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Abstract—
This paper reports our efforts on refactoring and optimizing

the Community Atmosphere Model (CAM) on the Sunway
TaihuLight supercomputer, which uses a many-core processor
that consists of management processing elements (MPEs) and
clusters of computing processing elements (CPEs). To map
the large code base of CAM to the millions of cores on the
Sunway system, we take OpenACC-based refactoring as the
major approach, and apply source-to-source translator tools to
exploit the most suitable parallelism for the CPE cluster, and
to fit the intermediate variable into the limited on-chip fast
buffer. For individual kernels, when comparing the original
ported version using only MPEs and the refactored version
using both the MPE and CPE clusters, we achieve up to
22x speedup for the compute-intensive kernels. For the 25km
resolution CAM global model, we manage to scale to 24,000
MPEs, and 1,536,000 CPEs, and achieve a simulation speed of
2.81 model years per day.

Keywords-atmospheric modeling, many-core, optimization,
tool, OpenACC

I. INTRODUCTION

Ever since the first generation of supercomputer systems

(CDC 6600, Cray-I, etc.), the atmospheric models have been

among the major users of computing resources [1], and

evolved with the development of supercomputer systems.

In the early years, the vector machines, such as the Cray

systems (Cray 1, Cray X-MP, Cray Y-MP, etc.), and the

famous Japanese earth simulator [2], have been the major

computation platform for weather and climate modelers.

Then, from the year of 2000 or so, Intel, IBM, and SGI

clusters emerged as the replacements of the traditional vector

machines, and also made the transition of the atmospheric

modeling programs to the style of MPI programs. Along this

transition process, with the increase of cores within each pro-

cessor, we see the introduction of the hybrid parallelization

scheme that combines MPI and OpenMP.

In the recent decade, again, we see the transition of

supercomputers from homogeneous systems with only multi-

core CPU processors to heterogeneous systems with both

CPUs and many-core accelerators [3], [4]. This architectural

transition, again, brings significant changes to existing high-

performance computing software in various application do-

mains, such as geophysics exploration, sky simulation, and

phase-field simulation.

Unlike the above application domains that have made a

quick adaptation to the many-core accelerators, the transition

of the weather and climate models has been relatively slow.

One big reason is the millions lines of legacy code that

have been written for multi-core CPUs rather than many-

core accelerators. As a result, most existing efforts either

focus on standalone physics schemes ( [5], [6]), or focus on

the dynamic core part ( [7], [8]).

In contrast, complete porting projects of entire models

onto heterogeneous supercomputers are still few to be seen.

Typical examples include the GPU-based acceleration of

a next-generation high resolution meso-scale atmospheric

model being developed by the Japan Meteorological Agency

(JMA) [9], and complete porting of the Princeton Ocean

Model (POM) onto GPU devices [10], both of which take

a manual rewriting of the code into CUDA. Only in newly-

developed climate or weather models, such as NIM [11]

and COSMO [12], we see careful considerations for het-

erogeneous systems, and support for multiple architectures

including CPU, GPU, and MIC.

In general, while the weather and climate models are

calling for more computing power to support higher res-

olution and more complex physics [13], there is still a gap

between the increasing demand and the increasing supply in

the form of many-core accelerators. To fill the gap between

the demand and the supply, in our work, we perform an
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extensive refactor and optimization of the CAM atmospheric

model, for the Sunway TaihuLight Supercomputer, equipped

with many-core processors that consists of Management

Processing Elements (MPEs) and clusters of Computing

Processing Elements (CPEs). We pick CAM [14] as the

our target application, as it is one of the most widely used

advanced atmospheric model in the world. Note that, to

achieve a high scalability over the Sunway system with

millions of cores, we select to use the SE dynamic core

of CAM [15], and the other dynamic core options are not

considered in this work.
We use the Sunway OpenACC compiler (a customized

version that expands from the OpenACC 2.0 standard) as the

major tool to achieve a suitable mapping of CAM onto the

new Sunway heterogeneous many-core processors. Due to

large code base developed over the last few decades, and the

general demand from climate scientists to maintain a same

source, we try to minimize the manual refactoring efforts

(to only the dynamic core part), and mainly rely on the

source-to-source translation tools to achieve an automated

and efficient porting. Besides, compared with GPU and other

many-core accelerators, both the on-chip fast buffer and the

available memory bandwidth of the Sunway processor are

relatively limited (detailed in Section III), which make our

porting significantly more challenging. A large part of our

tools and optimization strategies would focus on minimizing

the memory footprints.
Our major contributions are as follows:

• Through a careful refactor of the SE dynamic core,

we manage to combine the distributed loops in the

major computational functions into aggregated multi-

level loops, and expose a suitable level of both paral-

lelism and variable storage space for the CPE cluster

architecture.

• For the physics parts, which includes numerous mod-

ules with different code styles by different scientists,

we design a loop transformation tool to identify and

expose the most suitable level of loop body for the

parallelization on the CPE cluster. In addition, we

also design a memory footprint analysis and reduction

tool, and a number of customized Sunway OpenACC

features, to fit the frequently-accessed variables into the

local fast buffer of the CPE.

• Comparing the refactored hybrid version using both

MPE and the CPE cluster against the ported version

using only MPE, we can achieve up to 22x speedup

for compute-intensive kernels, and 2x to 7x speedup

for kernels involving both computation and memory

operations. For the entire CAM model, we achieve a

performance improvement of around 2x.

• We manage to scale the refactored CAM model to

24,000 MPEs, and 1,536,000 CPEs, and achieve a

simulation speed of 2.81 modeling years per day for

the 25km resolution.

While the speedup is not significant, it provides an im-

portant base for us to continue tuning the performance of

large and complicated scientific programs, such as CAM.

