
MEPipe: Democratizing LLM Training with
Memory-Efficient Slice-Level Pipeline Scheduling on

Cost-Effective Accelerators
Zhenbo Sun

Tsinghua University
Beijing, China

sunzb20@mails.tsinghua.edu.cn

Shengqi Chen
Tsinghua University

Beijing, China
csq20@mails.tsinghua.edu.cn

Yuanwei Wang
Tsinghua University

Beijing, China
wangyw20@mails.tsinghua.edu.cn

Jian Sha
Tsinghua University

Beijing, China
shaj24@mails.tsinghua.edu.cn

Guanyu Feng
Zhipu AI

Beijing, China
guanyu.feng@zhipuai.cn

Wenguang Chen
Tsinghua University

Beijing, China
cwg@tsinghua.edu.cn

Abstract
The training of large languagemodels (LLMs) typically needs
costly GPUs, such as NVIDIA A100 or H100. They possess
substantial high-bandwidth on-chip memory and rapid in-
terconnects like NVLinks. The exorbitant expenses associ-
ated with LLM training pose not just an economic challenge
but also a societal one, as it restricts the ability to train LLMs
from scratch to a selected few organizations.

There is a significant interest in democratizing access to
LLM training. This paper explores a potential solution by
employing innovative parallel strategies on more affordable
accelerators. Budget-friendly options likeNVIDIARTX 4090,
while considerably less expensive and comparable in com-
putational power toA100, are hindered by their limitedmem-
ory capacity and reduced interconnect bandwidth, making
the effective training of LLMs challenging.

Conventional parallel strategies often result in high com-
munication costs or excessive memory usage. Our paper in-
troducesMEPipe, a novel approach that includes a slice-level
scheduling method for sequence pipeline parallelism. This
methodminimizes memory consumption without incurring
additional communication overhead. Besides, MEPipe uti-
lizes fine-grained weight gradient computation to reduce
idle time andmitigate imbalanced computation among slices.

MEPipe has demonstrated up to 1.68× speedup (1.35× on
average) on clusters equipped with 64 NVIDIA 4090 GPUs
when training Llama models of varying sizes. 35% Model
FLOPS Utilization (MFU) is achieved in training Llama 13B
model, being 2.5× more cost-effective than A100 clusters.

This work is licensed under a Creative Commons Attribution-
NonCommercial 4.0 International License.
EuroSys ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1196-1/2025/03
https://doi.org/10.1145/3689031.3717469

CCS Concepts: • Computing methodologies → Neural
networks; Parallel algorithms.

Keywords: distributed deep learning; large language model

ACM Reference Format:
Zhenbo Sun, Shengqi Chen, YuanweiWang, Jian Sha, Guanyu Feng,
and Wenguang Chen. 2025. MEPipe: Democratizing LLM Training
with Memory-Efficient Slice-Level Pipeline Scheduling on Cost-
Effective Accelerators. In Twentieth European Conference on Com-
puter Systems (EuroSys’25), March 30-April 3, 2025, Rotterdam, Nether-
lands.ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3689031.3717469

1 Introduction
Recently, large language models [3, 25, 34] have exhibited
powerful abilities in various tasks.The enhancement of their
ability is primarily attributed to the exponential growth in
both data volume and model size [18]. However, the compu-
tation and storage requirements for training LLMs exceed
the capacity of single accelerators, necessitating efficient
parallel strategies for distributed training on large clusters.

Various parallel strategies have been proposed to improve
the training efficiency of large models, including data par-
allelism (DP) [12], tensor parallelism (TP) [32], pipeline par-
allelism (PP) [7], and context parallelism (CP) [10, 21]. The
characteristics of these parallel strategies will be discussed
in Section 2. With the growth of model size and the num-
ber of accelerators, the aforementioned parallel strategies
should be combined to achieve optimal training efficiency.

In general, accelerators used for training LLMs such as
NVIDIAA100GPUs are expensive because they shouldmeet
three essential requirements: powerful computation capac-
ity, high-bandwidth interconnection, and substantial mem-
ory. In contrast, some inexpensive accelerators, such as the
NVIDIARTX 4090GPUs, exhibit comparable computational
power but are constrained with limited memory capacity
and low interconnection bandwidth.

1263

https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
https://doi.org/10.1145/3689031.3717469
https://doi.org/10.1145/3689031.3717469
https://doi.org/10.1145/3689031.3717469
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689031.3717469&domain=pdf&date_stamp=2025-03-30

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Zhenbo Sun, Shengqi Chen, Yuanwei Wang, Jian Sha, Guanyu Feng, and Wenguang Chen

As of October 2024, the typical price for a server equipped
with 8 NVIDIA A100 GPUs and NVLink interconnection
is approximately 5 times compared to one with 8 NVIDIA
RTX 4090 GPUs. The cost of training LLMs will be signifi-
cantly reduced if we can train LLMs on RTX 4090 GPUs and
achieve good performance. However, this approach presents
huge challenges due to the limited memory capacity and in-
terconnection bandwidth. These limitations call for better
parallel strategies to minimize memory utilization and com-
munication overhead simultaneously.

The memory requirements for training LLMs are substan-
tial, including parameters, gradients, optimizer states, and
activations. Among these components, activations consume
a huge proportion of the total memory [16, 33]. To enable
the training of LLMs on memory-limited accelerators like
RTX 4090, activations should be partitioned by slicing mod-
els or individual samples.

Tensor parallelism partitions the parameters of each layer
and context parallelism partitions single samples. However,
both methods need communication of intermediate results
for each layer in the forward and backward passes. This in-
curs substantial memory consumption and renders them un-
suitable for accelerators with low-bandwidth interconnec-
tion like RTX 4090.

2 4 8 16 32
Peak Memory Consumption for Activations per Worker (GB)

0

20

40

60

80

Bu
bb

le
 R

at
io

 (%
)

SVPP (SPP=4)
SVPP (SPP=8)
DAPPLE
Hanayo

TeraPipe (SPP=4)
TeraPipe (SPP=8)
VPP

Figure 1. Bubble ratio and peak activation memory con-
sumption of SOTA works on Llama 13B with context length
as 4096, pipeline parallel size as 8, virtual pipeline size as 2,
micro-batch size as 1, and number of micro-batches as 8.

Pipeline parallelism partitions the LLMs into sequential
subgraphs and allocates each subgraph to different workers.
To reduce the bubble ratio, traditional scheduling methods
such as DAPPLE [7] require the first worker to compute sev-
eral forward passes at the beginning of each iteration, lead-
ing to huge memory consumption for the activations.

Recent studies like Virtual Pipeline Parallelism (VPP) [24]
and Hanayo [22] mainly focus on reducing the bubble ratio
by partitioning the computation graph into finer chunks and
assigning multiple chunks to individual workers. Although

the activation memory of each forward pass is reduced, the
first worker needs to compute more forward passes at the
beginning of each iteration, failing to reduce the activation
memory consumption.
Sequence pipeline parallelism (SPP), proposed by TeraP-

ipe [20], reduces the bubble ratio by partitioning samples
into finer slices. However, TeraPipe’s scheduling method
will process the forward passes of all samples before the first
backward pass, leading to substantial memory consumption
as workers need to preserve the intermediate activations
of all samples. Figure 1 presents the bubble ratio and peak
memory consumption of activations for the state-of-the-art
approaches on Llama 13B model [34].
We propose Sequence Virtual Pipeline Parallelism (SVPP), a

slice-level scheduling method that optimizes the activation
memory consumption by interleaving the forward and back-
ward passes at the granularity of slices and advancing the
first backward pass of each iteration. With SVPP, the max-
imum number of slices whose activations workers need to
preserve is comparable to the maximum number of micro-
batches they should save in other approaches. Given that
the activations of each slice are substantially smaller than
that of eachmicro-batch, the peakmemory consumption for
activations is thus reduced. Moreover, SVPP provides mul-
tiple variants of pipeline scheduling methods, each offering
distinct memory consumption and bubble ratio.
As shown in Figure 1, when partitioning each sample into

4 and 8 slices, the reduction in peak memory consumption
of activations exceeds 70% and 80%, respectively. This ap-
proach enablesMEPipe to train largemodels on accelerators
with limited memory capacity without incurring communi-
cation overhead.

