vertex across multiple snapshots together in the time-locality
layout, it would be ideal to schedule computation that oper-
ates on those states together. If the in-memory layout places
a vertex close to its neighbors in the same snapshot in the
structure-locality layout, it would be ideal to schedule com-
putation that operates on those vertices together.

Instead of doing computation snapshot by snapshot on
the structure-locality layout, LABS aligns the data access
pattern of the computation with the time-locality layout.
To do this, LABS batches the processing on each vertex
across all the snapshots. Similarly, for each edge of a vertex,
LABS performs the propagation to a neighboring vertex
for all the snapshots in a batch. Because the vertex data
for all the snapshots are placed contiguously in the time-
locality layout, LABS can therefore exploit the excellent
data locality in the time dimension.

Besides data locality, this batched scheduling produces
another advantage to save the times to enumerate the edge ar-
ray. LABS only enumerates the edge array once for process-
ing all the snapshots; otherwise, the snapshot-by-snapshot
scheduling would involve one enumeration for the edge ar-
ray for each snapshot. This results in fewer memory accesses
for LABS.

3.4 Parallel Processing with LABS
LABS can use multiple cores to parallelize graph mining
on a series of snapshots. There are two design choices for
parallelization. We can either assign each snapshot to a CPU
core (which we call snapshot-parallelism), or partition each
snapshot by vertices and assign each partition to a core,
which we call partition-parallelism.

For example, assume we have two CPU cores c0 and
c1, and two snapshots S0 and S1. The snapshots can be
partitioned into two parts, P00 and P01 for S0, and P10 and
P11 for S1. The snapshots are partitioned in a consistent way
such that a vertex that exists on both snapshots is assigned
to the partition with the same id. In snapshot-parallelism, we
assign S0 and S1 to c0 and c1, respectively, and let the two
cores run concurrently. In partition-parallelism, we assign
{P00, P10} to c0 and {P01, P11} to c1.

There are interesting trade-offs between different types
of parallelization strategies. Snapshot-parallelism does not
involve synchronization among cores because computations
on different snapshots are independent. The strategy is how-
ever fundamentally incompatible with LABS. In contrast,
partition-parallelism incurs the overhead of inter-core com-
munication. It requires locks to protect concurrent vertex
data propagation due to the cross-partition edges. Never-
theless, partition-parallelism can be enhanced with LABS
for better locality. Meanwhile, with LABS, the inter-core
synchronization cost of partition-parallelism can be signifi-



cantly reduced because the lock on a vertex and the propaga-
tion through an edge can be performed in a batch for multiple
snapshots. Specifically, assume (vi, vj) shown in Figure 3 is
a cross-partition edge and it exists in N snapshots (2 in this
case). Without LABS, the propagations along the edge for N
snapshots might involve N rounds of inter-core communica-
tions and N times of locking on the destination vertex (i.e.,
N locks for N snapshots). While with LABS this only intro-
duces one inter-core communication and one locking for all
the N snapshots (i.e., 1 lock for N snapshots). Although the
1-lock-for-N -snapshot looks to introduce larger critical sec-
tion and decrease the concurrency, the fact that the batched
propagation along an edge for multiple snapshots incurs sim-
ilar number of inter-core communication to the propagation
for one snapshot makes them similarly fast. Our evalua-
tion results demonstrate that, when integrated with LABS,
partition-parallelism can be significantly more efficient than
snapshot-parallelism.

3.5 Incremental Computation with LABS
Incremental computation is another effective approach to
optimizing graph computation on a series of snapshots [5].
For example, we compute the single-source shortest path
(SSSP) on a graph snapshot S0 with vertex v0 as the source
vertex. After the computation, each vertex has a computed
associated data representing the distance between the vertex
and v0. When we perform the same computation on snapshot
S1 , we use the computed result on S0 as the initial value
for the current computation on S1. The convergence of the
computation can be much faster when the distances between
v0 and most of the vertices do not change in S1 compared to
those in S0.

However, incremental computation has its limitations.
For example, some incremental SSSP algorithms are de-
signed to handle edge insertion only (or edge removal
only) [25]. Moreover, reusing results in the previous snap-
shot does not always reduce the computation time. In an
extreme case, one edge removal near v0 might make it dis-
connected from the major part of the graph. In this case,
most vertices in the graph have to recompute and update
their distances to v0.

Chronos enhances incremental computation in two sig-
nificant ways. First, to compute N snapshots from S0 to
SN−1, Chronos first computes the result for snapshot S0. Af-
ter having the result for S0, Chronos then computes the rest
of N − 1 snapshots (S1 to SN−1) in a batch using LABS.
In the batch processing, Chronos uses the result computed
in snapshot S0 as the initial value for the N − 1 subsequent
snapshots, thereby enabling incremental computation. While
the total amount of computation in this way might be higher
than a pure incremental computation approach (which com-
putes on the snapshots in a serial order), our approach does
benefit from better locality as well as the reduced number of
accesses to the edge array.

