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ABSTRACT
Matrix factorization is a widely used powerful tool in signal pro-
cessing, machine learning and high performance computing. For
accelerating matrix factorization, FPGAs are suitable platforms, as
they can build wide and deep pipelines with favorable power effi-
ciency. Factorizing matrices on FPGAs is thus desirable; however,
there is no infrastructure on FPGAs for matrix factorization so far,
as it involves several challenges: applicability and scalability of the
circuit, pipelining of irregular computing patterns, and effective
data caching given the limited memory bandwidth.

We propose MatFactory, a novel framework that enables fast
development of high-performance algorithms for factorizing ma-
trices on FPGAs. We extract common key operators out of various
factorization algorithms, and provide a convenient streaming inter-
face that explicitly moves and manages data through the memory
hierarchy. With the interface support, the operators can be easily
reused as building blocks and composed together into diverse in-
BRAM non-blocked factorization algorithms as well as in-DRAM
blocked factorization algorithms. We evaluate MatFactory with
three typical algorithms (Cholesky, LU and QR) on Intel A10 FPGA.
Our non-blocked factorization achieves 4.0-10.7× speedup over
Vitis Library on Xilinx Alveo U280 FPGA, and the blocked imple-
mentation further achieves 1.65-1.88× performance compared to
the non-blocked version. This is the first framework that system-
atically designs and accommodates various matrix factorization
algorithms for FPGAs, to the best of our knowledge, and it can be
easily extended to support more LAPACK routines in general.
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1 INTRODUCTION
Matrix factorization is a fundamental technique in linear algebra
that decomposes a matrix into a product of two or more matrices.
This technique can reveal hidden pattern and relationship of data,
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making it essential for applications such as data mining, recom-
mendation system, and signal processing. Each type of algorithm,
including Cholesky, LU, QR, is suited to specific problems and data
types, requiring huge efforts in implementation.

Matrix factorization is of great interest to accelerate. There has
been well-established compute libraries on GPUs [25, 26], facili-
tating the development of HPC-related applications. In edge com-
puting scenarios, FPGAs demonstrate a significant advantage in
energy efficiency, and thus attract great attention as radar process-
ing platforms [1, 16, 24, 29] and so on. However, developing a high
performance matrix factorization library on FPGAs to tackle the
varying requirements of diverse algorithms, matrix sizes, and data
types is a non-trivial task due to the extremely-low productivity.
Currently, only vanilla implementations of several algorithms on
specific matrix sizes can be found on FPGAs.

We identify the major challenges in accelerating matrix factor-
ization. First, matrix factorization algorithms involve triangular
loop nests, where the trip count of an inner loop decreases over
time. Unlike matrix multiplication that can be accelerated through
regular systolic arrays, this type of loop structure often leads to un-
even distribution of computations onto processing elements (PEs)
and non-neighbor communication patterns between PEs, incurring
huge difficulty in building a deeply-pipelined hardware structure
for it. Second, the existing works usually target small matrices
and assume that the entire matrix can be stored on-chip. How-
ever, these non-blocked implementations would rapidly reach the
resource limitation, preventing their scalability. Only several ef-
forts [17, 33, 36] demonstrate scalability, yet with relatively low
performance for large matrices. Third, the existing implementations
are tied to specific algorithms. They employ diverse approaches
and use highly-customized circuits to exploit the properties and en-
gineer performance for an algorithm [9, 13, 18, 21, 23, 35]. However,
with the growing demands of different algorithms, these imple-
mentations suffer from limited applicability, and cannot be easily
ported to other scenarios. Both non-blocked and blocked implemen-
tations fail to explore and utilize the similarity between different
factorization algorithms.

To deal with these challenges, we propose MatFactory, a uni-
fied matrix factorization framework that achieves versatility and
performance simultaneously through a systematic decomposition
approach. Each factorization algorithm is decomposed into fine-
grained hardware components, called operators. We can generalize
the non-blocked factorization by breaking it down into elemen-
tary column operation (ECO) and dot product (DOT), while the
blocked factorization is broken down into BLAS level-3 routines:
triangular solve matrix (TRSM), symmetric rank-k update (SYRK)
and general matrix multiply (GEMM). These vector and matrix
operations benefit scalable implementations with regular compute
patterns. We further note that there exist opportunities for reusing
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Figure 1: Different matrix partitioning schemes used in dense linear algebra algorithms.

operators across different factorization algorithms. This allows us
to share optimization techniques to tackle the similar triangular
loop structures in different algorithms, achieving high performance
through a uniform top-down strategy.

We also propose a data streaming interface to facilitate the re-
composition of operators. Ideally, a large matrix should be stored in
the device DRAM to avoid frequent data transfers between host and
device memory. Matrix factorization can then be performed in place,
meaning that the outputs are written into the same location as the
inputs within DRAM. This process entails handling complex data
access patterns, which is the primary obstacle in realizing a high
performance design. We provide users with a unified streaming in-
terface to direct data movement across three memory levels: DRAM,
BRAM, and registers. This interface conceals the complexities of
optimizations by automatically specializing it into an on-chip data
loader/unloader to accommodate common data movement patterns.
This approach enables us to separate the concerns of algorithm
decomposition and data orchestration, improving the productivity
with a simplified implementation flow.