To further improve training efficiency, we extend the tech-
nique of separating the computation of weight gradients
and activation gradients, as proposed in zero bubble pipe-
line parallelism [27]. Since there are no dependencies be-
tween the computation of different weight gradients, we
partition them into individual General Matrix Multiplica-
tions (GEMM) and schedule these GEMMs when workers
are waiting for communication with other workers. This
technique reduces the bubbles caused by imbalanced com-
putation workload and bubbles at the ending phases of each
iteration.
The main contributions of MEPipe are the following:

1. We propose SVPP, a slice-level pipeline schedulingme-
thod that consumes less memory and has fewer bub-
bles than other state-of-the-art works.

2. We put forward the technique of fine-grained weight
gradient computation tomitigate the imbalanced com-
putation among different slices and reduce the bub-
bles at the ending phases of each iteration.

3. We implement MEPipe on Megatron-LM, achieving
up to 1.86× speedup over other approaches. MEPipe

1264

MEPipe EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

achieves 116 TFLOPS peak performance and 35% Mo-
del FLOPS Utilization (MFU) for Llama 13B model on
64 RTX 4090 GPUs. MEPipe maintains the compara-
ble iteration time to that observed on 32 A100 GPUs
while being 2.5× more cost-effective.

The rest of this paper is organized as follows. Section 2 in-
troduces the background of different parallel strategies. Sec-
tion 3 presents the overview of MEPipe. The SVPP sched-
uling method and its analysis are presented in Section 4.
Section 5 focuses on fine-grained weight gradient compu-
tation technique. Section 6 describes the implementation of
MEPipe, and Section 7 evaluates the performance of MEPipe.
Related works are introduced in Section 8. Finally, Section 9
discusses the challenges and insights, and Section 10 con-
cludes this paper.

2 Background
We first define the notations used by the following sections
in Table 1.

Table 1. Notations used in this paper.

Notation Description
𝑛 number of micro-batches
𝑑 data parallel size (with ZeRO)
𝑝 pipeline stage number
𝑠 sequence pipeline size
𝑣 virtual pipeline size

𝐴 activation memory
consumption of one sample

2.1 Pipeline Parallelism
Pipeline parallelism partitions the computation graph into
sequential subgraphs and allocates each subgraph to differ-
ent stages. Micro-batches are sequentially processed from
the first stage to the last stage during forward propagation,
and in the reverse order during the back propagation.

Due to computing dependency, a single micro-batch can-
not be processed in two stages concurrently. Stages may be-
come idle when waiting for the output from their preceding
or succeeding stages. The period of idleness is called bub-
bles, and the proportion of time it occupies within one it-
eration is referred to as the bubble ratio. The bubble ra-
tio serves as an important metric when evaluating the effi-
ciency of different pipeline scheduling methods.

GPipe [9] divides individual batches into smaller micro-
batches. It first executes the forward passes for all micro-
batches and then followed by their backward passes. This
approach reduces the bubble ratio by concurrently process-
ing distinct micro-batches at different stages.

PipeDream [8] and DAPPLE [7] further reduce the acti-
vation memory consumption by proposing the 1F1B (one-
forward-one-backward) scheduling method, as shown in Fig-
ure 2. Different colors represent different micro-batches. As
activations are saved after the forward passes and can only
be released after the backward passes, interleaving the for-
ward and backward passes reduces the peak memory con-
sumption for eachworker. However, the first stage still needs
to save activations for 𝑝 forward passes, leading to huge
memory consumption.

Forward

Stage 0

Stage 1

Stage 2

Bubble

Time

Backward

Figure 2. 1F1B pipeline scheduling in DAPPLE.

Chimera [19] and DeepSeek-V3 [5] design a novel bidi-
rectional pipeline scheduling method to reduce the bubble
ratio. DeepSeek-V3 further pairs the forward and backward
passes to overlap the communication and computation for
Mixture of Experts (MoE) models.The bidirectional schedul-
ing method does not reduce the activations while consum-
ing more memory as parameters are replicated across more
than one stage.
Megatron-LM-v2 [24] introduces virtual pipeline paral-

lelism (VPP), which partitions the computation graph into
finer chunks and assigns multiple chunks to individual wor-
kers. During the forward propagation, one micro-batch will
be processed from the first to the last stage multiple times
and reversely during backward propagation. Hanayo [22]
further presents an optimizedwave-like pipeline scheduling
method. These innovations reduce the bubble in the initial
and ending phases of each iteration. Although the activa-
tions for individual forward passes are reduced, each stage
needs to save activations of more forward passes. Therefore,
the activation memory consumption remains large for these
scheduling methods.
Zero bubble pipeline parallelism [27] optimizes the bub-

ble ratio by separating the gradient computation of the ac-
tivations and weights in the backward passes. This method
delays the computation of weight gradients and advances
the transfer of activation gradients to the preceding stage.
The delayed gradient computation of weights fills the bub-
ble at the ending phase of the latter stages.

TeraPipe [20] presents an innovative approach called se-
quence pipeline parallel (SPP), which partitions individual
samples into smaller slices and schedules them similarly to
GPipe, as shown in Figure 3. The numbers in the upper part

1265

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Zhenbo Sun, Shengqi Chen, Yuanwei Wang, Jian Sha, Guanyu Feng, and Wenguang Chen

denote the index of each slice within a single sample. Ter-
aPipe exploits the inherent characteristics of the decoder ar-
chitecture, where tokens only depend on their preceding to-
kens. When processing the forward passes of the Attention
Layers for each slice, workers need the key and value of all
preceding slices to derive the final output.

Forward

0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

Stage 0

Stage 1

Stage 2

Bubble

Time

Backward

0

1

Stage 0

key
V

alue
key

V
alue

Attention
Layer 0

key
V

alue
key

V
alue

Attention
Layer 1

Stage 1

key
V

alue
key

V
alue

Attention
Layer 0

key
V

alue
key

V
alue

Attention
Layer 1

…

Sa
m

pl
e

Figure 3. Pipeline scheduling of TeraPipe.

The fine-grained partitioning strategy reduces the bub-
ble ratio and partitions the activations. However, TeraPipe’s
scheduling method is memory-consuming as workers need
to preserve the activations of all samples before processing
the first backward passes.

2.2 Other Types of Parallelism
In addition to pipeline parallelism, there are other important
parallel strategies for training LLMs, including data paral-
lelism, tensor parallelism, and context parallelism.
Data parallelism. Data parallelism (DP) [12, 18, 23] parti-
tions input data across different workers while maintaining
identical model parameters on each worker. In each itera-
tion, workers need to synchronize the gradients after the
backward passes. ZeRO [28] extends data parallelism by par-
titioning the optimizer states across different workers, to
reduce memory consumption. ZeRO-2 and ZeRO-3 further
partition the gradients and parameters. However, the inte-
gration of ZeRO-2 and ZeRO-3 with pipeline parallelism in-
troduces substantial communication overhead, as each for-
ward and backward pass requires the communication of pa-
rameters and gradients.
Tensor parallelism. Tensor parallelism (TP) [11, 17, 31]
partitions the parameters of each layer and distributes these
parts across different workers. During the forward and back-
ward passes, the output activations of each layer should be
synchronized across these workers, introducing significant
communication overhead. Megatron-LM [32] reduces the
communication volume by partitioning the weights of two
contiguous linear layers in different dimensions. Due to the

huge communication volume, tensor parallelism is limited
to accelerators with high-bandwidth interconnections, like
GPUs with NVLink technology.
Context parallelism. Context parallelism (CP) [10, 21]
partitions single samples into smaller slices while maintain-
ing identical parameters across different workers. This tech-
nique is initially proposed for training models with long
context. When computing attention layers, workers need to
communicate the key and value tensor with each other to
derive the result, introducing communication overhead dur-
ing the forward and backward passes. Although the com-
munication volume of context parallelism is smaller than
that of tensor parallelism, it still incurs substantial commu-
nication that would impact the overall performance. Since
workers maintain identical parameters, the optimizer state
partitioning technique in ZeRO can also be employed for
context parallelism.
Table 2 shows the communication overhead and memory

consumption of these parallel strategies.

Table 2. Comparison of different parallel strategies.

Comm. Parameter
Partition

Activation
Partition

Optimizer
Partition

TP + + + + + ✔ ✔ ✔
CP (ZeRO) + + ++ ✘ ✔ ✔
DP (ZeRO) ++ ✘ ✘ ✔

PP + ✔ ✘ ✔
SPP + ✔ ✔ ✔

3 Overview of MEPipe
With the growing scale of training datasets, the cost of train-
ing LLMs also increases rapidly. To democratize the training
of LLMs to inexpensive accelerators with low-bandwidth in-
terconnection, pipeline parallelism becomes necessary as it
incurs minimal communication overhead.
As discussed in Section 2, existing pipeline scheduling

methods require the first stage to preserve activations for
several forward passes to reduce the bubble ratio, leading
to substantial memory consumption.