II. RELATED WORK

When compared with other HPC application domains, the

porting of the climate models onto many-core architectures

has been relatively slow. Most early-stage efforts focused on

the standalone physics modules. The Weather Research and

Forecast (WRF) model, which is one of the most widely

used numerical weather prediction (NWP) program in the

world, was among one of the earliest weather/climate models

that integrate GPU-accelerated microphysics schemes [5].

Other typical examples include GPU-based accelerations

for the chemical kinetics modules in WRF-Chem [16], and

the shortwave radiation parameterization in CAM [6]. As

these physics modules are usually compute-intensive and do

not involve communications, GPU-based acceleration can

generally achieve a speedup of one order of magnitude.

In recent years, we start to see projects that accelerate

the dynamic cores (or the major computation parts of the

dynamics cores) on GPU devices, such as the efforts on

GRAPES [7], CAM-SE [8]. Compared with the physics

modules, the dynamic parts generally require communica-

tion across different grids, and are more difficult to achieve

good parallel performance. The speedup is usually in the

range of 3 to 5 times when comparing GPU solutions against

parallel CPU solutions.

Complete porting projects that move complete atmospher-

ic or ocean models onto many-core accelerators are still

few to see. One example is the GPU-based acceleration

of ASUCA, a next-generation high resolution meso-scale

atmospheric model being developed by the Japan Meteo-

rological Agency (JMA) [9], with an acceleration of 80-

fold when compared against a single CPU core, and an

excellent scalability for up to a few thousand nodes. Another

example is the complete porting of the Princeton Ocean

Model (POM) onto GPU devices [10], which performs a

manual porting and optimization of POM onto a hybrid

server with 4 GPUs, and achieves an equivalent performance

to 408 CPU cores. While the two projects have managed to

take advantage of GPU accelerators for complete models,

these are relatively less complicated models that involve only

tens of thousands of lines of code. Moreover, both projects

take the approach of manual rewriting of the program in

CUDA, which makes it difficult to keep a same source base

and not possible to migrate to other computing architectures.

For newly developed weather or climate models, such

as NIM [11] and COSMO [12], we see the emphasis on

supporting multiple accelerator architectures. For example,

by using OpenMP, OpenACC, and F2C-ACC directives,

NIM managed to maintain a single source for application

scientists, and the portability over CPU, GPU, and MIC
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architectures [11]. Similarly, the COSMO model also main-

tains both OpenMP and OpenACC directives for the physics

schemes in the model, to support both GPU and MIC. For

the dynamic core part, the COSMO model uses a C++-

based domain specific language to provide both CUDA and

OpenMP backends. As newly developed numerical models,

NIM and COSMO are relatively ahead in the transition, due

to less constraints from the code legacy.

Different from the projects mentioned above, our work

focuses on CAM 5.3, which is a complete atmospheric mod-

el with 560,000 lines of code, developed over the last few

decades. Moreover, our target platform is the new Sunway

processor, which is based on a hybrid many-core architecture

with a few MPEs and an array of CPEs. Compared with

GPU and other many-core accelerators, both the on-chip fast

buffer and the available memory bandwidth are more limited,

which make our porting significantly more challenging. For

such a large code base that have been developed over the

decades, we think a manual rewrite would not be a feasible

solution. Instead, in our approach, we would minimize the

manual refactoring (limited to the dynamic core part), and

rely on source-to-source translation tool to remap the code

onto the new architecture.

III. THE SUNWAY TAIHULIGHT SUPERCOMPUTER

A. The Hardware System

As one of the two 100PF systems supported by China’s

National 863 High-Tech Research and Development Pro-

gram in the 12th five-year plan, the Sunway TaihuLight

supercomputer [17] is the successor of the Sunway Bluelight

supercomputer hosted in the Jinan Supercomputer Center.

Similar to the Sunway Bluelight system, the new Sunway

supercomputer is also using China’s homegrown processor

designs.

The general architecture of the new Sunway heteroge-

neous processor [17] is shown in Figure 1. The proces-

sor includes 4 core-groups (CGs). Each CG includes one

management processing element (MPE), one computing

processing element (CPE) cluster with 8x8 CPEs, and one

memory controller (MC). These 4 groups are connected via

the network on chip (NoC). Each group has its own memory

space, which is connected to the MPE and the CPE cluster

through the MC. The processor connects to other outside

devices through a system interface (SI).

The MPE is a complete 64-bit RISC core, which can run

in both the user mode and the system mode. The MPE sup-

ports the complete interrupt functions, memory management,

superscalar, and out of order issue / execution. Therefore,

the MPE is an ideal core for handling management and

communication functions.

In contrast, the CPE is also a 64-bit RISC core, but with

limited functions. CPE can only run in the user mode, and

does not support interrupt functions. The design goal is to

achieve the maximum aggregated computing power, while

minimizing the complexity of the micro-architecture. The

CPE cluster is organized as an 8 by 8 mesh, with a mesh

network to achieve low-latency register data communication

among the 8 by 8 CPEs. The mesh also includes a mesh con-

troller that handles interrupt and synchronization controls.

In terms of the memory hierarchy, each MPE has a

32KB L1 instruction cache and a 32KB L1 data cache,

with a 256KB L2 cache for both instruction and data. Each

CPE has its own 16KB L1 instruction cache, and a 64KB

Scratch Pad Memory (SPM). The SPM can be configured as

either a fast buffer that support precise control by the users

or a software-emulated cache that achieves automatic data

caching in a software manner. However, as the performance

of the software-emulated cache is low, in most cases, we

need a user-controlled buffering scheme to acheive good

performance.

