
246

Mat2Stencil: A Modular Matrix-Based DSL for Explicit and

Implicit Matrix-Free PDE Solvers on Structured Grid

HUANQI CAO, Tsinghua University, China
SHIZHI TANG, Tsinghua University, China
QIANCHAO ZHU, Peking University, China
BOWEN YU, Tsinghua University, China
WENGUANG CHEN, Tsinghua University, China and Pengcheng Laboratory, China

Partial differential equation (PDE) solvers are extensively utilized across numerous scientific and engineer-
ing fields. However, achieving high performance and scalability often necessitates intricate and low-level
programming, particularly when leveraging deterministic sparsity patterns in structured grids.

In this paper, we propose an innovative domain-specific language (DSL), Mat2Stencil, with its compiler, for
PDE solvers on structured grids. Mat2Stencil introduces a structured sparse matrix abstraction, facilitating
modular, flexible, and easy-to-use expression of solvers across a broad spectrum, encompassing components
such as Jacobi or Gauss-Seidel preconditioners, incomplete LU or Cholesky decompositions, and multigrid
methods built upon them. Our DSL compiler subsequently generates matrix-free code consisting of generalized
stencils through multi-stage programming. The code allows spatial loop-carried dependence in the form of
quasi-affine loops, in addition to the Jacobi-style stencil’s embarrassingly parallel on spatial dimensions. We
further propose a novel automatic parallelization technique for the spatially dependent loops, which offers a
compile-time deterministic task partitioning for threading, calculates necessary inter-thread synchronization
automatically, and generates an efficient multi-threaded implementation with fine-grained synchronization.

Implementing 4 benchmarking programs, 3 of them being the pseudo-applications in NAS Parallel Bench-
marks with 6.3% lines of code and 1 being matrix-free High Performance Conjugate Gradients with 16.4% lines
of code, we achieve up to 1.67× and on average 1.03× performance compared to manual implementations.

CCS Concepts: • Computing methodologies → Parallel programming languages; Shared memory

algorithms; • Software and its engineering→ Domain specific languages; Source code generation.

Additional Key Words and Phrases: domain-specific language, multi-stage programming, compiler, finite
difference method, stencil, structured grid, polyhedral compilation, performance optimization

ACM Reference Format:

Huanqi Cao, Shizhi Tang, Qianchao Zhu, Bowen Yu, and Wenguang Chen. 2023. Mat2Stencil: A Modular
Matrix-Based DSL for Explicit and Implicit Matrix-Free PDE Solvers on Structured Grid. Proc. ACM Program.

Lang. 7, OOPSLA2, Article 246 (October 2023), 30 pages. https://doi.org/10.1145/3622822

Authors’ addresses: Huanqi Cao, caohq18@mails.tsinghua.edu.cn, Tsinghua University, Beijing, China; Shizhi Tang, tsz19@
mails.tsinghua.edu.cn, Tsinghua University, Beijing, China; Qianchao Zhu, dysania@pku.edu.cn, Peking University, Beijing,
China; Bowen Yu, yubowen@tsinghua.edu.cn, Tsinghua University, Beijing, China; Wenguang Chen, cwg@tsinghua.edu.cn,
Tsinghua University, Beijing, China and Pengcheng Laboratory, Shenzhen, China.

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/10-ART246
https://doi.org/10.1145/3622822

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0002-3870-106X
HTTPS://ORCID.ORG/0000-0002-6543-0859
HTTPS://ORCID.ORG/0009-0001-5021-2912
HTTPS://ORCID.ORG/0000-0001-5537-8244
HTTPS://ORCID.ORG/0000-0002-4281-1018
https://doi.org/10.1145/3622822
https://orcid.org/0000-0002-3870-106X
https://orcid.org/0000-0002-6543-0859
https://orcid.org/0009-0001-5021-2912
https://orcid.org/0000-0001-5537-8244
https://orcid.org/0000-0002-4281-1018
https://doi.org/10.1145/3622822
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3622822&domain=pdf&date_stamp=2023-10-16

246:2 Huanqi Cao, Shizhi Tang, Qianchao Zhu, Bowen Yu, and Wenguang Chen

1 INTRODUCTION
1 Numerical solutions of partial differential equations (PDEs) are crucial in a wide variety of
scientific computing applications, spanning from weather prediction [Skamarock et al. 2019] to
seismic imaging [Mcmechan 2006]. Many of these applications employ structured grids, primarily
Cartesian grids, for spatial discretization. These grids manifest as 2-dimensional or 3-dimensional
arrays, with calculations executed through algorithm-driven traversal over the array elements. In
the past, scientists employed general-purpose programming languages, such as FORTRAN and
C/C++, to manually develop solvers for PDEs on structured grids. This process required extensive
use of “for” loops and arithmetic operations, often leading to solvers encompassing thousands of
lines of code. As multi-threading and single instruction multiple data (SIMD) technologies have
advanced in modern computing, the manual development of such solvers is progressively becoming
less practical and less effective.

𝑇 = 𝑛
𝑇 = 𝑛 + 1

(a) The dependence graph in an explicit solver.

𝑇 = 𝑛
𝑇 = 𝑛 + 0.5
𝑇 = 𝑛 + 1

(b) The dependence graph in an implicit solver,
demonstrating a symmetric Gauss-Seidel itera-
tion. Critical path marked red.

Fig. 1. The different computation pa�erns of explicit and implicit solving algorithms, with a 1D heat equation
(Equation (1)) as an example.

A natural direction to address this issue is to translate the operations on structured grids to
manipulations of sparse matrices, which we term the matrix-based approach. The PDE solving
procedure thus becomes multiplying sparse matrices to vectors (SpMV) and solving sparse linear
systems according to the matrix. This approach thus typically employs general library routines
[Intel 2023; Virtanen et al. 2020] to work on the user-provided matrices. However, there are two
critical issues. First, constructing the sparse matrix for the PDE problem necessitates significant
human effort due to the complexity of real-world equations and their solvers. Second, as these
libraries serve general purposes, they must read the matrix and analyze it at runtime to cater to
a broader range of applications, including unstructured grids. Consequently, they have limited
ability to efficiently exploit structured sparsity patterns. Despite covering the domain well, the
matrix-based approach suffers from unresolved programmability and performance issues.
However, matrix-free solvers that directly target the equations are typically handwritten in

languages such as C/C++ or FORTRAN,making them labor-intensive to implement. Domain-specific
languages (DSLs) and compilers have emerged as promising approaches to simplify programming
and enhance performance. By eliminating matrices, the computations involved in solving partial
differential equations (PDEs) are reduced to stencil operators, which iterate over grid points and
compute new values based on their neighborhoods. A well-known class of stencil operators is
the Jacobi-style stencils, which read and write different arrays at each time step and exhibit no
spatial dependence, which is the dependence between different spatial locations at the same time
step, as illustrated in Fig. 1a. In contrast, Seidel-style stencils read and write the same arrays,
thereby introducing spatial dependence, as seen in Fig. 1b, which makes them challenging to
automatically parallelize and optimize. While some DSLs, such as [Lengauer et al. 2020; Louboutin

1We improved the writing of this section by prompting GPT-4 [OpenAI 2023], OpenAI’s large-scale language-generation
model, with the draft written by humans. Upon generating, we reviewed, edited, and revised the language to ensure its
fidelity and take ultimate responsibility for the content of this publication.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

Mat2Stencil: A Modular Matrix-Based DSL for Explicit and Implicit Matrix-Free PDE Solvers on Structured Grid 246:3

et al. 2019], have successfully simplified the programming of PDE equations and solvers by primarily
targeting Jacobi-style stencils, they fail on many algorithms containing Seidel-style stencils due to
limited abstractions. On the other hand, domain-specific compilers, such as [Bondhugula et al. 2017,
2008; Verdoolaege and Janssens 2017], support both types of stencil operators through advanced
dependence analysis techniques but lack abstractions for PDEs, necessitating significant human
effort to program a solver with nested loops.

In summary, we recognize several challenges in structured grid PDE solving: ❶ a labor-intensive
process to express the equation and the solver; ❷ a conflict between expressiveness and the
matrix-free property; ❸ the absence of effective automatic optimization for Seidel-style stencils.
To address these challenges, we introduce a novel DSL called Mat2Stencil, designed for both
explicit and implicit solving algorithms for PDEs, while ensuring its expressiveness, modularity,
and performance. Our contributions are as follows:

• We enable modular programming of equations and their solvers through a high-level ab-
straction of structured sparse matrices. It utilizes a set of simple matrices and their arithmetic
operations to compose more complicated problem matrices. These pre-defined matrices
reflect the various steps involved in discretizing partial differential equations (PDEs) and
enable user-friendly problem construction in PDE-solving processes.
• We enhance expressiveness by introducing a low-level abstraction for structured sparse
matrices based on row functions. It allows users to effortlessly define their custom sparse
matrices as well as implement custom algorithms against any structured sparse matrices. The
design is kept simple and compile-time resolvable, to enable further lowering to matrix-free
implementations.
• We compile structured sparse matrices user code to matrix-free target code by expanding
the sparse matrices during the first stage of our multi-stage programming infrastructure.
In specific, we backtrack and discuss different cases of loop indices to fill the gap between
compile-time (stage 1) and runtime (stage 2) control flow, generating matrix-free code con-
sisting of regular quasi-affine loops.
• We develop a novel automatic parallelization technique, SewTh (abbrev. for Sewing the
Threads), based on polyhedral dependence analysis, to enable efficient multi-threaded execu-
tion of the more generalized stencil loops with spatial dependencies. This approach partitions
the loop domain across threads and automatically generates fine-grained synchronization
when dependencies cross thread boundaries.

Altogether, our new DSL is capable of expressing a much wider range of explicit and implicit
PDE solvers. We evaluate our DSL by implementing four benchmarking programs from the NAS
Parallel Benchmarks (NPB) [Bailey et al. 1991] and High Performance Conjugate Gradients (HPCG)
[Dongarra et al. 2016], which includes Symmetric Gauss-Seidel, Symmetric Successive Over-Relax-
ation, and direct solving of multi-diagonal matrices (degenerated from Incomplete Lower-Upper
decomposition) as the implicit solving kernels with spatial dependence. Our performance reaches
up to 1.67× performance in NPB compared with the original FORTRAN implementation, with
only 6.3% lines of code; we also finish HPCG implementation in 16.4% lines of code compared
to a manually matrix-free implementation. The geometric mean of our performance over all the
programs is 1.03× of the highly-optimized matrix-free human implementations.

2 BACKGROUND ANDMOTIVATION

In this section, we discuss the current status and problems in differential equation solving, and then
the background of techniques we will employ in this paper, including multi-stage programming
and polyhedral analysis for automatic parallelization.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

246:4 Huanqi Cao, Shizhi Tang, Qianchao Zhu, Bowen Yu, and Wenguang Chen

2.1 Solving Differential Equations on Structured Grids

In this subsection, we demonstrate existing approaches to solving differential equations on struc-
tured grids. We use the simple equation in Equation (1) as an example in which we want to solve
D (G, C).

mD

mC
=

m2D

mG2
, G ∈ [0, 1];D (0, C) and D (1, C) constant. (1)

To solve it numerically through Finite Difference [Strikwerda 2004], the variable C is discretized
temporally to)ΔC and variable G spatially to 8ΔG (0 ≤ 8 ≤ =,ΔG = 1/=), in which) for timesteps

and 8 for grid point number are both integers. We thus note D ()ΔC, 8ΔG) as D ())8 in short. If we

discretize mD/mC as (D ()+1)8 −D
())
8)/ΔC , we have the explicit numerical scheme in Equation (2), which

is a iterative approach to compute D one by each timestep:

D
()+1)
8 − D

())
8

ΔC
=

{(
D
())
8−1 − 2D

())
8 + D

())
8+1

)
/(ΔG)2 if 0 < 8 < =,

0 otherwise

D
()+1)
8 =

{
_D
())
8−1 + (1 − 2_)D

())
8 + _D

())
8+1 if 0 < 8 < =,

D
())
8 otherwise

where _ = ΔC/(ΔG)2. (2)

However, such explicit schemes sometimes suffer from stability problems. Instead, if we discretize

mD/mC as (D ())8 − D
()−1)
8)/ΔC , we then derive an implicit numerical scheme in Equation (3), which

requires solving a linear system at each timestep:

D
())
8 − D

()−1)
8

ΔC
=

{(
D
())
8−1 − 2D

())
8 + D

())
8+1

)
/(ΔG)2 if 0 < 8 < =

0 otherwise
{
−_D

())
8−1 + (1 + 2_)D

())
8 − _D

())
8+1 = D

()−1)
8 for 0 < 8 < =,

D
())
0

= D
()−1)
0

, D
())
= = D

()−1)
=

where _ = ΔC/(ΔG)2 . (3)

We see that explicitly solving differential equations only requires straightforward computation,
while an implicit method will need to solve systems of linear equations. To solve the sparse linear
systems, direct methods (usually for multi-diagonal matrices) and iterative methods using Jacobi,
Gauss-Seidel, Incomplete LU decomposition, etc., have been employed. Though in different patterns,
the existing methods for both cases can be classified into two: one is matrix-based, generates sparse
matrices, and uses general routines for sparse linear algebra; the other is matrix-free and targets
the math formulas directly.

2.1.1 Matrix-Based Approach: General Sparse Linear Algebra. One general method to deal with the
grids that PDEs are discretized onto involves sparse matrices. Regarding Equation (3), the linear
system to be solved can be formulated in matrix form as follows:



1

−_ 1 + 2_ −_

. . .
. . .

