
HiWayLib: A Software Framework for Enabling High
Performance Communications for Heterogeneous

Pipeline Computations
Zhen Zheng

Tsinghua University
z-zheng14@mails.tsinghua.edu.cn

Chanyoung Oh
University of Seoul
alspace11@uos.ac.kr

Jidong Zhai
Tsinghua University, BNRist
zhaijidong@tsinghua.edu.cn

Xipeng Shen
North Carolina State University

xshen5@ncsu.edu

Youngmin Yi
University of Seoul
ymyi@uos.ac.kr

Wenguang Chen
Tsinghua University
cwg@tsinghua.edu.cn

Abstract
Pipeline is a parallel computing model underpinning a class
of important applications running on CPU-GPU heteroge-
neous systems. A critical aspect for the efficiency of such ap-
plications is the support of communications among pipeline
stages that may reside on CPU and different parts of a GPU.
Existing libraries of concurrent data structures do not meet
the needs, due to the massive parallelism on GPU and the
complexities in CPU-GPU memory and connections. This
work gives an in-depth study on the communication prob-
lem. It identifies three key issues, namely, slow and error-
prone detection of the end of pipeline processing, intensive
queue contentions on GPU, and cumbersome inter-device
data movements. This work offers solutions to each of the
issues, and integrates all together to form a unified library
named HiWayLib. Experiments show that HiWayLib signifi-
cantly boosts the efficiency of pipeline communications in
CPU-GPU heterogeneous applications. For real-world appli-
cations, HiWayLib produces 1.22~2.13× speedups over the
state-of-art implementations with little extra programming
effort required.

CCSConcepts •General and reference→Performance;
•Computingmethodologies→Parallel computingmethod-
ologies; • Computer systems organization → Hetero-
geneous (hybrid) systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’19, April 13–17, 2019, Providence, RI, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304032

Keywords pipeline communication, CPU-GPU system, con-
tention relief, end detection, lazy copy

ACM Reference Format:
Zhen Zheng, Chanyoung Oh, Jidong Zhai, Xipeng Shen, Youngmin
Yi, and Wenguang Chen. 2019. HiWayLib: A Software Framework
for Enabling High Performance Communications for Heteroge-
neous Pipeline Computations. In 2019 Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’19), April
13–17, 2019, Providence, RI, USA.ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3297858.3304032

1 Introduction
Pipeline execution model [5] is widely used for stream-based
applications ranging from network packet processing, graph
rendering, video encoding and decoding, machine learning,
to image processing [1, 17, 22, 39, 49]. In a pipeline compu-
tation, an application or a task graph is implemented as a
set of concurrently running stages, in which the output of
a former stage serves as the input of the latter stage. This
work focuses on pipeline programs running on CPU-GPU
heterogeneous platforms, where, the different stages of a
pipeline program run concurrently on both CPU and GPU.

CPU GPU

Application
Processing

Bound/Split Dice Shade/Hide

Figure 1. Reyes rendering pipeline.
Figure 1 shows an example, Reyes rendering pipeline [7],

which consists of four main stages. The first stage runs on
CPU and generates data items for the following stages on
GPU. The second stage (object partitioning) has a recursive
structure, in which, data items are produced and then fed
back to the stage itself until some condition is met (e.g.,
object size is small enough). With pipeline programming, a
ready task generated by a former stage can be processed by
the next stage while the former stage is working on other
task items. It helps deliver high responsiveness, and exploit
both data parallelism within each stage and task parallelism
between stages [54].

Session: Data Movement II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

153

https://doi.org/10.1145/3297858.3304032
https://doi.org/10.1145/3297858.3304032

One of the important components of such pipelines is the
mechanism for supporting communications between stages,
both within and across devices. Inter-stage communications
are needed for coordinating the computations of different
stages, as well as passing task items through the pipeline.

Developing a sound and efficient communication support
for pipeline computations is especially challenging on CPU-
GPU heterogeneous platforms for its massive parallelism and
complex and continuously changing memory systems. Mas-
sive parallelism complicates coordinations between stages,
while memory complexities (e.g., weak memory coherence
support) make consistency of data copies tricky to maintain.

In current practices, the communications among pipeline
stages are typically implemented by the developers of a
pipeline application. The ad-hoc implementations often suf-
fer from serious performance issues.
Recent several years have seen some efforts in building

pipeline programming frameworks for simplifying the devel-
opment efforts. WhippleTree [45], for instance, is a frame-
work built on C++ templates. Through it, programmers only
need to specify the computations in each stage and the con-
nections of the stages, the framework automatically creates
task queues and schedulers tomaterialize the communication
support of the pipeline. A follow-up work, VersaPipe [54],
improves the GPU resource usage and task scheduling by en-
abling more flexible pipeline execution models. These frame-
works concentrate on computation rather than communica-
tion. They try to maximize GPU resource utilization by the
pipeline program, but use only the rudimentary mechanism
(basic task queues) for inter-stage communications. More-
over, they do not provide APIs for inter-device communica-
tions as they assume all stages of a pipeline reside on GPU;
all data to be used by the pipeline are simply copied from
CPU to GPU before GPU code starts running.
In this work, we strive to address the problem by devel-

oping HiWayLib, a High Performance Multi-Way Commu-
nication Library for heterogeneous pipeline computations.
Through three key techniques, HiWayLib overcomes the
main barriers for efficient multi-way (CPU to GPU, GPU
to CPU, GPU to GPU) communications in heterogeneous
pipeline computations, providing an efficient solution for
the development of pipeline programs on CPU-GPU systems.

We have designed the three key techniques in HiWayLib
respectively for overcoming the following three main barri-
ers for effective communication support.

(1) Cumbersome inter-device data movements. Com-
munications between CPU and GPU are subject to lower
bandwidth and longer latency than intra-device communi-
cations. Recent GPU architectures support Unified Memory
technique in which a single address space is provided to the
distributed memories in a CPU-GPU heterogeneous system.
Although this technique makes programming of cross-device
memory access easier, it does not show good performance

for the frequent and simultaneous cross-device access pat-
terns that can be found in communication of stages in a
pipeline [26]. Some common techniques such as prefetch-
ing [28] may mitigate the problem to a certain degree, but
inter-device data movements still remain a frequent bottle-
neck in pipeline programs.

HiWayLib employs a novel technique named Lazy Reference-
Based Scheme to mitigate the problem. It is based on an ob-
servation that in many pipelined programs (e.g., image pro-
cessing), the data between tasks often have overlaps. Instead
of moving the data of each task separately, Lazy Reference-
Based Scheme avoids repeated movements of the overlapped
data by replacing the task-based data copy with a region-
based lazy data copy, and hence significantly reduces the
data movement overhead.
(2) End detection of pipeline processing. It is tricky

to determine when a pipeline program finishes processing
all tasks in an input stream. With recursive structure in a
pipeline (e.g., Figure 1), stages can generate new data items
dynamically; as a result, the total data item count is unknown
ahead of time. For immediate detection of the end of pipeline
processing, a solution may need to track the status of all task
items, no matter whether it is in the queue/buffer or on the
fly, or whether it is on CPU or GPU. The tracking overhead
can be large. If the pipeline program runs onmultiple devices,
the status tracking and checking would incur extra cross-
device communications.
HiWayLib tackles the problem with a novel technique

named Late Triggered Inter-Stage Tracking. By appending
special markers to a stream of inputs, the technique triggers
status tracking and checking only when the execution is
getting close to the finish. It hence can still immediately
report the end of pipelined processing while avoiding most
unnecessary pipeline status checking overhead.

(3) Intensive contentions on communication data struc-
tures on GPU. On GPU, each stage of a pipeline may have
many threads running, whose accesses to shared communi-
cation structures (e.g., task queues) may cause severe access
contention and performance hazards.

HiWayLib employs a technique named Bi-Layer Contention
Relief to alleviate the problem. The technique uses a two-
level delegation scheme to minimize the number of concur-
rent accesses to the communication data structures without
delaying task executions.

Asmentioned, for the complexities in hardware and pipeline,
manually implementing effective communications is chal-
lenging for general programmers. Existing pipeline program-
ming frameworks are subject to soundness and efficiency
problems. Although our three proposed techniques help with
performance, they add even more complexities to the already
involved implementations of pipeline programs. HiWayLib
frees programmers from those concerns by integrating the
proposed techniques together and offering a set of uniform
simple APIs for different heterogeneous platforms.

Session: Data Movement II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

154

Experiments show that HiWayLib significantly boosts the
efficiency of pipeline communications in CPU-GPU heteroge-
neous applications. For real applications, HiWayLib produces
1.22~2.13× speedups over the state-of-art implementations
with little extra programming effort required.