Combining the four CGs of MPE and CPE cluster-

s, each Sunway processor provides a peak performance

over 3 Tflops, with a performance-to-power ratio over 10

Gflops/Watt. While the computing performance and power

efficiency is among the top when compared with existing

GPU and MIC chips, the on-chip buffer size and the memory

bandwidth is relatively limited. The four CGs are sharing an

aggregated memory bandwidth of around 130 GB/s.

B. The Software System

On the software side, the TaihuLight system uses a cus-

tomized 64-bit Linux as the operating system, with a set of

compilation tools to support the development of applications

on the new Sunway processor architecture.

The compilation tool set includes the basic compiler

components, such as the C/C++, and Fortran compilers. In

addition to that, there is also a parallel compilation tool

that supports the OpenACC 2.0 syntax and targets the CPE

clusters. The customized Sunway OpenACC tool supports

mangement of parallel tasks, extraction of heterogeneous

code, and description of data transfers. Moreover, according

to the specific features of the Sunway processor architecture,

the Sunway OpenACC tool has also made a number of

syntax extensions from the original OpenACC 2.0 standard,

such as a fine control over buffering of multi-dimensional

array, and packing of distributed variables for data transfer

(detailed in Section VI-C).

IV. MAPPING CAM TO THE SUNWAY TAIHULIGHT

SUPERCOMPUTER: OUR GENERAL METHODOLOGY

A. General Workflow of CAM

CAM, which serves as the atmosphere component of the

Community Earth System Model (CESM) [18], is the most

computationally expensive component in typical configura-

tions. The computation workflow of CAM can be divided

into two phases: the dynamics and physics. The dynamics

advances the evolutionary equations for the atmospheric

flow, and the physics approximates sub-grid phenomena such

971



64k

64KB 
cache/core

MC MPEMaster core

Group

Slave cores

Main memory

64k

64KB 
cache/core

MC MPEMaster core

Group

Slave cores

Main memory

64k

64KB 
cache/core

MC MPEMaster core

Group

Slave cores

Main memory

64k

64KB 
cache/core

MC MPEMaster core

Group

Slave cores

Main memory

Network on Chip (NoC) SI

Figure 1. The general architecture of the new Sunway processor.

as clouds, precipitation processes, long/short-wave radiation,

and turbulent mixing. As shown in Figure 2, the physics

contains two phases. In phy run1, radiation, shallow and

deep advection are calculated, and in phy run2, aerosol, and

chemistry procedure are computed. State variables, such as

temperature and precipitation, are passed through between

two physic phases. The physics passes the traces, such as

u, v, to the dynamics. After initialization, the physics and

the dynamics are executed in turn during each simulation

time-step.

Figure 2. The general workflow of CAM.

B. Porting and Refactoring

As CAM has not been running on the Sunway architecture

before, the first step of our porting is to verify the modeling

results. As the current version of CAM has to be run in a

coupled mode with the Common Land Model (CLM), using

the F compset of CESM 1.2.1, we port both CAM and CLM

onto the Sunway system, using only MPE to perform the

computation.

After running the coupled CAM and CLM models on the

Sunway system for the duration of three years, we compare

results of major variables, as well as the conservation of

mass and energy, to verify the correctness of our ported

version. Compared with the results on the Intel clusters using

the same modeling parameter configuration, we see almost

identical distribution of key variables and an average relative

error in the range of 10−4. Figure 3 shows the variation of

the total mass over one year. We also observe an identical

variation cycle when compared with the results on the Intel

cluster.
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Figure 3. The variation of the total mass of a coupled CAM and CLM
run on the new Sunway system.

Using the ported MPE-only version as the starting point,

we then perform refactoring and optimization of both the

dynamic core and the physics schemes to make utilization

of the CPE clusters. During the process of expanding each

kernel from MPE-only to MPE-CPE hybrid mode, we take

the numerical result of the MPE-only mode as the true value,

and ensure that the difference of the results in the MPE-CPE

hybrid mode are within a similar range of the floating-point

rounding errors.

Considering both the code volume and complexity, for the

SE dynamic core, we take a manual approach to refactor

and optimize the code. For the physics part, we rely on our

source-to-source translation tools to perform loop transfor-

mation, and to reduce the memory footprint for the on-chip

fast buffer (the SPM of each CPE).
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V. REFACTORING AND OPTIMIZATION OF THE SE

DYNAMIC CORE

A. Major Challenges and Our Solutions
The current CAM code is taking a hybrid parallelization

scheme that combines MPI and OpenMP to parallelize the

computation. As MPI is used for the inter-node paralleliza-

tion and OpenMP is used for the intra-node parallelization,

we generally apply a configuration with a large number of

MPI processes (hundreds to thousands), and small number

of OpenMP threads (8 to 16). In the Sunway system, we are

dealing with groups with one MPE and 64 CPEs. Therefore,

our first challenge is that a direct map from OpenMP to

OpenACC would not provide a suitable level of parallelism

for the CPE cluster.
The other challenge relates to the buffering of data.

As mentioned in Section III-A, 64KB SPM of each CPE

needs to be fully controlled by the user, either through a

customized buffering scheme, or a software-emulated cache

scheme. Our experiments show that the emulated software

cache scheme is not efficient enough to provide performance

benefits. Therefore, in most cases, we need to design a

buffering scheme that loads the proper data into the SPM.
For the first challenge of achieving a suitable level of

parallelism for CPE clusters, we do adjustments of both

the computational sequence and the loop structures, so as

to aggregate enough computations, and to enable the right

number of parallel threads. For the second challenge of data

buffering, on one hand, we refine the code to minimize the

usage of intermediate variables; on the other hand, we design

customized buffering schemes to determine when and where

to load or unload data arrays.
In the following subsection, we take the Euler step

function (the most time consumption part of the SE dynamic

core) as the example to demonstrate our refactorization and

optimization schemes in details.

