N)
)
Check for
updates

AdaPipe: Optimizing Pipeline Parallelism with
Adaptive Recomputation and Partitioning

Zhenbo Sun’, Huangi Cao’, Yuanwei Wang', Guanyu Feng’
Shengqi Chen', Haojie Wang', Wenguang Chen*
TTsinghua University, *Peng Cheng Laboratory
{sunzb20,caohq18,wangyw20,fgy18,csq20}@mails.tsinghua.edu.cn,{wanghaojie,cwgl@tsinghua.edu.cn

Abstract

Large language models (LLMs) have demonstrated power-
ful capabilities, requiring huge memory with their increas-
ing sizes and sequence lengths, thus demanding larger paral-
lel systems. The broadly adopted pipeline parallelism intro-
duces even heavier and unbalanced memory consumption.
Recomputation is a widely employed technique to mitigate
the problem but introduces extra computation overhead.

This paper proposes AdaPipe, which aims to find the op-
timized recomputation and pipeline stage partitioning strat-
egy. AdaPipe employs adaptive recomputation to maximize
memory utilization and reduce the computation cost of each
pipeline stage. A flexible stage partitioning algorithm is also
adopted to balance the computation between different sta-
ges. We evaluate AdaPipe by training two representative
models, GPT-3 (175B) and Llama 2 (70B), achieving up to
1.32x and 1.22X speedup on clusters with NVIDIA GPUs
and Ascend NPUs respectively.

ACM Reference Format:

Zhenbo Sun, Huangi Cao, Yuanwei Wang, Guanyu Feng, Shengqi
Chen, Haojie Wang, and Wenguang Chen. 2024. AdaPipe: Optimiz-
ing Pipeline Parallelism with Adaptive Recomputation and Parti-
tioning. In 29th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, Volume 3
(ASPLOS °24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3620666.3651359

1 Introduction

Deep learning models have evolved to possess more than
tens of billions of parameters recently in multiple scenarios,
including natural language [3, 10] and computer vision [7].
As a data-driven and parameter-sensitive method, the per-
formance of a deep learning model naturally develops as the
size of its parameters and training data scales up [11]. Such
large models cannot fit into the limited storage of one single

oo

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.
ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0386-7/24/04.
https://doi.org/10.1145/3620666.3651359

86

120 A
100 A
o
1 Mgy o o o o o o o e o o o o o
o 80 %,
> b T e,
5 1 .
g 60
g - . .
40 e —— - — - —
== Full ReComp. (4096) == No ReComp. (4096)
20 { =@ Full ReComp. (8192) =%+ No ReComp. (8192)
Full ReComp. (16384) No ReComp. (16384)
0 1 2 3 4 5 6 7
Stage ID

Figure 1. Simulated memory consumption for each stage
during training GPT-3 with sequences of 4096, 8192, and
16384 tokens and different recomputation strategies. The
dotted line is the hardware limit (80 GB) of the device. DP,
TP, and PP are 1, 8, and 8, resp.

computing device. Moreover, language models supporting
long context [4, 26] receive much attention on various tasks,
posing greater memory challenges to the training systems.

To support larger models and longer context, different
parallel strategies have been proposed, including data par-
allelism (DP) [17, 21, 24], Tensor Parallelism (TP) [16, 20,
32, 33] and Pipeline Parallelism (PP) [12, 13]. The growing
models that require supercomputer-scale hardware are lead-
ing the industry to adopt a mixture of these strategies. Pipe-
line parallelism is often used at the inter-node level during
training. It incurs minimal communication and fits the in-
terconnect between nodes which is normally slower than
intra-node communication between accelerators.

Pipeline-parallel systems need to schedule the forward
and backward passes of a large number of micro-batches to
better fill the pipeline and reduce bubbles. However, com-
puting the gradients requires intermediate results (i.e. acti-
vations) produced in the forward pass to be preserved until
its corresponding backward pass is finished, bringing sig-
nificant memory consumption. Even with proper schedul-
ing, the micro-batches in one iteration inevitably result in
huge and imbalanced memory usage across different sta-
ges. The state-of-the-art 1F1B scheduling mechanism [9] re-
quires workers in stage i out of p stages to preserve the in-
termediates of at most p — i micro-batches.

https://doi.org/10.1145/3620666.3651359
https://doi.org/10.1145/3620666.3651359
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3620666.3651359&domain=pdf&date_stamp=2024-04-27

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

To show the imbalance, we simulate the training process
of the GPT-3 [3] model and present the results in Figure 1 as
no recomputation. We also employ sequence parallelism [19]
and Flash Attention [6] that can reduce the memory cost of
activations and improve computation efficiency. As shown
in Figure 1, the issue of memory consumption and imbal-
ance becomes more severe with longer sequence length.

Given that pipeline parallelism distributes model parame-
ters and ZeRO [28] distributes optimizer states, the predom-
inant part of memory usage becomes the intermediate re-
sults. Recomputation [21] targets reducing memory usage
by only saving part of the intermediate results in the for-
ward pass. The rest will be recomputed during the backward
pass. The most typical recomputation strategy for transfor-
mer models is to only preserve inputs of the decoder layers
in the model, which we refer to as full recomputation. As
Figure 1 shows, it relieves memory consumption, but at the
cost of notably more computation.

Some techniques try to trade off between computation
and memory consumption. Existing works [1, 2, 19, 39] ei-
ther employ recomputation strategies on a coarse granular-
ity or manually and uniformly select certain operators to be
recomputed. These methods are not flexible enough to ad-
dress the imbalanced memory consumption across different
pipeline stages.

On the trade-off between computation cost and memory
savings in recomputation, we uncover the chance to meet
memory constraints at a minimal cost through recomputing
partially and differently in each stage. The imbalanced mem-
ory consumption is thus turned into imbalanced computa-
tion, suggesting a further optimization that assigns a differ-
ent number of layers to stages. Following this insight, we
design our system, AdaPipe, with the following core ideas:

Adaptive Recomputation. AdaPipe supports finer gran-
ularity of recomputation strategies by splitting the decoder
layer into finer computation units and allows different re-
computation strategies in different stages. To automate the
fine-grained recomputation in each stage, AdaPipe profiles
the computation and memory cost of each operator and con-
structs a performance model considering the homogeneity
of the transformer models to predict the memory consump-
tion more precisely. We propose a dynamic programming
(DP) algorithm that aims to find the optimal set of interme-
diate results to recompute for each pipeline stage.

Adaptive Partitioning. Adaptive recomputation turns
imbalance of memory into imbalance of computation: Ini-
tial stages recompute more, while the following stages have
more space to save the intermediates and perform less re-
computation. Therefore, AdaPipe further adjusts the num-
ber of layers in pipeline stages, with initial stages responsi-
ble for fewer layers, and later stages more, thus balancing
the computation cost. AdaPipe builds another level of DP

87

Zhenbo Sun et al.

algorithm upon the aforementioned recomputation DP re-
sults, to automatically and efficiently solve the optimizing
problem of stage division.

The main contributions of AdaPipe are:

e We propose Adaptive Recomputation, which supports
different recomputation strategies for different stages
to fully utilize memory and reduce recomputation cost.

e We propose Adaptive Partitioning based on 1F1B pipe-
line scheduling mechanism to re-balance computation
among stages with different recomputation strategies.

e We model the memory and time cost of different re-
computation and stage partitioning strategies, and fur-
ther design a two-level dynamic programming algo-
rithm to search for the near-optimal plans combining
Adaptive Recomputation and Partitioning.

e We implement AdaPipe on MindSpore and PyTorch,
achieving up to 1.32X speedup on NVIDIA GPUs and
1.22x on Ascend NPUs.

The rest of this paper is organized as follows. Section 2
introduces the background of pipeline parallelism and re-
computation technique. Section 3 presents the overview of
AdaPipe. Adaptive recomputation and the searching algo-
rithm are discussed in Section 4. Section 5 focuses on the
cost model and the DP algorithm of adaptive partitioning.
Section 6 describes the implementation of AdaPipe, and Sec-
tion 7 evaluates its performance. Finally, Section 8 discusses
related works, and Section 9 concludes this paper.

2 Background

We first define the notations used by the following sections
in Table 1.

Table 1. Notations Used in the Paper

Notation Description
b micro-batch size
n number of micro-batches
L number of layers
t tensor parallel size
d data parallel size (with ZeRO)
P pipeline parallel size

2.1 Pipeline Parallelism

Pipeline parallelism involves partitioning the computation
graph into sequential subgraphs and assigning subgraphs to
different stages. In the forward pass, each sample will flow
from the first stage to the last stage. Conversely, in the back-
ward pass, the gradients of each sample will flow reversely.
The computation of a single sample exhibits a sequential de-
pendency across the stages, indicating that one sample can-
not undergo simultaneous processing by two stages.