To reduce the memory, MEPipe partitions each sample
into finer slices as SPP and schedules at the granularity of
slices. However, this slice-level scheduling introduces ad-
ditional computational dependencies and workload imbal-
ance across slices within a single sample. To address these
issues, we propose two techniques: SVPP scheduling method
and fine-grained weight gradient computation, which enable
efficient slice-level scheduling for the first time.

The SVPP method schedules the forward and backward
passes in slice granularity. Different variants of the sched-
uling methods are provided to suit different memory limits.

Fine-grainedweight gradient computation further decom-
poses the weight gradient computation to the granularity

1266

MEPipe EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

(a) Without VPP

Stage 0

Stage 1
Stage 2
Stage 3

ForwardBubble Backward

(b) VPP=2

0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0
0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 0

0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 0
0 1 0 1 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0

Stage 0

Stage 1
Stage 2
Stage 3

0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0
0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0

0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

Dependency

Figure 4. SVPP scheduling method with 𝑝 = 4 and 𝑠 = 2.

of individual General Matrix Multiplication (GEMM) oper-
ations. This method balances the computation of forward
and backward passes, as different slices in sequence pipeline
parallelism have different amounts of computation. Besides,
this method advances the transmission of backward pass re-
sults, thereby enhancing the overall training efficiency.

4 Sequence Virtual Pipeline Parallelism
This section introduces the SVPP scheduling method and its
generation process. Then we analyze the bubble ratio and
memory consumption of SVPP and other state-of-the-art ap-
proaches. Finally, we discuss the selection of the variant of
the scheduling method under different memory limitations.

4.1 SVPP Scheduling Method
As discussed in Section 2, sequence pipeline parallelism par-
titions individual samples into finer slices. The SVPP sched-
uling method interleaves forward and backward passes of
single slices, thereby mitigating the peak memory utiliza-
tion of activations.The design of schedulingmethods should
consider the dependencies between slices within one sam-
ple. The dependencies arise from the computation of the At-
tention Layers, whose results need the key and value com-
ponents of all preceding slices, as shown in Figure 3. Tak-
ing the inherent dependencies into account, we design the
scheduling method of SVPP in Figure 4.
Figure 4(a) and (b) illustrate the schedulingmethodwith 4

pipeline stages and 4 samples, with each sample partitioned
into 2 slices. Different colors denote different samples, while
the numbers are indices of slices within a single sample.The
arrows denote parts of dependencies between the forward
and backward passes.

Figure 4(a) shows the scheduling method without the vir-
tual pipeline parallelism. The forward pass of slice 1 has de-
pendencies on both the forward pass of slice 0 in the same
stage and the forward pass of slice 1 in the preceding stage.

Moreover, the initiation of the backward pass of each sam-
ple requires the completion of all forward passes for slices
0 and 1 in that sample.
Figure 4(b) shows the scheduling method with the virtual

pipeline size as 2. The computation graph is partitioned into
8 sequential chunks and each pipeline stage is allocatedwith
2 chunks. The processing of each slice needs two rounds of
forward passes from stage 0 to stage 3. Therefore, the for-
ward pass of the second chunk on stage 0 depends on the
forward pass of the first chunk on stage 3, denoted with ar-
rows in Figure 4(b). The bubbles in between can be filled
with the forward passes of the next sample. Notably, the
computation time for both forward and backward passes is
reduced by half compared to the scheduling method in Fig-
ure 4(a), as each chunk contains half the number of layers.
This strategy reduces the bubble ratio at the beginning and
ending phases, enhancing overall training efficiency.
During each iteration, activations will be preserved after

the forward pass and released after the corresponding back-
ward pass. The peak memory consumption for activations
is determined by the number of forward passes executed
before the first backward pass. Due to the computation de-
pendency across different stages, the first stage needs to ex-
ecute more forward passes than subsequent stages at the
beginning of each iteration, thus requiring more activation
memory. Therefore, our analysis of memory consumption
focuses on the first pipeline stage.
Let 𝐴 denote the memory volume of activations for a sin-

gle sample. For Figure 4(a), the activationmemory consump-
tion for a single forward pass is 1

8𝐴, as the model is parti-
tioned into 4 subgraphs and each sample is partitioned into
2 slices. The peak memory consumption of activations in
Figure 4(a) is 5

8𝐴. However, as the computation graph is par-
titioned into 8 chunks in Figure 4(b), the activation memory

1267

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Zhenbo Sun, Shengqi Chen, Yuanwei Wang, Jian Sha, Guanyu Feng, and Wenguang Chen

consumption for a single forward pass becomes 1
16𝐴. Con-

sequently, the peak memory consumption of activations is
9
16𝐴 in Figure 4(b).

4.2 Variants of SVPP Scheduling Methods

0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0
0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0

0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0

(c) Peak activation memory = 1
4
𝐴

(b) Peak activation memory = 5
16
𝐴

0 1 0 0 1 1 1 0 0 1 1 0 1 0 1 0
0 1 0 0 1 1 0 1 1 0 0 1 1 0 1 0

0 1 0 0 1 1 0 1 1 0 0 1 1 0 1 0
0 1 0 0 1 1 0 1 0 1 0 1 1 0 1 0

Stage 0

Stage 1
Stage 2
Stage 3

Stage 0

Stage 1
Stage 2
Stage 3

ForwardBubble Backward

Stage 0

Stage 1
Stage 2
Stage 3

(a) Peak activation memory = 1
2
𝐴

0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0

Reach peak
memory
consumption

Figure 5. Variants of SVPP scheduling method with differ-
ent peak memory consumption.

When the memory of accelerators is limited, SVPP can
delay the forward passes after the first backward passes. Fig-
ure 5(a), (b), and (c) present different variants of the sched-
uling method when stage number is 4, virtual pipeline size
is 2, and the number of micro-batches is 2.

This approach trades off memory consumption with the
bubble ratio. For example, the scheduling method in Fig-
ure 5(c) reduces the memory consumption by 50% while in-
creasing the bubble ratio by 50% compared to Figure 5(a).
Theoretically, at least 𝑣 × 𝑠 forward passes must be executed
before the first backward pass, as the first backward pass
depends on the completion of all forward passes of the first
sample. Each sample consists of 𝑠 slices, and each slicewould
be processed 𝑣 rounds across all stages, thus 𝑣 × 𝑠.
4.3 Generation of Scheduling Methods
The scheduling method is determined by the following five
parameters: pipeline stage number (𝑝), virtual pipeline size
(𝑣), sequence pipeline size (𝑠), number of micro-batches (𝑛),
and the number of forward passes before the first backward
pass (𝑓). The generation process can be described as follows:
First, we arrange the forward and backward passes for the

first micro-batch. Single bubbles will be inserted between
two consecutive backward passes of different slices. These
bubbles are left for the forward passes of the next micro-
batches to maintain the peak memory utilization.

Subsequent micro-batches are processed sequentially. For
the next 𝑓 − 𝑣𝑠 forward passes, we first place them into the

bubbles between the forward passes of the first micro-batch
when 𝑣 is larger than 1. The remaining forward passes will
be placed at bubbles preceding the first backward pass (for
stage 0) and bubbles between backward passes (for subse-
quent stages). Other forward passes are positioned at the
bubble after one backward pass (for stage 0) sequentially.
Backward passes are scheduled after the last forward passes
of the corresponding micro-batch and the backward passes
of preceding micro-batches. Similarly, single bubbles will be
inserted in two consecutive backward passes.
After scheduling all micro-batches, the bubbles between

two consecutive backward passes after the last forward pass
can be removed to simplify the schedulingmethod, as shown
in Figure 5(a).

0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0

Stage 0

Stage 1
Stage 2
Stage 3

ForwardBubble Backward

Figure 6.Optimized scheduling method of Figure 5(a). Peak
activation memory is 1

2𝐴.

However, we can find the bubbles between the last few
backward passeswhen the virtual pipeline size is larger than
1, as shown in Figure 5(a). This can be further optimized by
rescheduling the backward passes, as depicted in Figure 6.
Given that the backward passes of the last stage determine
the scheduling of backward passes in preceding stages, op-
timization can be confined to the last stage.