We evaluated MatFactory on Intel Arria 10 GX1150 FPGA with
three typical algorithms (Cholesky, LU and QR) in LAPACK rou-
tines1. Our non-blocked factorization reaches an average of 10.7×,
4.0× and 10.5× performance compared with the corresponding Vitis
Library routines evaluated on Xilinx Alveo U280 FPGA; the blocked
factorization further achieves 1.65-1.88× speed up compared to
the best performance of the non-blocked design. This is the first
attempt to accommodate various matrix factorization algorithms
for FPGAs.

In summary, our contributions are as follows:
• We propose an operator-level abstraction that standardizes
and unifies the designs of matrix factorization on FPGAs, for
non-blocked and blocked algorithms.

• We develop a user-friendly streaming interface using C++
templates. It supports diverse data movement patterns across
three levels of memory hierarchy.

• We productively develop a high-performance library of LA-
PACK routines, achieving performance comparable to, or
better than, the state-of-the-arts.

2 BACKGROUND AND MOTIVATION
In this section, we use an illustrating example to show typical matrix
factorization algorithms, and then briefly discuss the current status
of linear algebra implementations on FPGAs.

1Their corresponding routines are potrf, getrf_nopivot and geqrf.

2.1 General Structure of Matrix Factorization
In this subsection, we introduce general matrix factorization algo-
rithms, including non-blocked algorithms and blocked algorithms.
We use in-place LU factorization as an example in which we would
like to decompose a square matrix into a lower triangular matrix
and an upper unitriangular matrix:

𝐴 =


𝑙00 0
.
.
.

. . .

𝑙𝑛0 · · · 𝑙𝑛𝑛



1 · · · 𝑢0𝑛

. . .
.
.
.

0 1

 = 𝐿𝑈 (1)

2.1.1 Non-blocked matrix factorization. Gaussian elimination is
a well-known method for solving non-blocked LU factorization.
However, it operates directly on the original matrix and involves
many read-modify-write cycles per element due to elementary row
operations. Instead, we follow the Crout’s method [3], in which
each computed value is written only once, as is shown in Equa-
tion (2) and (3). Although the count of basic arithmetic operations
remains the same, the dominant computation pattern shifts from
elementary row operations to dot products for better scalability.

𝑙𝑖 𝑗 = 𝑎𝑖 𝑗 − Σ
𝑗−1
𝑘=0𝑙𝑖𝑘𝑢𝑘 𝑗 (2)

𝑢 𝑗𝑖 = (𝑎 𝑗𝑖 − Σ
𝑗−1
𝑘=0𝑙 𝑗𝑘𝑢𝑘𝑖 ) ÷ 𝑙 𝑗 𝑗 (3)

2.1.2 Blockedmatrix factorization. Blocked factorization algorithms
shift most of the workload to the high-performance matrix-matrix
operations. In Equation (4), all matrices are divided into four blocks.
We perform the matrix multiplication blockwise, yielding the sub-
matrices in the resulting matrices 𝐿 and𝑈 with the following equa-
tions:

𝐴 =

[
𝐴00 𝐴01
𝐴10 𝐴11

]
=

[
𝐿00 0
𝐿10 𝐿11

] [
𝑈00 𝑈01
0 𝑈11

]
= 𝐿𝑈 (4)

𝐿00𝑈00 = 𝐴00 (5)

𝑈01 = 𝐿−100 𝐴01 (6)

𝐿10 = 𝐴10𝑈
−1
00 (7)

𝐿11𝑈11 = 𝐴11 − 𝐿10𝑈01 (8)

As we can see, the left-hand side of Equation (5) and (8) are
two smaller sub-matrix factorization tasks. Equation (6) and (7) are
TRSM and the right-hand side of Equation (8) is a GEMM.

Note that in Equation (4), 𝐴00 and 𝐴11 are square submatrices
of arbitrary size. Based on the blocked algorithm, two partitioning
schemes of matrix 𝐴 can be derived [28]. Tail-recursive scheme
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in Figure 1(a) traverse the input with a fixed step-size. It parti-
tions a matrix into “panel”s and processes the panels iteratively. At
each step of the algorithm, a small submatrix of fixed size (𝐴00) is
factorized in a non-blocked way, and then followed by an update
of the trailing matrix through matrix-matrix operations, leaving a
shrinking large submatrix (𝐴11) to be factorized for the following
steps. According to the call graph, we could easily flatten it into a
loop-based implementation. Tree-based recursive scheme in Fig-
ure 1(b) splits the input matrix 𝐴 evenly in half. To factorize 𝐴00
and 𝐴11, it then recursively splits these submatrices. The recursion
stops when the submatrix size falls below a certain threshold and
the call graph is a balanced binary tree. We refer to the step-size or
threshold as the block size. The block size is determined at compile
time. We can directly factorize matrices that are equal to or smaller
than the block size.