2 Background
This section offers background knowledge on CPU-GPU
systems.

Memory Systems On a CPU system with a discrete GPU,
the bandwidth of the CPU-GPU connection is usually much
lower than the memory bandwidth in GPU (e.g., 16GB/s of
PCIe-3 ×16 versus 700GB/s of the main memory on Pascal
GPU). On IBM Power-9 systems with NVIDIA GPUs, the
connection is through NVLink, which can provide much
higher bandwidth than PCIe does. But the bandwidth of
inter-device communication still remains several times lower
than that of main memory on GPU devices [10].
On previous generations of CPU-GPU systems, the two

kinds of processing devices have separate address spaces;
data need to be explicitly copied between them through
APIs for processing. Recent GPU architectures support a
cross-device memory access technique called Unified Mem-
ory (UM) [32]. With UM technique, CPU and GPU share
an address space; one variable can be accessed by different
devices without explicit memory copy. The underlying ar-
chitecture automatically copies data on demand at memory
page level.
UM technique is built upon the hardware-based detec-

tion of memory page faults between devices. When a device
tries to access a variable that is not on its main memory, a
page fault happens and the page that this variable resides
on gets automatically copied from the other device to this
device. While there are heuristic algorithms to make page
migration efficient, programs still suffer when it needs to
frequently access data on the same page from both CPU and
GPU. Such cases are particular common on task queues con-
necting two pipeline stages residing on two different devices.
One device enqueues new tasks frequently while the other
device dequeues from the same queue simultaneously. The
corresponding memory pages may migrate back and forth
between the devices frequently.
With the UM technology, memory coherence between

the last-level caches of CPU and GPU becomes supported.
Also, system-wide (across CPU and GPU) atomic operations
become possible through a solution that combines the new
hardware features and the system software support. Both
features give certain conveniences to the implementation of
pipeline applications. However, the usage of both features is
subject to large time overhead.

The old explicit data copy-based method is still applicable
on new GPUs—in fact, for its frequently better performance

over UM, the explicit copy method remains popular in mod-
ern GPU programs.

GPU Execution Models Threads in a CUDA program are
organized as warps and thread blocks. One warp contains 32
threads. All these 32 threads are issued at the same time and
execute the same instruction in lock-step mode if there is no
branch in the program. With warp shuffle operation, threads
of a warp can exchange data with each other directly without
going through shared (or global) memory, which makes in-
terchanging data among threads efficient. One thread block
contains one or more warps depending on the configuration
of the CUDA function. Different warps are issued indepen-
dently, and some functions are provided to synchronize all
warps in a block. In some recent works, persistent thread
technique is used for flexible task scheduling on GPU. With
this technique, every thread stays alive throughout the exe-
cution of a kernel function. The function typically contains
a loop, through which, the threads continuously fetch new
data items from a task queue and execute the corresponding
procedures.
It is worth noting that the focus of this work is on com-

munications. Finding the best placements of pipeline stages
on different devices in a system is a problem orthogonal to
this work. We assume that the placement has been decided
through some approach. Our following discussions are based
on heterogeneous systems with CPU and NVIDIA GPUs, but
the general principles behind the approach could be applied
to other discrete heterogeneous platforms.

3 Design and Implementation
This section presents the challenge, design, and implemen-
tation details of HiWayLib. The design considers both effi-
ciency and correctness for communication on heterogeneous
systems.
Our description concentrates on the four advanced fea-

tures of HiWayLib, which respectively address the four main
barriers existing work faces in supporting efficient pipeline
executions. Section 3.2 explains how HiWayLib solves the
problem of cumbersome inter-device data movements, Sec-
tion 3.3 describes how HiWayLib timely and efficiently de-
tects the end of pipeline processing, Section 3.4 explains
how HiWayLib addresses the problem of intensive queue
contentions on GPU, and Section 3.5 describes the overall
HiWayLib API for programming productivity and some con-
siderations in the library implementation for ensuring the
soundness of the communication support in the presence of
GPU memory complexities. Before presenting these features,
we first describe the basic ring-buffer based communication
mechanism of HiWayLib, as understanding it is the prereq-
uisite for comprehending the subsections on the advanced
features of HiWayLib.

Session: Data Movement II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

155

3.1 Basic Communication Scheme
The basic communication scheme in HiWayLib is a ring-
buffer based scheme for inter-device communications.

Different stages of a pipeline program can be put onto dif-
ferent devices on a CPU-GPU heterogeneous system. When
two adjacent stages in a pipeline program run on differ-
ent devices, inter-device communications are necessary. As
discussed in Section 2, although recent GPUs provide uni-
fied memory to ease the programming of communication
between CPU and GPU, frequent accesses of shared data be-
tween CPU and GPU still suffer large performance penalty
from page-faults. We employ a batched data movement ap-
proach for efficiency. The basic idea is to store the output
of a former stage into a temporary buffer, and then transfer
them to another device in batch. With this method, the com-
munication may better utilize Direct Memory Access (DMA)
to mitigate the transfer overhead between devices.
Specifically, HiWayLib implements this basic scheme for

inter-device communications as follows. A queue is attached
with a consumer stage and a buffer is attached with a pro-
ducer stage. For the buffer, HiWayLib uses a ring-buffer to
store data items needed to be transferred between adjacent
stages. A ring-buffer is a circular queue data structure whose
head and tail are connected. When the number of data items
exceeds a predefined threshold in the buffer, all these data
need to be moved into the queue of consumer device. The
buffer is non-blocking. While moving data into the queue,
new data items can be inserted to the buffer simultaneously
until it is full. Beside the threshold, the buffer will be also
flushed if a timeout occurs. When the queue or buffer is full,
the producer retries the data insertion until a success.
To guarantee that the ring-buffer is thread safe, each

enqueue/dequeue operation updates some counters of the
buffer—such as the front/end index and the number of items—
atomically, and get a position to write/read data items. Also,
the target queue on another device maintains a same set
of counters in the same way. When the buffer prepares to
flush data to the target queue on another device, a function
named enqPrep is invoked to update the front counter of the
target queue by the number of flushed data items and get the
address to write data back, and then mark the corresponding
queue area as "busy" until all flushed data have been written
back to the queue. Only the queue area marked "busy" is not
allowed to be accessed by other threads; other areas of the
queue are free for update.

Figure 2 shows the hand-shaking process of batched data
movement. Each device launches several threads (2 threads
on CPU and a one-warp-kernel on GPU that uses persis-
tent threads [3]) as monitors to maintain the buffer status.
They are the main part of HiWayLib runtime. Each thread
for a stage checks whether the number of data items in the
buffer exceeds the threshold after enqueuing, and the moni-
tor checks whether timeout occurs for each stage in a round

DMAcntbAddr qAddr

Monitor on producer device
if bufState == 1 or timeout

 copyState = 1

Monitor on consumer device

if copyState == 1
 qAddr = enqPrep(DMAcnt)
 copyState = 2

if copyState == 3
 enqEnd(DMA_cnt)
 copyState = 0

Monitor on CPU
if copyState == 2

 DMA
 copyState = 3

Buffer on producer device Queue on consumer device

DMA

Enqueue function
Insert a data item into buffer
if bufferCnt >= threshold

bufState = 1

1

2

3

4

Figure 2. Hand-shaking process of batched data movement.
Variables bAddr, DMAcnt, qAddr and copyState are unified
memory variables that can be accessed by all devices.

robin fashion. If a timeout occurs, a per-device global flag
(bufState) is set. When the monitor on device Producer finds
that bufState is updated, it will set flag copyState (step 1 in
Figure 2) and ask the monitor on device Consumer to in-
voke function enqPrep and get the write-back address of
the queue (step 2). The monitor on Producer then writes
the buffer address and the number of flushed data items to
specific system-wide global variables (bAddr and DMAcnt),
and the monitor on Consumer will store the write-back ad-
dress of the queue into a specific system-wide global variable
(qAddr) and raise a system-wide global flag copyState to in-
form the monitor on CPU to execute DMA functions with
bAddr, qAddr andDMAcnt (step 3). After the DMA operation,
copyState is reset (step 4).

We note that in HiWayLib, the pipeline stages on GPU use
persistent threads [3], in which, only a limited number of
thread blocks are launched for a GPU kernel such that they
can all be active on GPU. And every thread lives permanently
on GPU (by running a while loop), continuously trying to
grab new tasks to process. This model avoids frequent kernel
launching overhead which is essential for high responsive-
ness of pipeline applications [45, 54]. A problem with this
model is how to efficiently detect the end of all tasks and
exit quickly. It is called an end detection problem, which we
will discuss more in Section 3.3.

With the basic communication mechanism explained, we
are ready to move on to the advanced features of HiWayLib
where the main novelty of this work resides. These fea-
tures respectively address the main issues faced by existing
pipeline programming frameworks. The solutions together
pave the way for a streamlined support of efficient pipeline
computations on CPU-GPU systems.

3.2 Lazy Reference-Based Scheme
Due to the limited inter-device bandwidth and relatively long
latency, inter-device data movements create a major bottle-
neck frequently seen in CPU-GPU pipeline computations.

Session: Data Movement II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

156

This part describes a novel technique named Lazy Reference-
Based Scheme to mitigate the problem. It is based on an
observation that in many pipelined programs (e.g., image
processing [2, 33]), the data used between tasks often overlap.
Lazy Reference-Based Scheme avoids repeated movements of
the overlapped data by replacing the default task-based data
copy with a new lazy reference-based scheme, along with
some changes to the implementations of task queues.

a b c d

e f g h

i j k l

m n o p

A

F

A task in stage 1 produces
one value in the matrix

A task in stage 2 requires
9 values produced in stage 1

Stage 1 Stage 2

Figure 3. Inter-task data overlaps in a stencil pipeline.