To facilitate our analysis, we make the following defini-
tion regarding the relationships between backward passes.
If the backward pass 𝑥 can only be computed after the back-
ward pass 𝑦 , we refer to 𝑥 as a child of 𝑦 , and conversely, 𝑦
as the parent of 𝑥 . We also use (Slice 𝑖, Chunk 𝑗) to represent
the backward pass of the 𝑖-th slice on the 𝑗-th chunk.
The rescheduling method can be described as follows.
Firstly, we prioritize the backward passes based on the

number of their children. Take Figure 4 for example, (Slice
1, Chunk 1) has 3 children: (Slice 0, Chunk 1), (Slice 1, Chunk
0), and (Slice 0, Chunk 0).
Secondly, we maintain a table to record the earliest pos-

sible initiation time for each backward pass. This table is
dynamically updated according to the forward passes and
the subsequent scheduling of their parent backward passes.
Finally, we reschedule the backward passes sequentially.

For those positions before the last forward pass, we only
substitute the backward passes and keep the same bubbles,
to maintain the same peak memory utilization during the
iteration. For positions after the last forward pass, we can
schedule the remaining backward passes more flexibly as
they won’t influence the peak memory consumption.

1268

MEPipe EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

When scheduling the backward passes, we will choose
the backward pass with the highest priority among those
whose dependent backward and forward passes have been
completed, as indicated by the previously constructed table.
After placing the backward pass, we can update the earliest
initiation time of its children backward passes in the table.

4.4 Memory Consumption and Bubble Ratio
A comprehensive analysis of the theoretical activationmem-
ory consumption and bubble ratio of MEPipe and other state-
of-the-art approaches is presented in Table 3.

As mentioned in Section 4.1, there are different variants
of scheduling methods given the training configuration. We
select the version that exhibits the lowest bubble ratio and
maximal memory consumption for activations. For simplic-
ity, we assume the computation graph is evenly partitioned,
resulting in a balanced computation workload across all sta-
ges. Inter-stage communication is not considered here.

Zero bubble pipeline parallelism [27] is not discussed here
either, as its method for partitioning the gradient compu-
tation of activations and weights is potentially applicable
to all aforementioned approaches. For example, its schedul-
ing methods, such as ZB-1P and ZBV, are extensions of the
DAPPLE and Hanayo with the above method. This method
reduces the bubbles at the beginning and ending phases dur-
ing each iteration. However, in the scenario where the num-
ber of micro-batches is smaller than the pipeline stage num-
ber, this method will not be very useful as there are many
bubbles in the middle phase in each iteration.

We also design a mechanism similar to zero bubble pipe-
line parallelism forMEPipe, which will be introduced in Sec-
tion 5. For simplicity, this method will not be considered
during the analysis.

Sequence pipeline parallelism has the problem of compu-
tation imbalance across different slices.The imbalance is pri-
marily attributable to the computation of attention score,
which constitutes less than 10% of the total computation
when training a 7B model with a context length of 4096.The
proportion is even smaller for models of greater scale. Con-
sequently, the influence of computation imbalance is mild.
Furthermore, the issue can be effectively mitigated with our
technique that will be introduced in Section 5.
As illustrated in Table 3, the analysis is conducted under

two distinct scenarios according to the relationship between
the number of micro-batches and the pipeline stage number.
Given that the training of LLMs is typically constrained by
the global batch size (normally 2048 in Llama [34]), the con-
dition 𝑛 ≥ 𝑝 represents the situation with a relatively mod-
est number of accelerators. Conversely, 𝑛 < 𝑝 represents
the situation with a substantial number of accelerators (e.g.,
more than 2048 accelerators).

As shown in Table 3, in the scenario where 𝑛 ≥ 𝑝, MEPipe
achieves a lower bubble ratio than other approaches. This

enhanced efficiency is attributable to the simultaneous em-
ployment of virtual pipeline parallelism and sequence pipe-
line parallelism.
The activation memory consumption of MEPipe depends

on the maximum number of forward passes before the first
backward pass, as introduced in Section 4.1. In the scenario
where 𝑠 ≥ 𝑝, there will be no bubble between the forward
passes of the slices of different chunks within the first micro-
batch. Consequently, the memory consumption can be ex-
pressed as (𝑣𝑠+𝑝−1)

𝑣𝑠𝑝 𝐴. Conversely, when 𝑠 < 𝑝, there would
be bubbles between the forward passes of different chunks
within the first micro-batch, as shown in Figure 5(a). These
bubbles will be filled with the forward passes of the next
micro-batches. In this case, the peak memory consumption
can be represented as (𝑣−1)𝑝+𝑠+𝑝−1

𝑣𝑠𝑝 𝐴. Notably, the mem-

ory consumption of SVPP remains around 1
min(𝑠,𝑝)𝐴, much

smaller than other approaches.
In the scenario where 𝑛 < 𝑝, the scheduling method of

SVPP can still achieve a lower bubble ratio than other ap-
proaches. Furthermore, the memory consumption of SVPP
in this scenario remains comparable to or less than that of
other approaches.

4.5 Selection of the SVPP Scheduling Method
Variants

As previously discussed, there are different variants of the
SVPP schedulingmethod.When thememory capacity is lim-
ited, we need to choose the variant that satisfies thememory
constraint and achieves the lowest bubble ratio.
We construct a memory model that can determine the

variant of the SVPP scheduling method when given pipe-
line stage number 𝑝, data parallel size 𝑑 , sequence pipeline
size 𝑠, and virtual pipeline size 𝑣 .

The memory model comprises three distinct components.
The first is static memory, including parameters, gradients,
and optimizer state. Let 𝑚 denote the number of parame-
ters, the static memory consumption can be represented as
4𝑚
𝑝 + 8𝑚

𝑑𝑝 when we train the LLMs with half-precision and
Adam [15] optimizer. Frameworks like Megatron-LM [32]
may maintain copies of parameters and gradients in FP32,
which would also be considered static.

The second component is the temporary memory for stor-
ing intermediate results. The size of temporary memory is
determined by the model structure, as certain operators like
the loss function need large temporary memory for interme-
diate results. This memory will be released after the compu-
tation and reused by other operators. To simplify, we regard
the size of temporary memory as static during training.
The third component is the memory consumption of acti-

vations for forward passes.Thememory consumption is also
determined by the model structure and can be computed by
summing the size of activations that should be preserved.

1269

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Zhenbo Sun, Shengqi Chen, Yuanwei Wang, Jian Sha, Guanyu Feng, and Wenguang Chen

Table 3. Bubble ratio and activation memory of different SOTA scheduling methods. (-) indicates unsupported cases.

Scheduling 𝑛 ≥ 𝑝 (Small Cluster) 𝑛 < 𝑝 (Large Cluster)
Method Bubble Ratio Memory Consumption Bubble Ratio Memory Consumption

DAPPLE
𝑝 − 1

𝑝 − 1 + 𝑛 𝐴 𝑝 − 1
𝑝 − 1 + 𝑛

𝑛
𝑝 𝐴

VPP
𝑝 − 1

𝑝 − 1 + 𝑛𝑣 min((1 + 𝑝 − 1
𝑝𝑣), 𝑛

𝑣𝑝)𝐴 - -

Hanayo
𝑝 − 1

𝑝 − 1 + 𝑛𝑣 𝐴 𝑣𝑝 + 𝑛 − 1 − 𝑛𝑣
𝑣𝑝 + 𝑛 − 1

𝑛
𝑝 𝐴

TeraPipe
𝑝 − 1

𝑛𝑠 + 𝑝 − 1
𝑛
𝑝 𝐴

𝑝 − 1
𝑛𝑠 + 𝑝 − 1

𝑛
𝑝 𝐴

SVPP
𝑝 − 1

𝑛𝑠𝑣 + 𝑝 − 1
(𝑣 max(𝑝, 𝑠) +min(𝑝, 𝑠) − 1)

𝑣𝑠𝑝 𝐴 𝑝 − 1 + (𝑣 − 1)max(𝑝 − 𝑠𝑛, 0)
𝑝 − 1 + (𝑣 − 1)max(𝑝 − 𝑠𝑛, 0) + 𝑛𝑣𝑠 min(𝑣 max(𝑝, 𝑠) +min(𝑝, 𝑠) − 1

𝑣𝑠𝑝 , 𝑛𝑝)𝐴

SVPP (𝑠 → +∞) 0 1
𝑝 𝐴 0 1

𝑝 𝐴

With the above three components, we can compute the
maximum number of forward passes that can be executed
before the first backward pass, thus determining the variant
of the scheduling method.

5 Fine-grained Computation of Weight
Gradients

Zero bubble pipeline parallelism decomposes the backward
pass into the computation of activation gradients andweight
gradients. We find that the computation of weight gradients
can be further partitioned as there are no dependencies be-
tween the gradient computation of distinct weights. Conse-
quently, we split the computation of weight gradients into
the granularity of individual GEMMs and schedule these
GEMMs dynamically.