AdaPipe: Optimizing Pipeline Parallelism with Adaptive Recomputation and Partitioning

O Saved intermediate results [] Forward [] Backward [| Bubble

Stageo |0 [1]2|3[4]5 5043|210
allisnllans ga HHHHHF o
Stage 1 Uloj1]|2]3|4]> MEIESES EARNL
I EN NN NN N [ITTIT
0(1(2|3[4[5]|5|4[3|2(|1f0
Stage 2 \ T Time
Il I 1 LTI Tl
(2)GPipe
Stage0 | 0 | 1 | 2 0[3|1(4[2]|5083 4 5
A o T T T T T | |
Stage 1 01 o|2|1{3|2[4[3|5)4 5
0 M ml ml ml ul
Stage 2 ofof1f1]2l2]3]3 L4 4]515 .
h O | mills| me
Warmup | I Ending
Phase Steady Phase Phase
(b)1F1B scheduling mechanism

Figure 2. Scheduling mechanism of Pipeline Parallelism.

GPipe [13] employs a strategy of dividing samples into
smaller micro-batches. The process begins by conducting
the forward passes for all micro-batches sequentially, fol-
lowed by the backward passes, as depicted in Figure 2 (a).
This method allows GPipe to process different micro-batches
at various stages concurrently, thereby reducing bubbles and
enhancing the overall utilization of workers.

PipeDream [12] and DAPPLE [9] further propose the one-
forward-one-backward (1F1B) scheduling mechanism, which
effectively reduces memory consumption during training,
as shown in Figure 2 (b). The scheduling process of 1F1B
can be divided into three phases: warmup, steady, and end-
ing phase. Given p stages and n micro-batches, workers in
stage s will first perform the forward passes of p — s micro-
batches in the warmup phase, then process n—p+s backward
and forward passes alternately in the steady phase, and fi-
nally compute the backward passes of p — s micro-batches
in the ending phase.

The 1F1B mechanism has two main characteristics: (1)
Imbalanced memory usage. Workers in the stage s are re-
quired to save the intermediate results of p—s micro-batches
during the steady phase. Although 1F1B reduces the mem-
ory cost from O(n) (GPipe) to O(p), it still results in imbal-
anced memory utilization across different stages. (2) Influ-
ence of the number of micro-batches on training efficiency.
The number of bubbles of the 1F1B scheduling mechanism
is 2p — 2, which only depends on the pipeline parallel size.
When the pipeline parallel size is fixed, a larger number of
micro-batches indicates a longer steady phase and higher
efficiency. Since the running time of the steady phase is de-
termined by the slowest stage, recent studies [12, 40] have
proposed algorithms to partition the computation graph to
minimize the maximum computation time across all stages.

Megatron-LM [25] proposes an interleaved 1F1B sched-
uling mechanism by splitting the computation graph into
more subgraphs and assigning each stage with more than

88

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

one subgraph. This method reduces the bubble ratio while
bringing more communication overhead.

Chimera [22] and Hanayo [23] further introduce bidirec-
tional pipelines that can reduce the bubble ratio. However,
when the number of micro-batches exceeds the pipeline par-
allel size, their scheduling mechanisms tend to introduce
more bubbles than the 1F1B scheduling mechanism. Addi-
tionally, these methods intensify memory pressure since mo-
del parameters are duplicated across pipeline stages.

2.2 Recomputation

The recomputation technique drops the intermediate results
in the forward pass and recomputes them in the backward
pass. While this approach effectively decreases the memory
consumption of workers, it also leads to an increased compu-
tational burden, requiring the computation of the forward
pass to be conducted again in the backward pass.

Prior study [5] reduces the memory usage of a model with
L sequential layers to O(VL) by saving the activation every
O(VL) layers. During the backward pass, it recomputes and
saves the activations of O(VL) layers into a buffer. Once
the gradients of these layers have been computed, the cor-
responding activations are released and the buffer is reused
for the next O(VL) layers. Consequently, the size of the re-
served buffer should also be proportional to O(VL).

Recent studies [1, 2] propose methods to find the best re-
computation strategy for models in a chain structure with
limited memory. However, since the architectures of the At-
tention and Feed-Forward layers in transformer models are
complex, the above studies treat them as singular layers. The
granularity of the recomputation strategy is thus too coarse,
as both memory-intensive and computation-intensive oper-
ators exist within one layer. vPipe [39] can further divide
Attention and Feed-Forward layers into finer layers by pro-
cessing residual connections. Nevertheless, it is still not able
to handle operators with multiple activation inputs beyond
residual connections, such as the computation of the atten-
tion scores within Attention layers.

The memory consumption of activations within one de-
coder layer is huge, and this issue is further exacerbated
when employing pipeline parallelism. When training large
models with long sequences, storing all activations of de-
coder layers becomes impossible for workers in the first
stage. Instead of saving all activations of one layer, recent
work [19] proposes selective recomputation. It only recom-
putes the Softmax, Dropout, and Batch Matmal operators
in each decoder layer because the activations of these ops
occupy a large proportion of memory. Recently, Flash At-
tention [6] fuses the above operators into one operator and
eliminates these memory-consuming activations naturally,
which supersedes the selective recomputation strategy.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

[] Recomputed Unit [[] Saved Unit

Zhenbo Sun et al.

7/, Reduced Cost \\ Imbalance Bubble [J] Forward Pass [ll] Backward Pass

I Original: Full recomputation for all stages I

Att. Layer FFN Layer : Att. Layer FFN Layer
I Stage 0

Mem,

Mem [FIE PR N AN

, O HNENERFANEE N
I

.

\ Stage 0

Stage 1

1 1
1 Stage 1
1 : 1 S 1 1 & | /
I Stage 0 I tage I /E;me
I il ' = |
T : |-|- Opt. 1: Adaptive recomputation, reduce computation time [
1 1 T
1 1
atetayer PN Layer § At Lyer PPN ayer v [l EEEEEEEEOEN
\ (

Mem, NI N A N N
i i i

LR

R
g
¢

me

TR R

i i-'- Opt. 2: Adaptive partitioning, remove imbalance bubble i

1
Att. Layer : FFN Layer Att.Layer FFN Layer
1

Stage 1

Stage 0 ! Stage 1

: : i\ Stage 0
N Me
1
1

Mem. I ndnﬁin:l

m

SIS

| I i
L 01 1]2r2 (33 4] 4

Time

Figure 3. Overview of AdaPipe. The left part demonstrates the recomputation strategies of each unit and the partitioning
strategies of the computation graph. The right shows the memory usage for intermediates and the timeline of stages.

3 Overview of AdaPipe

As mentioned in Section 2, imbalanced memory consump-
tion exists across various stages within the pipeline paral-
lelism framework. Specifically, with 1F1B scheduling mech-
anism, the last stage will have more free space for activa-
tions because they have fewer micro-batches to save, show-
ing an opportunity to alleviate the need for recomputation.

The top graph in Figure 3 shows a minimal case of 1F1B
scheduling with only two stages. The layers are uniformly
distributed among the stages, resulting in a well-balanced
pipeline. In this configuration, all decoder layers are fully
recomputed during the backward pass, ensuring minimal
memory usage for intermediate results.

To demonstrate adaptive recomputation, we can exploit
the remaining memory of workers in both stages as in the
middle graph of Figure 3. The computation graph is split
into various computation units, each comprising several
operators that are either recomputed or saved together. For
a recomputed unit, no internal intermediate tensors are pre-
served. On the contrary, a saved unit will get its internal and
result tensors saved for backward just like without the re-
computation technique. AdaPipe autonomously determines
whether each unit is recomputed or saved for different sta-
ges. This results in a strategy where more intermediate re-
sults are saved in stage 0, and significantly more in stage 1,

89

creating varied recomputation approaches for these stages.
This optimized strategy enhances the performance of back-
ward passes in stage 0 and 1, resulting in shorter warmup
and ending phases. Yet the steady phase is not optimized
much, because stage 0 needs to recompute more intermedi-
ates than stage 1, thus becoming the bottleneck.