We explain the observation with a stencil pipeline pro-
gram. Figure 3 depicts the dependence between two stages of
a stencil pipeline program. Each task in stage 1 produces one
value in the left-side matrix. Each task in stage 2 requires 9
values from that matrix. The values required by task A and
task F in stage 2 are partially overlapped (values f, g, j, k
produced by stage 1).
Existing pipeline frameworks (e.g., [45, 54]) do not con-

sider such overlappings. They use a task-based copy para-
digm, which copies the data needed by each individual task
into a task queue separately without considering the rela-
tions between tasks. For the example in Figure 3, the blue
tile will be copied into the task queue as part of the task A
of stage 2, and the red tile will be also copied into the task
queue as part of the task F, causing values (f, g, j, k) being
copied twice unnecessarily.
Lazy Reference-Based Scheme deals with the overlapping

between tasks on two principles. First, it uses references
rather than data content when forming a task. It means that
the definition of a task in the task queue contains only a
reference to the start location (i.e., the index in matrix) of
data the task requires. As the stencil size is given (through
API in Section 3.5), with the start location, the range of all
data the task requires can be determined. For clarity, in the
following we use target values to refer to the actual values of
data needed by a task. For instance, for task A in Figure 3, its
task content will be (0,0). From it, the corresponding stencil
to process can be determined as the range from (0,0) to (2,2)
given that the stencil size is 3 by 3. In our solution, we use the
relative location as the reference as it gives good portability,
allowing different stages on different devices to locate the
data easily. This principle is used for both inter-device and
intra-device communication for stencil pipeline programs.

The second principle is that Lazy Reference-Based Scheme
copies data in a lazy manner in a region-based rather than
task-based manner to capitalize on inter-task relations. It

Producer device Consumer device

Target value
output buffer

Not-ready
counters

Target value
input buffer

Task queue
(reference queue)

DMA

Extract tasks
0 8 15 16

1 0 0 0

if not_ready_counter[i] == 0
do extract region i to task queue & set region_ready_array[i]

Region ready arraySet region ready array

Figure 4. Lazy Reference-Based Scheme. The range size for a
lazy copy in this example is set to 5×5.

means that target values will not be copied onto the device of
the next stage immediately when they are produced, but will
be stored into a target value buffer (on the device where the
data are produced) temporarily and a scoreboard is marked
to indicate their readiness. HiWayLib runtime periodically
examines the scoreboard and copies a whole region of data—
which we call lazy copy region. A lazy copy region is a set of
adjacent data items that are copied together. Its size could
be larger than the range of data one consumer task requires.
This region-based copy scheme copies a region of data only
once, regardless of how many consumer tasks require the
data. It hence avoids the duplicated data movements happen-
ing in the default task-based scheme.
The implementation of Lazy Reference-Based Scheme in-

volves changes to the scheme of data movements as well as
the design of task queues. Figure 4 shows the implementa-
tion details. On the producer side, two data structures are
created. The target value output buffer is the holder of actual
values produced by the producer for the next stage. The not-
ready counters serve as the scoreboard with each recording
the number of data items in each lazy copy region that has
not yet been produced. On the consumer device, three data
structures are created. The target value input buffer receives
the values copied from the target value output buffer of the
producer. The task queue holds the tasks to be processed in
the consumer stage. As mentioned earlier in this section, in
this scheme, the definition of a task in the task queue con-
tains only a reference to the start location of the data the
task requires; so the content of the task queue is simply data
references. The region ready array serves as the indicator to
tell whether the corresponding lazy copy region has already
been copied to the consumer’s target value output buffer.
As producer puts produced data into target value output

buffer, it updates the not-ready counters accordingly. When
HiWayLib runtime periodically examines not-ready counters,
it copies the regions whose not-ready counters have turned
0 and then sets the counters to -1. Meanwhile, it enqueues
into consumer’s task queue the reference to every data item
contained in the just copied lazy copy regions; each of the ref-
erences corresponds to the start of one stencil yet to process
and hence a task of the consumer. When the consumer de-
queues its task queue, based on the reference and the region

Session: Data Movement II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

157

ready array, it checks whether all data in the corresponding
stencil have been copied to its target value input buffer. If so,
it processes the task, otherwise, it re-enqueues the reference
to the task queue for later processing.

HiWayLib provides a set of APIs (described in Section 3.5)
to allocate areas for all above buffers and queues. Users just
need to provide task data type, matrix size, stencil size, and
lazy region size through the APIs. Buffers are recycled when
they become useless to save memory space.

With the above lazy copy approach, not only many redun-
dant data movements are avoided, but also the data locality
becomes better as adjacent data items are transferred to-
gether. Our current implementation is mostly designed for
stencil processing pipeline programs as they are the most
common pipeline programs with such data overlaps, but
the basic idea can be extended to other pipeline application
whose tasks have overlapped content.

3.3 Late Triggered Inter-Stage Tracking
Besides inter-device data movements, another main source of
delay for pipeline computations is the detection of when the
whole pipeline processing on a stream of inputs has finished.
We call this problem end detection problem. Delays in the
detection could affect the follow-up operations and hence
increase the latency of a pipeline program.

One of the main challenges for end detection is that some-
times the total number of task items needed to process is
unknown beforehand. A stage may dynamically create many
task items; and with recursive structures in a pipeline (e.g.,
the back edge in Figure 1), a later stage may generate and
enqueue tasks to an earlier stage in the pipeline. These dy-
namic complexities make simple task counting insufficient
for end detection.

2

1

3

Termination

dequeue success

dequeue fail & doneCounter==0
(endCounter--)

dequeue success
(doneCounter++)

dequeue fail
(doneCounter--)

dequeue fail
(doneCounter--)

dequeue fail & endCounter!=0

dequeue fail & endCounter==0

dequeue success
(doneCounter++,
endCounter++)

dequeue fail & doneCounter!=0
(endCounter++)

Figure 5. The FSM in WhippleTree for end detection.

A previous pipeline framework for GPU,WhippleTree [45],
for instance, develops a delicate and complicated finite state
machine (FSM) to check the ending of a pipeline (Figure 5).
Each GPU thread block maintains two counters (doneCounter
and endCounter) whose initial values equal the total number
of thread blocks launched. (As WhippleTree uses persistent
threads, the total block count is exactly the number of thread
blocks that the program can execute concurrently on GPU.)

As the FSM shows, a thread block may be in one of three
states before termination, and depending on the state of a
thread block, its two counters get updated accordingly when
task dequeuing happens. A thread block exits when dequeue
fails and its endCounter reaches 0. The program terminates
after all blocks exit. WhippleTree works well when all stages
of a pipeline are put into a single kernel. But if stages are
mapped into multiple kernels (e.g., via CUDA Streams) and
inter-kernel communications use queues, the above method
does not work properly. A scenario is that when the pro-
gram starts, a previous kernel has not yet produced any data
item for a following kernel. Thus the following kernel can-
not fetch any data item and the counters will drop to zero
quickly, causing the kernel to terminate prematurely [45].

Some other implementations of pipeline (e.g., VersaPipe [54])
simply use time-out for end detection. They start a timer
when all task queues become empty and terminate the pipeline
when the timer times out after a period of time. The problem
with the scheme is that it cannot guarantee that the pro-
cessing is truly over; tasks coming after the timeout cannot
get processed. The implementations hence usually set the
timeout a long time (e.g., 10 times of a single task length in
VersaPipe), causing a long delay without completely avoid-
ing the risk of premature terminations. (Our basic scheme
in Section 3.1 uses this method.)

Moreover, none of the previous solutions are designed for
handling inter-device pipelines.
To address these problems, we propose a novel method,

called Late Triggered Inter-Stage Tracking, which consists of
two key techniques: inter-stage status tracking, and late trig-
gering. We first explain inter-stage status tracking scheme,
and then explain how late triggering helps with the efficiency
and correctness.

busy idle Termination

activeTasks[i] != 0 activeTasks[i]==0 & σ𝟏
𝒏𝒂𝒄𝒕𝒊𝒗𝒆𝑻𝒂𝒔𝒌𝒔[𝒋]!=0

activeTasks[i]==0

activeTasks[i] != 0
σ𝟏
𝒏𝒂𝒄𝒕𝒊𝒗𝒆𝑻𝒂𝒔𝒌𝒔[𝒋]==0

(a) Finite state machine for termination checking in HiWayLib

(b) Mechanism to update activeTasks[i] on device i

Operations on device i | incurred operations to activeTasks[i]

enqueue activeTasks[i]++
insert to buffer activeTasks[i]++
task executes and ends activeTasks[i]--
DMA to another device done activeTasks[i] -= #tasks transferred by DMA
DMA from another device activeTasks[i] += #tasks transferred by DMA

Figure 6. The FSM for end detection in HiWayLib.
Inter-Stage Tracking The essential feature of inter-stage
tracking to address the limitations of previous designs lies in
its co-operations among different stages on different devices
for status tracking. We first explain the idea in the case
where the pipeline has continuous inputs, whichmeans there
is no gap between the arrival times of two adjacent input
items. The non-continuous scenario will be discussed in Late
Triggering part.