Second, because the snapshots are known in advance, for
a group of N snapshots, Chronos can pre-compute the inter-
section (or the union) of these N snapshots, so that each true
snapshot simply adds (or removes) edges/vertices to that in-
tersection (or union) graph to allow incremental computation
even when the algorithm only supports edge/vertex inser-
tion (or removal). This enlarges the scope where incremental
computation is applicable. For example, consider an initial
graph snapshot S0 = (V0, E0). The next snapshot S1 might
have removed edge e1, while adding many other edges. The
initial graph G0 for incremental computation can be the in-
tersection of S0 and S1, which would be (V0, E0 − {e1}).
Thus S0 and S1 can be constructed from G0 by adding edges
only.

3.6 Chronos in a Distributed Setting
Although our experiences with real-world large temporal
graphs have shown that multiple snapshots can usually fit
in memory on a powerful multi-core machine, we have ex-
tended Chronos to a distributed environment, where a se-
ries of snapshots are partitioned and assigned to different
machines, much like the way they are partitioned and as-
signed to different cores on a multi-core machine. This al-
lows Chronos to handle even larger temporal graphs when
needed.

4. Chronos On-Disk Temporal Graph
Chronos assumes the required temporal graph information
has already been prepared in the desired in-memory layout
before the execution of temporal graph mining. This prepa-
ration step relies on how the system stores temporal graphs
on disk.

4.1 Data Model of the On-Disk Temporal Graph
Chronos models the “evolution” of a graph and treats a
temporal graph as a series of activities, where an activ-
ity involves the addition, deletion, and modification of ver-
tices, edges, or their associated data at a particular point
in time. For example, 〈delV, v6, t1〉 is an activity that re-
moves a vertex v6 at time t1, 〈addE, (v6, v1, w), t2〉 adds a
new edge from v6 to v1 with a weight w at time t2, while
〈modE, (v6, v1, w

′), t3〉 modifies the weight associated with
edge (v6, v1) to w′ at time t3.

One fundamental design choice for Chronos is how to
store temporal graphs as they are updated continuously.
There is an inherent tradeoff between storing pre-computed
graph state (which enables fast queries) and the space it
occupies in memory and on disk (or SSD). Specifically, con-
sider a strawman approach that stores every graph update
activity in a log. Although such a format is compact and
simple to implement, computation on a temporal graph re-
quires expensive reconstruction of all the graph snapshots
within the queried time range. Contrast this with an alter-
nate strawman approach where we checkpoint a full graph



snapshot whenever it is modified. This approach produces
graphs that are easier to query, but introduces too much re-
dundancy.

To create a compact layout without sacrificing perfor-
mance, Chronos introduces the notion of snapshot groups.
A snapshot group, Gt1,t2 , consists of the state of graph G in
the time range [t1, t2]. Specifically, it contains a checkpoint
of the entire graph at the start time t1 and all graph updates
made until t2. Therefore, a temporal graph consists of a se-
ries of snapshot groups of successive time ranges.

A snapshot group Gt1,t2 contains enough information
to access the graph snapshot at any time point in the time
range, although accessing a snapshot at a time t after t1
is more expensive because Chronos must read all updates
made from t1 to t and merge them to the checkpoint at t1.
Chronos further allows a user to specify a redundancy ratio
(representing the allowed maximum percentage of redundant
data) to control the size of the snapshot group.

Depending on applications, a snapshot group is stored as
edge files (for edge-related states and activities) and vertex
files (for vertex-related ones). For example, there can be one
vertex file for the rank values and others for other vertex-
associated properties. In the rest of this section, we focus on
the description of an edge file because all edge/vertex files
are treated the same way.

4.2 Time-Locality Graph Layout
Similar to the in-memory temporal graph structure, Chronos
uses the time-locality graph layout for on-disk temporal
graphs as well. In order to reconstruct a series of snapshots,
Chronos needs to retrieve all activities associated with a ver-
tex v that falls into the time interval of a snapshot group. The
time-locality layout is designed for such a query as it groups
together all activities associated with a vertex.