In order to further enhance the efficiency of the steady
phase, adaptive partitioning is employed, as illustrated in
the bottom graph of Figure 3. Leveraging the sequential na-
ture of the layers in transformer models, we can adjust the
stage boundaries, introducing variability in the number or
length of layers within each stage. Stage 0 can then trans-
fer some layers to stage 1, thereby rebalancing and accel-
erating the steady phase of the pipeline. AdaPipe again au-
tomatically determines where to partition the computation
graph according to the model structure and training config-
urations such as the number of micro-batches.

As we have mentioned in Section 2, the proportion of
the steady phase of the 1F1B scheduling mechanism is de-
termined by the number of micro-batches. When the num-
ber of micro-batches is small, adaptive recomputation con-
tributes more to the optimization of AdaPipe, since it sig-
nificantly improves the warmup and the ending phases. On
the contrary, if more micro-batches are presented in one it-
eration, adaptive partitioning will show its effectiveness in
the steady phase.

AdaPipe: Optimizing Pipeline Parallelism with Adaptive Recomputation and Partitioning

AdaPipe can optimize the strategies of recomputation and
partitioning based on 3D parallelism, i.e. tensor, data, and
pipeline parallelism. The tensor- and data-parallel sizes are
the same across different stages. Given a 3D parallelism strat-
egy, we first construct a performance model to analyze both
the time and memory consumption, in which the time cost is
optimized against the memory constraints. Then a two-level
dynamic programming (DP) algorithm is proposed to opti-
mize the problem. It is worth noting that the partitioning
optimization cooperates with the previous recomputation
optimization throughout the DP algorithm so that we don’t
fall into some local minimums. The performance model and
algorithm details will be covered in the following Section 4
and Section 5. Both optimizations are automated, enabling
AdaPipe to handle complicated large neural networks across
different clusters and configurations.

4 Adaptive Recomputation

Traditional frameworks typically employ the same recompu-
tation strategy across diverse layers and stages. However, as
highlighted in Section 2, there exists an inherent imbalance
in memory usage among different stages. AdaPipe allows
each stage to find the best recomputation strategy accord-
ing to its memory pressure individually.

To search for the best recomputation strategy for differ-
ent stages, we analyze the inner structure of the transformer
models and split the layers into finer-grained computation
units, each of which is a minimal group of operators to be
recomputed or saved together. This gives us more flexible
control over the trade-off between time and memory costs.
Then we construct the cost model and design the algorithm
to find the best recomputation strategy for different stages.

In this section, we first introduce the abstraction required
for modeling the fine-grained recomputation, i.e., the com-
putation units, and then dive into the cost model and opti-
mization algorithm.

4.1 Computation Unit

We demonstrate the splitting of transformer layers into com-
putation units, including the Attention layer and the Feed-
Forward layer, in Figure 4. Instead of independently decid-
ing whether to recompute each operator, we combine multi-
ple operators when the intermediate results between them
are not saved even in a non-recomputed backward pass: this
happens to many operators in neural networks, including
Transpose, Addition, etc. Other operators that require sav-
ing output tensors contribute to the boundaries between
computation units.

Each tensor is bound to exactly one computation unit,
which we refer to as its parent unit. For example, the parent
unit of tensor Q includes the GEMM, addition, transpose,
and division operators, in which only the GEMM operator
is shown in Figure 4. If the tensor Q is decided to be saved,

90

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

l:] Computation Unit

X, X,
(Govint)] |(Genind)| Genind]
oo X
(FlashAlttention) Activation
-
GeviM
e Xy JT—
| l

(b) Computation Units
for Feed-Forward Layer

(a) Computation Units
for Attention Layer

Figure 4. Computation Units Division.

then these operators will not be required to recompute dur-
ing the backward pass, unlike the full recomputation which
will always recompute them all.

Some layers in the computation units, e.g., Flash Atten-
tion, may also save some tensors internally, together with
their outputs. Such internally saved tensors are considered
in our memory consumption modeling as well, which will
be introduced later.

The division of the computation units in Figure 4 can be
adapted for most transformer-like models, like GPT-3, Llama
2, and BERT [8].

4.2 Cost Model

As any methodology that involves a trade-off between mem-
ory and time consumption, modeling fine-grained recompu-
tation naturally requires the consideration of both memory
and time. The memory consumption will be used as the con-
straint, and the time cost will become the optimization tar-
get. Given a part of the whole network, we want to model
the memory and time consumption as functions of the re-
computation strategy, which is whether to save or to re-
compute each computation unit. Formally speaking, with a
pipeline stage of computation units U = {U;}, we denote
the recomputation strategy as a subset R = {U € U | U is
recomputed }. We want Timey|;(R) (for both forward and
backward) and Mem(R) as our performance model.

For Timey|;(R), we first profile all computation units in-
volved to obtain the forward and backward time of each
computation unit, denoted as Time(U) and Time, (U). Given
a 3D parallelism strategy, this profiling process involves con-
ducting a preliminary run of the training for 5 to 10 itera-
tions and recording the timestamps before and after each
computation unit. Then we can sum up to get

Timep = »_ Times(U),
UeU

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

which doesn’t change with regard to R, and

Time, (R) = Z Time, (U) + Z Timef(U).
UelU UeR

For Mem(R), we consider the memory consumption in
three parts. The first part is irrelevant to recomputation but
only depends on the parallel strategy, which contains the
parameters, optimizer states, and gradients. Assuming the
computation graph consists of L, Attention layers and Ly
Feed-Forward layers, the number of the parameters of this
stage will be N = L,P, + LgPy, where P, and Py is the pa-
rameter counts of the Attention and Feed-Forward layer cor-
respondingly. Then the memory usage of the parameters is
2N/t bytes, given the 16-bit floating point precision. Simi-
larly, we can compute the memory usage for the gradients
as 2N/t bytes. Optimizer states are used by the optimizer to
update the parameters, taking kX N/ (¢d) bytes, where d rep-
resents the data parallel size and ZeRO stage 1 is employed.
The value of k depends on the optimizer in use and its pre-
cision. For the FP32 Adam optimizer we are using, we have
k = 2 x 4 given the two FP32 states. Some frameworks will
accumulate the gradients in FP32 precision or update the pa-
rameters in FP32 before converting them to half-precision
for the next iteration. We also consider these factors when
modeling the memory consumption of this part.

Then we discuss the memory required for buffering the
recomputed results during the backward pass. Traditionally
with full recomputation, we need to first recompute and
save all intermediates within the last decoder layer before
computing the gradients. After the gradients have been com-
puted, we can drop these intermediates and perform the
same actions on the preceding layer. Therefore the buffer
is reused between layers and should be large enough to ac-
commodate the intermediates within one single layer.

Heading to our fine-grained recomputation, the concrete
size of the buffer will depend on the recomputation strategy.
To simplify the model, we restrict the output tensors of each
Attention layer and Feed-Forward layer to be saved by de-
fault, which means the last GEMM operators of these two
layers won’t be recomputed during the backward process.
Therefore, our buffer size will never exceed the size of all in-
termediate results within one decoder layer. This restriction
simplifies the memory model and is very efficient since the
buffer size is influenced by many aspects, like the memory
allocation algorithm and potentially reordered execution of
the computation graph.

The last part is what we focus on, the saved intermediates.
Each recomputation unit U will occupy a certain amount
of memory, Mem(U), for all its child tensors when config-
ured as saved. This includes its output tensor and potentially
some internal tensors, as mentioned above. In addition, we
need to multiply the memory consumption of the interme-
diates by p —s, in which p is the total number of stages, and
s is the number of the current stage, counting from first to

91

Zhenbo Sun et al.

last. Summarizing above, we have

Mem(R) = Const+ (p — s) Z Mem(U).
UeU\R
The constant above represents the summation of all static
memory consumptions. It is irrelevant to the recomputation
strategy of this stage.

4.3 Solving the Optimization Problem

To find the optimal recomputation strategy R, we need an
upper bound of Mem(R) to minimize Time;,(R). Timey is
fixed so we can safely ignore it. As one may have noticed,
the cost model constructed above naturally poses a knap-
sack problem, which can be efficiently solved through dy-
namic programming. We only need to subtract the Const
memory consumption from the hardware memory limit to
obtain the memory limit for intermediates. All memory lim-
its below refer to the subtracted one.