Figure 6 illustrates the scheme with a finite state machine.
Note that the scheme uses a counter for each device (rather

Session: Data Movement II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

158

than each stage). The counter (activeTasks[i]) records the
number of active tasks on device i . In this scheme, a pipeline
stage can be in one of two states before termination: busy
and idle (all stages on the same device are in the same state at
a given moment). When counter activeTasks[i]>0, the stages
on the ith device are all busy. They turn to idle state when
the counter becomes 0. When counters on all devices drop
to 0, all stages on all devices terminate.
Figure 6(b) shows how the counters are updated. The

counter on a device increases by 1 when there is a task en-
queue operation on this device. When a task on that device
finishes, the counter decreases by 1. There are some spe-
cial considerations in our design for inter-device operations.
When a task item is inserted into a buffer on device i that is
intended to be transferred to another device, activeTasks[i]
also increases by 1. When the buffer is transferred to the
other device (through DMA), activeTasks[i] deducts by the
number of task items in that buffer. When DMA transfers a
buffer to device i , activeTasks[i] increases by the number of
task items contained in the buffer. This design ensures cor-
rect tracking of inter-device task transfers which is essential
for the soundness of the end detection.
The correctness of the Inter-Stage Tracking scheme is

straightforward to prove. 1○ With the method, a pipeline
will not terminate when there are still unfinished tasks, be-
cause activeTasks[i] tracks the tasks that are not yet finished
on device i . If there are still unfinished tasks on any device,
the counter on that device must be greater than 0 and the
pipeline cannot terminate. 2○With the method, a pipeline
terminates when all tasks are done, because when and only
when a task is generated on or sent to device i , its counter
increases by 1. When and only when a task ends on the de-
vice, the counter decreases by 1. Hence, when all tasks end,
the counters on all devices must be all 0 and the pipeline
hence terminates.

Late Triggering In the basic inter-stage tracking scheme,
the counters on all devices indicate the total number of task
items that are either being processed or need to be processed.
If all counters are zero, it indicates the end of the pipeline pro-
cessing. A key requirement is efficiently checking whether
all counters are zero; the check needs to happen atomically
to avoid data races. It is tricky to do cross the boundaries be-
tween CPU and GPU. Our basic method is to use spin-locks
on a unified memory variable. To guarantee the correctness,
all the checking transactions and counter update operations
need to compete for the same lock.
This basic method suffers from two problems. The first

is that the spin-lock–based checking introduces large time
overhead as all counters on all devices compete for the same
global lock. The second problem is that, if the input stream
of a pipeline has some "bubbles" (i.e., intervals between the
arrivals of data items), all counters may drop to zeros and
the pipeline would terminate prematurely.

Our late triggering scheme helps inter-stage tracking solve
both problems. HiWayLib provides an interface, through
which programmers can append a special "end marker" to
the end of an input stream. With this marker appended, Hi-
WayLib performs the inter-stage tracking and status check-
ing only when the pipeline detects that marker. This method
addresses two problems of the basic method. First, because it
avoids all the checking and status updates before seeing the
end marker, it avoids most of the unnecessary tracking and
status checking time overhead. Second, for the same reason,
it avoids premature terminations when there are "bubbles"
in an input stream as it has not yet detected the end marker.
And after the input end marker is seen, the definition of
an end marker means that there will be no "bubbles" ever
coming in the input stream. The inter-stage tracking scheme
has no problem in faithfully tracking active tasks that have
already arrived at devices as the earlier part of this section
has already shown.

3.4 Bi-Layer Contention Relief
Intensive contention on communication data structures (e.g,
task queues), is another main challenge for efficient pipeline
computations. This problem becomes even harder on GPU as
a large number of threads need to access the same task queue
concurrently. One common practice to reduce contention
is to split one single task queue into multiple sub-queues
and each sub-queue handles partial queue operations [8, 9].
But this method can introduce extra scheduling overhead to
keep load balance among different sub-queues.
To mitigate such contention, we propose a technique

called Bi-Layer Contention Relief. Our approach adopts a
two-level delegation scheme to minimize the number of con-
current accesses to the communication data structures with-
out delaying task executions. The basic idea is to select a
delegator from a number of threads to access the shared data
structure for those threads. Conventional methods [35, 54]
aggregate threads in either warp level or thread block level,
which can lead to block-level synchronization. However, our
approach features a distinctive two-level design. The first
level leverages warp-level shuffle operations for efficiency,
and the second level employs an auto-grouping mechanism
to avoid risky costly synchronizations.
Figure 7 illustrates the basic idea of our approach. The

following discussion uses enqueue operations to describe
our approach, but the same mechanism applies to dequeue
operations. The first layer is within a single warp. As threads
in a warp always execute in a lock-step mode, when one
thread does an enqueue operation, all the other threads in
the same branch within the same warp will also do enqueue
operations. The first thread in this branch within the warp
will be selected as a sub-delegator. In the second layer, each
sub-delegator acquires a starting address of a memory region
in the queue, which is used to store the data that all the
threads need to enqueue. To get corresponding offset in

Session: Data Movement II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

159

the region for each thread within the same warp, we take
advantage of warp shuffle operations [31], which makes
the communications between threads within a warp very
efficient. And then all the threads can write their data into
the queue concurrently.

Warp 0 Warp 1 Warp K

…

startPos = enqPrep(N1 + N2 + … + NK)

…
pos = startPos + offset

writeToQueue(pos, data)

Select sub-delegator
in each warp

Select delegator
between warps

Write data
into queue

1

2

3

Process of step 2

… 0 1 1 1 1 1 1 1 0 0 1 …

Sub-delegator i gets the lock

Scan status array

Find neighbors with set-status

First sub-delegator as final delegator

Reset these bits, release lock

Figure 7. Delegator-based enqueue approach to reduce con-
tention. Function enqPrep is to get the start position in the
queue to write the data of all threads.

The second layer is within a thread block. For a block,
if some of its warps need to enqueue at a similar time, our
approach selects a delegator to update queue counters for
all of them. There are two differences from the first-level
delegation: Different warps do not execute in a lock-step
mode, and there are no shuffle instructions across warps.
To aggregate operations of different warps, one option is to
insert block-level barrier and update queue counters once
for the whole blocks. However, the inserted barrier could
cause dead locks. Consider a case where thread x waits for a
flag to be set to true by thread y which belongs to a different
warp but in the same thread block. If the barrier is inserted
before thread y sets the flag, a dead lock would happen.
To address this problem, we propose an auto-grouping

scheme. The core idea is to group as many warps as possible
each time (not necessary all the warps in a block). Even if the
final delegator may not perform queue operations on behalf
of all warps, block synchronization can be effectively avoided.
Specifically, each thread block maintains a data strucutre
called status array with size of 32 (current maximum warp
count in a thread block) and a lock for the status array on
shared memory. One status corresponds to one warp. When
a warp needs to enqueue some data, its sub-delegator sets the
corresponding status in the array and tries to acquire the lock
for the array if its status stays as set (value of 1). If it acquires
the lock successfully, it checks its adjacent status through bi-
direction scanning and stops once it encounters unset status
on both directions. All the sub-delegators corresponding to
the adjacent set status form a group. The first sub-delegator
in this group is selected as the final delegator to do the queue
operations for the entire group. As mentioned above, each
sub-delegator then will get a starting address of a memory
region in the queue towrite data. The status of sub-delegators
in the group is cleared after the queue operation finishes,
and the acquired lock is released. In such a way, our scheme
can avoid inserting block synchronizations.

3.5 HiWay Library and API
API HiWayLib provides a set of APIs that ease the adoption
of those optimizations by application developers. For inter-
device communication, HiWayLib supports both batched
data copy method and discrete unified memory access. With
simple configurations in the API, developers can choose
which communication method to use.

Figure 8 shows the main interfaces of HiWayLib. The func-
tions are C++ based. Note that we call the data transfer media
a tunnel in the API rather than queue for the generality of the
API. Even though we currently implement the tunnel with a
queue-based data structure, other data structures (stack and
heap) could be used for the implementation.
To use HiWayLib, users should firstly create tunnels be-

tween stages with createTunnel. If cross-device batched data
copy is required, users should set up monitors for DMA con-
trol with setupService. put_x (‘x’ should be ‘h’ on CPU, and
‘d’ on GPU) to put data items into a tunnel. Pipeline stages
can get data from a specific tunnel with get_x. API endTask_x
is used to help track the number of active task items, which
should be called whenever a task ends. API isTerminate_x
will return TRUE unless the pipeline should terminate. When
that happens, all monitor services will be shutdown automat-
ically. Meanwhile, users still have the choice to shut down
DMA services manually with shutdownService.

For stencil pipelines, configStencilTunnel should be called
before settingmonitor service. The config parameter includes
the matrix size, stencil size, and copy region size, which
should be specified by users. This function provides context
for stencil tunnel and create buffers described in Section 3.2.
fetch_x is used to fetch a data item in the target value buffer,
while set_x is used to set a data item in the target value
buffer. isStencilReady_x is used to check whether the data in
a stencil area are all ready.