Figure 4 illustrates the time-locality layout of an edge
file. The file starts with an index to each vertex in this snap-
shot group, followed by a sequence of segments, each cor-
responding to a vertex. The index allows Chronos to locate
the starting point of a segment corresponding to a specific
vertex without a sequential scan. A segment for a vertex v0
consists of a checkpoint sector C0, which includes the edges
associated with v0 and their properties at the start time of
this snapshot group, followed by edge activities associated
with v0. For example, C0 might contain information in the
form of (v0, v1, w1), (v0, v5, w2), . . . , (v0, vn, wm), which
indicates that the graph snapshot at the start time of snap-
shot group contains edges (v0, v1) with weight w1, (v0, v5)
with weight w2, (v0, vn) with weight wm, and so on. The se-
quence (a01, a02, . . . , a0t) refers to edge activities related to
v0, sorted in time order where a01 = 〈addE, (v0, v6, w), t1〉
adds a new edge (v0, v6) with weight w at time t1, a02 =
〈modE , (v0, v1, w

′), t2〉 changes the weight of edge (v0, v1)
to w′ at time t2, and a0t = 〈delE, (v0, v5), t〉 removes edge
(v0, v5) at time t.

...a01

Edge activities of v0

... a0t a11 ... a1tC0 C1

Edge data for v0 Edge data for v1

Vertex 
index

Ci: checkpoint of vi

aij: j-th activity of vi

Edge activities of v1

Figure 4. The time-locality format.

To speed up the process on a temporal graph to identify
and reconstruct the state associated with a vertex/edge at a
particular time t, Chronos further introduces a link structure
for each activity aij . The structure links to the next activity
ai(j+1) associated with the same vertex/edge. In practice,
Chronos adds a new field tu in an activity; the value of this
field is set to infinity if the activity is the last one in the
snapshot group for that edge or vertex. To find the state at
time t for a vertex v, Chronos scans the activities in the time
order until it hits an activity at t1 with its tu field set to t2,
such that t1 ≤ t < tu = t2 holds, because this is the last
activity for this vertex before or at time t.

4.3 Preparing the In-Memory Layout for Chronos
Chronos provides an interface to load a series of snapshots
from one or more snapshot groups into memory. The imple-
mentation of this interface loads the time-locality on-disk
layout to reconstruct the states of the specified snapshots
through a sequential scan on the snapshot groups. The on-
disk time-locality layout is convenient as it matches the time-
locality in-memory layout for Chronos. It is worth noting
that the on-disk image contains all the information related to
a temporal graph and records the activities faithfully, while
the in-memory layout is optimized for the particular graph
mining in that it stores the reconstructed states rather than
update activities (delta) and that it is in a compact format
with only the necessary information.

Our experiences show that, when loading the on-disk
temporal graph and reconstructing the snapshots, Chronos
can always saturate the bandwidth of disk (even the SSD
hard drive). In our experiments, the cost of loading on-
disk data is often a small fraction of the end-to-end graph
computation time.

5. Implementation
As mentioned in Section 2.2, most existing graph engines
support the scatter-gather iterative graph computation model.
The model can be implemented in different modes with sub-
tle differences that could have deep implications on per-
formance. In this section, we introduce different ways to
implement the scatter-gather model and note that Chronos,
including the key design elements like the time-locality lay-
out and LABS, is fully compatible to these implementations.

The scatter-gather model can be implemented in a vertex-
centric way [7, 16, 17, 23] or edge-centric [27] way. A



vertex-centric graph engine iterates over vertices, it requires
that users provide a scatter function and a gather func-
tion for each vertex. The scatter function specifies the
behavior of each vertex where it computes and propagates
(scatters) the local value to its neighbors; the gather func-
tion dictates the vertex behavior when it gathers updates
from its neighbors. A vertex-centric engine uses two ver-
sions of the vertex data array (see Figure 3 in Section 3.2)
during the computation: one stores the value computed in
the previous iteration, and the other keeps the most updated
value computed in the current iteration. The two vertex data
arrays switch the roles after each iteration.

An edge-centric engine like X-Stream [27] iterates over
edges rather than vertices. It requires not a vertex associated
function but, for each edge, an edge scatter function and
an edge gather function that describe what value needs to
be propagated through the edge and where the value associ-
ated with the edge needs to be applied, respectively. In the
scatter phase, the edge-centric engine scans the edge array
and writes the data computed from source vertices to an up-
date array sequentially; in the gather phase, it sequentially
reads the computed data stored in the update array and ap-
plies to the destination vertices. In order to make scatter and
gather operations as sequential as possible, the edge-centric
engine introduces an additional shuffle phase between the
scatter and gather phases to partition the update array by the
destination vertex. The similar shuffle operation is also taken
on the edge array by the source vertex, before the computa-
tion starts. This way, the engine can mitigate the random data
accesses by streaming the updates with edges into and out
of sequential buffers (i.e., update edge array). This graph-
computation mode maximizes the chances of sequential data
processing and is referred to as the stream mode.