2.2 BLAS and LAPACK Implementations
It is natural to use LAPACK to accelerate matrix factorization tasks.
Since most LAPACK routines are constructed in terms of calls to
BLAS, we first discuss several BLAS solutions on FPGAs, which
may offer some applicable insights in the development of LAPACK
hardware libraries.

The blocked optimization of matrix multiplication on systolic
array architectures has become well-developed and standardized
[6, 20]. Matrices are evenly tiled in 2D (Figure 1(c)), transform-
ing a large matrix multiplication into many isomorphic submatrix
multiplications. A systolic array can process these tiles one by
one: the elements of a tile are streamed from DRAM, buffered on
BRAM, and then forwarded to the boundaries of the first row and
column of PEs. This approach is applicable to other BLAS level 3
routines. FBLAS [5] and Lasa [8] are two representative works that
develop BLAS libraries on FPGAs. FBLAS has realized all generic
BLAS routines by composing HLS modules written in OpenCL but
does not take advantage of matrix properties such as symmetry
and triangularity. Consequently, the computational overhead of
TRMM and SYRK is nearly equivalent to that of GEMM. Lasa pro-
vides a compiler-assisted approach to generate BLAS routines. To
transform compute-intensive loops into a systolic array, developers
describe the algorithm using a Domain Specific Language (DSL),
thereby delegating spatial mapping and optimizations to a compiler,
which substantially boosts performance as well as productivity.

In contrast, blocked matrix factorization does not merely break
down into smaller decomposition tasks after partitioning. Vari-
ous submatrix operations, including non-blocked factorization and
matrix-matrix operations, pose a huge challenge to systolic array
architectures. Effective implementation requires careful considera-
tion not only of the non-blocked part but also of synchronization
and data movement across other parts of the design. The compiler-
assisted approach exhibits limitations when dealing with blocked
matrix factorization, as loop tiling cannot be directly applied to
the triangular loop nest. Therefore, the scalability of the generated
array may be compromised. For example, AutoSA [32] handles LU
factorization up to a maximum size of 24×24 (an 24×24 systolc
array). Vitis Library [35] provides the non-blocked version of potrf,
getrf_nopivot and geqrf. These LAPACK routines are synthesiz-
able only when the matrix is small enough to resolve the routing
congestion and fit in the on-chip BRAM.

2.3 Operator-level Abstraction
As we have shown in Section 2.1, the blocked factorization con-
sists of non-blocked factorizations and matrix-matrix operations
in BLAS level 3 routines. We further generalize non-blocked fac-
torization by abstracting vector operations from Cholesky-Crout
algorithm andQR-MGS (Modified Gram Schmidt) algorithm. Table 1
summarizes the operators in MatFactory. To adapt these algorithms
to the hardware, we make use of built-in hardened dot-product in-
tellectual property (IP) cores.DOT and ECO constitute non-blocked
factorization. TRSM, SYRK and GEMM contribute to the trailing
matrix update. Moreover, GEMM desgin can be reused for SYRK.
By leveraging the symmetry, we iterate only the lower triangle of
the input/output matrices to save half of computation.

Table 1: Abstracted operators in matrix factorization.

DOT ECO TRSM SYRK GEMM
Non-blocked Cholesky ✓

Non-blocked LU ✓
Non-blocked QR ✓ ✓
Blocked Cholesky ✓ ✓ ✓

Blocked LU ✓ ✓ ✓
Blocked QR ✓ ✓ ✓

3 FRAMEWORK OVERVIEW

oneAPI Base Toolkit

Operator Library
(Section 4)

HLS flow

Applications

Streaming Interface
(Section 5)

Host DRAM

Device DRAM

On-chip BRAM

REGs
Systolic arrays, 

Hard IPs...

Figure 2: The overall workflow of MatFactory.

In this section, we introduce our framework, as well as the pro-
gramming, execution and memory models.

Figure 2 shows an overview of MatFactory. It consists of an oper-
ator library and a streaming interface, which is used to build matrix
factorization algorithms. The operator library offers cross-language
compatibility2, supporting Verilog, OpenCL, and DPC++. For exam-
ple, developers are able to construct operators from RTL sources
and integrate them into DPC++ designs. The C++ template-based
streaming interface is used for data management and movement
across three levels of a memory hierarchy.