Besides above functions, users should define the end flag
variable in HiWayLib name space. Figure 9 shows the usage
of HiWayLib for a real application.

Other Soundness Considerations The techniques in Sec-
tions 3.1 and 3.3 rely on system-wide shared data structures.
The cross-device coherence of the shared data is essential to
guarantee the correctness. These shared data structures are
defined as unified memory variables with volatile keyword.
System-wide atomic functions (e.g., atomicAdd_system) are
used to guarantee the coherence. Memory fences are used to
guarantee the memory order for queue operations and the
hand-shaking process in Section 3.1.

4 Evaluation
To evaluate the efficacy of HiWayLib, we use six pipeline
applications on two different platforms. Each of the platforms
consists of two Intel Xeon E5-2620 8-core CPUs, to which a
GPU is connected via PCIe. One platform is equipped with

Session: Data Movement II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

160

Context construction
- createTunnel<Type>(int& id, TunnelDirection direc, bool isBatched)

Create tunnel with specified direction and data movement
scheme. Get tunnel ID.

Control flow and monitor management
- isTerminate_h()

Check whether the pipeline should terminate on CPU side.
‘isTerminate_d’ for GPU side. ‘XXX_d’ will be the function on
GPU for the following functions in the same form.

- endTask_h(int id)
Should be called when a task on CPU side ends.

- setupService()
Set up monitors for DMA control.

- shutdownService()
Shut down monitors.

Data management
- put_h<Type>(Type data, int id)

Put data into specific tunnel from CPU side.
- get_h<Type>(Type *data, int id)

Get data from specific tunnel on CPU side.
Stencil pipeline
- configStencilTunnel<StencilType>(int id, StencilConfig config)

Setup stencil pipeline context and create input matrix for
stencil algorithm.

- fetch_h<StencilType>(int id, int x, int y, StencilType* content)
Fetch data from stencil matrix with tunnel id and index in matrix.

- set_h<StencilType>(int id, int x, int y, StencilType content)
Set data in stencil matrix with tunnel id and index in matrix.

- isStencilReady_h(int id, int x, int y)
Assume point (x, y) is the middle point in the stencil, check
whether all values in this stencil area are ready.

Figure 8. HiWayLib APIs.

NVIDIA GTX 1080 GPU and the other NVIDIA Tesla V100
GPU.

The evaluated pipeline applications are shown in Table 1.
They present various characteristics. The stage count of
these workloads ranges from 2 to 5. The pipeline struc-
tures of the workloads include linear, loop, and recursion.
(Linear pipeline structure is the simplest, whereas recur-
sion pipelines have recursive executions and loop pipelines
have iterations among different stages.) The communica-
tion modes between stages include intra-device, CPU-to-
GPU, and GPU-to-CPU data transfer. Gene Alignment and
Evolutionary Program are high performance CPU-GPU
pipeline programs previously manually developed as part
of Hetero-Mark [46]; Rasterization and Reyes are ported
from the work of Piko [37] using a similar optimized pipeline
scheme as used in Hetero-Mark to utilize both CPU and GPU;
Face detection is ported from a real-world application de-
veloped by Oh and others [33]; Stencil is a representative
of stencil programs, in which CPU generates input values
and GPU executes the five-point stencil computations. As
how to best partition a program into CPU and GPU parts
is not the focus of this work, we use simple trial-and-error
to select a partition which gives the baseline version the
highest performance.
Baseline for Comparison Previous general pipeline pro-
gramming frameworks are either for GPU only [54] or CPU

Table 1. Various pipeline applications used for evaluation.

Applications Abbr Description Stage
Count

Pipeline
Structure

Gene Alignment GA Bioinformatics 2 Linear
Evolutionary Program EP Genetic Algorithm 5 Loop

Reyes RE Reyes Rendering 3 Recursion
Rasterization RA Image Rasterization 3 Loop
Face Detection FD LBP Face Detection 5 Recursion

Stencil ST 5-Point Stencil 2 Linear

only [15, 16, 47]. Hetero-Mark [46] is a work trying to effi-
ciently utilize both CPU and GPU for a pipeline computation.
Although it is not a general programming framework, its
scheme of implementation represents the state of the art in
the field for constructing CPU-GPU pipeline programs. The
left part of Figure 9 outlines the scheme. The input data set is
divided into many chunks before entering the loop in line 12.
These chunks are processed in the loop successively. In each
iteration, the CPU master thread uses cudaMemcpy to copy
data of a chunk to GPU, launches the GPU kernel (one stage
of the pipeline). When the GPU kernel finishes processing
the chunk (ensured by a synchronization barrier on line 15),
results are copied to CPU through cudaMemcpy. The CPU
master thread forks a child CPU thread to do the next stage
of processing for that chunk, while the master thread itself
moves on to the next iteration to move the next chunk’s
data to GPU and launch the next GPU kernel to process the
next data chunk. CPU and GPU can hence process different
chunks concurrently, forming a pipeline. As this scheme use
no persistent threads (nor task queues), there is no need for
end detection of all tasks. Pipeline ends after all function call
ends.

1. producerGPU (input, output) {
2. // each thread generate ‘data’ with ‘input’
3. output[thread_index] = data;
4. }
5.
6. consumerCPU (input_h) {
7. for(auto data: input_h) {
8. process(data); }
9. }
10.
11.main () {
12. while (start < maxLength) {
13. cudaMemcpy(input[start], chunk[start]);
14. producerGPU(&input[start], output_d);
15. synchronize();
16. cudaMemcpy(input_h, output_d);
17. thread_create(consumerCPU, input_h);
18. // thread_create is non-blocking
19. start++;
20. }
21. thread_join_all();
22.}

1. producerGPU (input, tunnelid) {
2. // each thread generate ‘data’ with ‘input’
3. put_d<>(data, tunnelid);
4. if(isLastThread) {
5. put_d<>(HiWayLib::endFlag_d, tunnelid); }
6. }
7.
8. consumerCPU(tunnelid){
9. while(!isTerminate_h()) {
10. if(get_h<>(&data, tunnelid)) {
11. process(data);
12. endTask_h(tunnelid); } }
13.}
14.
15.main () {
16. // initialize HiWayLib::endFlag_d
17. createTunnel<>(id, GPU_TO_CPU, true);
18. setupService();
19. thread_create(consumerCPU, id);
20. while (start < maxLength) {
21. producerGPU(&input[start], id);
22. start++; }
23. thread_join();
24.}

a) Baseline implementation b) Implementation with HiWayLib API

Figure 9. The pseudo-code of Gene Alignment in Hetero-
mark (baseline) and in HiWayLib API.

The previous work [46] reports promising performance
by this scheme. The first four benchmarks in Table 1 all
use that scheme. The other two benchmarks feature stencil
computations which do not fit that scheme; the CPU-GPU
communications in their baseline versions are implemented
with our basic scheme described in Section 3.1. In this scheme,
the use of persistent threads and task queues require end
detection. But because the total numbers of tasks are known

Session: Data Movement II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

161

beforehand for these two benchmarks, they just use simple
task counting which is sufficient.

4.1 Overall Results

GA EP RE RA FD ST
Benchmarks

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25

Sp
ee

du
p

baseline GTX 1080 V100

Figure 10. Overall results on different platforms.

Figure 10 reports the overall performance of all the appli-
cations we have evaluated on the two platforms.
All timing results are the average of five repeated runs.

The execution time is measured on a CPU side, starting from
the beginning of the first pipeline stage and ending just after
the last pipeline stage finishes (with cudaDeviceSynchronize).
It includes all the pipeline stage executions, CPU controls,
and memory copies covered in that entire code range. All
results have been normalized by the performance of the
baseline implementation.
In general, the results show that, for all the applications,

HiWayLib has better performance than the baseline im-
plementation. On the GTX 1080 platform, HiWayLib has
achieved up to 2.1× better performance than the baseline.
On average, HiWayLib is 1.56× better than the baseline on
GTX 1080, and 1.65× on V100. The speedups on V100 are
overall slightly higher because V100 computes faster, leaving
communications a more important performance factor. The
performance gains of HiWayLib come from the contention
relief, efficient termination checking, and the reduced redun-
dant copy in inter-device communication. We explain the
details with time breakdowns next.

4.2 Detailed Results

GA EP RE RA FD ST
Benchmarks

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Sp
ee

du
p

baseline
BS

BS+LTIT
BS+LTIT+BCR

BS+LTIT+BCR+LRBS

Figure 11. Breakdown results on GTX 1080 platform. Abbr:
BS(Basic Scheme), LTIT(Late Triggered Inter-Stage Track-
ing), BCR(Bi-Layer Contention Relief), LRBS(Lazy Reference-
Based Scheme)

Figure 11 shows the time breakdown. We first enable the
communication system with the method described in sec-
tion 3.1, which we call basic scheme version. Then, we add
in the proposed techniques one by one in this order: Late
Triggered Inter-Stage Tracking (LTIT), Bi-Layer Contention

Relief (BCR), and Lazy Reference-Based Scheme (LRBS). Fig-
ure 11 reports the measures on GTX 1080 platform. The
increased speedups show the contribution of BS, LTIT, BCR,
and LRBS. Due to the different natures of the programs, these
optimizations have different impact on them. We elaborate
them next.