A vertex-centric engine can operate in the push mode or
the pull mode. In the push mode [17, 23], the engine checks
the change of the vertex state from the previous iteration.
It sends the value to all the neighbors for updating only
when there is a change that is significant enough. In the
pull mode [5, 16, 29], on the other hand, the engine collects
the states of the neighbors of a vertex by pulling, rather
than pushing the changes. Although seemingly similar, the
push and pull modes have important differences that have
significant performance implications. For example, consider
the execution on a single multi-core machine, where the
computation on each vertex can be executed concurrently.
In the push mode, a vertex needs to use a lock to protect the
process of updating the value of a neighbor because multiple
vertices (with an outgoing edge to the same vertex) might be
updating the state concurrently. In contrast, in the pull mode,
no locks are needed because, in each iteration, a vertex
only needs to read the value in the previous iteration from
its neighbors. This value is stored in the aforementioned
two-version vertex data array and is immutable during the
current iteration. Moreover, in the pull mode a vertex is the

only entity reading and updating its own state in the current
iteration. Although no lock is required, the pull mode needs
to pay the cost to check the significance of the value changes
of the neighbors. This checking on a neighboring vertex
needs to be performed multiple times if different vertices
share a same neighbor, which is a significant overhead that
sometimes overweights the saving of locks (see details in
Section 6).

Regardless of the different implementations, being vertex-
centric or edge-centric model, push, pull, or stream mode,
Chronos together with LABS is beneficial to all differ-
ent graph-engine implementations. We have implemented
Chronos with all the previously described implementations.
We demonstrate the effectiveness of all the implementation
and explain the detailed reasons in Section 6.

6. Evaluation
We evaluate Chronos both on a commodity multi-core ma-
chine and on a small distributed testbed. The multi-core ma-
chine is equipped with dual 2.4GHz Intel Xeon E5-2665
processors (16 cores in total), 128GB of memory. The dis-
tributed testbed consists of 4 multi-core servers with the
same configuration and interconnects with InfiniBand (dou-
ble data rate, 40Gbps).

We conduct the experiments using 5 graph applications
and 4 large real world temporal graphs. The selected appli-
cations include PageRank [3], weakly connected component
(WCC), single-source shortest path (SSSP), maximal inde-
pendent set (MIS), and sparse matrix-vector multiplication
(SpMV). Each of them is computed on a series of snapshots
of different temporal graphs. We use the following 4 real
world temporal graphs in the experiments.
Wikipedia reference graph (Wiki): This is a temporal
graph of English Wikipedia web pages. Each Wiki page
is a vertex. An edge activity 〈(m,n), t〉 represents a hyper-
link from page m to n created at time t [18]. The Wiki graph
consists of 1.87 million vertices and 40 million hyperlinks. It
shows how the English Wiki network evolved over a period
of 6 years.
Time-evolving web graph (Web): The graph is similar to
the Wiki graph except that each vertex now is a webpage in
the .uk domain and an edge denotes a link between pages at
a certain time instance. The temporal web graph includes 12
monthly snapshots in the .uk domain [2]. Each edge activity
is associated with the creation or removal time observed in
the snapshot. In total, the web graph contains more than 133
million vertices and 5 billion edges.
Twitter mention graph (Twitter): In Twitter, a tweet con-
taining a string like “@tom” means that the publisher men-
tions user “tom”. In a Twitter mention graph, a user is a
vertex. An edge activity 〈(m,n), t〉 in the mention graph
means that user m mentioned n in a tweet at time t. The
mention graph indicates the amount of attention each user
pays to others and how the attention changes over time [26].



Graph # of vertices # of edge activities Time span
Wiki 1.871M 39.953M 6 Y
Twitter 7.512M 61.633M 3 Mon
Weibo 27.707M 4.900B 3 Y
Web 133.633M 5.508B 12 Mon

Table 1. Temporal graph statistics (M: million, B: billion,
Y: year, Mon: month).

We have collected more than 102 million tweets over three
months, from which we derived a temporal graph with
around 7 million vertices and 61 million edge updates
(events).
Weibo mention graph (Weibo): Weibo [30] is the Chinese
counterpart of Twitter. The meaning of the Weibo mention
graph is the same as that of Twitter. We have collected
more than 7 billion Weibo microblogs over three years. The
derived temporal graph contains around 28 million vertices
and 4.9 billion edge updates.

The size and the time span of each temporal graph are
summarized in Table 1.

For parallel/distributed graph computation, we partition
the graphs using Metis [8], a public implementation of mul-
tilevel k-way graph partitioning algorithm. Metis is believed
to be an effective partitioning method for a general graph
to minimize cross-partition edges and balance among par-
titions. Within each partition, we use spectral placement to
order the vertices in the graph layout for better locality on
the graph-structure dimension [23]. Note that it is believed
that to partition the graph by edge, which may cut a single
vertex into multiple replicas across partitions, is an effective
way to partition graphs exhibiting power law [4, 7]. All these
partitioning techniques are compatible and complimentary
to Chronos. And a particular graph partitioning technique
alone does not affect the performance advantage of LABS if
under the same configuration.