In our memory hierarchy, the host has only a DRAM, whereas
the device has a DRAM, on-chip BRAMs, and registers. Data are

2fpga_crossgen and fpga_libtool commands create a single library archive file.
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transferred over a PCIe bus, a device DRAM bus, or on-chip inter-
connects (i.e, FIFOs) depending on their locations. For host/device
DRAM, there are two memory access modes in oneAPI: buffer and
accessor mode and Unified Shared Memory mode (USM). A buffer
acts as a container for data that can be accessed from both host and
device side, while an accessor indicates when and where the data
is needed, and the actual data movement and synchronization are
done by the SYCL runtime transparently. USM allows reading and
writing of data with conventional pointers. It offers two pointer
allocation APIs: (1) Shared pointer, which functions similarly to
the buffer and accessor, with the runtime automatically moving
data; (2) Device pointer, which can only be accessed from the device
and therefore require explicit movement of data between host and
device. We choose USM with explicit device pointers since it gives
us full control over data movement and synchronization, enabling
on-demand movement of any granularity.

We assume that multiple pipelines may be running on the same
device. Each of them consists of a set of kernels. Specifically, the
first kernel reads data from DRAM, the last kernel writes the results
back to DRAM, and other kernels perform the computational tasks.
The core of execution model is defined by how the kernels execute.
When a kernel is submitted for execution, the kernel and the values
associatedwith the arguments to the kernel define a kernel-instance.
An event associated with a particular kernel-instance is used to
constrain the order of execution among related kernel-instances.
This mechanism enables synchronization across the pipelines.

MatFactory is built upon oneAPI [12] with HLS design flow. It
currently targets Intel FPGAs; however, the methodology could be
adapted to cover Xilinx FPGAs while maintaining the same high-
level interface. OneAPI uses Data Parallel C++ (DPC++), which is
based on modern C++ and incorporates SYCL [7]. The DPC++ Com-
piler conforms to C++17 language standard by default3. In contrast,
OpenCL is based on C99, which is a C standard more than two
decades old and has more language limitations. We found that code
written in OpenCL can be migrated to DPC++ without performance
degradation. Furthermore, we can leverage new language features
in DPC++ to make our framework more flexible and productive.

4 COMPUTE OPTIMIZATIONS
In this section, we discuss the detailed design of operators and the
pipelining of computations.

4.1 Operator Design
In an HLS program, operators are implemented with unrolled loops.
Every expression within an unrolled statement will be instanti-
ated as hardware, and the unrolling factor must be a compile-time
constant. The parallelism on spatial architectures is achieved by ei-
ther horizontal unrolling (SIMD vectorization) or vertical unrolling
(pipeline parallelism) [4]. Below we describe how to write a GEMM.

Matrix addition in GEMM is trivial. Therefore, we simply paral-
lelize it in SIMDmanner. The matrix multiplication code is shown in
Figure 3. Line 1-4 replicates the computational unit multiple times
via vertical unrolling, so that data can be processed in a pipelined
fashion. By introducing vectorization (Line 6-7), input vectors from

3Newer versions can be selected by using the -std flag.
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 1 #pragma unroll
 2 for (int i = 0; i < rows; i++) {
 3   #pragma unroll
 4   for (int j = 0; j < cols; j++) {
 5     sum = init ? 0 : c[i][j][0];
 6     #pragma unroll
 7     for (int k = 0; k < vlen; k++) {
 8       a[i][k] = (j == 0) ? tile_a[i][k] : a[i][k];
 9       b[j][k] = (i == 0) ? tile_b[j][k] : b[j][k];
10       sum += a[i][k] * b[j][k];
11     }
12     c[i][j][0] = sum;
13   }
14 }

Tile A0

Tile B0

Tile A1

Tile B1 Tile B2

PEPE

PE PE

PE

PE

Figure 3: Implementation of MatMul Systolic Array.

the boundaries of the systolic array are propagated between compu-
tational units (Line 8-9). Line 10 shows a typical reduction pattern
on vectors; sum is initialized with 0 if a reduction just starts; other-
wise, it gets the value from the previous partial sum (Line 5). With
the help of streaming interface, the systolic array is able to process
input matrices tile by tile. We will discuss it in Section 5.

4.2 Pipeline-Enabling Transformations
Unrolling only provides the potential degree of parallelism in the
architecture. However, whether a design is well-pipelined is de-
termined by the loops enclosing these operators. An important
property of the outer loops is initiation interval (II), which refers to
the number of hardware clock cycles for which the pipeline must
wait before it can process the next iteration. II can often be consid-
ered the inverse throughput of the pipeline, and a perfect pipeline
is expected to have II=1.

4.2.1 Accumulation Interleaving. Dot product is a commonly used
compute pattern. As shown in Figure 4(a), we have a DOT operator
that can only processes input vectors of length 4. We enclose DOT
with an outer reduction loop to support dot products of arbitrary
size. The addition on Line 2 requires the result of the addition in
the previous iteration of the loop. There is a self-dependence across
the outer loop iterations. For single precision, effective pipelining is
not hindered as each addition operation takes only one cycle. How-
ever, this loop-carried dependency is particularly relevant when
targeting double-precision, because the DSP block does not support
double precision addition natively. Assume that a 64-bit floating
point addition takes four cycles, the pipeline would stall until the
previous one completes. This issue can be resolved by interleav-
ing nested loops, as illustrated in Figure 4(b). Rather than a single
register, we keep partial sums in four registers. Each location is
only updated every 4 cycles and thus the previous addition has
sufficient cycles to complete. Accumulation interleaving is often
accompanied by shifting/rotating registers (Line 2), which we will
introduce in Section 5.
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1 for (int i = 0; i < N; i+=4)
2   sum+=DOT4(x[i:i+4],y[i:i+4]);
3 return sum;* +x[i:i+4]

y[i:i+4]