. . .

−_ 1 + 2_ −_

1



u()) = u()−1) (4)

Users may thus generate the sparse matrix by themselves and use general sparse linear algebra
routines to solve their equation. Similarly, the explicit form in Equation (2) is formulated as a similar
sparse matrix-vector multiplication, or SpMV. Thus, by implementing those algorithms against

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

Mat2Stencil: A Modular Matrix-Based DSL for Explicit and Implicit Matrix-Free PDE Solvers on Structured Grid 246:5

arbitrary sparse matrices, library providers liberate domain experts from writing those complicated
codes, only leaving the generating of sparse matrices.
Yet, generating the sparse matrix via hand-written codes can be annoying. With much more

complex equations, the sparse matrix may require more than one page of math formulas to specify,
not to mention the code. Besides the difficulty in constructing the matrices, the performance of
the matrix-based approach is unsatisfying. Although general sparse routines are highly optimized,
require extensive human efforts from expert programmers, and usually cannot be implemented
efficiently by science domain researchers, these general sparse routines cannot compete with
matrix-free approaches in structured problems, due to the lack of structural information at compile
time.

2.1.2 Matrix-Free Approaches: Stencil by Hand or Automatically. Regarding the structured grids,
it is possible to get rid of the matrices and perform computation directly, which we call “matrix-
free”. Like in Equation (2), explicit approaches primarily involve embarrassingly parallel stencil
computations in a single timestep. In each iteration, they read neighbor points in the input 2D
or 3D tensors with a certain pattern, go through a certain function as its computation, and yield
the corresponding value in output tensor(s). There is no data dependence between different grid
points if we look at only one iteration. Due to its nature of independent computation, parallelizing
such types of stencil computation is straightforward. We denote such stencils as “Jacobi-style”
stencils considering that Jacobi iterations match such a computational pattern without purely
spatial dependence. Since the computation is highly customized across applications due to different
PDEs to solve, and optimization by hand requires massive human effort, many domain-specific
languages (DSLs) have been designed to address the optimization of stencil computation, as well as
programmability of explicit or Jacobi iteration-based implicit solvers.
While Jacobi-style stencil computations are widely researched, many implicit solvers require

operators not covered by such DSLs. Such operators, while still operating neighbors on structured
grids, have dependence carried purely by spatial loops on one or more dimensions, which we
recognize as Seidel-style stencils, named after the most commonly used Gauss-Seidel iteration
but not limited to that particular algorithm. For example, directly solving Equation (3) requires
Gaussian eliminating forward and backward, introducing sequential dependence along the G axis.
More complicated equations and numerical schemes may require iterative methods such as multi-
grid solvers or conjugate gradients, which in turn requires routines like Gauss-Seidel iteration,
incomplete lower-upper (ILU) factorization, fine-grained parallel ILU [Chow and Patel 2015], and
so on.
Although the 1D case introduced here has to be executed sequentially, Seidel-style stencils

with two or more dimensions are usually possible to get parallelized, but not as trivial as those
Jacobi-style stencils, requiring more human efforts to optimize. For example, the block tri-diagonal
pseudo-application in NAS Parallel Benchmarks (NPB-BT) is written in over 400 lines of Fortran
code for solving the block tri-diagonal matrix in only one direction, and it has three directions to
solve, involving over 1300 LOC. However, such routines are not yet supported by the DSLs targeting
PDE solving. As the best among existing, ExaStencils is capable of implicitly solving differential
equations, but only through Jacobian and forward Gauss-Seidel iterations in a multi-grid (MG)
solver, which is just a particular case with limited computation patterns.

2.1.3 Discussion. Due to the difficulty of manually programming Seidel-style stencil operators,
the matrix-based representation is usually preferred, especially in the case of implicit solvers. For
example, the High Performance Conjugate Gradients (HPCG) Benchmark [Dongarra et al. 2016], a
widely recognized effort for ranking top-level supercomputers, enforces sparse matrices and forbids
matrix-free approaches in its valid implementations, indicating their concern about the generality of

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

246:6 Huanqi Cao, Shizhi Tang, Qianchao Zhu, Bowen Yu, and Wenguang Chen

Stage 1 Stage 2

for i in static_range(2):
a[i] += 2 * i * b[i]

(a) Code using type-based staging.

emit(f'a[{0}] += {2 * 0} * b[{0}];')
emit(f'a[{1}] += {2 * 1} * b[{1}];')

(b) Logically equivalent code through manual string splicing.

Fig. 2. A simple example for type-based multi-stage programming.

operator implementations. However, it turns out such prohibition limits performance drastically. It
is reported that implementing the HPCG computation in a matrix-free form significantly improves
the performance, by 4.67× on the New Sunway supercomputer [Zhu et al. 2021]. When possible,
HPC researchers still seek matrix-free approaches even for implicit approaches, e.g., the 2016
Gordon Bell Prize winner [Yang et al. 2016] designed and manually implemented a geometry-based
ILU that maps the dependence to hardware-supported inter-core communication.
To this end, we seek a solution so that: ❶ the Seidel-style operators are naturally enabled,

resolving the coverage issue of stencil DSLs; ❷ the construction of linear problems is easy for users,
resolving the programmability issue of the matrix-based approach; ❸ the matrix-free property is
retained at runtime, resolving the performance issue of the matrix-based approach. These challenges
lead us to a new DSL working with sparse matrices but compiled into generalized stencils.

2.2 Multi-Stage Programming

Multi-stage programming, or staging, has been a promising method for building embedded domain-
specific languages. In such practices of multi-stage programming, a program usually is split into
two stages: stage 1 (at compile time) executes the user code partially to generate an optimized
intermediate program, and stage 2 (at run time) executes the intermediate program to get the final
result. In our design, programmers express the solvers as sparse matrices and their operations on
stage 1, which generates matrix-free stage-2 code.

Lightweight Modular Staging (LMS) [Rompf and Odersky 2012] is one of such frameworks and
has been adopted in multiple DSL works [Ofenbeck et al. 2013; Shaikhha et al. 2018; Sujeeth et al.
2014]. LMS separates the two stages through only types: Rep[T] refers to a T-typed value at the
second stage. Since that LMS is a Scala library, we implement our own to build our embedded DSL
in Python.

In such an approach, expressions to be delayed to the next stage are used together with normal
values. The operators, including conventional ones (e.g. __mul__(a, b) for a * b) and indexed
load/store (__getitem__ and __setitem__ for code like a[...]), are overloaded to make user code
operating on the delayed expressions seamlessly. When the first stage runs, the codes generated by
the overloaded operators for the second stage are spliced together for later compiling. The control
flow structures are similarly overloaded to be able to generate control flow codes in the next stage.
In particular, our backend, built on top of FreeTensor [Tang et al. 2022], transforms the Python AST
to enable virtualized control flow, the details of which will be introduced in Section 5.1. A simple
example is shown in Fig. 2.

2.3 Polyhedral Analysis for Automatic Parallelization and Optimization

Throughmulti-stage programming, we produce matrix-free code containing the generalized stencils,
in the form of quasi-affine tensor programs. Such programs contain indexed for-loops and branches
according to quasi-affine expressions, and access tensors, or multi-dimensional arrays, with quasi-
affine indices as well. There have been many studies on optimizing such affine programs since the
invention of FORTRAN, which can be summarized as polyhedral analysis. Program analysis and
transformations for multithreading, vectorization, and better cache management are summarized

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

Mat2Stencil: A Modular Matrix-Based DSL for Explicit and Implicit Matrix-Free PDE Solvers on Structured Grid 246:7

X

Y
T = X + 2Y

(a) A typical skewing parallel implementation. Col-
ored bands are executed in parallel, constructing a
skewed “time” axis) . Poor locality.

X

Y

(b) A typical skewed tiling parallel implementation.
Tiles with the same color are executed in parallel,
while each tile is executed sequentially by one thread.
High startup overhead.

Fig. 3. Automatically-produced polyhedral schedules for 2D 9-point Gauss-Seidel.

in [Padua and Wolfe 1986] and [Allen and Kennedy 2001]. As such methods can only be applied on
nested loops, they can hardly be used directly on domain-specific user code, but they point out a
path towards automatically parallelizing our generated code.
The most famous ones among those compilers are PPCG [Verdoolaege and Janssens 2017] and

PLUTO [Bondhugula et al. 2008]. While capable of parallelizing computation in many different
patterns, they need more specially-designed approaches to achieve efficient stencil computations,
e.g. diamond tiling in PLUTO [Bondhugula et al. 2017]. However, previous stencil optimizations
mainly target Jacobi-style stencils, leaving Seidel-style stencils with vanilla skewing and/or tiling.
An example is shown in Fig. 3, which contains two typical methods to parallelize a 2D 9-point
Gauss-Seidel loop, produced by the existing automatic approaches. The approach without tiling
involves too many global synchronizations and has a poor memory locality. The approach with
skewed tiling instead incurs huge starting and ending overhead. As such, they are not efficient at
many of the implicit solvers our DSL wants to cover. The development of new techniques resolving
the Seidel-style stencils is thus essential for us.

3 OVERVIEW OFMAT2STENCIL LANGUAGE AND COMPILER

FreeTensor IR of
Generalized Stencil

Parallel Matrix-Free
Impl. in C++

Algorithms
(SpMV, Gauss-Seidel, ILU, …)

Predefined
Matrices

User-Defined
Matrices

Equation
Solver

(Section 4)

stage 1
execution

(Section 5)

via ext.

SewTh
Parallelizer

MemOpt:
inline + fuse

(Section 6)

Fig. 4. An overview of Mat2Stencil workflow.

Based on the observation mentioned above, we propose Mat2Stencil, our domain-specific lan-
guage and its corresponding compiler for solving partial differential equations (PDEs) on structured
grids. An overview is shown in Fig. 4. Mat2Stencil offers a concise and flexible programming
interface for a wide range of PDE solvers. Our structured sparse matrix abstraction enables the
modular construction of sparse matrices through linear algebra operations on both predefined and
user-defined simple matrices. Furthermore, our DSL separates the algorithms from the matrices,
supporting operations ranging from simple stencil operators to complicated Gauss-Seidel iterations
and Incomplete LU decomposition. Users write equation solver code that composes simple sparse
matrices using arithmetic operations into complicated ones and invokes the algorithms against

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

246:8 Huanqi Cao, Shizhi Tang, Qianchao Zhu, Bowen Yu, and Wenguang Chen

them. The compile-time resolvable feature enables us to exploit sparsity patterns effectively. The
language design will be covered in Section 4. As the first stage of the multi-stage programming
frontend, we assemble matrix-free generalized stencil code in FreeTensor IR [Tang et al. 2022],
by backtracking and discussing over compile-time undecidable branches. The staging techniques
involved will be covered in Section 5.
After the first stage, the backend optimization of Mat2Stencil, which we implemented as a

FreeTensor extension, is responsible for optimizing and parallelizing the code before proceeding
to stage 2 (or runtime). We propose a novel SewTh parallelizer (Sewing the Threads), which
empowers theMat2Stencil backend to automatically and efficiently parallelize Seidel-style stencils.
Additionally, we use a PLUTO+-like [Bondhugula et al. 2016] algorithm to fuse the loops, and
perform aggressive inlining of elementwise functions, to optimize memory traffic further. They
will be discussed in Section 6.

4 MAT2STENCIL LANGUAGE DESIGN

In this section, we present the detailed design of theMat2Stencil language. We will start from the
uppermost abstraction, which is on equation solvers, and then go down to the matrices abstraction
and expression of linear algebra algorithms within Mat2Stencil. Finally, we present the grammar
of Mat2Stencil.

4.1 Abstraction Over the Equation

InMat2Stencil, the solving procedure of a PDE is expressedwith sparse linear algebra, in which the
sparse matrices involved are structured and modular. As is mentioned in Section 2.1.1, constructing
the sparse matrix can be problematic for complicated real-world solvers. Instead of requiring users
to generate an entire matrix to solve with twisted problem generation code, we enable the assembly
of such problem matrices through linear algebra expressions evaluated at compile-time. We present
howMat2Stencil abstracts over the equation in Fig. 5 with an end-to-end example from the Scalar
Penta-diagonal (SP) pseudo-application in the NAS Parallel Benchmark (NAS) before we dig into
the details. Notice that instead of requiring the user to fill in the non-zeros of the matrices to solve
one by one like in other matrix-based approaches, Mat2Stencil only requires users to implement
individual modules, including custom structured sparse matrices like dssp4 for nℎ4 (m4/m∗4) and
lambda_y, rho_n, etc. as elementwise functions, then write linear expressions to combine them,
which are close to the discretized equations.

{
I − Δg

[
m

mG
ΛG (u) +

m2

mG2
d# (u) − nℎ4

m4

mG4

]}
Δu2 = Δu1

{
I − Δg

[
m

m~
Λ~ (u) +

m2

m~2
d& (u) − nℎ4

m4

m~4

]}
Δu4 = Δu3

{
I − Δg

[
m

mI
ΛI (u) +

m2

mI2
d((u) − nℎ4

m4

mI4

]}
Δu6 = Δu5

(a) The equations to solve.

ilu_solve(identity() - DELTA_T * Px * (
Ax * Dx * diagonal(lambda_x(u)) +
Dx * Dx * diagonal(rho_n(u)) - dssp4x

), r)
...
ilu_solve(identity() - DELTA_T * Py * (
Ay * Dy * diagonal(lambda_y(u)) +
Dy * Dy * diagonal(rho_q(u)) - dssp4y

), r)
...
ilu_solve(identity() - DELTA_T * Pz * (
Az * Dz * diagonal(lambda_z(u)) +
Dz * Dz * diagonal(rho_s(u)) - dssp4z

), r)

(b) Solver implementation.