B. Refactorization of the Euler step Function
The general structure of the Euler step function is

shown in block 1© of Figure 4.
The Euler step function is the basic forward Euler

component used to construct the Strong Stability-Preserving

(SSP) Runge-Kutta (RK) methods, consisting of the follow-

ing three major parts:

1) computation of the biharmonic mixing term and its

min/max values (later used as limiters);

2) the 2D advection step that updates each tracer’s Qdp

(the vertical integration result);

3) MPI communication for boundary exchange, including

the preparation and package of data before that.

Inside these three major parts, there are mainly three types

of loops, also shown in block 2© of Figure 4:

• the ie loop processes each column that needs to be up-

dated by the Euler step function (48602 and 777602

for resolution of ne30 and ne120, respectively);

• the q loop iterates over each tracer (5, 25, and 108

tracers for different configurations);

• the k loop iterates over the vertical levels, which is 30

in the default configuration of CAM.

The first part of biharmonic value calculation consists of

four stages, each of which is a three-level loop that iterates

for ie, k, and q (shown in the upper part of block 2©). In

the original parallelization scheme, OpenMP is used for the

second level loop of k. The value of k corresponds to the

number of vertical levels in CAM, usually in the range of 30

to 50, which does not provide enough parallelism for the 64

CPEs. Moreover, while the separate four loops do not bring

issues for the CPU cache hierarchy, for the user-controlled

SPM of the Sunway CPE, separate loops require separate

SPM loading operations, thus increasing both the loading

cost and the programming complexity. To resolve this issue,

we aggregate the four separate loops into one unified loop.

To expose enough parallelism for the CPE cluster, we switch

the loop levels of k and q to achieve consecutive memory

access of the (k, q, ie) array, and collapse ie and q into one

level of loop, with a larger number of iterations to assign

to different CPEs (the exact transformation is shown in the

upper part of block 3©, and the left part of block 4©, 5©,

and 6©).
Compared with the biharmonic part, the second advection

part is a more complex nested loop and consumes most of

the time in the Euler step function (the lower part of block
2©). The outermost loop is an ie-loop. Within the ie-loop,

we first have a k-loop that calculates the delta pressure and

the initial velocity. Then, a two-level nested loop that iterates

over q and k advances the objective function. In the end, a

k-loop prepares the data for the boundary communication

afterwards.
The major issue with the advection part is the distributed

style of loop bodies, which increases the difficulty in both

parallelization and data buffering. It is straightforward to

aggregate the three k-loops in the two-level nested loop

in the middle into one loop. However, due to variable

dependencies, the first and the last k-loop cannot be easily

congregated with the middle loop.
To resolve the above issue and to aggregate these separate

loops, we firstly try the option to switch the q-loop and

the k-loop in the middle two-level nested loop, so as to

later aggregate the three k-loops into a larger one. While

we manage to achieve an aggregated loop in this way, the

resulting loop body involves too many variables to fit into

the SPM of CPE.
Therefore, instead of aggregating the loops at the k level,

we split the k-loops at the beginning and the end of the

advection part into the two-level loop that iterates over q
and k. The related cost is that these operations that used to

be repeated for k times, now need to be performed for q · k
times (as shown in the lower part of block 3©). Although we

pay the cost of repetitive computation, we can now reformat
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do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
qmin(k,q,ie) = …
qmax(k,q,ie) = …
Qtens(k,q,ie) = …

end do
end do

end do

Euler_step:

do ie = nets, nete
compute Q min/max values for lim8
compute Biharmonic mixing term f

end do

do ie = nets, nete
2D advection step
data packing

end do

Bonundary exchange

Data extracting

do ie = nets, nete
do k = 1, nlev

dp(k) = func_1()
do q = 1, qsize

Qtens(k,q,ie) = func_2(dp(k))
end do

end do
end do

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
qmin(k,q,ie) = …
qmax(k,q,ie) = …

end do
end do

end do

do ie = nets, nete 
do k = 1, nlev   

do q = 1, qsize
Qtens(k,q,ie) = …        

end do     
end do

end do
Data packing

do ie = nets, nete
do q = 1, qsize

do k = 1, nlev
….

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

dp0 = func_3()
dpdiss = func_4()
do q = 1, qsize

Qtens(k,q,ie) = func_5(dp0, 
dpdiss)

end do
end do

end do
do ie = nets, nete

do k = 1, nlev
dp(k) = func_5()
Vstar(k) = func_6()

end do

do q = 1, qsize
do k = 1, nlev

Qtens(k,q,ie) = 
func_7(dp(k), Vstar(k))

end do     

do k = 1, nlev
dp_star(k) = func_8(dp(k))

end do         

do k = 1, nlev
Qtens(k,q,ie) = 

func_9(dp_star(k))
end do

end do
Data packing

end do

optimized:

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
Qtens(k,q,ie) = func_2(func_1())

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
qmin(k,q,ie) = …
qmax(k,q,ie) = …

end do
end do

end do

do ie = nets, nete
do q = 1, qsize

do k = 1, nlev
….