(a) Single precision

1 for (int i = 0; i < N; i+=4) {
2   Rotate(sum[0:4]);
3   sum[0]+=DOT4(x[i:i+4],y[i:i+4]);
4 }
5 return sum[0]+sum[1]+sum[2]+sum[3];* +x[i:i+4]

y[i:i+4]

(b) Double precision

Figure 4: Interleave accumulations to resolve loop-carried
dependency on sum.

4.2.2 Triangular Loop Transformation. Triangular loop nests, where
the trip count of an inner loop decreases over time, appear in most
non-blocked matrix factorization algorithms. Figure 5 shows such
a loop nest. The loops are usually not well-pipelined by the HLS
tools because of the time-varying trip count of the inner loop. Ide-
ally, a new iteration of the loops is expected to be launched every
cycle (II=1). However, as the trip count of the inner loop shrinks
below a threshold, there will be insufficient cycles for operator
foo to complete and generate its output before the following outer
iteration starts and reads that output. The HLS compiler has to
conservatively increase the II to relax the dependency between two
calls.

i

j

1 for (int i = 0; i < 4; i++)
2   for (int j = i; j < 4; j++)
3     // operator foo takes 3 cycles
4     buf[i][j] = foo(buf[i-1][j]);

(a) Before transformation

Inter-iteration dependency Dummy iterationReal  iteration

i

j

1 #pragma ivdep safelen(3)
2 for (int ij = 0; ij < 13; ij++) {
3   buf[i][j] = foo(buf[i-1][j]);
4   i = (j==3) ? i+1 : i;
5   j = (j==3) ? min(i,1) : j+1;
6 }

(b) After transformation

Figure 5: A triangular loop nest and its dependence graph.

We introduce triangular loop transformation in our framework.
This transformation can be divided into two steps: (1) Inserting
dummy iterations into an inner loop when the inner loop’s trip
count is less than a threshold M, and (2) flattening the triangular loop
nest and adding a pragma "ivdep safelen(M)" before the flattened
loop [14]. These dummy iterations can be viewed as "bubbles" in the

pipeline, providing extra cycles for completing the computations. In
the mean time, the pragma indicates to the compiler that there are
a maximum of M iterations before a loop-carried dependence might
be introduced. For the example in Figure 5, M is set to 3, allowing
enough time to execute operator foo even in the worst case (i=3,
j=4). As a result, we are able to achieve a perfect pipeline with II=1.

5 MEMORY OPTIMIZATIONS
In this section, we discuss the details of our streaming interface
design, which is used to recompose operators as the entire matrix
factorization algorithms.

5.1 Data Access Patterns
Blocked matrix factorization on FPGAs requires a more compli-
cated I/O network. In most FPGA-accelerated scenarios, input data
can span CPU host and FPGA device. Both the host and the device
have their own DRAM. To improve the utilization of the off-chip
memory bandwidth, data has been serialized on the host before
sending them to device over a PCIe bus, then device can load them
sequentially from DRAM. However, it is impractical to assume con-
tiguous reads and writes in device DRAM, especially for the blocked
algorithms, where in-place updates are performed many times and
input submatrices are generated on-the-fly. For example, the re-
sulting matrix generated by non-blocked factorization is written
back to its original location in DRAM. Subsequently TRSM needs
to read the lower (or upper) triangular matrix from this location.
The data may be fragmented in device DRAM since it hasn’t been
serialized. Besides, pipelines that access data at the same address
must be synchronized. These complicated data access patterns have
motivated us to introduce the following memory optimizations:
(1) a simplified data movement interface that allows us to move
data between host and device, and across three memory levels; (2)
several carefully designed mechanisms that help us mitigate the
non-continuous accesses in both DRAM and BRAM.

5.2 Explicit Data Movement
We summarize commonly used data movement patterns in Table 2.
The specific implementation details have been concealed through
a user-friendly streaming interface provided by our framework.
MemCopy explicitly transfers data between host and device. As we
have discussed in previous subsection, it may be required to bring
the data that was computed by a kernel on the device to the host
and do some operation on it and send it back to the device. The
cost is quite high, so it is important to avoid frequent data transfers
between host and device.