GeneAlignment andEvolutionaryProgramBoth come
from Hetero-Mark. Gene Alignment is an important bioin-
formatics algorithm which has two stages. The first stage is
performed on GPU and the second on CPU. The input data
set has a target length of 65536 and query length of 1024.
A problem of the baseline implementation comes from

the synchronization barriers and data copies between the
devices. HiWayLib enables fine-grained pipeline parallelism
through its efficient asynchronous inter-device communi-
cations and task queues. There is no barrier between the
producer and the consumer, and the producer will not be
blocked when transferring data to the consumer. That is
the main reason for the significant speedups BS has over
the baseline, 64.4ms versus 80.5ms. It is worth noting that
BS (for its use of persistent threads and task queues) actu-
ally adds some extra delays at end detection compared to
the baseline version (which needs no end detection for the
simplicity of the scheme). The evidence is shown by the ex-
tra speedups when the better end detection method LTIT is
applied to BS, reducing the time from 64.4ms to 50.8ms. Such
an effect is seen on the Evolution Program and also Reyes
and Rasterization.

Queue contention reduction has little effect on this bench-
mark as there are only two stages and the queue contention
between them is not a major issue.

Evolutionary Program implements genetic algorithm,
which has five consecutive stages. The second and fifth stages
run on GPU, while the others on CPU. Thus, the implementa-
tion contains both CPU toGPU andGPU to CPU data transfer.
The population size is 2048. The baseline pipeline implemen-
tation taken in Hetero-Mark is effective in exploiting the
pipeline parallelism among different populations, but not the
pipeline parallelism within the same population. With the
improved CPU-GPU communication scheme, the HiWayLib
implementation exploits both. Results on GTX 1080 show
that the baseline takes 44.3ms to execute the pipeline, while
the HiWayLib version takes 25.4ms. As shown in Figure 11,
all techniques in HiWayLib contribute to the speedup except
LRBS because LRBS is applied to only stencil programs.

Reyes and Rasterization Both are for image rendering,
but of different algorithms. Reyes [7] contains four stages.
Only the first stage runs on CPU, which prepares data for
the subsequent 3 stages. The rendering result of Reyes is a
teapot in a resolution of 1280×720 pixels. Rasterization
contains three stages. Only the first stage runs on CPU to
prepare data for subsequent stages. It generates 100 pictures
of cube in 1024×768 resolutions.

Session: Data Movement II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

162

The performance observations and analysis on these two
are similar. We take Reyes as the example for discussion. The
baseline, which is optimized with the approach in Hetero-
Mark, realizes the pipeline between CPU and GPU stages
for different images. But it fails to exploit the potential of
pipeline parallelism among the primitives of the same image
With HiWayLib APIs, both image level and primitive level
pipeline parallelism are realized with only about 10 extra
lines of code. HiWayLib does not copy all the primitives
of an image to GPU at once, but enqueues each primitive
individually. A loop in GPU kernels continuously dequeues
and processes primitives. Results show that the baseline
takes 4.4ms, while HiWayLib version takes 3.4ms.
As shown in Figure 11, the batched copy scheme shows

worse performance than the baseline. It is because that the
batched copy overhead is large compared to the short execu-
tion time of Reyes itself. Late Triggered Inter-Stage Tracking
and Bi-Layer Contention Relief boost the performance by
reducing the overhead significantly.

For both Reyes and Rasterization, the execution times
of the CPU functions are larger than the execution times of
the GPU, making the GPU time nearly overlapped with the
CPU time. Thus the speedup of GPU kernels on V100 does
not help increase the overall speedup much compared to the
case on GTX 1080.

Face Detection and Stencil Both of them have stencil
computation patterns. Face Detection is a real-world ap-
plication [33] that finds location and size of faces in a given
image. It consists of 5 stages; the fourth stage has stencil
dependency and runs on CPU, while others run on GPU. The
input is an image in 1280×720 resolution.

As shown in Figure 10, HiWayLib shows 1.37× better per-
formance than the baseline. The baseline does not employ
Lazy Reference-Based Scheme. It invokes a task as soon as its
input pixels are available. A task consumes 3×3 stencil tiles,
which may overlap with the ones belonging to other tasks.
Since the baseline copies the overlapped pixels redundantly,
it shows a poor performance. With Lazy Reference-Based
Scheme, the redundant data transfer is removed and each
data item will be transferred only once.

Stencil is a 5-point stencil workload with two pipeline
stages. The CPU stage generates the initial value of the ma-
trix, and GPU executes the stencil process. As shown in
Figure 10, the HiWayLib version shows 2.13× better perfor-
mance than the baseline. Similar to Face Detection, the
speedup mainly comes from the removal of redundant data
copy between CPU and GPU stages. In the stencil program,
each task reads its four adjacent values. In the baseline imple-
mentation, each data in the matrix will be copied five times.
In contrast, each data is copied only once in HiWayLib.

4.3 Communication Overhead
We discuss the communication overhead introduced by Hi-
WayLib and give some insights on how HiWayLib boots

pipeline programs performance. We draw on Evolutionary
Program as the example for our discussion, which has the
most complicated communication pattern in the six evalu-
ated applications, including both CPU-to-GPU and GPU-to-
CPU data transfer.
We measure the execution time of the benchmark after

removing all computation logic in both CPU and GPU tasks.
The result shows the time taken by the communications and
some control flows on CPU. The time is 10.5ms for the base-
line version and 14.1ms for the HiWayLib version. Consider-
ing that they have the same control flow on CPU, HiWayLib
introduces about 3.6ms extra communication overhead. The
time is a small portion of the overall running time (25.4ms)
that has been reported in section 4.2. The influence of the
overhead is largely hidden as the pipeline communications
overlap with task processing. In the baseline implementation,
the barrier between stages causes some ready tasks to accu-
mulate on the producer side. HiWayLib runtime transfers
ready tasks to the consumer side in a more timely man-
ner, helping reduce the latency. The performance boost that
comes from the better overlapped computation with commu-
nication and the more performant computation pipelining
with HiWayLib outweighs the effects of the communication
overhead, and leads to the overall significant speedups.

4.4 Programming Effort
We show the programming effort of optimizing a pipeline
program using HiWayLib with Gene Alignment application.
Figure 9 shows the pseudo-code of the baseline implementa-
tion and HiWayLib implementation for this program.

Figure 9(a) shows the baseline implementation in Hetero-
mark. Figure 9(b) shows the implementation with HiWayLib
API. There are three major modifications compared with
the baseline version. First, the producer does not place the
output data into an array, but enqueues them to the queue
using a HiWayLib API. Second, there is no barrier or explicit
CUDA memory copy. The consumer obtains the input with a
dequeue API provided in HiWayLib. Third, the consumer is
not called for each output section of the producer, but called
only once. There is a loop in the consumer to check whether
it has terminated.
This sample shows that about 10 lines of modification

is made to the baseline implementation to make use of Hi-
WayLib. In fact, for all applications we have evaluated, only
tens of lines are required to optimize the original pipeline
implementation with HiWayLib.

4.5 Unified Memory
With default configuration, HiWayLib adopts the batched
data copy scheme (Section 3.1). HiWayLib also supports
cross-device memory access through Unified Memory. We
evaluate it with two configurations. Results show that the
benchmarks we evaluate achieve an average speedup of
1.31× with batched data copy scheme than with Unified

Session: Data Movement II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

163

Memory scheme. The reason is that the frequent and con-
current queue accesses between two different devices lead
to severe page fault overhead with Unified Memory.

5 Related Work
There are some previous promising studies optimizing the
communication and data movements between CPU and GPU
for general programs [20, 21, 34]. They use compiler to iden-
tify some unnecessary data copy operations in a program
and transform the code to avoid them. For example, Pai and
others [34] have proposed a compiler-based method to avoid
transferring data to GPU if GPU’s copy of the data is not
stale, and avoid transferring data from GPU to CPU if the
data are not needed by CPU or are private GPU-only data.
Although these techniques could in principle benefit pipeline
programs, the intensive use of concurrent data structures
(e.g., queues) and framework APIs in pipeline programs could
make them challenging for compiler tools. HiWayLib is com-
plementary to the previous studies in that it focuses on a
different set of communication optimizations that are special
to pipeline programs.
Kumar et al. [25] provides a solution (a middle layer) to

programming difficulties of data management posed by the
many platform-specific intricacies on heterogeneous plat-
forms. Ramashekar et al. [40], Wang et al. [51] and Pichai
et al. [38] study memory management and data transfer
on CPU-GPU system. Kim et al. [23] propose a memory
network architecture to simplify and speedup cross-device
communication. NCCL [30] provides multi-GPU and multi-
node collective communication primitives for NVIDIA GPUs.
GPUDirect [42] enables remote GPU to transfer data through
InfiniBand without involving CPU. All these studies focus
on the CPU-GPU communication for general applications,
but not for pipeline communications where efficient pipeline
concurrency control is of keen interest.