Assuming there are N computation units in the stage s
and the memory limit is M. Ty ;(m) denotes the maximum
saved recomputation cost with the first i units under the
memory limit m for stage s, or formally speaking

T,i(m) = max

(p—s) ZUj cU\Ro<j<i Mem(Uj)<m

2,

UjeU\R0<j<i

Timef(Uj). W

then we can have the following state-transition equation in
Equation (2), where i € [1,N] and m € [1, M].

fs,i(m) = max(i‘s,i—l(m),
Ts,i—l(m - (p —s) Mem(U;))
+ Timef(Ui))

@)

With the above DP algorithm, we can compute the maximal
saved recomputation cost as Ts ~ (M). Therefore, we can fur-
ther compute the fixed forward time and minimal backward
time of the computation graph G for stage s as

Fos = Z Time(U)
U

Bgs = Z(Timeb(U) + Time (U)) — Ty v (M).
U

The results will be used in the adaptive partitioning algo-
rithm detailed in Section 5.

5 Adaptive Partitioning

Extending the 1F1B scheduling mechanism, we further pro-
pose the adaptive partitioning algorithm aimed at adjusting
the length of each stage, as detailed in Section 3. We treat the
transformer models as a sequence of layers. These layers en-
compass the Embedding layer, the Attention layer, the Feed-
Forward layer, and the Decoding Head layer. We then par-
tition the sequence and assign each worker with one stage
of a sub-sequence of layers. Such partitioning strategies will

AdaPipe: Optimizing Pipeline Parallelism with Adaptive Recomputation and Partitioning

not introduce extra communication between pipeline stages
for homogeneous neural networks like transformers, since
the tensors between layers are of the same shape.

The rest of this section will discuss how we model the cost
of the 1F1B scheduling mechanism with regard to the parti-
tioning strategy, and how we optimize the target to obtain
the optimized partitioning strategy for the stages.

5.1 Cost Model

In Section 4, we have addressed the optimal time consump-
tion of a given subgraph at stage s for both forward and
backward pass as Fs and Bs. As is covered in Section 2, one
iteration under the 1F1B scheduling mechanism consists of
three phases: warmup, steady, and ending. We denote the
maximum time of these phases from stage s to the last stage
as W, S, and E,.

As shown in Figure 2, for the warmup phase, W starts
from the forward pass of the first micro-batch to the begin-
ning of the first backward pass of the stage s. For instance,
in Figure 3, W; only has one forward pass, while W, has
two forward passes and one bubble. In this way, we can use
Equation (3) to compute the final warmup time for all stages.

Vvs—l = maX(VVS + Bs: (P - S)Fs—l) + Fs—l (3)

Similarly, the ending phase starts from the end of the for-
ward pass of the last micro-batch to the backward pass of
the last micro-batch. We can use the same method to com-
pute the time of the ending phase for all stages.

The steady phase Ss consists of n — p + s forward and
backward passes from stage s to the last stage. During the
steady phase, each stage will communicate with the previ-
ous stage before the forward pass and communicate with
the next stage before the backward pass. Therefore, the run-
ning time is dominated by the maximum summation of the
forward time and backward time of these stages. We denote
the maximum forward and backward time summation from
stage s to the last stage as M;. Then we can use the following
equations to get the whole steady time of all stages:

M, = maX(MSaFS—l +Bs—1)’
Ss=(n—p+s)Ms.

Then the total time of the 1F1B scheduling method is W, +
Ey + Sp. In this way, we build an accurate cost model for the
1F1B scheduling mechanism.

5.2 Solving the Optimization Problem

We further design another level of dynamic programming
(DP) algorithm upon the previous algorithm in adaptive re-
computation, to find the optimized partitioning strategy with
the above cost model.

We use f[s, i, j] and b[s, i, j] to represent the minimal for-
ward and backward time of the layer sequence from layer
i to j for stage s. The arrays f[s,i, j] and b[s, i, j] can be
obtained by performing the DP algorithm in Section 4 for

92

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

different stages on different layer sequences. The output of
our algorithm, P[s,i], is the best partitioning strategy for
the layer sequence from layer i to the last layer with stages
from s to the last. Moreover, P[s, i] is a state consisting of
warmup time W, maximum forward and backward time M,
ending time E, forward time F of the stage s, backward time
B of stage s, and total time T. The algorithm is shown in
Algorithm 1.

Algorithm 1: Algorithm for adaptive partitioning.

Input: f[s, i, j]: fwd. time of layers i ~ j as stage s
Input: bls, i, j]: bwd. time of layers i ~ j as stage s
Output: P[s,i]: the best result from layer i to the last
layer, containing W, E, M, F,B, T
fors=p—-2to0do
fori=L-p+sto0do
forj=itoL—p+sdo
W« f[s,i,j] + max(P[s+1,j + 1].W
+P[s+1,j+1].B,
(p -S-= l)f[s’ l’J])
E «— b[s,i,j] + max(P[s+1,j+1].E
+P[s+1,j+1].F,
(p—s—1bls.i, j])
M «— max(P[s+1,j+1].M,
fls.i.j1 +bls.i, j1)
F fls,5]
B« bls,i,j]
T—W+E+(n—-p+s)M
if T < P[s,i].T then
P[s,i] « W,E,M,F,B, T
end if
end for
end for
end for

With the above DP algorithm, AdaPipe can find the opti-
mized partitioning strategy for the 1F1B scheduling mecha-
nism automatically.

5.3 Complexity Analysis and Optimization

The complexity of Algorithm 1 is O(pL?). However, this al-
gorithm necessitates the computation of f[s, i, j] and b[s, i, j],
which are derived from the DP algorithm illustrated in Sec-
tion 4. This requires executing the algorithm across all sta-
ges for every sub-sequence of layers from layer i to layer j,
with 0 < i < j < L, resulting in a complexity of O(pL?).
The complexity of the DP algorithm in Section 4 is O(mN),
where m is the memory constraint and N is the number of
computational units. Since the quantity of computational
units increases linearly with the number of layers, the com-
plexity can also be written as O(mL). Therefore, the total
complexity of the above searching process is O(pL?+mpL?).

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Given that transformer models such as GPT-3 consist of
homogeneous layers, some sub-sequences of layers can be
isomorphic. For instance, the subgraph of layers 3-4 is iso-
morphic to that of layers 5-6, as they both have one At-
tention layer followed by a Feed-Forward layer. More gen-
erally, the subgraphs with the same number of layers and
the same type of the initial layer (Attention layer or Feed-
Forward layer) are isomorphic. By leveraging the isomor-
phism among subgraphs, we can reduce the execution num-
ber of the DP algorithm in Section 4 to O(pL).

Furthermore, as sizes of activation tensors are typically
times to some power of 2, we can find the greatest common
divisor (GCD) of the memory costs of all units. Then we di-
vide these memory costs and the limit m in Equation (2) by
their GCD to reduce m and accelerate the DP algorithm.

With all aforementioned optimizations, the overall com-
putational complexity of the searching process is O(m’pL?),
where m’ is m divided by GCD as discussed. For typical mod-
els like GPT-3 and Llama 2, the entire search process takes
only seconds.

6 Implementation

AdaPipe consists of a search engine and an execution en-
gine. The search engine first profiles the forward time and
backward time of each computation unit. Then it performs
the algorithms described above based on the training con-
figurations and memory capacity. AdaPipe will find the op-
timized partitioning strategy with different recomputation
strategies for each stage.

The execution engine supports hybrid parallelism stra-
tegies and different recomputation strategies for each com-
putation unit across all stages. It will train large-scale mod-
els distributedly on the cluster with the obtained recompu-
tation strategy and partitioning strategy.

We implement AdaPipe on top of two deep learning frame-
works, MindSpore [14] and PyTorch [27]. MindSpore is an
Al framework that will compile the computation graph be-
fore executing. It provides interfaces for users to partition
the computation graph and decide whether operators should
be recomputed, with which we implement the execution en-
gine. For PyTorch, we implement the engine on Megatron-
LM [33]. We rewrite the decoder layer to support the fine-
grained recomputation strategies of AdaPipe.

7 Evaluation
7.1 Experimental setup

We evaluate AdaPipe on two clusters.

Cluster A. It has 8 nodes of NVIDIA DGX-A100 server,
each equipped with 8 X A100 80GB Accelerators (GPUs), 64
CPU cores in 2 sockets, and 2 TB memory. The eight GPUs
are connected with NVLink. Nodes are interconnected with
800 Gbps Infiniband HCAs.

93

Zhenbo Sun et al.

Cluster B. It has 32 nodes of Huawei Atlas 800 server, each
equipped with 8 X Ascend 910 32GB Accelerators (NPUs),
192 CPU cores in 4 sockets, and 2TB memory. In each node,
8 NPUs are installed on two NPU boards, and the 4 NPUs
on each board are fully meshed by 30 GB/s links in all di-
rections. Besides, each NPU directly connects to the CPUs
through one PCle 4.0 x16 link (32GB/s) and is equipped with
one 100 Gbps NIC for inter-node networking.