Figure 7 shows the pipeline scheduling method when 𝑝 =
4, 𝑠 = 2, 𝑣 = 1 and 𝑛 = 4. We assume the forward time for
slice 0 is 75% of that for slice 1. The imbalanced workload is
primarily attributable to the structure of the Decoder Mod-
els [3]. As depicted in Figure 3, the computation of the Atten-
tion Layer for subsequent slices calls for the key and value
components from preceding slices, resulting in a progres-
sive increase in the computation workload for later slices.

For simplicity, we assume the backward time is the same
as the forward time for each slice. We also assume the time
for theweight gradient computation of each slice is the same
as the forward time of slice 0, as weight gradient compu-
tation does not include the imbalanced computation of the
attention score.

As shown in Figure 7, during the backward pass, GEMM
operations of weight gradient computation are enqueued.
These GEMMs are then dequeued and processed during the
intervals when workers are waiting for the tensor from the
preceding or subsequent stages.

In Figure 7(a), stage 0 executes the weight gradient com-
putation immediately after its backward passes. If this com-
putation is deferred, workers need to preserve the corre-
sponding activations and activation gradients, leading to in-
creased peak memory consumption.

However, subsequent stages consume less memory com-
pared to preceding stages and can preservemore activations
and activation gradients. This indicates that subsequent sta-
ges can postpone the weight gradient computation and ad-
vance the forward and backward passes of next slices. Con-
sequently, bubbles in the ending phases can be used to com-
pute weight gradients, yielding better training performance.

Moreover, if more memory is provided, we can advance
the forward and backward passes in stage 0 to further re-
duce the bubbles, as shown in Figure 7(b). The memory con-
sumption of forward and backward passes can be computed
as discussed in Section 4.5. When computing the weight gra-
dients, we can stop and process the next forward or back-
ward pass as soon as there is enoughmemory.This approach
enables the advancement of more forward and backward
passes and improves efficiency.
Moreover, fine-grained weight gradient computation mit-

igates the imbalanced computation among different slices.
The computation of attention score constitutes less than 10%
of the total computation workload for 7B models with a
context length of 4096. In such scenarios, scheduling single
GEMMs dynamically is enough to fill the bubbles caused by
imbalanced computation among different slices.
TeraPipe [20] solves this problem by partitioning each

sample in a non-uniform way. They further design a dy-
namic programming algorithm to find the optimal partition-
ing strategy in their paper. However, operators like GEMM
and FlashAttention [4] exhibit optimal performance when
the input dimensions are the powers of 2, particularly on

1270

MEPipe EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0
0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0

0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

(a) Peak activation memory = 5
8
𝐴

0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0
0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0

0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

(b) Peak activation memory = 11
12
𝐴

Bubble Weight Gradient Computation

Stage 0

Stage 1
Stage 2
Stage 3

Stage 0

Stage 1
Stage 2
Stage 3

Enqueue Dequeue

Forward Backward

Figure 7. Fine-grained weight gradient computation.

modern accelerators like NVIDIA GPUs. The non-uniform
partitioning approach potentially compromises the perfor-
mance of these operators, thus impairing the overall train-
ing efficiency.

However, when training models with a context longer
than 128,000 tokens, the computation of attention scores be-
comes significant, and the time of weight gradient compu-
tation is relatively small. In this scenario, the non-uniform
partitioning strategy would be more efficient.

6 Implementation
We implementMEPipe on theMegatron-LM [24] framework
using PyTorch [26].MEPipe includes threemain components:
(1) a profiler that measures the computation time and mem-
ory consumption for each forward and backward pass; (2)
an SVPP scheduler that determines the scheduling method
with the parallel strategy and measured result; (3) an execu-
tion engine that conducts the scheduling method.

7 Evaluation
7.1 Experimental Setup
Cluster. We evaluate MEPipe on a cluster consisting of 8
servers. Each server is equipped with 8× NVIDIA RTX 4090
24GB GPUs, 64 CPU cores in 2 sockets, and 512 GB mem-
ory. The intra-node GPUs are connected with PCIe 4.0, and
servers are interconnected with 100 Gbps Infiniband NICs.
Models and Workloads. We evaluate MEPipe on the rep-
resentativemodel Llama 2 [34] with 7B, 13B, and 34B param-
eters. To mitigate the computation and memory imbalance
caused by the embedding layer and the head layer at the
front and the end of the model, we remove two transformer
layers for the Llama models in different sizes. This approach
is also adopted in training LLMs like Llama 3 [6].

Configurations. The global batch size imposes a critical
constraint in training LLMs, as a larger global batch size can
hinder the convergence of the loss curve. In Llama 2 [34], the
global batch size is set to 1024 for models in different sizes.
To emulate the training of LLMs on clusters containing 512,
1024, and 2048 accelerators, we keep a similar computation
workload per accelerator by setting the global batch size as
128, 64, and 32, respectively. Furthermore, data parallelism
is widely employed in large clusters, as pipeline parallelism
is limited by the model structure, and tensor parallelism
is restricted by the interconnection bandwidth. We set the
minimal data parallel size to 2 to simulate realistic training
on large clusters.

The detailed configuration is listed in Table 4.

Table 4. Evaluation configurations for Llama.

Model Hidden Layer #Dev SeqLen GBS
7B 4096 30

64 4096
128

13B 5120 38 32 / 64 / 128
34B 8192 46 128

Baseline. We choose DAPPLE [7], Virtual Pipeline Paral-
lelism [38], and Zero Bubble Pipeline [27] as baselines.
For DAPPLE, we exhaustively search all possible combi-

nations of the DP, PP, CP, and recomputation strategy to
find the optimal combination of these strategies. Tensor par-
allelism is excluded here as it requires huge communication,
and RTX 4090 GPUs are not equipped with high-bandwidth
interconnect like NVLinks.
For virtual pipeline parallelism (VPP), we further search

virtual pipeline size to find the optimal training strategy.

1271

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Zhenbo Sun, Shengqi Chen, Yuanwei Wang, Jian Sha, Guanyu Feng, and Wenguang Chen

Zero bubble pipeline parallelism has several versions of
scheduling methods, including ZB and ZBV, which are ex-
tensions of DAPPLE and Hanayo scheduling methods, re-
spectively. They have different bubble ratios, communica-
tion overhead, and memory consumption. The recomputa-
tion technique is not compatible with zero bubble pipeline
parallelism, as workers need to preserve activations and ac-
tivation gradients for the postponed computation of weight
gradients. Therefore, we only search the combination of the
PP and CP size to find the optimal result.

The evaluation is conducted using 16-bit floating point
precision. Each task is executed for 100 iterations to ensure
the optimizer is allocated. We measure the average time of
the last 10 iterations as the result.

7.2 End-to-End Performance

32 64 128
Global Batch Size

0

5

10

15

20

Ite
ra

tio
n

Ti
m

e
(s

)

1.68x
1.49x

1.36x

DAPPLE
VPP
ZB

ZBV
MEPIPE

Figure 8. Iteration time of Llama 13B with different global
batch sizes.

We measure the iteration time of the aforementioned ap-
proaches for the Llama 13Bmodelwith different global batch
sizes and present the results in Figure 8. Table 5 shows the
optimal training strategy for each scenario.

Table 5. Parallel configuration of all approaches on Llama
13B with different global batch sizes. The tuple elements are
PP, CP/SPP, VP, and recomputation enabled, resp.