6.1 Effectiveness of LABS
To demonstrate the advantage of the proposed temporal
graph layout and LABS, we first study the performance
of Chronos in the single-thread case. We use the straight-
forward approach of running graph computation on each
snapshot one by one as the baseline for our comparisons.
To generate N snapshots for our experiments, we equally
divide the second half of the entire time range by N to have
snapshots covering non-overlapping time ranges. The first
snapshot is chosen in the middle of the entire time range to
generate a graph large enough that is meaningful for large-
scale graph computation. An important parameter for LABS
is its batch size, which is the number of snapshots that are
batched together for iterative computation in LABS. Note
that our baseline is essentially the execution with batch size
set to 1.

Figure 5 shows the performance of Chronos compared to
our baseline, for different applications on the Wiki, Twitter,
and Weibo graphs. We compare the performance in all three

Batch size L1d LLC dTLB
Push mode

1 8,759 649 3,462
4 3,865 584 1,003
16 1,107 265 287
32 687 196 160

Pull mode
1 6,470 859 3,419
4 2,638 753 839
16 926 365 230
32 635 272 126

Stream mode
1 4,091 1,090 79
4 1,290 274 23
16 493 95 10
32 386 62 9

Table 2. CPU L1d, LLC and dTLB miss counts in three
modes for MIS on Wiki graph (in millions). L1d: level 1
data cache, LLC: last level cache, dTLB: data translation
lookaside buffer.

processing modes: push, pull, and stream. As the figures
show, Chronos outperforms our baseline consistently across
all applications and in all the three modes. The gain becomes
more significant when the batch size increases. When the
batch size is 32, Chronos runs more than 20 times faster for
SSSP on Weibo graph in the pull mode.

Our further investigations on cache misses and edge ac-
cesses show that locality and batching across snapshots are
the underlying reasons for Chronos’ superior performance
and also help explain some of the differences observed in
different modes. We report those numbers next.

Reduced cache-miss counts. Table 2 shows the numbers
of CPU cache misses and TLB misses for MIS (one itera-
tion) on the Wiki graph; we have observed similar effects for
other applications on other graphs (omitted). The numbers
are measured through hardware CPU performance counters.
As shown, the miss count decreases with the increase of the
batch size. This suggests that the speedup is due to better
data locality and explains why a larger batch size brings
more gains.

In the push mode, Chronos enables consecutive writes
for multiple snapshots, which reduces the number of cache
misses. Likewise, the consecutive reads in the pull mode
brings similar benefits to Chronos. In the stream mode,
Chronos is particularly beneficial in the shuffle stage [27].
The shuffling of the edge-associated values in multiple snap-
shots is performed consecutively in a batch, thereby reduc-
ing the number of cache misses.

Note that in the stream mode the TLB-miss count is small
compared to other modes due to its streaming behavior.
Also, even when the batch size is 1, the stream mode reduces
the chance of random access, which in turn reduces the cache
miss count. This explains why we observe the least gain in
the stream mode.

Reduced access to edge array. Another factor contributing
to Chronos’ better performance is the batching effect across
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Figure 5. Chronos single-thread speedup in computation time.

Graph BS: 1 BS: 4 BS: 16 BS: 32
Wiki 757M 200M 62M 40M
Twitter 1193M 323M 104M 62M

Table 3. Number of edge array access for PageRank in the
first iteration. BS: batch size.

snapshots, which reduces the number of edge-array accesses.
For each propagation, a vertex needs to access its edges
in the edge array to find out its neighbors before it can
propagate the value in the push and stream mode, or pull
the value in the pull mode. In Chronos, the edge access is
done for all batched snapshots once, rather than once for
each snapshot. Larger N brings larger benefits due to more
saved accesses to edge array. Table 3 shows the numbers of
accesses to edge array for PageRank in the first iteration on
the Wiki and Twitter graphs. In the first iteration, the number
of edge accesses in push, pull, and stream modes is the same.
As expected, the larger the batch size, the fewer the number
of edge accesses in the edge array.

Chronos with incremental computation. We then show
the benefit of LABS-enhanced incremental computation in
Chronos compared to the standard incremental computation
approach. In the experiment, we compute 128 snapshots that
are evenly spread over the last 10 months of the Wiki graph
(from June 2006 to March 2007). Two adjacent snapshots are
separated more than 2 days apart, which account for more
than 130k edge activities on average.