Some studies give some insights for the pipeline commu-
nication between CPU and GPU. Yeh et al. [52] propose a
technique to manage cross device task transfer with tables
on both devices. Van et al. [50] study the performance of ex-
plicit memory copy and direct access with mapped memory
with a performance model. Hestness et al. [19] evaluate the
fine-grained CPU-GPU communication with asynchronous
memory copy and implicit data copy with Unified Memory
for a variety of workloads. Some works [29, 36] study task
parallelism and use basic data copy approach for cross-device
communication. Sun et al. [46] study the main programming
patterns for CPU-GPU applications and use task queues for
pipeline workloads on integrated CPU-GPU systems.
Some prior work focuses on task scheduling of pipeline

programs on GPU only. Besides Whippletree [45] and Ver-
saPipe [54] that the paper has discussed earlier, Tzeng et
al. [48] study task scheduling with persistent-thread [3] tech-
nique and queue structure. None of these systems focus on
inter-device pipeline communication.

There are some prior research on task scheduling of the
pipeline programs on heterogeneous systems. They all use
the explicit memory copy approach for communication. Bodin
et al. [6] schedule pipeline tasks on embedded heterogeneous
systems with synchronous data flow models. Augonnet et
al. [4] propose five main task scheduling policies on hetero-
geneous systems. Gautier et al. [13, 14] design a runtime
system for data-flow task programming on multi-CPU and
multi-GPU architectures, which supports a data-flow task
model and a locality-aware work stealing scheduler. Schor et
al. [41] develop a framework for task scheduling of pipeline
applications on heterogeneous platforms, which uses pack-
age transfer scheme for cross-device data transfer. Many
other studies [11, 24, 27, 43, 44, 53] work on task partition
and task placement.
Some researchers have studied the contention problem

for queue structures. Fatourou et al. [12] and Hendler et
al. [18] propose combining technique on CPU, where fine-
grained synchronization operations are combined by a thread
into a coarser-grained operation. Pai et al. [35] study the
contention relief technique on GPU, in which threads are
aggregated at the level of either warp or block, and additional
synchronization is introduced for block level aggregation.

6 Conclusion
In this paper, we present an in-depth study on the commu-
nication problem for pipeline programs on heterogeneous
systems. To address several key issues in this important
topic, such as slow and error-prone detection of the end of
pipeline processing, intensive queue contentions on GPU,
cumbersome inter-device data movements, we propose a
series of novel techniques, including Lazy Reference-Based
Scheme, Late Triggered Inter-Stage Tracking, and Bi-Layer
Contention Relief. Finally, we integrate the above techniques
together into a unified library HiWayLib, which significantly
improves the efficiency of pipeline communications in six
CPU-GPU heterogeneous applications.

Acknowledgments
The authors would like to thank all the anonymous reviewers whose
feedback are helpful for improving the final version of the pa-
per. This work is partially supported by the National Key R&D
Program of China (Grant No. 2017YFB1003103), National Natural
Science Foundation of China (Grant No. 61722208). This material
is based upon work supported by DOE Early Career Award (DE-
SC0013700), the National Science Foundation (NSF) under Grant
No. CCF-1455404, CCF-1525609, CNS-1717425, CCF-1703487. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of DOE or NSF. This work is partially supported
by Basic Science Research Program through the National Research
Foundation of Korea(NRF) funded by the Ministry of Education (No.
2018R1D1A1B07050463). (The corresponding author at Tsinghua
University is Jidong Zhai.)

Session: Data Movement II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

164

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. 2016. TensorFlow: A System for Large-Scale
Machine Learning.. In OSDI, Vol. 16. 265–283.

[2] Edward H Adelson, Charles H Anderson, James R Bergen, Peter J Burt,
and Joan M Ogden. 1984. Pyramid methods in image processing. RCA
engineer 29, 6 (1984), 33–41.

[3] Timo Aila and Samuli Laine. 2009. Understanding the efficiency of ray
traversal on GPUs. In Proceedings of the conference on high performance
graphics 2009. ACM, 145–149.

[4] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-
André Wacrenier. 2011. StarPU: a unified platform for task scheduling
on heterogeneous multicore architectures. Concurrency and Computa-
tion: Practice and Experience 23, 2 (2011), 187–198.

[5] Christian Bienia and Kai Li. 2010. Characteristics of workloads us-
ing the pipeline programming model. In International Symposium on
Computer Architecture. Springer, 161–171.

[6] Bruno Bodin, Luigi Nardi, Paul HJ Kelly, and Michael FP OâĂŹBoyle.
2016. Diplomat: Mapping of Multi-kernel Applications Using a Static
Dataflow Abstraction. In Modeling, Analysis and Simulation of Com-
puter and Telecommunication Systems (MASCOTS), 2016 IEEE 24th In-
ternational Symposium on. IEEE, 241–250.

[7] Robert L Cook, Loren Carpenter, and Edwin Catmull. 1987. The Reyes
image rendering architecture. In ACM SIGGRAPH Computer Graphics,
Vol. 21. ACM, 95–102.

[8] Sivarama P Dandamudi. 1997. Reducing run queue contention in
shared memory multiprocessors. Computer 30, 3 (1997), 82–89.

[9] Sivarama P. Dandamudi and Philip S. P. Cheng. 1995. A hierarchical
task queue organization for shared-memory multiprocessor systems.
IEEE Transactions on Parallel and Distributed Systems 6, 1 (1995), 1–16.

[10] John Danskin and Denis Foley. 2016. Pascal GPU with NVLink. In Hot
Chips 28 Symposium (HCS), 2016 IEEE. IEEE, 1–24.

[11] Kapil Dev, Xin Zhan, and Sherief Reda. 2016. Power-aware characteri-
zation and mapping of workloads on cpu-gpu processors. In Workload
Characterization (IISWC), 2016 IEEE International Symposium on. IEEE,
1–2.

[12] Panagiota Fatourou and Nikolaos D Kallimanis. 2012. Revisiting
the combining synchronization technique. In ACM SIGPLAN Notices,
Vol. 47. ACM, 257–266.

[13] Thierry Gautier, Xavier Besseron, and Laurent Pigeon. 2007. Kaapi:
A thread scheduling runtime system for data flow computations on
cluster of multi-processors. In Proceedings of the 2007 international
workshop on Parallel symbolic computation. ACM, 15–23.

[14] Thierry Gautier, Joao VF Lima, Nicolas Maillard, and Bruno Raffin.
2013. Xkaapi: A runtime system for data-flow task programming
on heterogeneous architectures. In Parallel & Distributed Processing
(IPDPS), 2013 IEEE 27th International Symposium on. IEEE, 1299–1308.

[15] John Giacomoni, Tipp Moseley, and Manish Vachharajani. 2008. Fast-
Forward for efficient pipeline parallelism: a cache-optimized concur-
rent lock-free queue. In Proceedings of the 13th ACM SIGPLAN Sympo-
sium on Principles and practice of parallel programming. ACM, 43–52.

[16] Michael I Gordon, William Thies, and Saman Amarasinghe. 2006. Ex-
ploiting coarse-grained task, data, and pipeline parallelism in stream
programs. ACM SIGARCH Computer Architecture News 34, 5 (2006),
151–162.

[17] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. 2010. Pack-
etShader: a GPU-accelerated software router. In ACM SIGCOMM Com-
puter Communication Review, Vol. 40. ACM, 195–206.

[18] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. 2010. Flat
combining and the synchronization-parallelism tradeoff. In Proceed-
ings of the twenty-second annual ACM symposium on Parallelism in
algorithms and architectures. ACM, 355–364.

[19] Joel Hestness, Stephen W Keckler, and David A Wood. 2015. GPU
computing pipeline inefficiencies and optimization opportunities in

heterogeneous CPU-GPU processors. In 2015 IEEE International Sym-
posium on Workload Characterization (IISWC). IEEE, 87–97.

[20] Thomas B Jablin, James A Jablin, Prakash Prabhu, Feng Liu, and David I
August. 2012. Dynamically managed data for CPU-GPU architectures.
In Proceedings of the Tenth International Symposium on Code Generation
and Optimization. ACM, 165–174.

[21] Thomas B Jablin, Prakash Prabhu, James A Jablin, Nick P Johnson,
Stephen R Beard, and David I August. 2011. Automatic CPU-GPU com-
munication management and optimization. In ACM SIGPLAN Notices,
Vol. 46. ACM, 142–151.

[22] Gwangsun Kim, Jiyun Jeong, John Kim, and Mark Stephenson. 2016.
Automatically exploiting implicit Pipeline Parallelism from multiple
dependent kernels for GPUs. In Parallel Architecture and Compilation
Techniques (PACT), 2016 International Conference on. IEEE, 339–350.

[23] Gwangsun Kim, Minseok Lee, Jiyun Jeong, and John Kim. 2014. Multi-
GPU system design with memory networks. In Microarchitecture (MI-
CRO), 2014 47th Annual IEEE/ACM International Symposium on. IEEE,
484–495.