System 32 64 128
DAPPLE (8, 2, 1, ✘) (8, 2, 1, ✘) (8, 2, 1, ✘)
VPP (4, 2, 2, ✔) (4, 1, 2, ✔) (4, 1, 2, ✔)
ZB (8, 4, 1, ✘) (8, 4, 1, ✘) (8, 4, 1, ✘)
ZBV (4, 8, 2, ✘) (4, 8, 2, ✘) OOM

MEPipe (8, 4, 1, ✘) (8, 4, 1, ✘) (8, 4, 1, ✘)

DAPPLE exhibits optimal performancewith a context par-
allel size of 2 when the global batch size is 32. Although con-
text parallelism introduces additional communication over-
head, it increases the number of micro-batches for each data

parallel group by partitioning individual samples. In scenar-
ios with small global batch sizes, the performance improve-
ment brought by bubble ratio reduction is more significant.
When the global batch size grows to 64 and 128, the mem-
ory consumption of activations also increases, necessitating
context parallelism to reduce it. Although the recomputa-
tion technique can also reduce the activation memory, it
introduces additional computation overhead. A comprehen-
sive analysis of the influence of different training configura-
tions can be found in Section 7.3.
VPP schedules more forward passes at the beginning of

each iteration, thereby consuming more activation memory.
Moreover, as the computation graph should be partitioned
evenly for all approaches and Llama 13B comprises 40 lay-
ers (including the embedding and head layer), the maximum
number of stages for VPP only reaches 4.This leads to higher
memory consumption for parameters and gradients (opti-
mizer states are evenly distributed across all devices with
the ZeRO technique). Consequently, VPP necessitates the
recomputation technique to reduce memory of activations
and shows worse performance than DAPPLE.
Theoretically, ZB exhibits comparablememory utilization

to DAPPLE. However, we find that the PyTorch Allocator
reserves more memory during the experiments for ZB, re-
sulting in an out-of-memory error when the PP size is 8 and
the CP size is 2. ZBV consumes more memory so the maxi-
mum number of stages only reaches 4, similar to VPP. Con-
sequently, the feasible context parallel size for ZB and ZBV
is 4 and 8, respectively, which leads to substantial commu-
nication overhead and worse performance.
Unlike the above approaches, MEPipe further partitions

individual samples into slices, reducing the memory for ac-
tivations without introducing additional communication or
computation. As a result, MEPipe achieves 1.36× speedup
over other approaches when the global batch size is 128.
The global batch sizes of 64 and 32 correspond to scaled

training configurations with 1024 and 2048 accelerators, re-
spectively. In this scenario, in addition to reducing memory,
the SVPP scheduling method can achieve a lower bubble ra-
tio by scheduling forward and backward passes in the granu-
larity of slices. Therefore, MEPipe achieves higher speedups
of 1.49× and 1.86× over other approaches. While larger se-
quence pipeline sizes yield smaller bubble ratios, they will
impair the computation efficiency of operators like GEMM
and FlashAttention. Section 7.3 analyzes the above trade-off
in detail.

7.3 Influence of Different Parallel Strategies
Different parallel strategies influence the bubble ratio, mem-
ory consumption, communication overhead, and computa-
tion efficiency in distinct ways. In this section, we will ana-
lyze the impact of pipeline parallelism, context parallelism,
sequence pipeline parallelism, and the recomputation tech-
nique on these factors.

1272

MEPipe EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 6. Influence of PP on DAPPLE for Llama 13B with
global batch size as 64.

(PP, DP, CP, Recomp.) Bubble Ratio Iteration Time
(2, 4, 8, ✘) 11.1% OOM
(4, 4, 4, ✘) 15% 6711.8 ms
(8, 4, 2, ✘) 18% 6226.3 ms

Pipeline parallelism (PP). Pipeline parallelism divides
the model into contiguous subgraphs. By increasing PP, the
number of parameters assigned to each stage is reduced.
This leads to a decrease in memory consumption and com-
munication time for synchronizing the parameters and gra-
dients. As shown in Table 6, workers exceed memory capac-
ity when PP is set to 2, while increasing PP to 4 satisfies
the memory limitation. It can be observed that increasing
PP results in a higher bubble ratio. However, the incremen-
tal impact on the bubble ratio diminishes as PP increases.
Therefore, a PP of 8 has better performance than a PP of 4.

Table 7. Influence of CP on DAPPLE for Llama 13B with
global batch size as 32.

(PP, DP, CP, Recomp.) Bubble Ratio Iteration Time
(8, 8, 1, ✘) 63.6% 3619.0 ms
(8, 4, 2, ✘) 46.7% 3199.7 ms
(8, 2, 4, ✘) 30.4% 3772.9 ms

Context parallelism (CP). Context parallelism partitions
each sample into finer slices and distributes them across
different workers. CP reduces the memory consumption of
activations by a factor of CP size. Moreover, the number
of micro-batches for each data parallel group is increased,
thereby reducing the bubble ratio, as shown in Table 7.
However, as shown in Figure 9, increasing CP impairs

the performance of transformer layers, primarily due to two
factors. First, CP introduces additional communication over-
head, which becomes substantial as CP size increases. Sec-
ond, CP results in the decreased computational performance
of operators such as GEMM and FlashAttention. Further-
more, the Megatron-LM [24] framework partitions individ-
ual samples into 2 × 𝐶𝑃 slices and assigns each worker two
slices in the symmetric positionwithin the sample, e.g., (1, 4)
for one worker and (2, 3) for another. This approach bal-
ances the computation workload across different workers.
However, the finer partition strategy leads to more severe
degradation in computational performance.

As illustrated in Table 7, increasing CP from 1 to 2 re-
duces the iteration time, as the reduction in the bubble ra-
tio outweighs the increased communication overhead and
decreased operator performance. However, if we further in-
crease CP to 4, the communication overhead and operator

performance degradation become the dominating factors,
leading to a longer iteration time.

1 2 4 8 16
CP/SPP Size

0

50

100

150

200

TF
LO

PS

CP (Forward)
CP (Backward)

SPP (Forward)
SPP (Backward)

Figure 9.Measured performance of transformer layers with
different CP/SPP sizes.

Sequence Pipeline Parallelism (SPP). Similar to CP, SPP
reduces the bubble ratio and thememory consumption of ac-
tivations. Moreover, SPP also suffers from the declined per-
formance of operators like GEMMand FlashAttention. How-
ever, since SPP does not introduce communication overhead,
the performance degradation is not as substantial as CP, as
demonstrated in Figure 9. For instance, the performance of
each transformer layer in Llama 13B only decreases by 12.6%
when SPP increases from 1 to 8. The trade-off between the
reduced bubble ratio and performance degradation of oper-
ators is similar to that in CP.
Virtual Pipeline Parallelism (VPP) and ZBV. Both VPP
and ZBV partition the model into multiple chunks and allo-
cate more than one chunk to each stage. While increasing
the VP size reduces the bubble at the beginning and end
phases in each iteration, this method introduces more inter-
stage communication overhead. Furthermore, VPPmay con-
sume more memory for parameters and gradients. For ex-
ample, the maximum number of chunks is limited to 8 for
the Llama 13B model with 40 layers. Compared with tradi-
tional pipeline parallelism with 8 stages, VPP requires each
worker to preserve more parameters, thereby consuming
more memory.
Recomputation Technique. This technique drops most
activations during forward passes and recomputes them in
backward passes. This method reduces the activation mem-
ory consumption by 90%, at the cost of 33% more computa-
tion. To achieve equivalent memory reduction, the size of
CP or SPP should exceed 8. The recomputation technique
may be more efficient than increasing CP or SPP sizes if op-
erator performance exhibits significant degradation in cer-
tain cases.
Selection of the Optimal Parallel Strategy. The goal is
to find the optimal parallel strategy that satisfies the mem-
ory constraints and minimizes the computational overhead,

1273

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Zhenbo Sun, Shengqi Chen, Yuanwei Wang, Jian Sha, Guanyu Feng, and Wenguang Chen

bubble ratio, and communication costs simultaneously.Mem-
ory consumption and bubble ratio can be computed theoreti-
cally from the parallel strategy. However, precise prediction
of communication overhead and computational efficiency
presents significant challenges. Therefore, we employ the
grid search method to determine the optimal parallel strat-
egy.This approach can be further optimized by constructing
precise cost models in the future.

7.4 Influenence of Model Size

7B 13B 34B
Model Size

0

5

10

15

20

Ite
ra

tio
n

Ti
m

e
(s

)

OO
M

OO
M

OO
M

1.09x

1.36x

1.22x

DAPPLE
VPP
ZB
ZBV
MEPIPE

Figure 10. Iteration time of Llama in different sizes with
global batch size as 128.

Figure 10 and Table 8 show the iteration time and the opti-
mal training strategy of the above approaches on the Llama
model when the global batch size is 128.

For Llama 7B, since thememory consumption is relatively
small, ZB can train the model without context parallelism.
In this situation, the speedup of MEPipe is primarily attrib-
uted to the smaller bubble ratio and the overlap of commu-
nication and computation.

Table 8. Parallel configuration of all approaches on Llama
with different sizes. The cells are (PP, CP/SPP, VP, recompu-
tation enabled).