The standard incremental computation approach runs on
each snapshot in sequence, using the result of the previ-
ous snapshot. The LABS-enhanced incremental computa-
tion with a batch size of n firstly computes the first snap-
shot S0 and incrementally computes the next n snapshots

(S1...Sn) using LABS by reusing the result of S0. It further
computes the following n snapshots (Sn+1...S2n) incremen-
tally by reusing the result of the snapshot Sn. The computa-
tion moves forward until all the 128 snapshots are calculated.

Figure 6 shows the comparisons for WCC and SSSP on
the Wiki graph in the single-thread case. We choose to use
the push mode because in this mode only updates are propa-
gated, making incremental computation more effective. The
x-axis represents different batch size in LABS, and the y-
axis shows the performance improvement of the proposal in
percentage. Note that the case where batch size equals to 1
is the standard incremental computation.

The figure shows that our proposal can outperform the
naı̈ve incremental method more than 60%. Initially, the in-
crease of the batch size brings more benefits due to a larger
batching effect as previously explained. When batch size
becomes even larger, the difference between later snap-
shots (e.g., S1...Sn) and the initial snapshot (e.g., S0) is
also larger. This introduces more duplicated computation
for later snapshots, assuming a simple approximate model
where the amount of incremental computation between two
snapshots is proportional to the number of changes. For ex-
ample, to calculate Sn from S0 incurs more duplicated com-
putation than to compute Sn from Sn−2 (if n > 2). Hence
when the batch size is large enough, such unnecessary com-
putation results in a reduced performance gain, as shown in
Figure 6. A system should strike a balance between batching
effects and the incremental computation.

Note that in the multi-thread case, the benefit of LABS-
enhanced incremental computation will be amplified due to
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Figure 6. The performance gain of incremental LABS
against standard incremental computation with varying
batch size on Wiki graph.

other advantages in multi-core settings, as will be discussed
in Section 6.2.

6.2 Chronos Performance on Multi-Core Machines
The performance of temporal iterative graph mining on a
multi-core server is heavily influenced by the subtle inter-
play among data locality, inter-core communication, and
other factors such as lock contentions. Our evaluation has
shown that Chronos continues to outperform alternative de-
signs and its advantage is sometimes even amplified.

We compare Chronos to two recent in-memory graph en-
gines, Grace [23] and X-Stream [27], which are both op-
timized for multi-core machines. Grace is a vertex centric
graph engine. The original implementation of Grace only
supports the push mode, we further extend Grace to sup-
port the pull mode. X-Stream is edge centric graph engine
that supports the stream mode. We modify X-Stream to sup-
port snapshot-parallelism. It is worth pointing out that the
key design of Chronos can be integrated with different ex-
isting graph engines such as Grace and X-Stream, making
it widely applicable and useful in enhancing existing graph
engines.

In the experiment, we compute 32 snapshots with an
equal time-interval across the second half of the entire time
range. (We select the first snapshot at the middle of the time
range to have a snapshot large enough for a meaningful
parallel computation.) All experiments use a batch size of
32. Figure 7 shows the results on the Wiki graph as the
computation uses different numbers of cores. We are using
the same baseline as in the single-threaded case. Partition-
parallelism and snapshot-parallelism are used in this set of
experiments; The y-axis denotes the speedup compared to
our baseline. Note that, even on a single core, Chronos with
batch size 32 has already achieved significant speedups, as
shown in the previous experiment (Figure 5). We are seeing
more than 10 times of an additional speedup on 16 cores
(without hyperthreading). As shown in Figure 7, Chronos
scales better than Grace and X-Stream in all the three modes
and for all the applications. We observe similar effects in
other graphs (e.g., the Weibo/Twitter graph in Figure 8) and

Push Pull
# of cores 2 4 8 2 4 8
Chronos 23.1 58.6 105.2 31.0 55.8 71.5

Grace 977.6 2471.6 4244.2 1740.4 3047.9 3923.8

Table 4. The number of inter-core communications for
PageRank on the Wiki graph (in millions).

other applications. We discuss the differences in three modes
that lead to different performance behaviors at the end of
this section. Next we report the results of in-depth analyses
that help explain the performance advantages of Chronos.
We further discuss the results of snapshot-parallelism later
on.

Reduced inter-core communications. Our further investi-
gation reveals that one key reason that Chronos outperforms
Grace is the reduced inter-core communication cost. In the
pull mode, Chronos pulls updates of a vertex from a remote
core. Chronos performs such remote reads in a batch (across
multiple snapshots). Because the vertex values in consecu-
tive snapshots are placed together, Chronos reduces the num-
ber of remote reads: values of multiple snapshots are likely
stored within a cache line. The push mode in Chronos has the
same benefit for a similar reason except that a remote read
becomes a remote write (i.e., push). In the stream mode, the
inter-core communication is not a dominant factor because
each CPU core mainly communicates with the memory. The
data exchange between cores are done using memory indi-
rectly.