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
Qtens(k,q,ie) =

func_5(func_3(),func_4())
end do

end do
end do

do ie = nets, nete    
do q = 1, qsize

do k = 1, nlev
Qtens(k,q,ie) = 

func_7(func_5(),func_6())
end do     

do k = 1, nlev
Qtens(k,q,ie) = 

func_9(func_8(func_5())) 
end do

end do
Data packing

end do

do ie = nets, nete
do q = 1, qsize

do k = 1, nlev
qmin(k,q,ie) = …
qmax(k,q,ie) = …
Qtens(k,q,ie) = …

end do
end do

end do

do ie = nets, nete
do q = 1, qsize

do k = 1, nlev
Qtens(k,q,ie) = …        

end do     
end do

end do
Data packing

!$ACC PARALLEL LOOP
do ie_q = 1, qsize*(nete-nets)

do k = 1, nlev
q = func(ie_q)
ie = func(ie_q)
qmin(k,q,ie) = …
qmax(k,q,ie) = …
Qtens(k,q,ie) = …

end do
end do

!$ACC PARALLEL LOOP
do ie_q = 1, 
qsize*(nete-nets)    

do k = 1, nlev      
q = func(ie_q)
ie = func(ie_q)
Qtens(k,q,ie) = …        

end do     
end do
!$ACC PARALLEL LOOP
Data packing

1

2

3

4

5

6

Figure 4. The general structure of the Euler step function, and our corresponding refactor of the biharmonic computation part and the advection part.

the loops into a nested (ie, q, k) three-level loop. Similarly,

we can then collapse the ie-loop and the q-loop to expose

enough parallelism (as shown in the right part of block 4©,
5©, and 6©). The required memory space of the intermediate

variables of the resulting loop body is also reduced to fit

into the SPM.

By performing the above transform of loops and the

corresponding optimization for the buffering of local vari-

ables, we can achieve 22x speedup for the advection part,

10x speedup for the biharmonic part, and 7x speedup for

the advection part, with a 2x to 4x speedup for the entire

Euler step function.

We apply similar refactorization and optimization

schemes to the compute and apply rhs function

that computes a leapfrog timestep, and the

advance hypervis dp function that updates the

temperature. In addition, we also refactorize and parallelize

the parts that perform packing and unpacking of data

elements for the halo communication stage, so as to

improve the overall performance of the entire SE dynamic

core.

VI. REFACTORING AND OPTIMIZATION OF THE PHYSICS

SCHEMES

A. The General Parallelization Scheme

As shown in Figure 5, in most physics schemes, the

computation is performed on the columns. Each column

consists of the different vertical levels of the same surface
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location. The computation of each column is completely

independent, which provides the parallelism in the physics

schemes. In order to achieve dynamic load balancing, CAM

generally organize columns in different locations into one

chunk, and assign each chunk to a different OpenMP thread.

column (col) …
…

chunk

……

pver

Figure 5. The organization of columns and chunks in the physics schemes
of CAM.

In our design, we follow a similar approach to parallelize

over different chunks. However, as the corresponding loop

body is usually at the outermost level (such as the example of

phy run1 shown in Figure 7), the loop body would involve

a huge volume of data variables and long sequences of

instructions that could overwhelm the private instruction

cache and SPM of each CPE.

Our solution is to expose the most suitable level of

loop body to the Sunway OpenACC compiler, so as to

provide a suitable level of intensity in both computation

and data variables. To achieve this goal, we develop a loop

transformation tool that moves the loop into the right level of

the function, and serves as a preprocessor for the OpenACC

compiler. To further reduce the storage space of variables

and arrays that are related to the functions targeting CPE

clusters, we also develop a variable storage analysis and

reduction tool to minimize the required storage cost, and to

fit the functions into the 64KB SPM of the CPE architecture.

In both tools, we utilize the ROSE source-to-source com-

piler [19] to construct a code translator to analyze the code

and to generate the new code. By using the source-to-source

transformation, we minimize the efforts and errors related to

the manual rewriting of the programs.

B. The Loop Transformation Tool

Figure 6 shows a typical example of our loop transforma-

tion tool. For the target function call in a do-loop, we do the

transform as follows: 1) lift the function call statement from

the scope of do-loop to the upper scope and remove the do-

loop statement; 2) push the loop index upper bound (m in

the example) back into the function call argument list; and 3)

find the array parameters containing the do-loop index (i in

the figure) and replace the very index with ”:”, which means

the entire dimension of this array is passed in. The function

declaration, which is usually written in another source file, is

located and the code is transformed by the following rules: 1)

the parameter declarations are transformed in the same way

with the function call statement; 2) the dimension of all the

local parameters is expanded by 1 if not explicitly disabled

by the developers; 3) for arrays whose dimension changes

in the declarations, the array reference in the function body

should also be changed correspondingly; and 4) move the

original do-loop into the body of the function declaration

and split the loop.

Do i = 1, m
    call F(A, B(i), C(i,:))
End do

Subroutine F(A, B, C)
    !parameter declaration
    real :: A, B
    real, dimension(:) :: C 
  
    !local variable declaration
    real :: X, Y
    
    !execution    
    X = 1
    Y = 1
    call lower1(X, C)
    call lower2(Y, C)  
    B = X+Y
    C(:) = C(:) + X*Y  
End

Subroutine F(A, B, C, m)
    !parameter declaration
    real :: A
    real, dimension(:) :: B
    real, dimension(:,:) :: C
    integer :: m 
  
    !local variable declaration
    real, dimension(m) :: X, Y
    
    !execution
    do i = 1, m    
        X(i) = 1
        Y(i) = 2
        call lower1(X(i), C(i, :))
    end do
    do i = 1, m 
        call lower2(Y(i), C(i, :))
        B(i) = X(i)+Y(i)
        C(i, :) = X(i)*Y(i)
    end do  
End

call F(A, B(:), C(:,:), m)

Figure 6. A typical example of the loop transformation tool.

A typical loop transform scenario is shown in Figure 7,

which corresponds to the first part of the physics schemes,

accounting for over 80% computation time of all the physics

parts. In the original code, the OpenMP parallelization

scheme happens on the outermost loop of different chunks

(as shown in block 1© of Figure 7). While such paral-

lelization scheme fits the OpenMP threads on the multi-core

CPU, the threads with a long sequence of computations and

loads of intermediate variables can easily overwhelm the

local faster buffer of the CPE, leading to the extremely low

performance of the CPE threads. To resolve such issues,

we apply the tool to move the chunk loop to the specific

physics scheme function (block 2© of Figure 7), and split

the large loop into separate loops for each separate physics

scheme (block 3© of Figure 7). If the function body at

such a level is still too complicated to fit into the 64-KB

SPM of the CPE, we can further apply the tool to move

the chunk loop to an even deeper level of the call stack.