We offer interfaces for accessing device memory, which use two
types of Load-Store Units (LSUs) according to the access pattern:
(1) a burst-coalesced LSU, which buffers DRAM requests until the
largest possible burst can be made; (2) a prefetching LSU, which
prefetches large blocks from DRAM to keep in a FIFO based on
the previous address. To maximize bandwidth utilization, every
cycle, N elements are loaded/stored simultaneously via LSU and
sent/received using a single-producer single-consumer queue, re-
ferred to as pipe. BRAM is a crucial level for data caching as the
banks keep data belonging to it from DRAM pipe and distribute
data to multiple computational units. A pipelined never-stall LSU
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is connected to BRAM, so multiple BRAM requests can be in flight
at a time. This provides a range of optimization opportunities for
on-chip data management and reuse in FPGAs.

Table 2: Data Movement Interfaces.

Function Description
MemCopy(host_ptr, dev_ptr) Copy data from host DRAM to device

DRAM over PCIe.
MemCopy(dev_ptr, host_ptr) Copy data from device DRAM to host

DRAM over PCIe.
DRAMToPipe(dev_ptr, N) Load data fromDRAM andwrite into

a pipe, N elements at a time.
PipeToDRAM(dev_ptr, N) Read data from a pipe and store to

DRAM, N elements at a time.
BRAMToPipe(bram_ptr, N) Read data from N banks and write

into a pipe.
PipeToBRAM(bram_ptr, N) Read data from a pipe and distribute

into N banks.
Shift/Rotate(regs) Move data from one register to its

neighbor.

5.2.1 Double buffering. A double buffer can be viewed as a com-
bination of PipeToBRAM and BRAMToPipe. It consists of a read and
a write buffer. Incoming data from a pipe is written into the write
buffer, while output data is simultaneously transferred from the
read buffer to another pipe. Once they have completed their tasks,
the roles of two buffers are switched.

5.2.2 Shift/Rotate registers. We have already demonstrated shift
register pattern in Section 4. Each operator is associated with shift
registers that temporarily store intermediate results. These registers
are cascaded and "shifted" every cycle, right before we perform a
computate. Thus, the live values can be accessed from the registers
with constant indices (Line 5 in Figure 3 and Line 3 in Figure 4(b)).
Besides, shift registers are well-suited to spatial architectures as
they can be efficiently implemented. We provide primitives (Shift
and Rotate) to hide the implementation of these registers.

5.3 Skewed Matrix Storage
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Figure 6: Memory skewing in BRAM.

We observe a requirement for fetching both rows and columns
from a matrix, as exemplified in Equation (2). Specifically, the dot
product requires a row vector from matrix 𝐿 and a column vector
from matrix 𝑈 . As 𝐿 and 𝑈 gradually overwrite the original matrix
𝐴, they actually point to the same memory space. Memory skewing
[2] is a mechanism to improve data accessibility in parallel mem-
ory systems (e.g., BRAM). Deviating from traditional row-major
or column-major formats, skewed storage allows accessing rows,
columns, and diagonals of a two-dimensional data at the full mem-
ory bandwidth. An example of 4×4 matrix is shown in Figure 6. A

matrix that is stored in row-major order in DRAM is loaded row by
row, and each row is skewed before being stored into BRAM: the
𝑛-th row is shifted by 𝑛 − 1 times, and then distributed to different
BRAM banks. When reading from BRAM, a reordering circuit is
required to restore the correct order of the data. The columns in
the matrix can be fetched in parallel by accessing the diagonals
of the skewed matrix. The shaded red areas in Figure 6 illustrate
how the second column in the original matrix become a diagonal.
Memory skewing also reduces on-chip resources; otherwise, we
have to duplicate BRAM storage to store the matrix separately in
row-major and column-major order.

5.3.1 On-chip matrix transposition. The skewed matrix layout fa-
cilitates efficient matrix transposition. For example, in Figure 7(a),
there are two TRSM whose access patterns are completely differ-
ent. For TRSM1, the yellow-colored upper triangular matrix and
rectangular matrix are accessed in row major and column major,
respectively. Assume the entire matrix is stored in row-major order.
Reads from the rectangular matrix are non-contiguous. However,
non-contiguous accesses of DRAM lead to inefficient LSUs and thus
decrease bandwidth utilization. To address this efficiency issue, we
allow the rectangular matrix to be stored and accessed in row major
as usual, but then stored into BRAM with the skewed matrix layout,
enabling efficient column-by-column access, as can be seen from
Figure 7(b). To further improve efficiency, we implement memory
skewing within a double buffer: both write buffer and read buffer
are arranged in the skewed format. For TRSM2, the orange-colored
rectangular matrix is accessed in-order efficiently.

TRSM2

TRSM1

DRAM

(a) Direct access order

TRSM1

BRAM

DRAM

(b) Access with memory skewing

Figure 7: Utilize skewed matrix layout to achieve on-chip
matrix transposition.

Note that the accesses to the triangular matrices also introduce
an efficiency problem: two triangular matrices are produced by a
previous non-block LU factorization, and the orange-colored lower
triangular is accessed in column major. Our solution will be covered
in next subsection.