[24] Klaus Kofler, Ivan Grasso, Biagio Cosenza, and Thomas Fahringer.
2013. An automatic input-sensitive approach for heterogeneous task
partitioning. In Proceedings of the 27th international ACM conference
on International conference on supercomputing. ACM, 149–160.

[25] Tushar Kumar, Aravind Natarajan, Wenjia Ruan, Mario Badr, Dario S
Gracia, and Calin Cascaval. 2017. Abstract Representation of Shared
Data for Heterogeneous Computing. In The 30th International Work-
shop on Languages and Compilers for Parallel Computing. Springer
2017.

[26] Raphael Landaverde, Tiansheng Zhang, Ayse K Coskun, and Martin
Herbordt. 2014. An investigation of unified memory access perfor-
mance in cuda. In High Performance Extreme Computing Conference
(HPEC), 2014 IEEE. IEEE, 1–6.

[27] M. LeBeane, S. Song, R. Panda, J. H. Ryoo, and L. K. John. 2015.
Data partitioning strategies for graph workloads on heterogeneous
clusters. In SC ’15: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. 1–
12. https://doi.org/10.1145/2807591.2807632

[28] Hung-Fu Li, Tyng-Yeu Liang, and Yu-Jie Lin. 2016. An OpenMP Pro-
gramming Toolkit for Hybrid CPU/GPU Clusters Based on Software
Unified Memory. Journal of Information Science and Engineering 32, 3
(2016), 517–539.

[29] Joao Vicente Ferreira Lima, Thierry Gautier, Nicolas Maillard, and
Vincent Danjean. 2012. Exploiting concurrent GPU operations for
efficient work stealing onmulti-GPUs. In 24rd International Symposium
on Computer Architecture and High Performance Computing (SBAC-
PAD). 75–82.

[30] NVIDIA Corporation. [n. d.]. NVIDIA Collective Communications
Library. https://developer.nvidia.com/nccl.

[31] NVIDIA Corporation. [n. d.]. NVIDIA Warp Shuffle. https://devblogs.
nvidia.com/using-cuda-warp-level-primitives.

[32] NVIDIA Corporation. [n. d.]. Unified Memory Programming.
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.
html#um-unified-memory-programming-hd.

[33] Chanyoung Oh, Saehanseul Yi, and Youngmin Yi. 2015. Real-time face
detection in Full HD images exploiting both embedded CPU and GPU.
In Multimedia and Expo (ICME), 2015 IEEE International Conference on.
IEEE, 1–6.

[34] Sreepathi Pai, R Govindarajan, and Matthew J Thazhuthaveetil. 2012.
Fast and efficient automatic memory management for GPUs using
compiler-assisted runtime coherence scheme. In Proceedings of the
21st international conference on Parallel architectures and compilation
techniques. ACM, 33–42.

[35] Sreepathi Pai and Keshav Pingali. 2016. A compiler for throughput
optimization of graph algorithms on GPUs. In ACM SIGPLAN Notices,
Vol. 51. ACM, 1–19.

Session: Data Movement II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

165

https://doi.org/10.1145/2807591.2807632
https://developer.nvidia.com/nccl
https://devblogs.nvidia.com/using-cuda-warp-level-primitives
https://devblogs.nvidia.com/using-cuda-warp-level-primitives
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd

[36] Sankaralingam Panneerselvam andMichael Swift. 2016. Rinnegan: Effi-
cient resource use in heterogeneous architectures. In Proceedings of the
2016 International Conference on Parallel Architectures and Compilation.
ACM, 373–386.

[37] Anjul Patney, Stanley Tzeng, Kerry A Seitz Jr, and John D Owens. 2015.
Piko: a framework for authoring programmable graphics pipelines.
ACM Transactions on Graphics (TOG) 34, 4 (2015), 147.

[38] Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. 2014. Archi-
tectural support for address translation on gpus: Designing memory
management units for cpu/gpus with unified address spaces. ACM
SIGPLAN Notices 49, 4 (2014), 743–758.

[39] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, FrédoDurand, and SamanAmarasinghe. 2013. Halide: a language
and compiler for optimizing parallelism, locality, and recomputation
in image processing pipelines. ACM SIGPLAN Notices 48, 6 (2013),
519–530.

[40] Thejas Ramashekar and Uday Bondhugula. 2013. Automatic data
allocation and buffer management for multi-GPU machines. ACM
Transactions on Architecture and Code Optimization (TACO) 10, 4 (2013),
60.

[41] Lars Schor, Andreas Tretter, Tobias Scherer, and Lothar Thiele. 2013.
Exploiting the parallelism of heterogeneous systems using dataflow
graphs on top of OpenCL. In Embedded Systems for Real-time Multi-
media (ESTIMedia), 2013 IEEE 11th Symposium on. IEEE, 41–50.

[42] Gilad Shainer, Ali Ayoub, Pak Lui, Tong Liu,Michael Kagan, Christian R
Trott, Greg Scantlen, and Paul S Crozier. 2011. The development
of Mellanox/NVIDIA GPUDirect over InfiniBandâĂŤa new model
for GPU to GPU communications. Computer Science-Research and
Development 26, 3-4 (2011), 267–273.

[43] Jie Shen, Ana Lucia Varbanescu, Peng Zou, Yutong Lu, and Henk Sips.
2014. Improving performance bymatching imbalanced workloads with
heterogeneous platforms. In Proceedings of the 28th ACM international
conference on Supercomputing. ACM, 241–250.

[44] S. Song, M. Li, X. Zheng, M. LeBeane, J. H. Ryoo, R. Panda, A. Gerst-
lauer, and L. K. John. 2016. Proxy-Guided Load Balancing of Graph
Processing Workloads on Heterogeneous Clusters. In 2016 45th In-
ternational Conference on Parallel Processing (ICPP). 77–86. https:
//doi.org/10.1109/ICPP.2016.16

[45] Markus Steinberger, Michael Kenzel, Pedro Boechat, Bernhard Kerbl,
Mark Dokter, and Dieter Schmalstieg. 2014. Whippletree: task-based

scheduling of dynamic workloads on the GPU. ACM Transactions on
Graphics (TOG) 33, 6 (2014), 228.

[46] Yifan Sun, Xiang Gong, Amir Kavyan Ziabari, Leiming Yu, Xiangyu Li,
Saoni Mukherjee, Carter McCardwell, Alejandro Villegas, and David
Kaeli. 2016. Hetero-mark, a benchmark suite for CPU-GPU collab-
orative computing. InWorkload Characterization (IISWC), 2016 IEEE
International Symposium on. IEEE, 1–10.

[47] William Thies, Vikram Chandrasekhar, and Saman Amarasinghe. 2007.
A practical approach to exploiting coarse-grained pipeline parallelism
in C programs. In Proceedings of the 40th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture. IEEE Computer Society, 356–
369.

[48] Stanley Tzeng, Brandon Lloyd, and John D Owens. 2012. A GPU
task-parallel model with dependency resolution. Computer 8 (2012),
34–41.

[49] Abhishek Udupa, R Govindarajan, and Matthew J Thazhuthaveetil.
2009. Software pipelined execution of stream programs on GPUs.
In Code Generation and Optimization, 2009. CGO 2009. International
Symposium on. IEEE, 200–209.

[50] Ben Van Werkhoven, Jason Maassen, Frank J Seinstra, and Henri E
Bal. 2014. Performance models for CPU-GPU data transfers. In Cluster,
Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM International
Symposium on. IEEE, 11–20.

[51] Kaibo Wang, Xiaoning Ding, Rubao Lee, Shinpei Kato, and Xiaodong
Zhang. 2014. GDM: device memory management for gpgpu computing.
ACM SIGMETRICS Performance Evaluation Review 42, 1 (2014), 533–
545.

[52] Tsung Tai Yeh, Amit Sabne, Putt Sakdhnagool, Rudolf Eigenmann,
and Timothy G Rogers. 2017. Pagoda: Fine-grained GPU resource
virtualization for narrow tasks. In ACM SIGPLAN Notices, Vol. 52.
ACM, 221–234.

[53] Feng Zhang, Bo Wu, Jidong Zhai, Bingsheng He, and Wenguang Chen.
2017. FinePar: Irregularity-aware fine-grained workload partitioning
on integrated architectures. In Proceedings of the 2017 International
Symposium on Code Generation and Optimization. IEEE Press, 27–38.

[54] Zhen Zheng, Chanyoung Oh, Jidong Zhai, Xipeng Shen, Youngmin
Yi, and Wenguang Chen. 2017. Versapipe: a versatile programming
framework for pipelined computing on GPU. In Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture. ACM,
587–599.

Session: Data Movement II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

166

https://doi.org/10.1109/ICPP.2016.16
https://doi.org/10.1109/ICPP.2016.16

	Abstract
	1 Introduction
	2 Background
	3 Design and Implementation
	3.1 Basic Communication Scheme
	3.2 Lazy Reference-Based Scheme
	3.3 Late Triggered Inter-Stage Tracking
	3.4 Bi-Layer Contention Relief
	3.5 HiWay Library and API

	4 Evaluation
	4.1 Overall Results
	4.2 Detailed Results
	4.3 Communication Overhead
	4.4 Programming Effort
	4.5 Unified Memory

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