Fig. 5. The NPB-SP specified problem and correspondedMat2Stencil implementation.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

Mat2Stencil: A Modular Matrix-Based DSL for Explicit and Implicit Matrix-Free PDE Solvers on Structured Grid 246:9

One may notice that derivative operators like m/mG are replaced by some variables like Dx. These
variables are predefined matrices that match the discretized differential and help the construction
of matrices to solve. We observe that the sparse matrices to solve can usually be constructed from
several simple matrices, and the construction procedure is tightly related to the differential formula.
To explain this, we start with the first-order derivative. After discretization, the m/mG differential
operator is turned into a sparse matrix D, as is shown below. For simplicity, we write the expanded
form of a column vector v as a semicolon-separated list: [E0; ...; E=].

D
38B2A4C8I4
−−−−−−−−→ [D0; ...;D=]

345
====== u

mD

mG

38B2A4C8I4
−−−−−−−−→

[D1 − D0
ΔG

; ...;
D= − D=−1

ΔG

]
=

1

ΔG



−1 1

. . .
. . .

−1 1

 (=−1)×=

u
345
====== D(=)u

Based on that, we similarly have m2D
mG2 discretized as D(=−1)D(=)u, which can be simpler noted as

D2u since the actual shape of each D can always be inferred from what vector it is multiplying to.
Beside that, we further define P = [0; I; 0], so that Pu = [0; u; 0], which represents padding on the
boundary. Using this notation, we can easily perform the discretization in Equation (3) without
dealing with scalars:

u()) − u()−1)

ΔC
=

[
0;D2u()) ; 0

]
= PD2u())

⇒ (I − ΔCPD2)u()) = u()−1) . (5)

It can be easily verified that Equation (5) is equivalent to Equation (4). It naturally specifies how
the matrix to solve is constructed, with a number of arithmetic operations on sparse matrices.
Furthermore, since that higher dimensional uwill require flattening to a vector,Dwill be broadcasted
into DG , D~ , and DI , reflecting the higher-dimensional differencing operations. Similarly, the
neighborhood averaging A, which has occurred in Fig. 5b in broadcasted forms, is defined as

A =



1/2 1/2

1/2 1/2

. . .
. . .

1/2 1/2



, so that Au =

[D0 + D1
2

; ...;
D=−1 + D=

2

]
.

However, computing the sparse matrices via these arithmetics at runtime can be costly, especially
noticing that we need multiplications between sparse matrices. Given the compile-time known
structure of the structured sparse matrices, we have the opportunity to fully resolve the matrix
construction at compile-time. Besides, to generate efficient matrix-free compute kernels, the matrix-
vector multiplication and sparse linear solvers need to cooperate with such structured matrices at
compile time. Given the multi-stage programming infrastructure, the first stage (running in Python)
is responsible to deal with this. The following subsections will introduce our design behind, and
the staging procedure will be introduced in Section 5.

4.2 Sparse Matrices as Row Functions

In Mat2Stencil, a sparse matrix is represented as a row function, which takes a row index
and produces non-zeros in the specified row. Each non-zero is a pair of a column index and the
corresponding matrix value, in the same way as in the adjacency list. The returned non-zero list is
then consumed by sparse linear algebra procedures that define the computation, decoupled from
the matrix. Speaking in the multi-stage programming framework, the row index, non-zero column

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

246:10 Huanqi Cao, Shizhi Tang, Qianchao Zhu, Bowen Yu, and Wenguang Chen

Table 1. Examples of sparse matrices inMat2Stencil.

Predefined Matrices Examples

D
iff

…
…

@spmat(lambda n: n - 1)
def diff(col_domain: CartesianDomain, i: IdxExpr):

return [(i, -1), (i + 1, 1)]

P
ad
di
n
g

…
…

@spmat(lambda n: n + 2)
def padding(col_domain: CartesianDomain, i: IdxExpr):

if i > 0 and i < domain.size(0) + 1:
return [(i - 1, 1)]

return []

User-defined Matrices Examples

N
P
B
4t
h
or
de
r
di
ss
ip
at
io
n

…
…

…
…

@spmat()
def dssp4(col_domain: CartesianDomain, i: IdxExpr):
n = col_domain.size(0)
if i == 0:
return [(i, 5), (i + 1, -4), (i + 2, 1)]

elif i == 1:
return [(i - 1, -4), (i, 6), (i + 1, -4), (i + 2, 1)]

elif i < n - 2:
return [(i - 2, 1), (i - 1, -4), (i, 6), (i + 1, -4), (i + 2, 1)]

elif i == n - 2:
return [(i - 2, 1), (i - 1, -4), (i, 6), (i + 1, -4)]

elif i == n - 1:
return [(i - 2, 1), (i - 1, -4), (i, 5)]

H
P
C
G
P
ro
lo
n
g

……

@spmat(lambda nx, ny, nz: [nx * 2, ny * 2, nz * 2])
def prolong(col_domain: CartesianDomain, z, y, x):
if z % 2 == 0 and y % 2 == 0 and x % 2 == 0:
return [(z // 2, y // 2, x // 2, 1.)]

else:
return []

indices, and values are all staged expressions that will be resolved at runtime, while the non-zero
list itself is a compile-time Python list.

Some examples are shown in Table 1. A domain is assigned to both the row and column indices,
representing their valid range starting from 0. Thus, the row function also takes a parameter
col_domain, which contains the information on matrix size and will be described in detail in
Section 4.2.1. Decorated by @spmat, which is a Python decorator function we provide, the row
function is wrapped into aMat2Stencilmatrix object of type SpMat. The decorator also optionally
takes a lambda expression to compute the matrix size relatively, the detail of which will be discussed
in Section 4.2.2. Besides, through simple if-else sequences, the special boundary in many structured
sparse matrices can be well expressed, and so can periodical sparsity patterns that occur in, for
example, prolongation in multi-grid solvers.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

Mat2Stencil: A Modular Matrix-Based DSL for Explicit and Implicit Matrix-Free PDE Solvers on Structured Grid 246:11

Our row function design imitates the adjacency list, corresponding the non-zero cells in thematrix
to their rows. This abstraction suits our applications well: an unknown variable in a discretized
linear equation system like Equation (3) is related to a limited and compile-time known number
of other unknowns, which are usually neighbors on the grid. Thus in the matrix representing the
linear systems to be solved, the non-zeros in a row are in the columns of the neighbors. It makes
the row function a natural design: the existing approach through general sparse linear algebra
routines also requires users to generate sparse matrices with similar code, but for the more complex
end-to-end matrices instead of our simple modular ones.

Yet, during implementing applications, we observe that expressing a conventional matrix is not
sufficient to maximally ease user programming. We extend the sparse matrix inMat2Stencil in
the following aspects and expose optimization opportunities.

4.2.1 Multi-Dimensional Rows and Columns. Representing the structured problems as sparse
matrices requires flattening the multi-dimensional unknowns. It adds burdens on user programming
to write the flattened index of the rows and columns. Besides, such flattened access is not friendly
to our backend optimization: to address the arbitrary dependence Seidel-style stencils may bring to
us, the polyhedral analysis need complete information about the original multi-dimension structure
to achieve good performance.
As such, we extend the sparse matrix to higher dimensions on the rows and columns. Such a

“matrix” with<-D row domain and =-D column domain is thus a (<,=)-tensor in the terminology
of General Relativity; yet for convenience of understanding and to match the code, we will con-
tinue to note it as a “matrix”, or SpMat. A matrix object then has two properties, row_domain and
col_domain Each domain object has a tuple of integers for its grid size; in our current implemen-
tation, only regular Cartesian grids are considered, but the domain type can be extended easily.
An<-D point in the row domain corresponds to a row in the matrix consisting of non-zeros, each
with a =-D point in the column domain and the value of the non-zero in the matrix. Correspond-
ingly, a previously flattened vector becomes a multi-dimensional Vector either, with respect to the
multi-dimensional space that the physical quantities span over. A domain is similarly attached as a
property to each Vector object.
For example, in the prolongation matrix shown in Table 1 we are already using the multi-

dimensional row index passed into the row function and returning multi-dimensional column
indices of non-zeros in the row. If, for example, consumed by the SpMV procedure in Fig. 7, the
returned column indices are later used to index the multi-dimensional Vector being multiplied
against, thus performing the prolongation step mapping the coarser grid to a finer grid.

4.2.2 Automatically Deriving Row Domain from Column. A structured operation usually applies
to many different grids, including grids of different sizes and dimensions. We notice that a given
column domain for a structured sparse matrix will decide its row domain. In specific, a SpMat is
logically right-multiplied to Vectors, thus the column domain is always decided first. As such, we
make the row_domain of an Mat2Stencil matrix always following its col_domain. Walking into
details, SpMat does not require specific row or column domains in user codes. At each staging site
that we decide its concrete shape, its col_domain will be set through a Python property setter. The
setter calls a virtual function set_col_domain to set the column domain and compute the row
domain. The @spmat generated SpMat optionally receives a lambda expression as its argument to
map its sizes of column domain to row, which is used to implement its set_col_domain.

4.2.3 Inner Value as a Tensor. Multiple (but a small fixed number of) quantities are often attached
to the same grid in real-world applications. In previous matrix-based approaches, these quantities
are flattened along with the grid dimensions; after retaining the grid dimensions, we then need

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

246:12 Huanqi Cao, Shizhi Tang, Qianchao Zhu, Bowen Yu, and Wenguang Chen

to allow the SpMat and Vector to have tensors, instead of plain scalars, as its inner values. They
thus have a fixed inner_shape, which describes the shape of their inner tensor values, as an extra
parameter in constructing a Mat2Stencil sparse matrix.

4.3 Linear Algebra on Mat2Stencil

Through the programming interfaces of Mat2Stencil, linear algebra routines can be easily im-
plemented. Wrapped in a domain loop, such routines can retrieve lists of non-zeros in each row
of Mat2Stencil matrices, and perform computation according to their algorithm. Those sparse
linear algebra routines are able and expected to be implemented in their simplest form, i.e. directly
operating on the adjacency list, without the need for manual optimizations.

@ft.inline
def spmv(m: SpMat, v: Vector):
m.col_domain = v.domain
out = Vector(m.row_domain)
for i in m.row_domain:
out[i] = sum(nv * v[ni]

for ni, nv in m.row(i))
return out

Fig. 7. Implementation of SpMV in
Mat2Stencil.

4.3.1 Sparse Matrix-Vector Multiplication (SpMV). The sim-
plest example is SpMV in Fig. 7, multiplying a sparse matrix
and a vector. It first adjusts the domains of the matrix and re-
trieves the expected domain of the product vector accordingly,
the mechanism of which has been covered in Section 4.2.2.
Looping over the domain, it reads corresponding rows

through the rowmethod of the matrix object, which is a simple
wrap of the above row function. It then multiplies the value
from the matrix and vector for each non-zero and sums them
up to get the final result, following the math of matrix-vector
multiplication.

lhs.row(i)

lhs

rhs

out

+

+

×

×

×

(a) Row-based algorithm.

def spgemm(lhs: SpMat, rhs: SpMat):
lhs = deepcopy(lhs)
rhs = deepcopy(rhs)
column to row domain deriving
def domain_mapper(*col_dims):
rhs.col_domain = CartesianDomain(col_dims)
lhs.col_domain = rhs.row_domain
return lhs.row_domain.dims

row function of product matrix
@spmat(domain_mapper, mul_shape(lhs.inner_shape, rhs.inner_shape))
def spgemm_impl(domain: CartesianDomain, *idx: IdxExpr):
retrieve LHS and RHS rows
lhs_row = list(lhs.row(list(idx)))
rhs_rows = [[(rhs_idx, mul(lhs_val, rhs_val))

for rhs_idx, rhs_val in rhs.row(lhs_idx)]
for lhs_idx, lhs_val in lhs_row]

multi-way merge rhs_rows
merged_nnzs = multiway_merge(rhs_rows)
sum up non-zeros with same index
merged_row = []
for nnz_idx, nnz_value in merged_nnzs:

if len(merged_row) == 0 or merged_row[-1][0] != nnz_idx:
merged_row.append((nnz_idx, nnz_value))

else:
merged_row[-1] = (nnz_idx, merged_row[-1][1] + nnz_value)

reformat and return
return [(*nnz_idx, nnz_val) for nnz_idx, nnz_val in merged_row]

return spgemm_impl

(b) Implementation in Mat2Stencil.

Fig. 6. Algorithm and implementation of SpGEMM.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

Mat2Stencil: A Modular Matrix-Based DSL for Explicit and Implicit Matrix-Free PDE Solvers on Structured Grid 246:13

4.3.2 Sparse Matrix Multiplication. With both operands expressed inMat2Stencil, it is possible to
give their product still in Mat2Stencil and being resolved all at compile stage through a row-wise
spgemm as is shown in Fig. 6a.

Then, as shown in Fig. 6b, the row function of the resulting matrix first walks through the row of
the specified index on the left-hand side (LHS), retrieving the non-zeros. It then uses the non-zeros’
column indices to index the rows of the right-hand side (RHS) matrix. All the RHS rows are merged
in order, multiplied with the LHS values accordingly, and summed up to one non-zero sequence,
producing the result row. All this procedure happens in stage 1 and is thus expanded to plain
matrix-free codes before stage 2.