Such as the function of zm conv tend function, we could

further move the chunk loop to the four sub-components of

the zm conv tend function (as shown in block 4© and 5©
of Figure 7).
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do begin_chunk to end_chunk 
  tphysbc() 
  { 
    convect_deep_tend(6.47%) 
    convect_shallow_tend(15.57%) 
    macrop_driver_tend(8.38%) 
    microp_aero_run(4.29%) 
    microp_driver_tend(7.13%) 
    aerosol_wet_intr(4.29%) 
    convect_deep_tend_2(0.51%) 
    radiation_tend(54.07%) 
  } 
enddo 

tphysbc() 
{ 
  do begin_chunk to end_chunk 
    convect_deep_tend(6.47%) 
    convect_shallow_tend(15.57%) 
    macrop_driver_tend(8.38%) 
    microp_aero_run(4.29%) 
    microp_driver_tend(7.13%) 
    aerosol_wet_intr(4.29%) 
    convect_deep_tend_2(0.51%) 
    radiation_tend(54.07%) 
  enddo 
} 

tphysbc() 
{ 
  do begin_chunk to end_chunk 
    convect_deep_tend(6.47%) 
  enddo 
  …… 
 do begin_chunk to end_chunk 
    microp_driver_tend(7.13%) 
 enddo 
  …… 
 do begin_chunk to end_chunk   
    radiation_tend(54.07%) 
  enddo 
} 

do begin_chunk to end_chunk 
  convect_deep_tend(6.47%) 
  { 
    zm_conv_tend(6.47%) 
    { 
      zm_convr(2.03%) 
      zm_conv_evap() 
      montran() 
      convtranc(0.06%) 
    } 
  } 
enddo 
 

convect_deep_tend(6.47%) 
{ 
  zm_conv_tend(6.47%) 
  { 
      do begin_chunk to end_chunk 
        zm_convr(2.03%) 
      enddo 
      do begin_chunk to end_chunk 
        zm_conv_evap() 
      enddo  
      do begin_chunk to end_chunk 
        montran() 
      enddo 
     do begin_chunk to end_chunk 
        convtranc(0.06%) 
      enddo 
  } 
} 

1 2 
3 

4 

5 

Figure 7. Loop permutation and split for the first part of physics schemes in CAM.

C. Variable Storage Space Analysis and Reduction Tool

Our variable analysis and reduction tool provides a num-

ber of basic functions: 1) to estimate the storage require-

ments of the variable and arrays in the current function

region (how large storage is needed); 2) to identify the

lifespan of the variables and arrays (how long is the storage

needed). Based on the collected information, our tool can

then determine whether the variables and arrays of each CPE

thread can fit into the 64KB SPM.

In the cases that the 64KB SPM is not large enough to

store the values, our tool performs a number of automated

optimizations to reduce the storage space.

The most effective optimization is to reuse the memory

space for intermediate arrays. In current physics modules,

it is common that tens of local arrays are declared and

referenced, of which the dimensions are identical. The poor

coding style usually makes the SPM insufficient to hold all

the local data. We first analyze the lifespan of these local

arrays statement by statement in the scope of the function.

The arrays whose lifespan do not overlap can reuse the same

storage block. As shown in Figure 8, the original Fortran

function accesses 7 intermediate arrays (A to G) during the

computation process. By analyzing the lifespan of these 7

arrays, which are annotated by the lines above these arrays,

we can determine that 4 arrays would provide sufficient

space to store these 7 arrays in different stages of the

execution process. The mapping of the original arrays and

the new arrays can be calculated in advance as the shown by

the array tables in the lower part of the figure. Our tool first

adds the new array declarations in the function body, and

turn the original local array declaration into pointers. Then

the pointer assignment statements are inserted according to

the mapping.
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Figure 8. A general example of the loop transformation tool.

For the cases that the functions still involve too many

variables to fit into the SPM, we can apply other methods

to further reduce the variable storage space. One strategy is

to perform a finer control over the multi-dimensional array.

As shown in Figure 9, with the support of the Sunway

OpenACC, we can specifically request to put a certain row

of the 2D array A into the SPM for a given iteration of the

inner loop. This feature is an expansion from the standard

OpenACC syntax, which enables the CPE OpenACC thread

to pre-load the specific row instead of the entire 2D array,

thus significantly reducing the required data storage space.
Another expanded feature of the Sunway OpenACC that

could potentially improve the data copy efficiency is the in-

troduction of pack, packin, and packout clauses. The pack,

packin, and packout clauses provide similar functions to

the copy, copyin, and copyout clauses. However, for pack
clauses, the compiler would go through the variable list,
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double B [ 1 0 ] ; / / i n
double A[ 1 0 ] [ 1 0 ] ; / / i n o u t

#pragma acc i n (B)
f o r ( i = 0 ; i < 1 0 ; i ++){

# pragma acc i n o u t (A[ i ] )
f o r ( j = 0 ; j < 1 0 ; j ++){

A[ i ] [ j ] += B[ j ] ;
}

}

Figure 9. Support for fine control over array variables: an example.

pack the distributed variables into one continuous memory

space, and perform the transfer of the data more efficiently.

Our experiments demonstrate that the pack clauses can be

quite helpful for the physics schemes that generally involves

dozens of input and output parameters.

VII. RESULTS

A. Results of the Kernels Running on CPE Clusters

In this section, we evaluate the individual functions/ker-

nels that we port onto the Sunway processor, and analyze

the performance benefits for using the CPE clusters.