System 7B 13B 34B
DAPPLE (16, 1, 1, ✘) (8, 2, 1, ✘) (16, 2, 1, ✔)
VPP (8, 2, 2, ✘) (4, 1, 2, ✔) -
ZB (16, 1, 1, ✘) (8, 4, 1, ✘) -

ZBV-ZB (8, 2, 2, ✘) (4, 8, 2, ✘) -
MEPipe (8, 4, 1, ✘) (8, 4, 1, ✘) (16, 16, 1, ✘)

For Llama 34B, the static memory consumption is very
large. The mixed precision optimizer in Megatron-LM oc-
cupies around 6.375 GB for each worker, while the param-
eters and their gradients consume approximately 34×4

𝑝 GB.
For VPP and ZBV, as the maximum pipeline parallel size is
8, the static memory exceeds the capacity of the GPU.

DAPPLE and MEPipe can train the model with a pipeline
parallel size of 16. However, the left memory for activations
is around 5GB. DAPPLE employs the recomputation tech-
nique and context parallelism to reduce the memory for ac-
tivations. By partitioning each sample into 16 slices, MEPipe
can find the variant of the SVPP scheduling method that sat-
isfies the memory limit.This schedule achieves a low bubble
ratio and does not introduce extra computation or commu-
nication, thus achieving better performance than DAPPLE.

7.5 The Evaluation of Fine-grained Weight Gradient
Computation

To evaluate the fine-grained weight gradient computation,
we compare MEPipe with and without this technique on the
Llama 13B model when the global batch size is 64 with the
corresponding parallel strategy in Table 5. We profile the
timeline for each pipeline stage and visualize the timeline
in Figure 11 and 12.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Timeline (s)

7
6
5
4
3
2
1
0

St
ag

e
ID

Forward
Backward

Weight Grad. Comp.
Grad. ReduceScatter

Figure 11. Timeline of different stages in MEPipe w/o fine-
grained weight gradient computation.

Without fine-grained weight gradient computation, each
worker will compute the weight gradient right after the cor-
responding backward passes. The computational workload
is imbalanced across different workers and slices. Many bub-
bles can be found in the middle of the iteration in Figure 11.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Timeline (s)

7
6
5
4
3
2
1
0

St
ag

e
ID

Forward
Backward

Weight Grad. Comp.
Grad. ReduceScatter

Figure 12. Timeline of different stages in MEPipe.

1274

MEPipe EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

With the technique of fine-grained weight gradient com-
putation, we can advance the forward and backward passes
and fill the bubbles in the middle phase of each iteration
withweight gradient computation. Additionally, the last few
stages can deter more weight gradient computation until af-
ter the completion of all backward passes, effectively reduc-
ing the bubbles at the ending phase in each iteration. The
fine-grained weight gradient computation brings a 9.4% per-
formance improvement.

7.6 Analysis of FLOPS and Cost

Table 9. Comparison between A100 and RTX 4090.

A100 RTX 4090

Memory 80 GB 24 GB
FLOPS (FP16) 312 TFLOPS 330 TFLOPS
Bandwidth 600 GB/s 64 GB/s

Price (Server) $150,000 $30,000

Llama 7B 3216 ms 3171 ms
220.4 TFLOPS 111.7 TFLOPS

Llama 13B 6131 ms 5852 ms
221.4 TFLOPS 116.0 TFLOPS

Llama 34B 16167 ms 17043 ms
213.9 TFLOPS 101.5 TFLOPS

We also measure the iteration time of Llama models on
a cluster comprising 4 servers, each equipped with eight
A100 80GB GPUs interconnected via NVLink. Servers are
connected with 800 Gbps Infiniband NICs.

Table 9 comparesmemory capacity, computational power,
bidirectional intra-node communication bandwidth, price of
a single server with 8 GPUs, and the optimal iteration time
for Llamamodels with a global batch size of 128 on the A100
cluster and RTX 4090 cluster.
As shown in Table 9, the iteration time of MEPipe on

64 RTX 4090 GPUs is comparable to the optimal iteration
time on 32 A100 GPUs. In our experiments, we use FP32
as the accumulation type for GEMM kernels to maintain
the same convergence, which influences the computational
performance of RTX 4090 GPUs. As a result, a single RTX
4090 achieves approximately half the performance of a sin-
gle A100. This can be further improved by rewriting the
GEMM kernels in the future. Since one RTX 4090 server
costs only one-fifth of one A100 server, MEPipe with the
RTX 4090 cluster remains 2.5 times more cost-effective than
the A100 cluster.

8 Related Work
RecomputationTechnique Therecomputation technique
reducesmemory by discarding intermediate activations dur-
ing the forward passes and recomputing them in the back-
ward passes. Previous studies [2, 18] propose methods to re-
duce the recomputation for models with sequential layers.

For LLMs, Megatron-LM [24] employs the recomputation
strategy that only preserves the input tensor of each decoder
layer. A recent study [16] proposes selective recomputation,
which strategically drops the memory-consuming interme-
diates within each layer. Recognizing that certain pipeline
scheduling methods cause imbalanced memory consump-
tion across different pipeline stages, AdaPipe [33] employs
different recomputation strategies for each stage and redis-
tributes the computation graph across stages to enhance
training efficiency.
Offloading Technique Theoffloading techniquemitigates
the memory pressure by utilizing host memory or external
storage. ZeRO-Offload [30] offloads the optimizer states and
gradients to the host memory, and ZeRO-Infinity [29] fur-
ther leverages NVMe SSDs. As offloading incurs commu-
nication overhead between GPUs and CPUs, these works
carefully schedule the data movement to overlap them with
computation.
SuperNeurons [35], vPipe [38], andMPresss [39] integrate

the offloading technique with the recomputation technique.
They propose algorithms to determine the recomputation
and offloading strategies for various operators. Bpipe [14]
transfers activations across different pipeline stages to mit-
igate the imbalanced memory consumption caused by cer-
tain pipeline scheduling methods.

9 Discussion
Although MEPipe reduces memory consumption and im-
proves training efficiency, training LLMs on RTX 4090 GPUs
still faces challenges.
First, training LLMs on a cluster of thousand RTX 4090

GPUs presents hardware reliability challenges. Recent stud-
ies in memory-based checkpointing [13, 36] reduce the fault
recovery time to a few minutes. Given that the mean time
between failures (MTBF) is approximately 12 hours for a
thousand A100 GPUs [1], we estimate the cost of hardware
failures is less than 5% for a thousand RTX 4090 GPUs.

Second, training LLMs in FP16 is prone to overflow and
underflow issues, requiring techniques like sandwich layer
normalization and embedding layer gradient shrink [37].
Third, the power consumption specifications for RTX 4090

and A100 GPUs are 450W and 400W, respectively. Since two
RTX 4090 GPUs deliver computational performance com-
parable to a single A100 GPU, RTX 4090 clusters exhibit
higher power consumption than A100 clusters with equiv-
alent computational capabilities, resulting in greater opera-
tional costs. However, as discussed in Section 7.6, A100 clus-
ters require a higher initial investment. Based on the indus-
trial electricity rate of $0.1 per kilowatt-hour as of February
2025, it would take approximately 24 years for A100 clusters
to achieve cost parity with RTX 4090 clusters.
Fourth, the grid search method used in our experiment

incurs substantial overhead due to the large search space,

1275

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Zhenbo Sun, Shengqi Chen, Yuanwei Wang, Jian Sha, Guanyu Feng, and Wenguang Chen

which expands with both model size and the number of ac-
celerators. Consequently, this calls for automated paralleliza-
tion frameworks that can construct cost models and identify
the optimal strategy automatically.

Nevertheless, we believe that the SVPP schedulingmethod
in MEPipe provides a new perspective for reducing the cost
of training LLMs.The reduced memory and communication
cost diminishes the traditional emphasis on memory capac-
ity and interconnection bandwidth.The SVPPmethod broad-
ens the design space for hardware manufacturers and poten-
tially leads to more cost-effective solutions.

10 Conclusion
This paper presents MEPipe, a training system that incor-
porates a slice-level pipeline scheduling method to reduce
memory consumption and bubble ratio. Moreover, MEPipe
employs fine-grained weight gradient computation to bal-
ance the computation across different slices and reduce the
bubbles at the ending phase of each iteration. Evaluations
show that MEPipe achieves up to 1.68× speedup over other
approaches on 64 NVIDIA RTX 4090 GPUs.

In addition to optimizing the training efficiency on ex-
isting low-end accelerators, our work aims to inspire more
effective hardware-software co-design for future LLM accel-
erators.

11 Acknowledgment
We would like to thank Huanqi Cao, all anonymous review-
ers, and our shepherd, Jia Rao, for their insightful comments
and feedback. We also thank Zhipu AI for sponsoring com-
putation resources. This work is supported by the National
Natural Science Foundation of China under Grant Number
U20B2044. Wenguang Chen is the corresponding author.