Models and workloads. We evaluate AdaPipe on two rep-
resentative models, GPT-3 (175B) [3] and Llama 2 (70B) [35].
The micro-batch size is set to 1 to save the memory of inter-
mediate results. We change the sequence length and global
batch size while keeping other parameters fixed in our ex-
periments. Besides, when we double the sequence length,
we will half the global batch size to keep the total number
of tokens processed in one iteration unchanged.

The detailed configuration is listed in Table 2. On cluster
A, evaluations of GPT-3 and Llama 2 are performed with
64 and 32 GPUs. On cluster B, we conduct both small-scale
experiments using 256 and 128 NPUs, and large-scale ex-
periments using 2048 and 1024 NPUs for GPT-3 and Llama
2, respectively. Additionally, all experiments conducted on
Cluster A employ the PyTorch framework, whereas those
on Cluster B use the MindSpore framework.

Table 2. Configurations Used in Evaluation.

(Sequence Length,

#
Model Cluster #Dev Global Batch Size)

(4096, 128),

A 64 (8192, 64)

GPT-3 (16384, 32)
B 256 (4096, 256)
B 2048 (4096, 2048)
(4096, 128),

A 32 (8192, 64),

Llama 2 (16384, 32)
B 128 (4096, 256)
B 1024 (4096, 1024)

Baseline. We select DAPPLE [9] and Chimera [22] as the
baselines. These baselines are measured with full recomputa-
tion and no recomputation, denoted with the suffix -Full and
-Non, respectively. Hanayo [23] is not measured as it cannot
handle the situation where the number of micro-batches ex-
ceeds pipeline stages.

We evaluate the above baselines with Megatron-LM [25],
the state-of-the-art framework for training large-scale mod-
els. It supports data parallelism, tensor parallelism, and pipe-
line parallelism. For data parallelism, it supports the ZeRO-
1 technique, which partitions the optimizer state to reduce
memory usage without increasing communication overhead.

AdaPipe: Optimizing Pipeline Parallelism with Adaptive Recomputation and Partitioning

For pipeline parallelism, it implements the synchronous gra-
dient descent algorithm of the 1F1B scheduling mechanism,
as proposed in DAPPLE [9]. Additionally, Megatron also in-
tegrates the Flash Attention technique.

We integrate the pipeline scheduling method of Chimera
into Megatron since its original implementation doesn’t sup-
port tensor parallelism. We also implement the forward dou-
bling technique of Chimera to reduce the bubble when the
number of micro-batches exceeds the number of stages.

We will evaluate DAPPLE, Chimera, and Chimera with
forward doubling (denoted as ChimeraD) in our experiment.
We also evaluate AdaPipe without the adaptive partitioning
optimization, denoted as Even Partitioning. It will keep the
same partitioning strategy as the baselines.

For cluster A, we will iterate all possible 3D parallelism
strategies, and report the best performance among these
strategies. The 3D parallelism requires the same data and
tensor parallel size for each stage. Table 3 lists some ex-
amples of the 3D parallelism strategies. For Chimera and
ChimeraD, we further iterate the number of replicated pipe-
lines based on the 3D parallelism strategies and ensure the
number is at least 2. We also require the tensor parallel size
not larger than 8, as tensor parallelism across nodes will in-
troduce massive communication in the network and signif-
icantly impact the overall performance.

For cluster B, we only experiment AdaPipe, Even Parti-
tioning, and DAPPLE with certain parallel strategies from
our experience, because the number of 3D parallelism stra-
tegies for 256 NPUs is large and the compilation for each
parallel strategy takes around an hour using MindSpore.

We run each task for 20 iterations and measure the aver-
age iteration time of the last 2 iterations. For cluster A, we
adjust the value of the initial loss scale to ensure there is no
overflow and the optimizer state is allocated before the last
2 iterations.

7.2 End-to-End Performance

We profile the iteration time of AdaPipe, Even Partitioning,
and baselines on clusters A and B. The speedup over DAP-
PLE with full and no recomputation is marked on each col-
umn in Figure 5, Figure 6 and Figure 7.

Llama 2 on cluster A Figure 6 shows that DAPPLE-Non
achieves better performance than DAPPLE-Full by reducing
the computation overhead. As DAPPLE-Non stores the acti-
vations of all micro-batches, it consumes more memory and
exceeds the limit when the sequence length is 16384.

The basic scheduling units of Chimera only consist of p
micro-batches, where p is the pipeline parallel size. When
the number of micro-batches exceeds the number of pipe-
line stages, Chimera will concatenate two or more sched-
uling units. The forward passes of the second unit will oc-
cupy the bubbles at the end of the first unit. Given that the
computation time of the backward pass is typically larger
than that of the forward pass, this concatenation leads to

94

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

100 1 [DAPPLE-Full [ChimeraD-Full
[DAPPLE-Non [ChimeraD-Non
[Chimera-Full [Even Partitioning
0 80 1 1 Chimera-Non [AdaPipe
(]
S = X —
£ 60 - =] S| 15 |3
LN O 3 (=]
s Ere = O R
© 40 g 19 N
g Sl 1o | B3 B
= &l [
20 A
= s =l =
s ol (O] O
0 | s} Sl O] |9
4096 8192 16384

Sequence Length

Figure 5. End-To-End Performance of Llama 2 (Cluster A).

bubbles between two consecutive scheduling units. Conse-
quently, Chimera performs worse than DAPPLE as shown
in Figure 5.

ChimeraD alleviates the above problem by only doubling
the micro-batch size of all forward passes, to equalize the
computation of the forward and backward pass. Despite this
adjustment, when full recomputation is employed, the com-
putation time of the backward pass is still longer than that
of the forward pass, and the bubbles between two consecu-
tive scheduling units still exist. As a result, ChimeraD only
outperforms DAPPLE when the number of micro-batches
is small, as it indicates fewer scheduling units and bubbles
within one iteration.

Furthermore, as ChimeraD needs to process two samples
in each forward pass, the memory required to store inter-
mediate results is consequently doubled when no recompu-
tation is applied. As Figure 5, ChimeraD-Non exceeds the
memory limit when the sequence length grows to 8192.

For cluster A, the memory capacity of GPUs is 80GB and
is large enough to accommodate the intermediate results of
DAPPLE-Non when the sequence length is 8192. In this situ-
ation, DAPPLE-Non is only feasible when the tensor parallel
size is 8. However, AdaPipe and Even Partitioning achieve
better performance when the tensor parallel size is 4. De-
tailed analysis of how different parallel strategies influence
the performance is presented in Section 7.3.

When the sequence length grows to 16384, the size of in-
termediate results also becomes larger. On the one hand,
DAPPLE-Non exceeds the memory limit under all parallel
strategies. On the other hand, DAPPLE-Full cannot fully uti-
lize the memory, leaving much memory unused. In this situ-
ation, AdaPipe and Even Partitioning both find the recompu-
tation strategy that can fully utilize the memory and mini-
mize the computation. Therefore, AdaPipe and Even Parti-
tioning gains 1.23%X and 1.21x speedup over the baselines.
GPT-3 on cluster A GPT-3 has 175 billion parameters and
consumes more memory for intermediate results than Llama

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

140 A [DAPPLE-Full [ChimeraD-Full
[DAPPLE-Non [ChimeraD-Non
120 A [Chimera-Full [Even Partitioning
s I Chimera-Non 1 AdaPipe
2 100 A
Py —
¢ .
N 3 g o
S i X o] 8 S o
=] i o [X —
o 60 = S || e RIS
(0] ~|o) X[X —
= “NENNEE o i
40 A S| |© 35 [
| [
20 1
= = I = = s| =] |=
9] ol |9 |9 ol |9 |9
0 s} (sl is]li's] Sl 19] 19
4096 8192 16384

Sequence Length

Figure 6. End-To-End Performance of GPT-3 (Cluster A).

2. When we extend the sequence length to 8192 and 16384,
all baselines with no recomputation exceed the memory ca-
pacity under all parallel strategies. However, Even Partition-
ing and AdaPipe can still find better recomputation stra-
tegies according to the remaining memory size and achieve
up to 1.32x and 1.31X speedup on cluster A.

As AdaPipe can repartition the computation graph based
on the optimized computation cost to balance the compu-
tation cost, it outperforms Even Partitioning in most situa-
tions, especially when the sequence length is long and the
memory is limited.