Figure 10 shows the speedup of the major kernels in the

CAM-SE dynamic core, as well as their proportions in the

total runtime of the dynamic core part. The speedup we

demonstrate here is comparing the computational perfor-

mance of the hybrid version that uses both the MPE and

the 8x8 CPE cluster against the starting-point version that

only uses the MPE.

For the compute-intensive kernels, such as the major

computational parts in the advection step function (24.58%

of the total runtime), and the compute and apply rhs
function (37.29% of the total run time), we can achieve

a speedup of 7x to 22x. Especially for the most time-

consuming advection step function, we can achieve a sig-

nificant speedup of 22x, which is a quite efficient utilization

of the 64 CPEs.

For the other parts in these functions, a lot of the op-

erations are memory copies that prepare the message for

the following halo communication. These parts are mostly

memory-bound, but the multi-threading by the 64 CPEs can

still provide a speedup that ranges from 2x to 7x.

Similarly, Figure 11 shows the speedup of the major

kernels in the physics schemes of CAM, as well as their

proportions in the total runtime of the physics part. Different

from the CAM-SE dynamic core, the physics schemes

generally do not involve memory copy or communication

operations, and are mainly dominated by computations.

However, as the physics schemes involve a significantly

large code base with different code styles for each scheme,

we mainly rely on the loop transformation and variable

reduction tools described in Section VI. As a result, the

22
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Figure 10. The speedup of major kernels in CAM-SE that we port onto
the CPE clusters, and their proportions in the total runtime of the dynamic
core part. The speedup is comparing the performance of the kernel running
on 1 MPE and 64 CPEs against the performance of the kernel running on
only 1 MPE.

speedup we achieve for different kernels varies with the

specific features of the kernel. The first three kernels in

Figure 11 all include intensive computation operations.

However, only the microp mg1 0 kernel demonstrates a

significant speedup of 14x, as the intermediate variables and

arrays provide a nice fit to the SPM of the CPE clusters

after the automated optimizations. In contrast, the speedup

of the convect shallow tend kernel is relatively low (1.6x),

mainly because the intermediate variables and arrays (even

after the reduction optimization) are too large to fit into the

SPM. Therefore, the performance drops down significantly

due to the frequent access to the main memory. For the

case of the zm convr kernel, as it involves a deep function

call stack (as mentioned in Section VI-B), the performance

improvement (7x) is not as high as the microp mg1 0
kernel.
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Figure 11. The speedup of major kernels in the physics schemes of CAM
that we port onto the CPE clusters, and their proportions in the total runtime
of the physics part. The speedup is comparing the performance of the kernel
running on 1 MPE and 64 CPEs against the performance of the kernel
running on only 1 MPE.
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B. Performance of the SE Dynamic Core in Different Par-
allel Scales

Figure 12 demonstrates the execution time of the entire

CAM-SE dynamic core that we can achieve with different

parallel scales and different simulation configurations. The

parallel scale is described by the number of CGs, as we

generally run one MPI process for each CG. Each CG

includes 1 MPE and 64 CPEs. For the simulation config-

uration, we change the resolution and the number of tracers.

ne30 and ne120 refer to the 100-km and 25-km resolution

configurations respectively. The number of tracers is denoted

by qsize, which can be 25 (default configuration), or 108

(heavy chemistry configuration).

While we achieve up to 22x speedup for single kernels

within the SE dynamic core, when we consider the entire

SE (including computation, memory copy, communication,

and the serial parts that simply can not take advantage of

the CPEs), the speedup is between 2 times and 4 times.

In general, the speedup drops down as the parallel scale

increases, which corresponds to the increased portion of

communication and reduced portion of computation for each

CG. As for the number of tracers, a larger qsize would bring

a better speedup, as there would be a larger q to process for

the CPE clusters (as discussed in Section V).
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Figure 12. The execution time of the CAM-SE dynamic core that we port
onto the CPE clusters with different parallel scales and different simulation
configurations. We demonstrate both the time for running the CAM-SE
dynamic core on both MPEs and CPE clusters and the time for running on
only MPEs. The x axis describes the number of CGs (each CG includes
1 MPE and 64 CPEs). ne30 and ne120 refer to the 100-km and 25-km
resolution configurations respectively. qsize denotes the number of tracers
used.

C. Performance of the Physics Part in Different Parallel
Scales

In contrast to the dynamic core, as the physics schemes

do not involve MPI communications, the performance im-

provement achieved from the CPE clusters does not change

significantly with the parallel scale.

Figure 12 demonstrates the execution time of the entire

physics part that we can achieve with different parallel scales

and different resolution configurations. With the number

of parallel CGs increasing, we see a constant performance

improvement of two times by using both MPE and CPEs.
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Figure 13. The execution time of the physics part that we port onto
the CPE clusters with different parallel scales and different simulation
configurations. Similarly, we demonstrate both the time for running on both
MPEs and CPE clusters and the time for running on only MPEs. The x
axis describes the number of CGs (each CG includes 1 MPE and 64 CPEs).
ne30 and ne120 refer to the 100-km and 25-km resolution configurations
respectively.

D. Speedup of the entire CAM model

Figure 14 shows the simulation speed of the CAM model

(measured in Model Years Per Day (MYPD)) on the new

Sunway supercomputer, with the number of CGs increasing

from 1,024 to 24,000. Similar to previous reported results

on other systems, the CAM model demonstrates a good

scalability on the new Sunway supercomputer system, with

the simulation speed increasing steadily with the number

of CGs. For the large scale cases, we demonstrate the

performances for using MPE only, and using both MPE and

CPE clusters. As shown in the last two points in Figure

14, by using both the MPE and the CPE clusters, we can

further improve the simulation speed by another 2x. When

scaling the CAM model to 24,000 CGs (24,000 MPEs, and

1,536,000 CPEs), we can achieve a simulation speed of 2.81

MYPD.