Summing up and subtracting between Mat2Stencil matrices is even simpler: they only require
merging two rows from the two matrices, similar to combining the multiple rows from RHS in
spgemm. We also implement them for Mat2Stencil but do not include details here.

@ft.inline
def symgs(A: CartesianDomain,

r: Vector, x: Vector):
forward sweep
for i in x.domain:

sx = r[i]
diag = 0
for nnz_idx, nnz_val in A.row(i):

if nnz_idx == i:
diag = nnz_val

else:
sx = sx + (-nnz_val) * x[nnz_idx]

x[i] = sx / diag
backward sweep
for i in reversed(x.domain):

sx = r[i]
diag = 0
for nnz_idx, nnz_val in A.row(i):

if nnz_idx == i:
diag = nnz_val

else:
sx = sx + (-nnz_val) * x[nnz_idx]

x[i] = sx / diag

Fig. 8. Example code for Symmetric Gauss-Seidel
implemented againstMat2Stencil.

4.3.3 Enabling Spatial Dependence. These linear
algebra routines can also contain spatial depen-
dence carried by the domain loops, according to
their different algorithms, enabling the implemen-
tation of more complicated routines required by
PDE solvers. An example is in Fig. 8, in which the
loops simultaneously read and write on the same
Vector object and introduces matrix-defined de-
pendence. The staging procedure will then produce
their matrix-free form constructed of regular nested
loops, without any indirect access typical in tradi-
tional sparse linear algebra, thanks to the staged
domain loop indices (will be covered in Section 5).
Our analysis and optimization mentioned in Sec-
tion 6 will resolve the loop-carried dependence and
exploit chances to parallelize.
To support our evaluated applications, we have

implemented Incomplete Lower-Upper, Symmetric
Successive Over-Relaxation, and Symmetric Gauss-
Seidel, each with tens of lines of code. Users with
science backgrounds will be able to implement their
own routines in Mat2Stencil in usually tens of
lines, much easier than in traditional sparse algebra
libraries.

4.4 Grammar of Mat2Stencil

After describing our language design, we thereby demonstrate the grammar of the Mat2Stencil

language. As an embedded domain-specific language built upon type-based staging techniques,
Mat2Stencil involves various host language (Python) functions during the staging process, noted
as InType⇝ OutType and may have side effects. Many designs mentioned above work as Python
components, and are thus invisible in the grammar, including the row function, structured sparse
matrix objects, and linear algebra routines. Without hurting the core idea, it also omits details
about “inner value as a tensor” from Section 4.2.3.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

246:14 Huanqi Cao, Shizhi Tang, Qianchao Zhu, Bowen Yu, and Wenguang Chen

($ F new_vector(domain : List[Int], vector : Name) (creating vector on domain)

| new_scalar(scalar : Name) (creating global scalar)

| store_scalar(scalar : Name, expr : �$) (store to global scalar)

| for(domain : List[Int], body : List[�] ⇝ (�) (runtime loop, dictionary order)

| ite$ (cond : �$, then : ($, else : Optional[($]) (runtime branch)

| ($; ($ (statements sequence)

(� F store(vector : Name, idx : List[�], expr : ��) (store an element to vector)

| reduce_add(scalar : Name, expr : ��) (reducing to global scalar)

| ite� (cond : �� , then :⇝ (� , else : Optional[⇝ (�]) (runtime branch)

| (� ; (� (statements sequence)

�$ F Float (lift from compile-time)

| �$ + �$ | �$ − �$ | �$ × �$ | �$ / �$ | ... (floating point arithmetics)

| load_scalar(scalar : Name) (load value of scalar)

�$ F �$ > �$ | �$ ≥ �$ | �$ < �$ | �$ ≤ �$ (floating point comparison)

| �$ ∧ �$ | �$ ∨ �$ | ¬�$ (boolean operations)

�� F �$ (lift from global)

| �� + �� | �� − �� | �� × �� | ��/�� | ... (floating point arithmetics)

| load(vector : Name, idx : List[�]) (load element from vector)

| � lift from an integer index)

� F Int | � + � | � − � | � ∗ � | � ÷ � | � mod � (integer literal and arithmetics)

| Name (index variable of domain loop)

�� F � > � | � ≥ � | � < � | � ≤ � | � = � | � ≠ � (integer comparison)

| �� ∧ �� | �� ∨ �� | ¬�� (boolean operations)

Note that we support separate classes of statements and expressions for outside and inside
domain loops. Domain loops cannot nest with each other; loading and storing the vectors only
happens inside domain loops; and the branches inside domain loops, ite� must be conditioned
according to integer arithmetics of integer indices � ultimately introduced by domain loops. Global
scalars are useful to aggregate values globally, e.g., dot products. The outer if-else-then ite$ is useful
for iterative solver algorithms to control the workflow, e.g. check convergence. The aforementioned
sparse linear algebra routines, invoked with our structured sparse matrices, are all taken place
outside the domain loops and compose ($ nodes.
Then a sparse matrix will be a host language (Python) object of type:

spmat(domain_col2row : List[Int] ⇝ List[Int],

row : (col_domain : List[Int], row_idx : List[�]) ⇝

(eff : (� , nnzs : List[(col_idx : � , value : �)]))

Which contains a function domain_col2row, mapping column domain to row domain, and a
function row, for retrieving a row of non-zeros in the matrix symbolically.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

Mat2Stencil: A Modular Matrix-Based DSL for Explicit and Implicit Matrix-Free PDE Solvers on Structured Grid 246:15

5 MATRIX-FREE CODE GENERATION VIA STAGING

5.1 Customizable Control Flow Virtualization

Similar to LMS, our staging infrastructure works through control flow virtualization. With a
decorator, it automatically transforms a function to its virtualized version: each for-loop and if-
then-else branch is transformed into a corresponding virtual call, allowing the code generator to
emit stage-2 code wrapping the loop or branch body. But unlike LMS, which directs all control flow
to a central overload object defining the stage-2 language, we choose to make the virtual call point
to the iterable or predicate expression itself to gain more customizability.

We demonstrate examples of the code transformation in Table 2. Walking into the details, if the
iterable or predicate is of staged type (StagedIterable and StagedPredicate accordingly), the
staging handler method of the staged object (foreach and if_stmt accordingly) is called to stage
future codes. Otherwise, it automatically falls back to a stage-1 control flow. The logical operations,
which are not overloadable per the design of Python, are virtualized similarly for StagedPredicate.
This staging infrastructure has been merged into FreeTensor as the basis of its frontend.

It is natural to see that the domain loops iterating through all points in a domain have to be staged
as loops in stage 2. Otherwise, the staged code size will bloat out as the problem grows, which is
undesired since we will deal with large science problems. As such, we implement Staged-Iterable
for the domain objects and emit the nested for-loops according to the domain dimensions in the
staging handler. It also allows us to do more work in the staging handler behind the scenes to
support the backtracking and discussing which we will introduce next.

5.2 Resolve Undecidable Branches through Backtracking and Discussing

As we have shown in Section 4.2, we want to enable taking branches with regard to row indices
and manipulating stage-1 lists accordingly. Besides, in matrix multiplication, we need similar
functionality to merge non-zero sequences according to the comparison results of column indices;
more user programs also need such branches. They together raise a vital requirement on branching
in stage 1 according to expressions related to the domain loop indices. Formally speaking, the

Table 2. Examples of code transformation for control flow virtualization. Standalone temporary function
definitions are used in real implementation instead of lambda expressions to enable multi-line bodies.

User code After control flow virtualization

for i in it:

foo(i)

if isinstance(it, StagedIterable):

it.foreach('i', lambda i: foo(i))

else:

for i in it: foo(i)

pred1 and pred2 (pred1.logical_and(pred2) if isinstance(pred1, StagedPredicate)

else (pred1 and pred2))

pred1 or pred2 (pred1.logical_or(pred2) if isinstance(pred1, StagedPredicate)

else (pred1 or pred2))

not pred (pred.logical_not() if isinstance(pred, StagedPredicate)

else (not pred))

if pred:

foo()

else:

bar()

if isinstance(pred, StagedPredicate):

pred.if_stmt(lambda: foo(), lambda: bar())

else:

if pred: foo()

else: bar()

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

246:16 Huanqi Cao, Shizhi Tang, Qianchao Zhu, Bowen Yu, and Wenguang Chen

Domain
Loop
Handler

Loop
Body

for i in range(0, N):
for j in range(0, N):

nnzs = []
if i > 0:

nnzs += [([i - 1, j], 0.5),
([i, j], 0.5)]

for nnz in nnzs:
...

for i in range(0, N):
for j in range(0, N):

if i <= 0:
z3solver.add(i <= 0)

nnzs = []
if i > 0:

nnzs += [([i - 1, j], 0.5),
([i, j], 0.5)]

for nnz in nnzs:
...

else:
z3solver.add(i > 0)

catch:
backtrack,
discuss cases,
retry

(All control flows here staged into stage 2)

(All control flows here expanded in stage 1)

raise nnzs = []
if i > 0:

nnzs += [([i - 1, j], 0.5),
([i, j], 0.5)]

for nnz in nnzs:
...

Fig. 9. The procedure of backtracking and discussing for resolving undecidable branches.

ite� node shown in Section 4.4 accepts a runtime boolean expression �� but coordinates with
compile-time then/else bodies as Python functions, which is the time-reversing. However, notice
that possible combinations of these branches are available at stage 1, we can split the original loop
domain into pieces, making control flows deterministic in a single piece.

To achieve this, we backtrack on every undecidable branch and discuss them to be true or false.
As is shown in Fig. 9, we backtrack through raising an exception when an undeterministic predicate
is met in the ite� if-else-then branch. Such branches must occur inside some domain loop, the
stage 1 handler of which will catch the exception and retry staging the loop body twice, each
with the predicate assumed to be true or false. The time-reversing branches thus become regular
runtime branches. We implement the boolean expressions �� as a sub-class of StagedPredicate
and implement the checking and raising logic in its handler to achieve this.
It can be seen that as more branches are met, the number of cases easily grows exponentially

with the number of branches. We observe that the predicates in Mat2Stencil codes for structured
solving turn out to be primarily duplicated; it is reasonable since the domain dimension is limited
to no more than 3 in typical usages, and the branches are mostly related to boundaries or grid
coarsening so the number of independent predicates on each dimension will be limited to only a
handful. As such, we further utilize the Z3 [de Moura and Bjørner 2008] SMT solver to deduplicate
the cases. Every time a predicate is taken to generate the loop body for its case, we append the
assumption into the Z3 solver. Once a new predicate is met, we first check its truth value through Z3;
if deterministic, we will not perform backtracking and instead directly take the branch. Applying
such a scheme, we are able to generate clean case-discussing code for matrix-free algorithms.
Summarizing above, the backtrack and discuss algorithm is shown in Algorithm 1.

6 BACKEND OPTIMIZATION

In this section, we introduce our backend techniques to parallelize and optimize the generated
matrix-free code. The most significant part is SewTh, a novel scheduling algorithm to efficiently
parallelize arbitrary Seidel-style stencil operators. Unlike typical polyhedral schedulers, which
linearly transform nested loops, optionally tile them, and selectively parallelize, SewTh additionally
schedules fine-grained point-to-point synchronizations at certain iterations instead of performing
global barrier synchronization. We also implement elementwise function inlining and loop fusion
with linear transformation based on the Pluto+ algorithm [Bondhugula et al. 2016].

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

Mat2Stencil: A Modular Matrix-Based DSL for Explicit and Implicit Matrix-Free PDE Solvers on Structured Grid 246:17

Algorithm 1 Pseudo-code for the backtrack and discuss algorithm.