5.4 Optimizations Among Multiple Pipelines
Different pipelines accessing data from the same global memory
address may lead to underutilized memory bandwidth. For instance,
a non-blocked LU pipeline reads a block from DRAM, factorizes it
in-BRAM and writes the result back to the same location in DRAM.
TRSM pipelines then read the factorized triangular matrices from
this location. Explicit synchronization is required between LU and
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TRSM pipelines. The main efficiency constraint arises from the
frequent and non-contiguous accesses of DRAM for small triangular
matrices.

PipelineLU Store
PipelineTRSM1Load
PipelineTRSM2Load

Load

......

PipelineLU Store
PipelineTRSM1
PipelineTRSM2

Load

Upper triangular for TRSM1

Lower triangular for TRSM2

Time

Fusing

Naive 
load/store

......

Figure 8: Fusing LU and TRSM using on-chip BRAM.

5.4.1 On-chip fusion. Since the triangular matrices are generated
by previous pipeline on chip, they can be directly passed to the sub-
sequent pipeline as inputs without re-read from DRAM. Therefore,
to reduce the frequent and non-contiguous read operations of the
triangular matrices, we fuse the pipelines of LU and TRSM during
each step of factorization as is shown in Figure 8. On-chip fusion
can significantly increase the off-chip DRAM bandwidth utilization.

6 EVALUATION
In this section, we evaluate MatFactory on Intel DevCloud [10]. We
use oneAPI Toolkit 2023.2 and Quartus Prime 19.2 for implementing
and synthesizing our designs, and target Arria 10 GX1150 [11]
board. We also use Board Management Controller [15] to measure
the power dissipation at runtime. All matrices are using single-
precision floating-point format (FP32).

6.1 Non-blocked Factorization
First, we discuss the performance of non-blocked in-BRAM factor-
ization. The total arithmetic operation count for Cholesky, LU, QR
is 1

3𝑛
3, 2

3𝑛
3, 2𝑛3, respectively, where n represents the size of the

square matrix. We set the input matrix size to 128×128, run each
factorization 8192 times and calculate the average as the final GOPS.
The results and resource usage have been shown in Table 3.

Table 3: Non-blocked matrix factorization (128×128) on A10.

MHz DSP LUT BRAM GOPS Power
Cholesky 282 9% 23% 22% 17.4 23.0 W
LU 237 18% 26% 26% 29.7 25.0 W
QR 227 18% 25% 30% 91.4 27.0 W

6.1.1 Comparison with Vitis Library. Figure 9 compares MatFac-
tory with several HLS and RTL implementations on FPGAs. Vitis
Library [35] is the most comprehensive work we have found that
covers all the three algorithms with all the matrix sizes. We use
Vitis Library 2023.2 as the baseline for the non-blocked evaluation.
Since Vitis Library is primarily designed for Xilinx FPGAs, we test it
on Xilinx Alveo U280 [34]. Table 4 lists the hardware parameters of
two FPGA platforms. We tune the NCU (number of compute units)
parameter in these routines to the maximum that could be synthe-
sized, and achieve a geometric mean speedup of 10.7×, 4.0× and
10.5× over potrf, getrf_nopivot and geqrf routines in Vitis Solver

Library respectively. Despite many years of development, Vitis Li-
brary still provides limited performance of matrix factorization,
even on high-end FPGAs.

Table 4: Specifications of two FPGAs used in evaluation.

Platforms Intel Arria 10 GX1150 Xilinx Alveo U280
Technology Node Intel 20nm TSMC 16nm
Computing Units 1518 DSPs 9024 DSPs
DRAM 8GB DDR 8GB HBM & 32GB DDR
Bandwidth 34 GB/s 460 & 38 GB/s
BRAM 65.7MB 41MB

6.1.2 Comparison with specialized designs on FPGAs. As most of
designs are highly-customized for specific factorization algorithms,
we also compare our framework with specialized implementations
to evaluate the trade-off between performance and flexibility. Au-
toSA [32] is a polyhedral-based compilation framework that maps
LU factorization to a 2D systolic array in a triangular shape. Kumar
et al. [19] develop a linear array for computing LU factorization.
MatFactory gains 1.8× and 1.4× speedup over their designs re-
spectively. For Cholesky and QR, we demonstrate performance on
par with Intel Reference design [13]. Their performance slightly
surpasses ours because it isolated and precomputed all the control
signals to reduce fan-out. Langhammer et al. [21] have implemented
a QR circuit with a frequency of 430 MHz. Their hand-tuned RTL
design achieves a much higher frequency compared to ours (288
MHz). Nevertheless, MatFactory still retains 65% of their perfor-
mance while reducing the implementation effort. The results prove
that our designs are of high flexibility, productivity, and comparable
to expert-written HLS code.