Table 4 shows the inter-core communication overheads
in the push and pull mode for PageRank (one iteration) on
the Wiki graph. As the table shows, the number of inter-core
communications (measured through hardware performance
counter) of Chronos is significantly smaller than that of
Grace in various multi-core settings.

Reduced lock contentions in the push mode. In the push
mode, when a vertex performs a write operation to another
vertex, it needs to acquire a lock to the destination vertex
because multiple vertices may write to the same destination
concurrently. This is another source of overhead in the multi-
core setting. LABS manages to reduce such lock contentions
in the push mode for Chronos as it acquires locks in a batch
across snapshots.

Table 5 shows the total spinlock running time, an indi-
cation of the level of lock contention, in the push mode
for PageRank on the Wiki graph (1 iteration). It shows that
Chronos incurs one order of magnitude fewer contentions
than Grace. Similar trends can be observed for other appli-
cations in the push mode. Note that lock contention is not a
critical issue in the pull and stream modes.

Snapshot-parallelism. Temporal graphs provide more
choices for parallel computation. Snapshot-parallelism as-
signs each snapshot for one CPU core to compute. There is
no lock contention or inter-core communication. However,
the computation within each CPU core cannot exploit lo-
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Figure 7. Performance comparisons on multi-core with the Wiki graph. SP: snapshot-parallelism.

# of cores 2 4 8 16
Chronos 1.32s 1.34s 1.85s 4.02s
Grace 28.85s 34.25s 47.54s 96.73s

Table 5. The level of lock contention comparison for
PageRank on the Wiki graph. s: second.

cality to reduce cache misses as the LABS mechanism in
Chronos does. Even for snapshot-parallelism, we use the
same in-memory layout as described in Section 3.2; in par-
ticular, there is a single read-only edge array shared by all
snapshots; the edge array uses the snapshot bitmap for com-
pression. All cores will access the same edge array during
computation, but no locking is needed as the array is read-
only. This format reduces the in-memory footprint and can
potentially even reduce cache misses. However, snapshot-
parallelism cannot benefit from the reduced access to the
edge array, as LABS does.

Figures 7 and 8 show the performance of various appli-
cations in different mode on different temporal graph for
snapshot-parallelism and Chronos. It shows that the perfor-

mance of snapshot-parallelism is worse than Chronos. We
observe similar trends for other applications.

Note that in the stream mode, snapshot-parallelism is
sometimes slower than X-Stream when the degree of paral-
lelism is low. This is because, in order to support snapshot-
parallelism, we use some auxiliary data structure to extend
the implementation of X-Stream, which increases the ran-
domness of memory access.

Snapshot-parallelism in all the three modes is able to con-
sistently outperform Grace or X-Stream with the increase of
core due to better parallelism (e.g., fewer inter-core commu-
nications).

Other observations. Finally, we briefly comment on the
difference of the push, pull, and stream modes.

As explained, the push mode requires heavy locks for
data propagation. The pull mode, on the other hand, reads
data from other vertices concurrently and does not require
locks. The stream mode is nearly lock-free: it only requires
a few lightweight atomic operations in the scatter phase [27].
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Figure 8. Performance comparisons on multi-core with the Weibo and Twitter graphs. SP: snapshot-parallelism.

In the pull mode, in order to detect whether the value
of neighbors has been updated a vertex has to check the
“dirty” bit of neighbors. Each vertex has to scan the edge
array to find out its neighbors, thus requiring O(|E|) access,
where E is the set of edges in the graph. In contrast, in
the push mode each vertex needs to check the dirty bit of
its own only, there resulting in O(|V |) access, where V
is the set of vertices in a graph. Because |E| is typically
significantly larger than |V |, this cost is higher in the pull
mode than that in the push mode. In addition, the overhead
of a read operation to check the dirty bit of remote vertices
are more significant in multi-core environments especially
when neighbors are located in another CPU core, leading to
even higher overhead. Experiments show that this can result
in worse performance in the pull mode for some applications
such as SSSP, than that in the push mode.

In our experiments, we have observed that the memory
footprint in stream mode is significantly larger than in the
other two modes due to its edge-centric nature. In fact X-
Stream cannot accommodate the Weibo graph on a single

machine with 128GB memory (note that X-Stream is ca-
pable of leveraging external memory, which is out of the
scope of this paper). Moreover, unlike in the push and pull
modes where updates go directly to the destination vertex,
the stream mode achieves this indirectly through edges and
has an extra shuffling stage. This incurs additional read/write
operations.

Our experiences with the three modes indicate that no
single mode is the best for all applications on all graphs, due
to the different tradeoffs in each mode. However, despite the
different performance characteristics in different modes for
different applications, the benefits of Chronos have shown
up consistently in all cases.