1: function ($.for(domain : List[Int], body : List[�])
2: global solver ← Z3.Solver() ⊲ create global solver
3: indices← =8; ⊲ create list of loop indices
4: for = ← domain do

5: 8 ← create new Name as �
6: solver.add(0 ≤ 8 < =) ⊲ append constraint for dimension range
7: indices← indices :: 8 ⊲ append loop index of this dimension

8: function RecursingBacktrack

9: try

10: return body(indices)

11: catch Undeterminant(cond)
12: solver.push(cond) ⊲ discuss with cond holds
13: true_case← RecursingBacktrack()

14: solver.pop()
15: solver.push(¬cond) ⊲ discuss with cond not holds
16: false_case← RecursingBacktrack()

17: solver.pop()
18: return FT.ite(cond, true_case, false_case) ⊲ assemble the wrapping if-else-then
19:

20: code← RecursingBacktrack()

21: for 8 ← len(3><08=) − 1..0 do ⊲ assemble the domain for loops
22: code← FT.for(indices[8], FT.slice(domain[8]), code)

23: return code

24:

25: function (� .ite� (cond : �� , then :⇝ (� , else : Optional[⇝ (�])
26: global solver ⊲ retrieve the global solver
27: if solver.prove(cond) then ⊲ use then when always true
28: return then()

29: else if solver.prove(¬cond) then ⊲ use else if exists when always false
30: return if else then else() else FT.nop

31: else ⊲ undeterministic, raise exception to discuss the cases
32: raise Undeterminant(cond)

6.1 Sewing the Threads: A New Approach to Parallelize Seidel-Style Stencils

As is mentioned in Section 2.3, automatic parallelization of Seidel-style Stencils has not been
explored extensively by existing research. To achieve both good memory locality and low over-
head starting, our core idea is to assign part of the loop to each thread and perform fine-grained
synchronization to satisfy the dependence across threads. Unlike the existing polyhedral code
generation approaches synchronizing with global barriers, we generate point-to-point synchroniza-
tions based on single-producer, single-consumer (SPSC) lock-free queues. They are thus on-demand
and introduce significantly lower overhead. With the large blocks assigned to each thread, it is
rare to perform the synchronization. Such fine-grained synchronization sews the threads together,
guaranteeing the correctness of produced code.
We cover the details of the work decomposition and what to synchronize, how we compute

necessary synchronization from analyzed dependence and generate code for them, and how we

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

246:18 Huanqi Cao, Shizhi Tang, Qianchao Zhu, Bowen Yu, and Wenguang Chen

double x[14][14], r[12][12];
for (int iy = 0; iy < 12; iy++)
for (int ix = 0; ix < 12; ix++) {
x[iy+1][ix+1] = (r[iy][ix] +
x[iy+0][ix+0] + x[iy+0][ix+1] + x[iy+0][ix+2] +
x[iy+1][ix+0] + + x[iy+1][ix+2] +
x[iy+2][ix+0] + x[iy+2][ix+1] + x[iy+2][ix+2]) / 8.;

}

(a) Input code of a 2D 9-point Gauss-Seidel.

double x[14][14], r[12][12];
#pragma omp parallel for
for (int thr_ix = 0; thr_ix < 4; thr_ix++)
for (int iy = 0; iy < 12; iy++)
for (int ix = 3 * thr_ix; ix < 3 * thr_ix + 3; ix++) {
if ((ix == 2 + 3 * thr_ix && thr_ix <= 2 && iy > 0) ||

(ix == 3 * thr_ix && thr_ix > 0))
waitThread(thr_ix, -2 * thr_ix + ix - 1);

x[iy+1][ix+1] = (r[iy][ix] +
x[iy+0][ix+0] + x[iy+0][ix+1] + x[iy+0][ix+2] +
x[iy+1][ix+0] + + x[iy+1][ix+2] +
x[iy+2][ix+0] + x[iy+2][ix+1] + x[iy+2][ix+2]) / 8.;

if ((ix == 3 * thr_ix && thr_ix > 0 && iy <= 10) ||
(ix == 2 + 3 * thr_ix && thr_ix <= 2))

notifyThread(thr_ix, -2 * thr_ix + ix - 1);
}

(b) Generated code by SewTh.

Thread 1 Thread 2 Thread 3 Thread 4 X

Y

(c) The enforced partitioning schedule. The sequences of different colored arrows are in sequential execution
order within threads. The arrows crossing thread boundaries are the crossing dependence. Dark arrows
are the compacted crossing dependence, which are the only physically synchronized dependence.

Fig. 10. An example of SewTh that parallelizes a 2D 9-point Gauss-Seidel operator. Equivalent C++ code is
presented instead of FreeTensor IR for be�er readability.

automatically prove the parallelism of our plan. We will use the 2D 9-point Gauss-Seidel pre-
sented in Fig. 10a as the example throughout this subsection. And we will continue to abbreviate
[D1, D2, . . . , D=] as bold u.

6.1.1 Enforced Partitioning to Threads. To exploit parallelism from the multidimensional loops
with spatial dependence, we first assign certain partitioning to the loop space. We partition as
few dimensions as possible in all inner loops without any skewing, while leaving the outermost
loop and possibly some inner loops not partitioned. Assume the dimension sizes of the outer
domain loops are described by N. Organizing the threads into a mesh, their partition sizes are
NC , of length 1 less than N, selected so that components of NC are close to each other. Then we

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

Mat2Stencil: A Modular Matrix-Based DSL for Explicit and Implicit Matrix-Free PDE Solvers on Structured Grid 246:19

enforce the function mapping an iteration x to a thread to be T(x) =
[
G1 ÷ #

C
0
, . . . , G8+1 ÷ #

C
8 , . . .

]
,

in which x ∈ ! = {x | ∀8, 0 ≤ G8 < #8 } (the looping range.) Within each thread, it still takes the
lexicographical execution order, so that the intra-thread dependence naturally holds. An example
is shown in Fig. 10c.
It is then only the dependence crossing thread boundaries, or crossing dependence, remained to

be considered. The crossing dependence can be computed from the full dependence set, which
is extracted from the program with the help of polyhedral dependence analysis and Presburger
arithmetics. To start with, the full dependence set computed by FreeTensor dependence analysis is
noted as � = {(a ∈ !, b ∈ !) | b depends on a}. For all (a, b) ∈ � , b must be computed later than
a in any valid schedule. The formal definition of crossing dependence is shown in Definition 6.1,
which is also the Presburger arithmetics to automatically compute it.

Definition 6.1. The crossing dependence, in the form of a Presburger map from thread pair to
dependencies, is computed as below:

�× (T0,T1) = {(a, b) ∈ � | T(a) = T0 ∧ T(b) = T1 ∧ T0 ≠ T1}.

Synchronizing the crossing dependence guarantees two depending iterations belonging to
different threads to be executed in order. It is obvious that such synchronization will not cause
deadlock: both the intra-thread execution order and inter-thread synchronization are following the
lexicographical order of the multi-dimensional loop indices (also the execution order for sequential
input program), making the combined synchronization graph acyclic.

6.1.2 Compact Dependence and Generate Code. We have addressed above what dependence should
be covered by inter-thread synchronization. Yet, directly generating synchronizing code according
to the crossing dependence has multiple downsides. Firstly, simply putting one point-to-point
synchronization for each crossing dependence works fine, but introduces redundant synchroniza-
tion. Besides, the possibly differently ordered sources and targets between a thread pair require
the generated code to accurately synchronize against specific loop iterations instead of simply
synchronizing against the thread. Taking the case in Fig. 10c, we attempt to avoid the explicit
synchronization on the tinted crossing dependence. 𝐚

𝐚′
Thread 𝐓௔

𝐛′
𝐛Thread 𝐓௕

redundant

Fig. 11. Compact crossing
dependence.

We propose to compact the crossing dependence as follows. A cross-
ing dependence is considered to be redundant if there is another crossing
dependence between the same thread pair with a later or same source
and an earlier or same target. Non-redundant crossing dependence is re-
tained during compaction, i.e. compacted crossing dependence. A visual
illustration is shown in Fig. 11: since the sequential order guarantees a′

happens later than a, b later than b′, and another dependence a′ → b′

exists, a→ b is marked redundant and not synchronized explicitly. The
formal definition (which is also the algorithm) is listed in Definition 6.2.

Definition 6.2. The redundant crossing dependence is computed as:

�−× (T0,T1) = {(a, b) ∈ �× (T0,T1) | ∃(a
′, b′) ∈ �× (T0,T1), (a < a′ ∧ b′ ≤ b) ∨

(a = a′ ∧ b′ < b)},

in which the comparisons are carried out in dictionary order. Then the compacted crossing
dependencies are:

�+× (T0,T1) = �× (T0,T1) − �
−
× (T0,T1).

Then we conclude the following properties we want:

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

246:20 Huanqi Cao, Shizhi Tang, Qianchao Zhu, Bowen Yu, and Wenguang Chen

Theorem 6.3 (Completeness). With the sequential execution order of each thread and the com-

pacted crossing dependence satisfied by point-to-point synchronization, all crossing dependence are

guaranteed to hold. Formally speaking, we have

∀(a, b) ∈ �× (T0,T1), ∃(a
′, b′) ∈ �+× (T0,T1), a ≤ a′ ∧ b′ ≤ b.

Proof. We will prove this theorem by contradiction.
Suppose for some (a0, b0) ∈ �× (T0,T1), ∀(a

′, b′) ∈ �+× (T0,T1), a0 > a′ ∨ b′ > b0 .

If (a0, b0) ∈ �+× (T0,T1), then taking (a′, b′) = (a0, b0) contradicts the assumption.
Otherwise, according to Definition 6.2, we have (a0, b0) ∈ �−× (T0,T1). Thus,

∃(a1, b1) ∈ �× (T0,T1), (a0, b0) ≠ (a1, b1) ∧ a0 ≤ a1 ∧ b1 ≤ b0.

We can then repeat the process and get a sequence of different dependence (a2, b2), (a3, b3), . . . ,
until reaching some (a=, b=) ∈ �+× (T0,T1). The dependence set is finite, so we can always drain
the �−× (T0,T1) and arrive at �+× (T0,T1), resulting in the contradiction above. □

Theorem 6.4 (Can Blindly Synchronize). For every thread pair, the sources and targets of the

compacted crossing dependence are in the same order, so blindly synchronizing against the thread will

be equivalent to synchronizing against the accurate iteration. Formally speaking, we have

∀(a1, b1) and (a2, b2) ∈ �
+
× (T0,T1), a1 < a2 ⇔ b1 < b2 .

Proof. We will prove this theorem by contradiction. Suppose there exists (a1, b1), (a2, b2) in
�+× (T0,T1), that a1 < a2 ⇔ b1 < b2 does not hold. Then according to Definition 6.2 we have

(a2 ≤ a1 ∧ b1 < b2) ∨ (a1 < a2 ∧ b2 ≤ b1)

⇒ (a2, b2) ∈ �
−
× (T0,T1) ∨ (a1, b1) ∈ �

−
× (T0,T1).

Since �+× (T0,T1) ∩ �
−
× (T0,T1) = ∅, this contradicts the assumption. □

Then the compacted crossing dependence set between each thread pair can be computed as a
quasi-affine map with the help of ILP libraries, ISL [Verdoolaege 2010] in our case, allowing us to
generate code against it. A “wait” block is injected before the loop body so that it waits for each
source thread that the current loop iteration depends on, and similarly, a “notify” block but inversed
after the loop body. According to Theorem 6.3, the compaction ensures that only synchronizing
the compacted dependence will be sufficient. Also, according to Theorem 6.4 the synchronization
can ignore which loop iteration the other end is and blindly synchronize with the specific thread.
We are thus possible to synchronize simply through efficient atomic counters, one for each thread
pair. A code generation example is shown in Fig. 10b.

Fig. 12. A plane from eq. (6).

6.1.3 Modeling the Parallelism. The above work decomposition
and synchronization together do not necessarily imply sufficient
parallelism. It is possible that most threads are busy waiting and
only some of the threads are working all the time under inappropri-
ate parameters. We here propose a model for the parallelism lower
bound of the generated code.
Existing methods have been utilizing hyperplanes to determine

the time axis that enables parallelism. Recall the parallelizable bands
in Fig. 3, these are an example of a valid setting of parallelizable hy-
perplanes: since the nested loop has 2 dimensions, the hyperplanes
become 1D lines. Inspired by those methods, we design a set of thread partitioning hyperplanes
corresponding to the enforced partitioning proposed above. Say we have the loop dimensions

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

Mat2Stencil: A Modular Matrix-Based DSL for Explicit and Implicit Matrix-Free PDE Solvers on Structured Grid 246:21

x = [G0, G1, ..., G=], 0 ≤ G8 < #8 , and their inner partition sizes
[
C
1
, # C

2
, ..., # C

=

]
. Then we define the

thread partitioning hyperplanes as

qC (x) =

=∑

8=0

=∏

9=8+1

C
9 G8 = 2. (6)

Such a partitioning hyperplane ensures contiguous execution on each thread, following the thread-
local lexicographic execution order as specified in Section 6.1.1. A visual example is shown in Fig. 12.
Each cube cell represents a loop iteration and chessboard-colored ranges are thread partitions. The
yellow cells are the loop iterations executed in parallel if the plane satisfies all loop dependence.

If such a hyperplane setting satisfies all dependence, then all loop iterations in the same hyper-
plane and assigned to different threads will be parallelizable. Formally speaking, we check whether
for any dependence pair (a, b) ∈ � , qC (a) < qC (b), as a sufficient condition for the parallelism. If
the check passed, the hyperplanes will reveal a possible parallel execution plan, and serve as a
lower bound for the parallelism of our generated parallel implementation, which is already fully
parallelized except at the short pipeline start and exit.
Take the two dimensional examples in Fig. 13, in which # C

1
= 3, so that qC ([~, G]) = 3~ + G . If

the thread partitioning hyperplanes successfully satisfy all dependence as is in Fig. 13a, our plan
is guaranteed to provide near-optimal parallelism (fully parallel except at the beginning and the
end). Instead in Fig. 13b, the thread partitioning hyperplanes do not satisfy all dependence: for
the brown dependence, qC ([~ + 1, G − 3]) = qC ([~, G]); in such circumstances, our plan will yield
degraded parallelism.
There is a great chance that the loop dependence in a seidel-style stencil operator satisfies this

condition. Given a large grid and usually tens of threads, the thread partitions will be much larger
than the stencil pattern, the size of which is determined by the order of partial differential equation
and usually a small constant. The hyperplanes can then cover all iterations in the near neighborhood
and earlier than the current iteration, satisfying all possible dependence. For example, in Fig. 13b,
the hyperplanes fail only after the long dependence is added. The dependence is too long such that
it spreads over an entire thread partition. With larger loop spaces and stencils still in such sizes,
it will be impossible. Actually, in all evaluation cases requiring Seidel-style stencils in Section 7
including micro-kernels and end-to-end solvers, the thread partitioning hyperplanes satisfy all
dependence in every kernel.

Thread 1 Thread 2 Thread 3 Thread 4 X

Y

(a) Good parallelism passing the thread partitioning
hyperplanes check.

Thread 1 Thread 2 Thread 3 Thread 4 X

Y

(b) Degraded parallelism detected by the thread par-
titioning hyperplanes.