100
1 DAPPLE-Full [Even Partitioning
80 | [DAPPLE-Non [AdaPipe
w - =
® 60 é 8-
£ 5 E A BR[| EE
c S| S| rxtx =[x |
_% w0d 7| 18 ﬁ I il -
5 g Ll P}
20 1
s s = s
o o o o
0 o] o o o)
Llama 2 (128) Llama 2 (1024) GPT-3 (256) GPT-3 (2048)

Model (#nodes)

Figure 7. End-To-End Performance (Cluster B).

Cluster B The performance of DAPPLE, AdaPipe, and Even
Partitioning on cluster B is shown in Figure 7. For GPT-3,
both the tensor parallel size and pipeline parallel size are
configured to 8. For Llama 2, the tensor parallel size is set
to 4, while the pipeline parallel size is set to 8. In the exper-
iment, we linearly scale the global batch size in proportion
to the data parallel size on thousands of NPUs.

In contrast to the A100 GPUs, the memory capacity of
the Ascend 910 is only 32GB, which significantly intensi-
fies the memory constraints for storing intermediate results.

95

Zhenbo Sun et al.

For Llama 2 and GPT-3, DAPPLE-Non exceeds the memory
limit when the sequence length is 4096, as shown in Figure 7.
With the technique of adaptive recomputation, Even Parti-
tioning and AdaPipe can fully exploit the available mem-
ory, minimizing the computation and enhancing the train-
ing efficiency. As a result, AdaPipe and Even Partitioning
achieve up to 1.22Xx and 1.18% speedup over the baselines.
Furthermore, AdaPipe and Even Partitioning both exhibit
good weak scalability as shown in Figure 7.

7.3 Influence of Different Parallel Strategies

Table 3. Iteration Time of GPT-3 with Different Parallel
Strategies on Cluster A (Sequence Length = 4096).

DAPPLE- DAPPLE- Even .
TP, PP, DP Full Non Partitioning AdaPipe
(1,32,2) 76.769 OOM OOM OOM
(2, 16, 2) 65.732 OOM 54.784 53.142
(2,32,1) 68.237 OOM 53.430 53.500
4,8,2) 62.307 OOM 49.875 47.732
(4,16, 1) 63.407 OOM 47.761 47.779
8,4,2) 66.625 49.233 50.966 50.431
(8,8,1) 67.152 49.363 49.946 49.911

We list the iteration time of different parallel strategies
for GPT-3 with sequence length as 4096 on cluster A in Ta-
ble 3. Strategies that exceed the memory capacity for all
methods are not listed. The iteration time of the best par-
allel strategies is marked red.

Parallel strategies influence the overall performance from
different aspects. Smaller TP size reduces communication
within one server and enhances the computation efficiency
of operators as tensors have larger shapes.

However, when the number of devices is fixed, a smaller
TP results in a larger DP or PP, which would adversely im-
pact the overall efficiency. As shown in Figure 2, the bubble
ratio of 1F1B scheduling mechanism can be represented as
%, where p denotes the pipeline parallel size and n denotes
the number of micro-batches. On the one hand, a larger PP
would add more bubbles in the 1F1B scheduling mechanism
as the number of micro-batches is unchanged. On the other
hand, a larger DP means the number of micro-batches for a
single data parallel group is decreased, therefore the bubble
ratio is also increased.

If the benefits from less communication and higher com-
putation efficiency outweigh the influence of a larger bubble
ratio, then a smaller TP will gain better performance, like
the strategy (4, 8, 2) and (8, 8, 1) in Table 3. Otherwise, a
larger TP would be better, like the strategy (2, 16, 2) and (4,
8, 2) in Table 3.

We find that AdaPipe and Even Partitioning exceed the
memory limitation when the strategy is (1, 32, 2). This issue
stems from two primary factors. Firstly, AdaPipe restricts

AdaPipe: Optimizing Pipeline Parallelism with Adaptive Recomputation and Partitioning

the output tensors of both the Attention layer and the Feed-
Forward layer to be saved, leading to more memory con-
sumption than DAPPLE-Full even when all other computa-
tion units are recomputed. Secondly, the size of the output
tensors can be very large when the tensor parallel size is 1.

7.4 Memory and Computation Analysis

We profile the memory usage and computation time of wor-
kers in each stage for the GPT-3 model on cluster A. Figure 8
and Figure 9 show the result with a sequence length of 16384
and parallelism strategy of (8, 8, 1).

200 A
175 A
150 A
)
O 125 A
P
o i
= 100
s
75 1
(’_.—,—,_.—.\4
o — —-
50 \ °
—— DAPPLE-Full —#— Chimera-Non Even Partitioning
25 1 DAPPLE-Non —— ChimeraD-Full —e— AdaPipe
—&— Chimera-Full —e— ChimeraD-Non
0 T T T T T T T T
0 1 2 3 4 5 6 7
Stage ID

Figure 8. Peak Memory Usage of Each Stage. The memory
capacity is represented by the grey dashed line.

We report the peak memory usage during the training
process. Although DAPPLE, Chimera, and ChimeraD all ex-
ceed the memory limitation without recomputation, we can
still estimate the peak consumption of these baselines.

For DAPPLE with full recomputation, it can be observed
from Figure 8 that the first and the last stages consume more
memory than the middle stages. The extra memory usage
comes from the Embedding and Decoding Head layer at the
front and the end of the model. Additionally, the peak mem-
ory of the middle stages decreases linearly with the stage
number. From the profiling result, more than 30GB of mem-
ory is wasted by workers of all stages.

For DAPPLE without recomputation, workers of stage 0
require more than 80GB memory, which exceeds the capac-
ity of the GPUs, rendering it unusable. Moreover, the peak
memory of DAPPLE-Non is extremely imbalanced among
different stages, where the memory consumption of the first
stage is 2.33X that of the last stage.

For Chimera and ChimeraD, profiling is conducted with
two replicated pipelines. As model parameters are replicated
across two pipeline stages, Chimera-Full and ChimeraD-Full
consume more memory than DAPPLE-Full.

96

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

For Chimera-Non and ChimeraD-Non, workers of the mid-
dle stages need to store the intermediate results of more
micro-batches, consequently consuming more memory than
workers at the initial and final stages, as depicted in Figure 8.
Besides, ChimeraD-Non computes two samples at each for-
ward pass and saves more amount of intermediate results
than Chimera-Non.

AdaPipe and Even Partitioning support adaptive recompu-
tation and allow fine-grained control of recomputation stra-
tegies over the computation units. Table 4 shows the num-
ber of saved computation units and layer numbers in each
stage. The Embedding layer and Decoding Head layer are
each counted as the extra layer in the first and last stages, re-
spectively. The number of saved computation units increases
with the stage ID because earlier stages need to save the in-
termediate results of more micro-batches. Figure 8 shows
that each stage of AdaPipe and Even Partitioning occupies
around 70GB of memory in a balanced manner. This is due
to the conservative setting of the memory constraint at 70GB
when executing the DP algorithm. The memory constraint
can be elevated for better performance.

Table 4. Configuration of Recomputation and Stage Parti-
tioning Produced by AdaPipe and Even Partitioning.

Method Stages
Saved
aYe 39 48 50 55 68 70 &5 124
. Units
AdaPipe -
#
' 23 23 23 24 25 25 25 26
Layers
Saved
aYe 27 48 50 55 62 69 84 120
Even Units
. #
Part of 5 24 24 24 24 24 24 25
Layers
2.0 Vk : : i‘ : : ¢ 4'
O
) M
£ 1.5
E
f
o
® 1.0 1
>3
Q
€
8 0.5 —&— DAPPLE-Full —#— Even Partitioning
Chimera-Full —+— AdaPipe
—&— ChimeraD-Full
0.0 T T T T T T T v
0 1 2 3 4 5 6 7
Stage ID

Figure 9. Computation Time of Each Stage.

Figure 9 shows the micro-step time of each stage, which
is the summation of the forward and backward time of one

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

micro-batch. All stages have similar computation times for
DAPPLE-Full, Chimera-Full, and ChimeraD-Full, for their
computation workload of different stages is almost the same.

For Even Partitioning, the micro-step time decreases with
a larger stage ID. As demonstrated before, workers in the
front stages save fewer intermediates than workers in the
subsequent stages. Therefore front stages conduct more re-
computation work and have longer micro-step time. Figure 9
shows that the micro-time of the slowest stage is 1.17X that
of the fastest stage, which influences the efficiency of the
steady phases.

AdaPipe further partition the computation graph of the
1F1B schedule adaptively to balance the computation time
of each worker. Table 4 shows that AdaPipe moves layers
from earlier stages to later stages, therefore balancing the
computation time of these stages, as shown in Figure 9. With
this method, AdaPipe shortens the time of the steady phase
and improves the overall performance.