6.3 Chronos Distributed Performance
We have set up a small distributed testbed to test whether
the benefits of Chronos extend to a distributed setting. In
particular, our distributed testbed consists of 4 servers that
are connected through InfiniBand. To fully exploit the capa-
bility of InfiniBand, Chronos uses MPI for the inter-machine
communications.



Web graph Weibo graph
Applications PageRank WCC SSSP PageRank WCC SSSP
Chronos 472s 332s 124s 2002s 1250s 48s
Baseline 781s 670s 136s 7318s 6405s 518s

Table 6. Chronos performance in distributed environments.
Baseline: to compute snapshot by snapshot.

Table 6 shows the running time for different applications
(5 iterations) on the Web and Weibo graphs in the push
mode. The web graph has 12 snapshots, so we set the batch
size to 12. The Weibo graph runs on 32 snapshots. To fo-
cus more on the distributed environment, we use a single
thread on each server. The results show that Chronos can run
more than 3 times faster than the naı̈ve implementation that
computes snapshot by snapshot (PageRank on Weibo). Note
that applications run slower in the Weibo graph because the
number of cross-partition edges is much larger than that of
the web graph: the ratio between inter-partition and intra-
partition edge number is 3:1 in the Weibo graph and 1:2 in
the web graph.

Because network communication incurs high overhead,
the gains from better locality in Chronos are smaller in the
end-to-end performance, compared to a single-machine set-
ting. We expect the benefit to be less visible in a more
network-constrained environment, where the network com-
munication cost dominates, even though our solution does
enable batching across snapshots to make communication
more effective.

7. Related Work
Chronos enables efficient temporal iterative graph mining.
The key technique that differentiates Chronos from existing
graph engines is the joint design of temporal graph layout
and the scheduling mechanism (LABS) to fully exploit data
locality of temporal graphs and batching effect.

The importance of data locality is well known [6] and has
been studied in the context of multi-core graph engines in
Grace [23] and X-Stream [27]. Chronos further advocates to
exploit data locality along the time dimension, even at the
expense of trading data locality in graph structure.

Chronos is complementary to the recent research on
graph engines in that it is applicable not only to the ver-
tex centric graph engines, whether it is push based [17, 23]
or pull based [5, 16, 29], but also to those with edge cen-
tric, stream based graph engines [7, 11, 27]. Chronos further
explores the interactions with techniques such as incremen-
tal computation [5, 19] to understand the tradeoffs between
incremental computation and locality.

The proposed temporal graph data layout and LABS
scheduling are also effective in distributed environments. It
explores an orthogonal dimension in the design space and is
largely complementary to techniques such as dynamic load
balancing, priority scheduling, automatic pull/push mode
switching, and fine-grained synchronization [9, 20, 29, 31].

Mining temporal graphs has uncovered important proper-
ties in real world temporal graphs [1, 13, 32]. More recently,
Ren et al. [24] study the computation of shortest path on a
series of snapshots in a temporal graph. Khurana et al. [10]
study efficient ways to retrieve a certain or several snapshots
of a temporal graph.

Temporal data query has been studied extensively in
the relational data model. Salzberg et al. surveyed the ac-
cess methods for time evolving data in [28]. In a relational
data model, historical data access can be characterized as
key/time based point query (i.e., given a specific key and
time) or range query (i.e., both the key and time can be a
range). A variety of tree-based index like R-Tree, Time Split
B-Tree (TSB tree) [15] and HV-Tree [35] has been pro-
posed for the key/time based queries [28]. Several database
systems like the TSB-tree based ImmortalDB [14] and Post-
greSQL [21] support such key/time based data lookup.

For temporal iterative graph mining, such key/time based
query remains useful. For example, queries for a vertex/edge
at a given time instance can leverage the techniques for
key/time based lookup. Complementing to the key/time
based historical data access techniques in relational model,
Chronos is optimized for iterative computation in a temporal
graph.

There exist other types of iterative in-memory data pro-
cess engines like Piccolo, Spark, and Naiad [19, 22, 34].
These engines are not specifically designed for graph min-
ing and hence do not consider graph-aware optimizations.

8. Conclusion
Temporal graphs represent an emerging class of applica-
tions, which imposes a unique set of challenges that are
not being sufficiently addressed by the current systems. A
temporal graph has both a spatial dimension and a tempo-
ral dimension, which is the source of many design chal-
lenges, but also enlarges the design space to offer interest-
ing opportunities beyond what is possible for a static graph.
Chronos’ locality-aware batch scheduling demonstrates one
such opportunity. We believe temporal graphs will become
even more important over time and we hope Chronos can
inspire further system research in this new area.
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