Fig. 13. Two examples for checking parallelism with the thread partitioning hyperplanes.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

246:22 Huanqi Cao, Shizhi Tang, Qianchao Zhu, Bowen Yu, and Wenguang Chen

6.2 Memory Optimizations

In addition to basically parallelizing everything, including Jacobi and Seidel-style stencils, we
introduce memory optimizations as below. While simple to work with, these optimizations are
critical to many real-world applications, since the stencils involved in PDE solving are usually
memory-bound, making reducing memory traffic important.

6.2.1 Aggressive Inlining of Pointwise Operations. In Section 4.1 we have mentioned elementwise
functions, which allow the user to easily build pointwise operations. Using such components
will create intermediate variables that can be easily inlined and eliminated. We perform such
inlining whenever possible so that the memory traffic is minimized. The inlining is automatically
accomplished by recognizing all elementwise domain loops and calling the FreeTensor schedule
inline.

6.2.2 Loop Fusion with Affine Transformation. Loop fusion plays a critical role in memory intensive
compute kernels, which is usually the case for the stencils in PDE solving. While previous DSLs
can perform loop fusion only based on operator-level dependence information, our added support
for customizable spatial loop dependence prohibits such simple approaches. Besides, the modern
multigrid methods involve finer and coarser grids, and the loops on them can only be fused
with strides. As such, we implement automatic loop fusion also based on polyhedral dependence
analysis, which iteratively selects one axis from each of the two adjacent loop nests, performs
affine transformation computed similar to the PLUTO+ [Bondhugula et al. 2016] algorithm, and
fuses the two loops; the procedure is repeated until no level of loops can be fused in the loop nests.
At the program level, the loop nests are iteratively fused, scanned in the forward order, and only
fuse loops that do not sacrifice parallelism after fusion. The implementation is accomplished by
ourselves instead of invoking PLUTO+ directly.
We do not perform tiling additionally since SewTh already exposes a tiled execution order.

Other than that, we also automatically vectorize sequential loops with best efforts through the
corresponding FreeTensor schedule vectorize; FreeTensor determines if a loop is vectorizable also
through polyhedral analysis.

7 EVALUATION

In this section, we evaluate our domain-specific language design and performance through end-
to-end benchmarking and backend optimization assessment. We set up our experiments on a
dual-socket server, each socket being one Intel Xeon Gold 6126 CPU, with 12 physical cores or
24 logical cores per CPU, counting 24 physical or 48 logical together. The server has 565 GB of
DDR4-2666 main memory. The server runs Ubuntu 18.04.4 LTS with Linux kernel 4.15.0. We use
GCC 12.2.0 to compile the programs, using g++ for C++ and gfortran for FORTRAN, including
our generated codes and baseline manual implementations. All parallelism is through OpenMP,
including reference codes and our implementation.

7.1 End-to-End Benchmarking

We evaluateMat2Stencil against official manual implementations of all the three pseudo-appli-
cations in the NAS Parallel Benchmark (NPB) [Bailey et al. 1991], BT, SP, and LU, which are
three solvers of a Computational Fluid Dynamics (CFD) problem, and a matrix-free variant of
High Performance Conjugate Gradient (HPCG) [Dongarra et al. 2016], which is a widely adopted
performance benchmark solving Poisson equation with a multigrid solver.

We use NPB 3.4.2 as the baseline for the NPB evaluation and a hand-written matrix-free HPCG
from [Zhu et al. 2021] for the HPCG evaluation. Existing stencil DSLs are not capable of expressing

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

Mat2Stencil: A Modular Matrix-Based DSL for Explicit and Implicit Matrix-Free PDE Solvers on Structured Grid 246:23

these solvers due to the presence of Seidel-style stencils in them, thus we do not include such
baselines. We neither compare with the reference HPCG implementation, given it is matrix-based
according to the specification and such comparison will be unfair2. For NPB, we run the Class B, C,
D, and E problems (grid size 1023, 1623, 4083, and 10203) on all three pseudo-applications, the sizes
of which are specified in the NPB Specification. For HPCG, we run on grids of size 7683, 10243,
12803, and 15363. We show the computed grid points per second, which is the grid size divided by
time consumption.

B C D E

Problem Size

0
5

10
15
20
25
30
35
40

P
er

f.
 (

M
p

t/
s)

1.
12

×

1.
09

×

1.
21

×

1.
67

×

NPB - BT

B C D E

Problem Size

0

15

30

45

60

75

90

P
er

f.
 (

M
p

t/
s)

1.
01

×

0.
94

×

0.
88

×

0.
96

×

NPB - SP

B C D E

Problem Size

0

10

20

30

40

50

60

P
er

f.
 (

M
p

t/
s)

0.
60

×

0.
81

×

1.
13

×

1.
40

×

NPB - LU

7683 10243 12803 15363

Grid Size

0

100

200

300

400

P
er

f.
 (

M
p

t/
s)

0.
99

×

1.
05

×

1.
08

×

1.
07

×

HPCG

Manual Baseline M2S

Fig. 14. Performance results on NAS Parallel Benchmarks (NPB-BT, NPB-SP, NPB-LU), and HPCG. Higher

is be�er.

The evaluation result is shown in Fig. 14. In the three pseudo-applications of NPB, we achieve
an average (geometric mean) of 1.25×, 0.94×, and 0.93× performance, compared to the manual
matrix-free implementation, respectively. In HPCG, we achieve an average (geometric mean) of
1.04× performance. The performance is competitive at all scales. We also observe that larger grids
yield relatively better performance in our implementation, possibly due to that the Python-native
interface overhead is less significant at a larger scale.

7.1.1 Comparing the Code Length. We evaluate the human effort required to program matrix-
free solvers manually or using our Mat2Stencil by comparing the lines of code for different
implementations in Table 3. Mat2Stencil implementation takes 1044 lines of Python code for the
majority of work and 329 lines of C++ code as a FreeTensor plugin implementing some auxiliary
passes. Based on that, we implement all three NPB pseudo-applications in a total of 750 lines of
code, with 485 lines among them to be shared across applications. It takes only 6.3% of the total
code length compared to the total of three NAS-provided manually matrix-free implementations.
Notably, even considering the lines of code for our compiler, we still involve significantly less code.
In addition, the matrix-free HPCG implementation through Mat2Stencil takes 16.4% of the code
length in hand-written matrix-free implementation.Mat2Stencil significantly releases the burden
of programming efficient matrix-free solvers.

7.1.2 Evaluating Compile time. To demonstrate the compilation cost of Mat2Stencil, we compare
the end-to-end cost for all four evaluated workloads on their largest problems. The time breakdown
is shown in Table 4. We observe that the stage-1 time, including the backtracking and discussing,
takes a minor part of the compilation time. The majority of compile time is in the backend opti-
mizations, which is reasonable since polyhedral schedulers are known to be costly. However, given
larger and more long-running problems than the benchmarks, the compilation will take a smaller

2We test a 48-process reference HPCG run on a total of 7683 sized grid, which is 192 × 192 × 256 local grid on each
process, because the reference HPCG code does not support multithreaded SymGS. It is worth noting that although it
achieves full parallelization through domain decomposition, it is at the cost of worse convergence. Even so, it takes 355.8
seconds per run (50 iterations), which is significantly slower than 64.2 seconds in Mat2Stencil, being 5.5× longer.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

246:24 Huanqi Cao, Shizhi Tang, Qianchao Zhu, Bowen Yu, and Wenguang Chen

Table 3. Lines of code in evaluated cases under different implementations.

Impl.
App.

NPB-BT NPB-SP NPB-LU HPCG

Manual 4288 3079 3068 914
Mat2Stencil 408† + 24 408† + 188‡ 408† + 41 150

† Common codes for all NPB pseudo-applications; mostly elementwise functions with long math formulas.
‡Longer than others due to its unique extra math formulas, mentioned in Section 4.1.

fraction of the total time even if the application runs only once, making Mat2Stencil practical for
real applications.

Table 4. Comparing the compile and running time (in seconds) of Mat2Stencil-based programs. The running
times listed are at the maximum tested scale.

Stages NPB-BT NPB-SP NPB-LU HPCG

Stage 1 Execution 1.27 5.52 1.51 0.67
Compile Stage 2 Optimize 280.89 1072.42 579.42 83.49

Stage 2 GCC 22.63 23.80 24.98 33.77
Run (Stage 2) 10,414.35 8479.75 6753.30 539.53

7.2 Assessing Backend Optimzations

7.2.1 Comparing with Other Polyhedral Compilers. While our targeted implicit solvers with Seidel-
style stencils are not covered by existing stencil DSLs, the polyhedral compilers naturally support
such computation and can reasonably parallelize them. We thus compare Mat2Stencil with
PPCG [Verdoolaege and Janssens 2017] and PLUTO [Bondhugula et al. 2008] on microbenchmarks
to demonstrate the extra effectiveness of our optimization pipeline in such circumstances. The
sequential C++ codes fed into PPCG and PLUTO are generated by the Mat2Stencil frontend,
without going through our optimizations. PPCG is invoked with outer-coincidence enforced3,
which is vital for it to parallelize the test cases with loop-carried dependence. We enable diamond
tiling in PLUTO to get the best performance on it. We use PLUTO but not PLUTO+ because PLUTO
is better maintained and PLUTO+, as an improving fork of PLUTO, focuses on enabling negative
coefficients in the linear transformations, which is not useful in our microbenchmarks and will
not bring performance improvement. The microbenchmarks first include symmetric Gauss-Seidel
(SymGS) and Incomplete LU (ILU) preconditioners with a 3D 27-point stencil on a 15363 grid. We
also evaluate multiple Jacobi iterations (JacIter) with a 2D 9-point stencil on a 40962 grid, which
only involves temporal dependence and is well-optimized by previous stencil optimizations.
The result is shown in Fig. 15. PPCG consistently performs worse thanMat2Stencil, even on

Jacobi iterations; it is reasonable since PPCG only performs linear transformations. PLUTO times
out during transpiling the ILU code, taking more than one hour. Other than that, Mat2Stencil

outperforms PLUTO by 3.14× on SymGS, demonstrating the effectiveness of our SewTh parallelizer.
Yet,Mat2Stencil achieves only 41.4% performance of PLUTO on JacIter, showing that the diamond
tiling gives PLUTO outstanding performance on JacIter, but is not available for the Seidel-style
stencils. However, such temporal tiling methods will not help in complicated implicit solvers, since
too many loops with their own spatial dependence are attending a single timestep.

3Through the command-line flag –isl-schedule-outer-coincidence.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

Mat2Stencil: A Modular Matrix-Based DSL for Explicit and Implicit Matrix-Free PDE Solvers on Structured Grid 246:25

M2S PPCG PLUTO

Backend

0

20

40

T
im

e
(s

)

19
.0
6×

3.
14

×

SymGS

M2S PPCG PLUTO

Backend

0

50

100

150

200

T
im

e
(s

)

10
.8
1×

×

ILU

M2S PPCG PLUTO

Backend

0.0

0.5

1.0

1.5

T
im

e
(s

)

1.
05

×

0.
41

×

JacIter

Fig. 15. Comparing with PPCG and PLUTO. The performance percentages achieved by PPCG and PLUTO
compared to ourMat2Stencil are presented alongside. PLUTO times out during compiling ILU. Lower is

be�er.

7.2.2 Ablation Study on Memory Optimizations. To analyze the performance gains of the memory
optimizations, we conduct ablation tests on previous benchmarking cases: CLASS D for NPB pseudo-
applications, and grid size 10243 for HPCG. We start from SewTh-only and incrementally introduce
inlining and loop fusion. Together with the manually implemented baseline, the performance
numbers are shown in Fig. 16.

ST +inl. +fuse Man.

Backend

0

300

600

900

1200

1500

T
im

e
(s

)

1.
00

×

1.
51

× 2.
02

×

NPB - BT, CLASS D

ST +inl. +fuse Man.

Backend

0

300

600

900

1200

1500

1800

T
im

e
(s

)

1.
00

×

1.
73

×

3.
52

×

NPB - SP, CLASS D

ST +inl. +fuse Man.

Backend

0

300

600

900

1200

1500

T
im

e
(s

)

1.
00

×

2.
23

×

2.
88

×
NPB - LU, CLASS D

ST +inl. +fuse Man.

Backend

0

40

80

120

160

T
im

e
(s

)

1.
00

×

0.
99

×

1.
02

×

HPCG, 10243

Fig. 16. Results of ablation study on memory optimizations. ST is SewTh-only, +inl. adds inlining for elemen-
twise ops, +fuse then adds loop fusion.Man. is manually optimized implementation. Lower is be�er.

It can be seen that both inlining and loop fusion helps a lot in NPB pseudo-applications. The
nonlinearity in their solved Navier-Stokes equation results in a number of elementwise functions
and Jacobi-style stencil operators, which will introduce noticeable memory traffic and footprint
if not inlined. Besides, for BT and SP, we observe that the direct solving happens in the three
distinct axes, each sweeping forward and backward. Fusing the forward and backward sweeping
loops greatly reduces the size of intermediate tensors by removing two unrelated dimensions, thus
significantly improving the performance; the same optimization is manually implemented in the
baseline. Such loop fusion, requiring permuting and reverting the nested loops, is only possible to
be automized with a smart enough loop fuser that can select axes and perform affine transforms
automatically.

Instead, SewTh-parallelized HPCG already yields good performance matching the manual imple-
mentation, and further optimizations help little. The reason is that HPCG solves a simple Poisson
equation through the complicated multigrid conjugate gradient with the SymGS preconditioner
and thus ❶ requires no elementwise functions, and ❷ incurs most of the time cost in SymGS.