7.5 Convergence Validation

114 ~\ —— DAPPLE-Full
\ AdaPipe
10 A \
\
A 9 \
]
- W
N
8 1 V\\"V\r‘
] " \\N\M‘WN
b V\W,
NAAMA
0 25 50 75 100 125 150 175 200
Steps

Figure 10. Loss Curve of Different Strategies.

We evaluate the convergence of AdaPipe and DAPPLE-
Full on cluster B using the Llama 2 model. AdaPipe only re-
duces the repeated computation without changing the com-
putation of each operator, therefore exhibiting similar con-
vergence as the baseline, as depicted in Figure 10. The differ-
ence between the two loss curves comes from the different
initialization of the parameters, as the graph partition strat-
egy of AdaPipe is different from that of the baseline.

8 Related Work

Memory Optimization Techniques. Several studies have
been conducted to address the memory problem when train-
ing large models. The offloading technique enables the train-
ing of large models with limited GPU memory by utiliz-
ing the host memory or disk storage. ZeRO-Offload [30] of-
floads the optimizer states from the GPU to the host mem-
ory. vDNN [31] employs host memory as the external buffer
and properly schedules the prefetching and offloading oper-
ations to overlap the memory movement and computation.

97

Zhenbo Sun et al.

SuperNeurons [37] further combines the offloading and re-
computation technique, which offloads activations of oper-
ators with heavy computation and recomputes operators
with cheap computation. ZeRO-Infinity [29] leverages the
storage of NVMe SSDs to train large models. However, the
offloading technique incurs huge communication between
the CPU and GPU. As the computational power of the GPUs
grows significantly in recent years, especially with emerg-
ing high-performance Tensor Cores, it is more difficult to
effectively overlap the communication with computation.
Considering the memory imbalance in the pipeline paral-
lelism, BPipe [18] transfers the intermediate activations be-
tween GPUs across different stages to balance memory us-
age. However, this method incurs extra communication, and
the tensor parallel size is limited as the first stage needs to be
placed on the same node as the last stage. MPress [41] com-
bines the recomputation and the offloading technique and
allows different memory strategies in different stages, but
their work only supports training within one single server.
Auto Parallelism. Different parallelism strategies would
influence memory consumption and efficiency when train-
ing large models, as shown in Table 3. AdaPipe adopts 3D
parallelism strategies. However, the tensor parallel and data
parallel sizes can be different for each pipeline stage. Some
existing works focus on the automated search for optimal
parallelism strategies. Flexflow [15] and Tofu [38] design
cost models and use DP algorithms to find the best intra-
operator parallelism strategy. PipeDream [12] proposes a
DP algorithm that splits the computation graph into bal-
anced subgraphs. Unity [36] further combines algebraic trans-
formation with parallelization. Piper [34] and Alpa [40] pro-
pose a hierarchical parallelism that incorporates data and
tensor parallelism at the lower level while employing pipe-
line parallelism at the upper level. However, none of them
consider the recomputation technique in their search space.

9 Conclusion

We propose AdaPipe, which uses adaptive recomputation
and adaptive partitioning to find the optimized stage parti-
tioning and recomputation strategies for pipeline parallelism
during training large models. Evaluations on representative
models show that AdaPipe accelerates the end-to-end train-
ing performance by up to 1.32x on NVIDIA GPUs and 1.22x
on Ascend NPUs.

10 Acknowledgment

We would like to thank our shepherd and all anonymous re-
viewers for their insightful comments and feedback. We also
thank Zhipu Al for sponsoring computation resources. This
work is partially supported by the National Natural Science
Foundation of China under grant U20B2044 and Peng Cheng
Laboratory under grant PCL2022A05. Wenguang Chen is
the corresponding author.

AdaPipe: Optimizing Pipeline Parallelism with Adaptive Recomputation and Partitioning

A Artifact
A.1 Artifact Description

Our artifact includes the source code of AdaPipe, instruc-
tions for preparing software dependencies, and scripts to re-
produce the results on NVIDIA GPUs in Section 7. You can
download it from Zenodo".

Program: AdaPipe and Megatron-LM

Compilers: GCC 9.5.0, CUDA 12.1.0

Dataset: Enwik8

Hardware: 8 x A100 / A800 80GB GPUs and NVLink
Metrics: Iteration time, maximum memory allocation
Disk space required: ~100GB

Time needed to prepare: ~6 hours

Time needed to run experiments: 2 days

A2

The detailed instructions for installing dependencies are ex-
plained in the README . md file of the AdaPipe directory.
Prepare Python environment. Install Anaconda to man-
age Python packages and create an environment with Python
3.10 for evaluation.

Prepare compilers and other packages. We use spack to
install GCC 9.5.0, CUDA 12.1.0, and OpenMPI 5.0.2.

Install Python dependencies The Python package depen-
dencies for AdaPipe are included in the requirements. txt
of the AdaPipe directory.

Installation

A.3 Experiment Workflow

Before running the experiment, create a hostfile for Open-
MPI, modify the path to the dataset and the IP address of the
master server in the scripts for GPT-3 and Llama2, which are
located in the examples directory.

We provide the script global_test. sh for conducting ex-
periments of AdaPipe and Even Partitioning as shown in
Figure 5 and Figure 6. It will invoke gpt_experiment.sh
and 11lama2_experiment.sh with different training config-
urations like sequence length and global batch size. These
scripts will iterate through all parallelism strategies and exe-
cute the profiling, searching, and measuring process of Ada-
Pipe and Even Partitioning.

We also provide similar scripts for running baseline ex-
periments in the Megatron-LM directory.

A.4 Evaluation and Expected Results

The results of the experiments can be found in the directo-
ries named gpt_result and 11ama2_result. These directo-
ries include results of different training configurations and
parallelism strategies. The stdout of the training process and
the logs for each worker are also recorded. The output files
record the iteration time and loss at each step, while the
log files capture the timestamps and memory information
of each forward and backward pass.

“https://doi.org/10.5281/10.5281/zenodo.10877925

98

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

We also provide the script collect_result.py to display
a comprehensive summary of all experiments. The expected
results for AdaPipe and baselines can be found in the file
expected_result. txt inthe AdaPipe and Megatron-LM di-
rectory.

References

[1] Olivier Beaumont, Lionel Eyraud-Dubois, Julien Herrmann, Alexis
Joly, and Alena Shilova. Optimal checkpointing for heterogeneous
chains: how to train deep neural networks with limited memory.
CoRR, abs/1911.13214, 2019.

Olivier Beaumont, Lionel Eyraud-Dubois, and Alena Shilova. Efficient
combination of rematerialization and offloading for training dnns. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy
Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Infor-
mation Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, vir-
tual, pages 23844-23857, 2021.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learn-
ers. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Infor-
mation Processing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian.
Extending context window of large language models via positional
interpolation, 2023.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training
deep nets with sublinear memory cost. CoRR, abs/1604.06174, 2016.
Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher
Ré. Flashattention: Fast and memory-efficient exact attention with
io-awareness, 2022.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski,
Jonathan Heek, Justin Gilmer, Andreas Steiner, Mathilde Caron,
Robert Geirhos, Ibrahim Alabdulmohsin, Rodolphe Jenatton, Lu-
cas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Carlos
Riquelme, Matthias Minderer, Joan Puigcerver, Utku Evci, Manoj
Kumar, Sjoerd van Steenkiste, Gamaleldin F. Elsayed, Aravindh
Mahendran, Fisher Yu, Avital Oliver, Fantine Huot, Jasmijn Bast-
ings, Mark Patrick Collier, Alexey A. Gritsenko, Vighnesh Birod-
kar, Cristina Vasconcelos, Yi Tay, Thomas Mensink, Alexander
Kolesnikov, Filip Pavetic, Dustin Tran, Thomas Kipf, Mario Lu-
cic, Xiaohua Zhai, Daniel Keysers, Jeremiah Harmsen, and Neil
Houlsby. Scaling vision transformers to 22 billion parameters. CoRR,
abs/2302.05442, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: pre-training of deep bidirectional transformers for language
understanding. In Jill Burstein, Christy Doran, and Thamar Solorio,
editors, Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers), pages 4171-4186. Association for
Computational Linguistics, 2019.

Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen
Zheng, Chuan Wu, Guoping Long, Jun Yang, Lixue Xia, Lansong Diao,

[2

—

(3]

[4

—

5

—

[6

—

[7

—

[8

[}

[9

—

https://doi.org/10.5281/10.5281/zenodo.10877925

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

[22]

(23]

Xiaoyong Liu, and Wei Lin. DAPPLE: a pipelined data parallel ap-
proach for training large models. In Jaejin Lee and Erez Petrank, edi-
tors, PPoPP "21: 26th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, Virtual Event, Republic of Korea, February
27- March 3, 2021, pages 431-445. ACM, 2021.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers:
Scaling to trillion parameter models with simple and efficient sparsity.
J. Mach. Learn. Res., 23:120:1-120:39, 2022.

Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yugi Huo,
Jiezhong Qiu, Liang Zhang, Wentao Han, Minlie Huang, et al. Pre-
trained models: Past, present and future. AI Open, 2021.

Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Se-
shadri, Nikhil R. Devanur, Gregory R. Ganger, and Phillip B. Gibbons.
Pipedream: Fast and efficient pipeline parallel DNN training. CoRR,
abs/1806.03377, 2018.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao
Chen, Mia Xu Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le,
Yonghui Wu, and Zhifeng Chen. Gpipe: Efficient training of giant
neural networks using pipeline parallelism. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.
Fox, and Roman Garnett, editors, Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 103-112, 2019.

Ltd. Huawei Technologies Co. Huawei mindspore ai development
framework. In Artificial Intelligence Technology, pages 137-162.
Springer, 2022.

Zhihao Jia, Sina Lin, Charles R. Qi, and Alex Aiken. Exploring hidden
dimensions in parallelizing convolutional neural networks. In Jen-
nifer G. Dy and Andreas Krause, editors, Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML 2018, Stockholmsmds-
san, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of
Machine Learning Research, pages 2279-2288. PMLR, 2018.

Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model
parallelism for deep neural networks. In A. Talwalkar, V. Smith, and
M. Zaharia, editors, Proceedings of Machine Learning and Systems, vol-
ume 1, pages 1-13, 2019.

Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanx-
iong Guo. A unified architecture for accelerating distributed dnn
training in heterogeneous gpu/cpu clusters. In 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 20),
pages 463-479, 2020.

Taebum Kim, Hyoungjoo Kim, Gyeong-In Yu, and Byung-Gon Chun.
Bpipe: Memory-balanced pipeline parallelism for training large lan-
guage models. 2023.

Vijay Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee,
Michael Andersch, Mohammad Shoeybi, and Bryan Catanzaro. Re-
ducing activation recomputation in large transformer models, 2022.
Alex Krizhevsky. One weird trick for parallelizing convolutional neu-
ral networks. arXiv preprint arXiv:1404.5997, 2014.

Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing
Su. Scaling distributed machine learning with the parameter server.
In 11th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 14), pages 583-598, 2014.

Shigang Li and Torsten Hoefler. Chimera: Efficiently training large-
scale neural networks with bidirectional pipelines. In SC21: Interna-
tional Conference for High Performance Computing, Networking, Stor-
age and Analysis, pages 1-14, 2021.

Ziming Liu, Shenggan Cheng, Haotian Zhou, and Yang You. Hanayo:
Harnessing wave-like pipeline parallelism for enhanced large model
training efficiency. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC
’23, New York, NY, USA, 2023. Association for Computing Machinery.

99

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Zhenbo Sun et al.

Qinyi Luo, Jiaao He, Youwei Zhuo, and Xuehai Qian. Prague: High-
performance heterogeneity-aware asynchronous decentralized train-
ing. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, pages 401-416, 2020.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick
LeGresley, Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand,
Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar Phan-
ishayee, and Matei Zaharia. Efficient large-scale language model
training on GPU clusters using megatron-lm. In Bronis R. de Supinski,
Mary W. Hall, and Todd Gamblin, editors, International Conference for
High Performance Computing, Networking, Storage and Analysis, SC
2021, St. Louis, Missouri, USA, November 14-19, 2021, page 58. ACM,
2021.

OpenAlL Gpt-4 technical report, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information
processing systems, 32:8026—8037, 2019.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He.
Zero: memory optimizations toward training trillion parameter mod-
els. In Christine Cuicchi, Irene Qualters, and William T. Kramer, edi-
tors, Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2020, Virtual Event /
Atlanta, Georgia, USA, November 9-19, 2020, page 20. [IEEE/ACM, 2020.
Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith,
and Yuxiong He. Zero-infinity: breaking the GPU memory wall for ex-
treme scale deep learning. In Bronis R. de Supinski, Mary W. Hall, and
Todd Gamblin, editors, International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2021, St. Louis, Mis-
souri, USA, November 14-19, 2021, page 59. ACM, 2021.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji
Ruwase, Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He.
Zero-offload: Democratizing billion-scale model training. In Irina Cal-
ciu and Geoff Kuenning, editors, 2021 USENIX Annual Technical Con-
ference, USENIX ATC 2021, July 14-16, 2021, pages 551-564. USENIX
Association, 2021.

Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfigar, and
Stephen W. Keckler. vdnn: Virtualized deep neural networks for
scalable, memory-efficient neural network design. In 49th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 2016,
Taipei, Taiwan, October 15-19, 2016, pages 18:1-18:13. IEEE Computer
Society, 2016.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish
Vaswani, Penporn Koanantakool, Peter Hawkins, HyoukJoong Lee,
Mingsheng Hong, Cliff Young, et al. Mesh-tensorflow: Deep learning
for supercomputers. arXiv preprint arXiv:1811.02084, 2018.
Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-
billion parameter language models using model parallelism. CoRR,
abs/1909.08053, 2019.

Jakub M Tarnawski, Deepak Narayanan, and Amar Phanishayee.
Piper: Multidimensional planner for dnn parallelization. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34,
pages 24829-24840. Curran Associates, Inc., 2021.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernan-
des, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj
Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui
Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,

AdaPipe: Optimizing Pipeline Parallelism with Adaptive Recomputation and Partitioning

(36]

(37]

Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne
Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yun-
ing Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi
Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith,
Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Ad-
ina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Au-
rélien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom.
Llama 2: Open foundation and fine-tuned chat models. CoRR,
abs/2307.09288, 2023.

Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Car-
los Efrain Quintero Narvaez, Vinay Ramakrishnaiah, Nirmal Prajap-
ati, Patrick S. McCormick, Jamaludin Mohd-Yusof, Xi Luo, Dheevatsa
Mudigere, Jongsoo Park, Misha Smelyanskiy, and Alex Aiken. Unity:
Accelerating DNN training through joint optimization of algebraic
transformations and parallelization. In Marcos K. Aguilera and Hakim
Weatherspoon, editors, 16th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2022, Carlsbad, CA, USA, July 11-13,
2022, pages 267-284. USENIX Association, 2022.

Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuai-
wen Leon Song, Zenglin Xu, and Tim Kraska. Superneurons: dynamic
GPU memory management for training deep neural networks. In An-
dreas Krall and Thomas R. Gross, editors, Proceedings of the 23rd ACM

100

[38]

[39]

[40]

[41]

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP 2018, Vienna, Austria, February 24-28, 2018, pages 41-53.
ACM, 2018.

Minjie Wang, Chien-Chin Huang, and Jinyang Li. Supporting very
large models using automatic dataflow graph partitioning. In George
Candea, Robbert van Renesse, and Christof Fetzer, editors, Proceedings
of the Fourteenth EuroSys Conference 2019, Dresden, Germany, March
25-28, 2019, pages 26:1-26:17. ACM, 2019.

Shixiong Zhao, Fanxin Li, Xusheng Chen, Xiuxian Guan, Jianyu Jiang,
Dong Huang, Yuhao Qing, Sen Wang, Peng Wang, Gong Zhang,
Cheng Li, Ping Luo, and Heming Cui. vpipe: A virtualized accelera-
tion system for achieving efficient and scalable pipeline parallel DNN
training. IEEE Trans. Parallel Distributed Syst., 33(3):489-506, 2022.
Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng
Chen, Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo,
Eric P. Xing, Joseph E. Gonzalez, and Ion Stoica. Alpa: Automating
inter- and Intra-Operator parallelism for distributed deep learning. In
16th USENLX Symposium on Operating Systems Design and Implemen-
tation (OSDI 22), pages 559-578, Carlsbad, CA, July 2022. USENIX As-
sociation.

Quan Zhou, Haiquan Wang, Xiaoyan Yu, Cheng Li, Youhui Bai, Feng
Yan, and Yinlong Xu. Mpress: Democratizing billion-scale model
training on multi-gpu servers via memory-saving inter-operator par-
allelism. In 2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 556-569, 2023.