E. Performance Result Analysis

In previous sections, we provide the general results about

the performance of the refactored and optimized CAM-SE

model on the Sunway TaihuLight system. The MPE and

CPE hybrid architecture of the new Sunway system is largely

different from previous heterogeneous systems. While MPE

is like a CPU core, and the CPE cluster is like the many-

core accelerator, both the CPU and the accelerator are now

fused into one chip. The speedup of a complete CG (1 MPE

and 64 CPEs) over the one MPE provides an important

indication about how well our refactoring method and code-

transformation tools can port the heavy codes of CAM-SE,
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Figure 14. The simulation speed of the CAM model (measured in Model
Years Per Day (MYPD)) on the new Sunway supercomputer, with the
number of CGs increasing from 1,024 to 24,000. For the large-scale run
with 12,000 and 24,000 CGs, we show the performances of the model
for three scenarios: (1) using MPE only; (2) using MPE+CPE for the
dynamic core; (3) using MPE+CPE for both the dynamic core and the
physics schemes.

which were originally written for multi-core CPU, to the

new hybrid chip.

Both the MPE and the CPE support 256-bit vector

instructions. However, as the MPE supports dual issuing

of instructions and the CPE only supports single issuing

of instructions, the peak performance of one MPE (23.2

GFlops) is two times of the peak performances of one CPE

(11.6 GFlops). Therefore, in terms of computing capability,

each CG is equivalent to 33 MPEs. In terms of the memory

bandwidth, the measured bandwidths for the MPE and the 64

CPEs are 5 GB/s and 20 GB/s respectively. Thus, each CG is

only five times better than each MPE. These metrics provide

a general guideline about the performance improvement that

we can achieve when porting the code from one MPE to the

complete CG with additional 64 CPEs.

The speedup numbers we achieve for various dynamic

core and physics kernels align well with the ranges defined

by the above metrics. For compute-intensive kernels (such

as the advection step function), we see a speedup of 22

times, which is close to the 33 theoretical bound. For

memory-intensive kernels (such as edgeV pack euler and

edgeV packneighbor), the speedup is only 2 to 3 times,

which is more bounded by the bandwidth.

In contrast to our work, NCAR, ORNL, Cray, and NVIDI-

A’s collaborative effort on accelerating CAM-SE on Titan [8]

was focused on the most expensive kernels in the dynamic

core part. When moving from the multi-core CPU to the

many-core GPU (with the peak computing performance im-

proved by around 10 times and the peak memory bandwidth

improved by around 5 times), the GPU accelerator would

only bring around 6× speedup for expensive kernels, and

2× speedup for the entire model.

We originally expect a higher speedup for the kernels

in the physics parts, which are generally more compute-

intensive, and do not involve any communications. However,

due to the complexity of the physics codes, we rely on

our automated tools to perform the refactoring and the

optimization in this part. We think that the current low

speedup for certain kernels are partly due to the constraints

of our current tools. Therefore, one of our future plans is to

further improve our automated transformation tools, and to

involve manual optimizations for certain expensive physics

schemes, so as to further improve the performance of the

physics part.

For the performance of the entire model, as the execution

time is distributed in a large number of kernels, which

sometimes involve both memory and communication oper-

ations, the ported CAM-SE demonstrates a clear memory-

bound behavior. In our tested scenarios, porting onto CPEs

only improves the performance by roughly 2 times, which

we think is mostly constrained by the memory bandwidth

and the communication parts that have not yet been fully

optimized. The current model provides a simulation speed

of 2.81 MYPD for the resolution of 25 km, using 24,000

CGs (24,000 MPEs and 1,536,000 CPEs), which is similar to

the speed of around 2 MYPD for the high-resolution CESM

runs at the Yellowstone supercomputer of NCAR [18]. While

such a speed is still not good enough for scientists to perform

experiments of a few hundreds or even thousands of years,

we think it is a good starting point for our future efforts

that would further improve the speed and efficiency through

other algorithmic and architectural redesigns.

VIII. CONCLUSION

In this paper, we report our efforts on porting the CAM

model to the Sunway TaihuLight many-core supercomputer.

Due to the differences between the Sunway many-core

processor (4 CGs, each of which consists of 1 MPE and 64

CPEs) and the traditional multi-core CPUs, and especially

the 64KB SPM that needs to be explicitly controlled by the

user, we perform an extensive refactor of CAM to expose

the right level of parallelism to the 64 CPEs in each CG,

and apply various optimization techniques to fit the involved

variables and arrays into the 64KB SPM of each CPE. For

single kernels in both the dynamic core and the physics

schemes, we achieve 14x to 22x speedup for kernels that

provide a suitable fit to both the computational and memory

architecture of the CPE cluster. For kernels that are not

suitable, we can still achieve around 2x to 7x speedup after

applying the loop transformation tool and various variable

storage reduction tool. Our refactored CAM model shows a

good scalability on the Sunway TaihuLight supercomputer,

and can efficiently use up to 24,000 MPEs and 1,536,000

CPEs, and provide a simulation speed of 2.81 MYPD when

using the 25-km resolution.

While the speedup of the entire CAM model is not

significant, it provides an important base for us to continue

optimizing the performance of such a large and complicated
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scientific simulation program. In our future work, we will

continue working on our source-to-source translation tools

to provide an automated workflow. The goal is to refine

the refactor and optimization strategies for more suitable

mappings between the algorithm and the architecture, and

to improve the simulation speed of the model to a level that

makes high-resolution simulation an applicable scientific

tool on the Sunway system.
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