8 DATA-AVAILABILITY STATEMENT

The implementation of Mat2Stencil and baselines corresponded to the evaluation results are
available at [Cao 2023] together with the running scripts. No external dataset is used in the
evaluation.
Mat2Stencil will also be open-sourced at https://github.com/thu-pacman/Mat2Stencil.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

https://github.com/thu-pacman/Mat2Stencil

246:26 Huanqi Cao, Shizhi Tang, Qianchao Zhu, Bowen Yu, and Wenguang Chen

9 RELATED WORK

Solving Differential Equations through Matrix-based Approaches. Numerically solving differential
equations has been widely treated as sparse linear algebra computation. Sparse matrix-vector
multiplication (SpMV) [Merrill and Garland 2016; Pinar and Heath 1999; Williams et al. 2010] are
well-studied, covering explicit solving and Jacobi iterations. Other routines are also available in
sparse linear algebra, e.g. SuperLU contains a general-purpose efficient ILU implementation [Li and
Shao 2011]. SciPy [Virtanen et al. 2020] is a commonly used Python library for scientific computing
and covers many such routines.
While those approaches decouple the equation and solvers, they are too general to be highly

optimized against structured grids. Borrowing their idea of representing differential equation solving
in sparse linear algebra, we propose our Mat2Stencil based on matrix abstraction, enabling easy
algorithm programming while persisting the performance benefits of matrix-free codes. It is also
worth mentioning that [Augustine et al. 2019] takes a totally different approach to optimize a solver
already using sparse linear routines, by automatically analyzing the pattern of the sparse matrix
and reconstructing matrix-free codes with the best effort.

Solving Differential Equations with Matrix-free Approaches. The best-studied area of matrix-free
approaches is Jacobi-style stencil computations, including with or without time iterations [Habich
et al. 2009; Kamil et al. 2006; Nguyen et al. 2010; Williams et al. 2007]. Early automatic optimization
techniques include [Datta et al. 2008; Krishnamoorthy et al. 2007], which work on manually
written nested loops. In order to provide easier interfaces for programming stencils, researchers
have come up with many stencil libraries and DSLs, including [Huang et al. 2019; Lengauer et al.
2020; Louboutin et al. 2019; Pieper et al. 2021; Tang et al. 2011; Zhang et al. 2017]. Among those,
Devito [Louboutin et al. 2019] and ExaStencils [Lengauer et al. 2020] present a set of program
representations that is pretty much close to the math formula of the differential equation, being
the easiest ones in programming.
However, none of these works fully enables programming implicit solvers, including direct

solving of multi-diagonal matrices, (Symmetric) Gauss-Seidel iteration, (Symmetric) Successive
Under/Over-Relaxation, Incomplete Lower-Upper [Saad 2003], Fine-Grained Parallel Incomplete
Lower-Upper [Chow and Patel 2015], etc. The great diversity of such algorithms makes it hard for
DSLs to cover all of them. Matrix-free approaches on implicit solvers have been requiring manual
optimizations, for example, in [Zhu et al. 2021] and [Yang et al. 2016].
[Essadki et al. 2023] introduces automatic code generation for “in-place stencils”, which is

noted as Seidel-style stencils in this paper and helps the construction of implicit solvers, but not
includes advanced high-level abstractions required for easier programming of implicit solvers.
Their methodology will also partially degenerate to existing polyhedral approaches for some stencil
shapes, e.g. 9 point on 2-D or 27 point on 3-D, in which case our SewTh will perform significantly
better. We cannot compare with their work in evaluation due to absence of their implementation.

Multi-stage Programming. Our embedded DSL implementation is inspired by Lightweight Modu-
lar Staging (LMS) [Rompf and Odersky 2012], which represents multi-staged programming through
types in Scala. We adopt their type-based design to achieve user-transparent staging. There has
also been a Python implementation for it named Snek [Decker 2019] that is similar to our staging
infrastructure in design, but it does not perfectly feed our needs, thus we implement our own with
small tweaks to make the control flow virtualization customizable for different staged types. Other
approaches, e.g. the quote-splice in Scala 3.0 [Stucki et al. 2018] and lift-annotated MetaML [Taha
1999], will not fit us well since we do not expect DSL users to get in touch with the staging details.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

Mat2Stencil: A Modular Matrix-Based DSL for Explicit and Implicit Matrix-Free PDE Solvers on Structured Grid 246:27

Tensor Programs. Our backend generates generalized stencils containing quasi-affine loops that
manipulate multi-dimensional arrays, or tensors. Our optimizations originate from various previous
works on these types of programs. Many studies have been taken on optimizing tensor programs
since the invention of FORTRAN. Compiling optimization techniques, especially polyhedral compi-

lation, targeting general tensor programs, can be applied automatically [Allen and Kennedy 2001;
Bondhugula et al. 2016, 2017, 2008; Feautrier 1992; Padua and Wolfe 1986; Verdoolaege and Janssens
2017], but the resulting performance is far from optimal for the important Seidel-style stencils.
Nevertheless, compilers implementing such optimizations can be used as a backend to optimize
further our solver programs generated byMat2Stencil and we have evaluated against some of
them. Among recent works, FreeTensor [Tang et al. 2022] is a language and compiler to optimize
such a tensor program. FreeTensor provides a flexible Python interface to construct the tensor
program, which is ideal as the target language of our multi-stage programming. It further provides
a set of code-transforming schedules, as performance-tuning primitives. We use FreeTensor as our
backend and our proposed optimizations are implemented as a FreeTensor plugin.

10 DISCUSSION

WhileMat2Stencil has proposed a set of optimizations for the Seidel-style stencils involved in
implicit solvers, the optimizations for conventional Jacobi-style stencils are left behind. It thus leaves
huge potential on such optimizations, such as temporal blocking (when possible, it is sometimes
forbidden by backward iterations), cache-aware tiling, etc. Applying such techniques to Seidel-style
stencils is a challenging problem left to be solved.

Other than multithreading on CPUs, the latest advancement in accelerators, especially GPGPUs
(general-purpose graphics processing units), has gained more and more attention. The SewTh does
not fit into their programming model, which does not allow arbitrary inter-block synchronization.
Algorithmic adjustments are essential as a result, involving techniques like multi-color reordering;
incorporating such changes, new compilation techniques need to be developed to automatically
parallelize Seidel-style stencils to make them efficiently run on GPGPUs. Automatic distributed
code generation is also possible through polyhedral methods analyzing loop-carried dependences,
which has been explored previously [Baghdadi et al. 2019].

Though our current abstraction focuses on Cartesian grids, other types, e.g., star-shaped or
hexagonal ones, are possible to be supported with reconsidered predefined matrices. Speaking
even further, semi-structured grids such as block-structured grids might also benefit from our
method by combining the unstructured matrix-based representation at the coarse level and our
sparse matrix representation for the finer grids, requiring more programming optimization designs.
Besides, our cases only cover the Finite Difference method solvers and new matrices would be
required to address Finite Volume and Finite Elements methods.

11 CONCLUSION

We propose an innovative domain-specific language (DSL), Mat2Stencil, for solving partial
differential equations (PDEs) on structured grids. Mat2Stencil introduces a structured sparse
matrix abstraction, facilitating modular, flexible, and easy-to-use expression of solvers across a
broad spectrum of PDEs, including explicit and implicit solving algorithms. We evaluate our DSL
by implementing four benchmarking programs from the NAS Parallel Benchmarks and High
Performance Conjugate Gradients, achieving up to 1.67× and on average 1.03× performance
compared to manually matrix-free codes, with significantly less code.

ACKNOWLEDGMENTS

This work is supported in part by NSFC U20B2044 and The Major Key Project of PCL.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

246:28 Huanqi Cao, Shizhi Tang, Qianchao Zhu, Bowen Yu, and Wenguang Chen

REFERENCES

Randy Allen and Ken Kennedy. 2001. Optimizing Compilers for Modern Architectures: A Dependence-based Approach. Morgan
Kaufmann, San Francisco, CA, USA.

Travis Augustine, Janarthanan Sarma, Louis-Noël Pouchet, and Gabriel Rodríguez. 2019. Generating piecewise-regular code
from irregular structures. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM,
New York, NY, USA, 625–639. https://doi.org/10.1145/3314221.3314615

Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia
Suriana, Shoaib Kamil, and Saman P. Amarasinghe. 2019. Tiramisu: A Polyhedral Compiler for Expressing Fast and
Portable Code. In IEEE/ACM International Symposium on Code Generation and Optimization, CGO 2019, Washington, DC,

USA, February 16-20, 2019, Mahmut Taylan Kandemir, Alexandra Jimborean, and Tipp Moseley (Eds.). IEEE, 193–205.
https://doi.org/10.1109/CGO.2019.8661197

David H. Bailey, Eric Barszcz, John T. Barton, D. S. Browning, Robert L. Carter, Leonardo Dagum, Rod A. Fatoohi, Paul O.
Frederickson, T. A. Lasinski, Robert Schreiber, Horst D. Simon, V. Venkatakrishnan, and Sisira Weeratunga. 1991. The Nas
Parallel Benchmarks. Int. J. High Perform. Comput. Appl. 5, 3 (1991), 63–73. https://doi.org/10.1177/109434209100500306

Uday Bondhugula, Aravind Acharya, and Albert Cohen. 2016. The Pluto+ Algorithm: A Practical Approach for Parallelization
and Locality Optimization of Affine Loop Nests. ACM Trans. Program. Lang. Syst. 38, 3 (2016), 12:1–12:32. https:
//doi.org/10.1145/2896389

Uday Bondhugula, Vinayaka Bandishti, and Irshad Pananilath. 2017. Diamond Tiling: Tiling Techniques to Maximize
Parallelism for Stencil Computations. IEEE Trans. Parallel Distributed Syst. 28, 5 (2017), 1285–1298. https://doi.org/10.
1109/TPDS.2016.2615094

Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A practical automatic polyhedral parallelizer
and locality optimizer. In Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language Design and

Implementation, Tucson, AZ, USA, June 7-13, 2008, Rajiv Gupta and Saman P. Amarasinghe (Eds.). ACM, 101–113.
https://doi.org/10.1145/1375581.1375595

Huanqi Cao. 2023. Artifact of Mat2Stencil: A Modular Matrix-Based DSL for Explicit and Implicit Matrix-Free PDE Solvers on

Structured Grid. https://doi.org/10.5281/zenodo.8149701
Edmond Chow and Aftab Patel. 2015. Fine-Grained Parallel Incomplete LU Factorization. SIAM J. Sci. Comput. 37, 2 (2015).

https://doi.org/10.1137/140968896
Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter, Leonid Oliker, David A. Patterson, John

Shalf, and Katherine A. Yelick. 2008. Stencil computation optimization and auto-tuning on state-of-the-art multicore
architectures. In Proceedings of the ACM/IEEE Conference on High Performance Computing, SC 2008, November 15-21, 2008,

Austin, Texas, USA. IEEE/ACM, 4. https://doi.org/10.1109/SC.2008.5222004
Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for

the Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings

(Lecture Notes in Computer Science, Vol. 4963), C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer, 337–340. https:
//doi.org/10.1007/978-3-540-78800-3_24

James Decker. 2019. Implementation of Lightweight Modular Staging (LMS) in Python. Retrieved November 10, 2022 from
https://github.com/jmd1011/snek-LMS

Jack J. Dongarra, Michael A. Heroux, and Piotr Luszczek. 2016. High-performance conjugate-gradient benchmark: A
new metric for ranking high-performance computing systems. Int. J. High Perform. Comput. Appl. 30, 1 (2016), 3–10.
https://doi.org/10.1177/1094342015593158

Mohamed Essadki, Bertrand Michel, Bruno Maugars, Oleksandr Zinenko, Nicolas Vasilache, and Albert Cohen. 2023. Code
Generation for In-Place Stencils. In Proceedings of the 21st ACM/IEEE International Symposium on Code Generation and

Optimization, CGO 2023, Montréal, QC, Canada, 25 February 2023- 1 March 2023, Christophe Dubach, Derek Bruening,
and Ben Hardekopf (Eds.). ACM, 2–13. https://doi.org/10.1145/3579990.3580006

Paul Feautrier. 1992. Some efficient solutions to the affine scheduling problem. I. One-dimensional time. Int. J. Parallel
Program. 21, 5 (1992), 313–347. https://doi.org/10.1007/BF01407835

Johannes Habich, T. Zeiser, Georg Hager, and Gerhard Wellein. 2009. Enabling temporal blocking for a lattice Boltzmann
flow solver through multicore-aware wavefront parallelization.