6.1.3 Comparison with works on CPUs and GPUs. We also compare
our work with the state-of-the-art implementations on many-core
processors [22] and GPUs [26]. Considering that their works focus
on double precision, we report the throughput as well as the effi-
ciency, the measured throughput divided by the peak4. The CPU
design runs on a core group. A core group of the SW26010Pro pro-
cessor has a peak performance of 2.3 TFLOPS, while V100 has a
peak performance of 7 TFLOPS. As shown in Table 5, we achieve
much higher efficiency and absolute performance with favorable
power consumption (~30W). Moreover, matrix sizes of 101~103
are representative of the typical complexity for signal processing
applications, such as Kalman filter [31] and space-time adaptive
processing (STAP) [24]. The results demonstrate that our FPGA
designs are more suitable for small matrix factorization in real-time
and low-power scenarios, with relatively low overhead.

Table 5: Performance of non-blocked Cholesky/LU/QR
(256×256) on SW26010Pro, V100 GPU and Arria10 FPGA.

GOPS Efficiency
Ma et al. [22] (CPU) 5.5 / 6.2 / 12.0 0.24% / 0.27% / 0.52%
cuSolverDn (GPU) 19.6 / 9.1 / 16.8 0.28% / 0.13% / 0.24%
MatFactory (FPGA) 42.1 / 71.6 / 271.1 5.31% /10.6% / 31.1%

4For FPGAs, the peak throughput is defined as the total number of DSPs×frequency×2.
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Figure 9: Comparison of non-blocked matrix factorization on FPGAs. The largest matrix size is up to 256×256 due to resource
constraints.

6.2 Blocked Factorization
For the blocked factorization, we adopt the partitioning scheme
shown in Figure 1(a) and convert tail recursion to a loop, because
the loop-based implementation provides a better control on kernel
launching and finishing. We test input matrices ranging from 1024
to 16384, and manually search for the best block size from 16 to 256.
Table 6 shows the best results we can achieve on A10. The blocked
factorization designs achieve 1.65-1.88× speed up compared to the
best performance of non-blocked designs. Currently, we cannot
support the blocked QR factorization algorithm because it involves
tall-and-skinny QR factorization (TSQR) after partitioning. TSQR is
challenging to fit into BRAM. Some solutions that further partition
TSQR have been proposed [27, 30]. We will leave it as part of our
future work.

Table 6: Blocked matrix factorization on A10.

MHz DSP LUT BRAM GOPS Power
Cholesky 239 60% 52% 79% 79.2 29.5 W
LU 232 66% 57% 58% 118 30.0 W

6.2.1 Effect of on-chip fusion. Table 7 show the execution time
breakdown of blocked LU factorization. A performance bottleneck
lies in the TRSM pipeline as it repeatedly reads triangular matri-
ces from non-continuous addresses in DRAM. That is memory
bound: the required load bandwidth is 62 GB/s, which far exceeds
34 GB/s bandwidth that A10 can provide. On-chip fusion fuses two
pipelines, non-blocked LU and the subsequent TRSM. This opti-
mization reduces the load bandwidth requirement down to 46 GB/s
and achieves 6.6× performance improvement.

Table 7: The execution time (ms) breakdown of blocked LU
factorization (4096×4096).

Non-blocked LU TRSM GEMM GOPS
Naive load/store 2.8 2078 492 17.8
On-chip fusion 76.6 312 118

6.2.2 Performance analysis. On-chip fusion only partially miti-
gates the pressure of the memory bandwidth. The design remains
memory bound as long as multiple pipelines access data from the
same global memory address. Currently, GEMM almost dominates

the blocked factorization, as it occupies a significant portion of
the total execution time. We create a 8×8×8 (height×width×vector
length) systolic array for GEMM. The systolic array can achieve 205
GOPS if we test it independently. However, there will be a perfor-
mance degradation if we integrate it into our blocked factorization
design. A profile of the performance of GEMM in each iteration
is shown in Figure 10. We have identified two main reasons for
the degradation: (1) a standalone GEMM is not limited by memory
bandwidth and can consume data at the maximum rate required by
the systolic array; (2) pipeline parallelism cannot be fully utilized,
because GEMM processes tall-and-skinny input matrices (𝐴01 and
𝐴10 in Figure 1(a)) and the input matrices’ sizes gradually decrease
over time. Consequently, the performance of GEMM declines sig-
nificantly after the 25th iteration. Our blocked factorization design
does not compare favorably with GPUs in terms of absolute perfor-
mance (e.g., 118 GOPS vs. 921 GOPS for 4096×4096 matrix). This
is due to the huge gap in the hardwares’ capacities between V100
GPU and A10 FPGA: the memory bandwidths are 900 GB/s vs. 34
GB/s, and the computing resources are 5120 CUDA cores & 640
tensor cores vs. 1518 DSPs.
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Figure 10: The performance of GEMM in each iteration of
the blocked LU factorization (matrix size is 4096, block size
is 128).

7 CONCLUSIONS
We propose a productive and high-performance framework, Mat-
Factory, for factorizing matrices on FPGAs. Our abstraction is suf-
ficiently simple and effective to accommodate various algorithms
on spatial architectures, ensuring versatility across different matrix
factorization scenarios. We have developed key LAPACK routines
using this framework and achieved performance comparable with
or better than existing hardware libraries and expert-written code.
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