X. Huang, X. Huang, D. Wang, Q. Wu, Y. Li, S. Zhang, Y. Chen, M. Wang, Y. Gao, Q. Tang, Y. Chen, Z. Fang, Z. Song, and G.
Yang. 2019. OpenArray v1.0: a simple operator library for the decoupling of ocean modeling and parallel computing.
Geoscientific Model Development 12, 11 (2019), 4729–4749. https://doi.org/10.5194/gmd-12-4729-2019

Intel. 2023. Intel oneAPI Math Kernel Library. https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.
html

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

https://doi.org/10.1145/3314221.3314615
https://doi.org/10.1109/CGO.2019.8661197
https://doi.org/10.1177/109434209100500306
https://doi.org/10.1145/2896389
https://doi.org/10.1145/2896389
https://doi.org/10.1109/TPDS.2016.2615094
https://doi.org/10.1109/TPDS.2016.2615094
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.5281/zenodo.8149701
https://doi.org/10.1137/140968896
https://doi.org/10.1109/SC.2008.5222004
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://github.com/jmd1011/snek-LMS
https://doi.org/10.1177/1094342015593158
https://doi.org/10.1145/3579990.3580006
https://doi.org/10.1007/BF01407835
https://doi.org/10.5194/gmd-12-4729-2019
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html

Mat2Stencil: A Modular Matrix-Based DSL for Explicit and Implicit Matrix-Free PDE Solvers on Structured Grid 246:29

Shoaib Kamil, Kaushik Datta, Samuel Williams, Leonid Oliker, John Shalf, and Katherine A. Yelick. 2006. Implicit and
explicit optimizations for stencil computations. In Proceedings of the 2006 workshop on Memory System Performance and

Correctness, San Jose, California, USA, October 11, 2006, Antony L. Hosking and Ali-Reza Adl-Tabatabai (Eds.). ACM,
51–60. https://doi.org/10.1145/1178597.1178605

SriramKrishnamoorthy, MuthuManikandan Baskaran, Uday Bondhugula, J. Ramanujam, Atanas Rountev, and P. Sadayappan.
2007. Effective automatic parallelization of stencil computations. In Proceedings of the ACM SIGPLAN 2007 Conference on

Programming Language Design and Implementation, San Diego, California, USA, June 10-13, 2007, Jeanne Ferrante and
Kathryn S. McKinley (Eds.). ACM, 235–244. https://doi.org/10.1145/1250734.1250761

Christian Lengauer, Sven Apel, Matthias Bolten, Shigeru Chiba, Ulrich Rüde, Jürgen Teich, Armin Größlinger, Frank
Hannig, Harald Köstler, Lisa Claus, Alexander Grebhahn, Stefan Groth, Stefan Kronawitter, Sebastian Kuckuk, Hannah
Rittich, Christian Schmitt, and Jonas Schmitt. 2020. ExaStencils: Advanced Multigrid Solver Generation. In Software for

Exascale Computing - SPPEXA 2016-2019, Hans-Joachim Bungartz, Severin Reiz, Benjamin Uekermann, Philipp Neumann,
and Wolfgang E. Nagel (Eds.). Lecture Notes in Computational Science and Engineering, Vol. 136. Springer, 405–452.
https://doi.org/10.1007/978-3-030-47956-5_14

Xiaoye S. Li and Meiyue Shao. 2011. A Supernodal Approach to Incomplete LU Factorization with Partial Pivoting. ACM
Trans. Math. Softw. 37, 4 (2011), 43:1–43:20. https://doi.org/10.1145/1916461.1916467

M. Louboutin, M. Lange, F. Luporini, N. Kukreja, P. A. Witte, F. J. Herrmann, P. Velesko, and G. J. Gorman. 2019. Devito
(v3.1.0): an embedded domain-specific language for finite differences and geophysical exploration. Geoscientific Model

Development 12, 3 (2019), 1165–1187. https://doi.org/10.5194/gmd-12-1165-2019
George Mcmechan. 2006. Migration by extrapolation of time-dependent boundary values. Geophysical Prospecting 31 (04

2006), 413 – 420. https://doi.org/10.1111/j.1365-2478.1983.tb01060.x
Duane Merrill and Michael Garland. 2016. Merge-based parallel sparse matrix-vector multiplication. In Proceedings of the

International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2016, Salt Lake City,

UT, USA, November 13-18, 2016, John West and Cherri M. Pancake (Eds.). IEEE Computer Society, 678–689. https:
//doi.org/10.1109/SC.2016.57

AnthonyD. Nguyen, Nadathur Satish, Jatin Chhugani, Changkyu Kim, and PradeepDubey. 2010. 3.5-D Blocking Optimization
for Stencil Computations on Modern CPUs and GPUs. In Conference on High Performance Computing Networking, Storage

and Analysis, SC 2010, New Orleans, LA, USA, November 13-19, 2010. IEEE, 1–13. https://doi.org/10.1109/SC.2010.2
Georg Ofenbeck, Tiark Rompf, Alen Stojanov, Martin Odersky, and Markus Püschel. 2013. Spiral in scala: towards the

systematic construction of generators for performance libraries. (2013), 125–134. https://doi.org/10.1145/2517208.2517228
OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
David A. Padua and Michael Wolfe. 1986. Advanced Compiler Optimizations for Supercomputers. Commun. ACM 29, 12

(1986), 1184–1201. https://doi.org/10.1145/7902.7904
Andreas Pieper, Georg Hager, and Holger Fehske. 2021. A domain-specific language and matrix-free stencil code for

investigating electronic properties of Dirac and topological materials. Int. J. High Perform. Comput. Appl. 35, 1 (2021).
https://doi.org/10.1177/1094342020959423

Ali Pinar and Michael T. Heath. 1999. Improving Performance of Sparse Matrix-Vector Multiplication. In Proceedings of

the ACM/IEEE Conference on Supercomputing, SC 1999, November 13-19, 1999, Portland, Oregon, USA. ACM, 30. https:
//doi.org/10.1145/331532.331562

Tiark Rompf and Martin Odersky. 2012. Lightweight modular staging: a pragmatic approach to runtime code generation
and compiled DSLs. Commun. ACM 55, 6 (2012), 121–130. https://doi.org/10.1145/2184319.2184345

Yousef Saad. 2003. Iterative methods for sparse linear systems. SIAM. https://doi.org/10.1137/1.9780898718003
Amir Shaikhha, Yannis Klonatos, and Christoph Koch. 2018. Building Efficient Query Engines in a High-Level Language.

ACM Trans. Database Syst. 43, 1 (2018), 4:1–4:45. https://doi.org/10.1145/3183653
C. Skamarock, BogumiŁa Klemp, Jimy Dudhia, O. Gill, Zhiquan Liu, Judith Berner, Wei Wang, G. Powers, Greg Duda, Dale M.

Barker, and Xiangyu Huang. 2019. A Description of the Advanced Research WRF Model Version 4.
John C. Strikwerda. 2004. Finite Difference Schemes and Partial Differential Equations, Second Edi-

tion. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898717938
arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9780898717938

Nicolas Stucki, Aggelos Biboudis, and Martin Odersky. 2018. A practical unification of multi-stage programming and
macros. In Proceedings of the 17th ACM SIGPLAN International Conference on Generative Programming: Concepts and

Experiences, GPCE 2018, Boston, MA, USA, November 5-6, 2018, Eric Van Wyk and Tiark Rompf (Eds.). ACM, 14–27.
https://doi.org/10.1145/3278122.3278139

Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Tiark Rompf, Hassan Chafi, Martin Odersky, and Kunle Olukotun.
2014. Delite: A Compiler Architecture for Performance-Oriented Embedded Domain-Specific Languages. ACM Trans.

Embed. Comput. Syst. 13, 4s (2014), 134:1–134:25. https://doi.org/10.1145/2584665

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

https://doi.org/10.1145/1178597.1178605
https://doi.org/10.1145/1250734.1250761
https://doi.org/10.1007/978-3-030-47956-5_14
https://doi.org/10.1145/1916461.1916467
https://doi.org/10.5194/gmd-12-1165-2019
https://doi.org/10.1111/j.1365-2478.1983.tb01060.x
https://doi.org/10.1109/SC.2016.57
https://doi.org/10.1109/SC.2016.57
https://doi.org/10.1109/SC.2010.2
https://doi.org/10.1145/2517208.2517228
https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/7902.7904
https://doi.org/10.1177/1094342020959423
https://doi.org/10.1145/331532.331562
https://doi.org/10.1145/331532.331562
https://doi.org/10.1145/2184319.2184345
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1145/3183653
https://doi.org/10.1137/1.9780898717938
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9780898717938
https://doi.org/10.1145/3278122.3278139
https://doi.org/10.1145/2584665

246:30 Huanqi Cao, Shizhi Tang, Qianchao Zhu, Bowen Yu, and Wenguang Chen

Walid Taha. 1999. Multi-Stage Programming: Its Theory and Applications. Ph. D. Dissertation. Halmstad University, Sweden.
https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-15052

Shizhi Tang, Jidong Zhai, Haojie Wang, Lin Jiang, Liyan Zheng, Zhenhao Yuan, and Chen Zhang. 2022. FreeTensor: a
free-form DSL with holistic optimizations for irregular tensor programs. In PLDI ’22: 43rd ACM SIGPLAN International

Conference on Programming Language Design and Implementation, San Diego, CA, USA, June 13 - 17, 2022, Ranjit Jhala
and Isil Dillig (Eds.). ACM, 872–887. https://doi.org/10.1145/3519939.3523448

Yuan Tang, Rezaul Alam Chowdhury, Bradley C. Kuszmaul, Chi-Keung Luk, and Charles E. Leiserson. 2011. The pochoir
stencil compiler. In SPAA 2011: Proceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms and

Architectures, San Jose, CA, USA, June 4-6, 2011 (Co-located with FCRC 2011), Rajmohan Rajaraman and Friedhelm Meyer
auf der Heide (Eds.). ACM, 117–128. https://doi.org/10.1145/1989493.1989508

Sven Verdoolaege. 2010. isl: An Integer Set Library for the Polyhedral Model. In Mathematical Software - ICMS 2010,

Third International Congress on Mathematical Software, Kobe, Japan, September 13-17, 2010. Proceedings (Lecture Notes in

Computer Science, Vol. 6327), Komei Fukuda, Joris van der Hoeven, Michael Joswig, and Nobuki Takayama (Eds.). Springer,
299–302. https://doi.org/10.1007/978-3-642-15582-6_49

Sven Verdoolaege and Gerda Janssens. 2017. Scheduling for PPCG. https://doi.org/10.13140/RG.2.2.28998.68169
Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,

Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod
Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng,
Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R.
Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors.
2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17 (2020), 261–272.
https://doi.org/10.1038/s41592-019-0686-2

Samuel Williams, Nathan Bell, Jee Whan Choi, Michael Garland, Leonid Oliker, and Richard Vu. 2010. Sparse Matrix-Vector
Multiplication on Multicore and Accelerators. In Scientific Computing with Multicore and Accelerators, Jakub Kurzak,
David A. Bader, and Jack J. Dongarra (Eds.). CRC Press / Taylor & Francis, 83–109. https://doi.org/10.1201/b10376-8

Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry Husbands, and Katherine A. Yelick. 2007. Scientific
Computing Kernels on the Cell Processor. Int. J. Parallel Program. 35, 3 (2007), 263–298. https://doi.org/10.1007/s10766-
007-0034-5

Chao Yang, Wei Xue, Haohuan Fu, Hongtao You, Xinliang Wang, Yulong Ao, Fangfang Liu, Lin Gan, Ping Xu, Lanning
Wang, Guangwen Yang, and Weimin Zheng. 2016. 10M-core scalable fully-implicit solver for nonhydrostatic atmospheric
dynamics. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and

Analysis, SC 2016, Salt Lake City, UT, USA, November 13-18, 2016, John West and Cherri M. Pancake (Eds.). IEEE Computer
Society, 57–68. https://doi.org/10.1109/SC.2016.5

Nathan Zhang, Michael B. Driscoll, Charles Markley, Samuel Williams, Protonu Basu, and Armando Fox. 2017. Snowflake:
A Lightweight Portable Stencil DSL. In 2017 IEEE International Parallel and Distributed Processing Symposium Workshops,

IPDPS Workshops 2017, Orlando / Buena Vista, FL, USA, May 29 - June 2, 2017. IEEE Computer Society, 795–804. https:
//doi.org/10.1109/IPDPSW.2017.89

Qianchao Zhu, Hao Luo, Chao Yang, Mingshuo Ding, Wanwang Yin, and Xinhui Yuan. 2021. Enabling and scaling the HPCG
benchmark on the newest generation Sunway supercomputer with 42 million heterogeneous cores. In International

Conference for High Performance Computing, Networking, Storage and Analysis, SC 2021, St. Louis, Missouri, USA, November

14-19, 2021, Bronis R. de Supinski, Mary W. Hall, and Todd Gamblin (Eds.). ACM, 57. https://doi.org/10.1145/3458817.
3476158

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 246. Publication date: October 2023.

https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-15052
https://doi.org/10.1145/3519939.3523448
https://doi.org/10.1145/1989493.1989508
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.13140/RG.2.2.28998.68169
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1201/b10376-8
https://doi.org/10.1007/s10766-007-0034-5
https://doi.org/10.1007/s10766-007-0034-5
https://doi.org/10.1109/SC.2016.5
https://doi.org/10.1109/IPDPSW.2017.89
https://doi.org/10.1109/IPDPSW.2017.89
https://doi.org/10.1145/3458817.3476158
https://doi.org/10.1145/3458817.3476158

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Solving Differential Equations on Structured Grids
	2.2 Multi-Stage Programming
	2.3 Polyhedral Analysis for Automatic Parallelization and Optimization

	3 Overview of Mat2Stencil Language and Compiler
	4 Mat2Stencil Language Design
	4.1 Abstraction Over the Equation
	4.2 Sparse Matrices as Row Functions
	4.3 Linear Algebra on Mat2Stencil
	4.4 Grammar of Mat2Stencil

	5 Matrix-free Code Generation via Staging
	5.1 Customizable Control Flow Virtualization
	5.2 Resolve Undecidable Branches through Backtracking and Discussing

	6 Backend Optimization
	6.1 Sewing the Threads: A New Approach to Parallelize Seidel-Style Stencils
	6.2 Memory Optimizations

	7 Evaluation
	7.1 End-to-End Benchmarking
	7.2 Assessing Backend Optimzations

	8 Data-Availability Statement
	9 Related Work
	10 Discussion
	11 Conclusion
	Acknowledgments
	References