References
[1] 2023. OPT-175B logbook. https://github.com/facebookresearch/

metaseq/tree/main/projects/OPT/chronicles.
[2] Olivier Beaumont, Lionel Eyraud-Dubois, Julien Herrmann, Alexis

Joly, and Alena Shilova. 2019. Optimal checkpointing for heteroge-
neous chains: how to train deep neural networks with limited mem-
ory. CoRR abs/1911.13214 (2019). arXiv:1911.13214 http://arxiv.org/
abs/1911.13214

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, et al. 2020. Lan-
guage Models are Few-Shot Learners. In Advances in Neural Informa-
tion Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/
paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[4] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher
Ré. 2022. FlashAttention: Fast and Memory-Efficient Exact Attention
with IO-Awareness. arXiv:2205.14135 [cs.LG]

[5] DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu

Zhang, Chong Ruan, et al. 2024. DeepSeek-V3 Technical Re-
port. CoRR abs/2412.19437 (2024). doi:10.48550/ARXIV.2412.19437
arXiv:2412.19437

[6] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Ka-
dian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Amy Yang, Angela Fan, and et al. 2024. The Llama 3 Herd of Models.
arXiv:2407.21783 [cs.AI] https://arxiv.org/abs/2407.21783

[7] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen
Zheng, ChuanWu, Guoping Long, Jun Yang, Lixue Xia, Lansong Diao,
et al. 2021. DAPPLE: a pipelined data parallel approach for training
large models. In PPoPP ’21: 26th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, Virtual Event, Republic of
Korea, February 27- March 3, 2021, Jaejin Lee and Erez Petrank (Eds.).
ACM, 431–445. doi:10.1145/3437801.3441593

[8] Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Se-
shadri, Nikhil R. Devanur, Gregory R. Ganger, and Phillip B. Gibbons.
2018. PipeDream: Fast and Efficient Pipeline Parallel DNN Training.
CoRR abs/1806.03377 (2018). arXiv:1806.03377 http://arxiv.org/abs/
1806.03377

[9] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao
Chen, Mia Xu Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le,
Yonghui Wu, and Zhifeng Chen. 2019. GPipe: Efficient Training of
Giant Neural Networks using Pipeline Parallelism. In Advances in
Neural Information Processing Systems 32: Annual Conference on Neu-
ral Information Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (Eds.). 103–112. https://proceedings.neurips.cc/paper/2019/
hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html

[10] Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang, Minjia Zhang,
Shuaiwen Leon Song, Samyam Rajbhandari, and Yuxiong He. 2023.
DeepSpeed Ulysses: System Optimizations for Enabling Training of
Extreme Long Sequence Transformer Models. CoRR abs/2309.14509
(2023). doi:10.48550/ARXIV.2309.14509 arXiv:2309.14509

[11] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2019. Beyond Data and
Model Parallelism for Deep Neural Networks.. In Proceedings of Ma-
chine Learning and Systems, A. Talwalkar, V. Smith, and M. Zaharia
(Eds.), Vol. 1. 1–13. https://proceedings.mlsys.org/paper/2019/file/
c74d97b01eae257e44aa9d5bade97baf-Paper.pdf

[12] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanx-
iong Guo. 2020. A Unified Architecture for Accelerating Distributed
DNN Training in Heterogeneous GPU/CPU Clusters. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20). 463–479.

[13] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen,
Zhi Zhang, Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, Yulu
Jia, et al. 2024. MegaScale: Scaling Large Language Model Training to
More Than 10, 000 GPUs. In 21st USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2024, Santa Clara, CA,
April 15-17, 2024, Laurent Vanbever and Irene Zhang (Eds.). USENIX
Association, 745–760. https://www.usenix.org/conference/nsdi24/
presentation/jiang-ziheng

[14] Taebum Kim, Hyoungjoo Kim, Gyeong-In Yu, and Byung-Gon Chun.
2023. BPIPE: memory-balanced pipeline parallelism for training large
language models. In Proceedings of the 40th International Conference
on Machine Learning (Honolulu, Hawaii, USA) (ICML’23). JMLR.org,
Article 682, 15 pages.

[15] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Sto-
chastic Optimization. arXiv:1412.6980 [cs.LG] https://arxiv.org/abs/
1412.6980

[16] Vijay Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee,
Michael Andersch, Mohammad Shoeybi, and Bryan Catanzaro. 2022.
Reducing Activation Recomputation in Large Transformer Models.
arXiv:2205.05198 [cs.LG]

1276

https://github.com/facebookresearch/metaseq/tree/main/projects/OPT/chronicles
https://github.com/facebookresearch/metaseq/tree/main/projects/OPT/chronicles
https://arxiv.org/abs/1911.13214
http://arxiv.org/abs/1911.13214
http://arxiv.org/abs/1911.13214
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2205.14135
https://doi.org/10.48550/ARXIV.2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1145/3437801.3441593
https://arxiv.org/abs/1806.03377
http://arxiv.org/abs/1806.03377
http://arxiv.org/abs/1806.03377
https://proceedings.neurips.cc/paper/2019/hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html
https://doi.org/10.48550/ARXIV.2309.14509
https://arxiv.org/abs/2309.14509
https://proceedings.mlsys.org/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://www.usenix.org/conference/nsdi24/presentation/jiang-ziheng
https://www.usenix.org/conference/nsdi24/presentation/jiang-ziheng
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2205.05198

MEPipe EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[17] Alex Krizhevsky. 2014. Oneweird trick for parallelizing convolutional
neural networks. arXiv preprint arXiv:1404.5997 (2014).

[18] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing
Su. 2014. Scaling distributed machine learning with the parameter
server. In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14). 583–598.

[19] Shigang Li and Torsten Hoefler. 2021. Chimera: Efficiently Training
Large-Scale Neural Networks with Bidirectional Pipelines. In SC21:
International Conference for High Performance Computing, Networking,
Storage and Analysis. 1–14. doi:10.1145/3458817.3476145

[20] Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang Zhuo, Hao
Zhang, Dawn Song, and Ion Stoica. 2021. TeraPipe: Token-Level
Pipeline Parallelism for Training Large-Scale Language Models.
arXiv:2102.07988 [cs.LG]

[21] Hao Liu, Matei Zaharia, and Pieter Abbeel. 2024. RingAttention with
Blockwise Transformers for Near-Infinite Context. In The Twelfth In-
ternational Conference on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net. https://openreview.net/
forum?id=WsRHpHH4s0

[22] Ziming Liu, Shenggan Cheng, Haotian Zhou, and Yang You. 2023.
Hanayo: Harnessing Wave-like Pipeline Parallelism for Enhanced
Large Model Training Efficiency. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (Denver, CO, USA) (SC ’23). Association for Computing
Machinery, New York, NY, USA, Article 56, 13 pages. doi:10.1145/
3581784.3607073

[23] Qinyi Luo, Jiaao He, Youwei Zhuo, and Xuehai Qian. 2020. Prague:
High-performance heterogeneity-aware asynchronous decentralized
training. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems. 401–416.

[24] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick
LeGresley, Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand,
Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar Phan-
ishayee, et al. 2021. Efficient large-scale language model training on
GPU clusters usingmegatron-LM. In International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2021,
St. Louis, Missouri, USA, November 14-19, 2021, Bronis R. de Supin-
ski, Mary W. Hall, and Todd Gamblin (Eds.). ACM, 58. doi:10.1145/
3458817.3476209

[25] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James

Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural informa-
tion processing systems 32 (2019), 8026–8037.

[27] Penghui Qi, Xinyi Wan, Guangxing Huang, and Min Lin. 2024. Zero
Bubble (Almost) Pipeline Parallelism. In The Twelfth International
Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net. https://openreview.net/forum?id=
tuzTN0eIO5

[28] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He.
2020. ZeRO: memory optimizations toward training trillion param-
eter models. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2020,
Virtual Event / Atlanta, Georgia, USA, November 9-19, 2020, Christine
Cuicchi, IreneQualters, and William T. Kramer (Eds.). IEEE/ACM, 20.
doi:10.1109/SC41405.2020.00024

[29] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith,
and YuxiongHe. 2021. ZeRO-infinity: breaking the GPUmemorywall
for extreme scale deep learning. In International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2021,

St. Louis, Missouri, USA, November 14-19, 2021, Bronis R. de Supin-
ski, Mary W. Hall, and Todd Gamblin (Eds.). ACM, 59. doi:10.1145/
3458817.3476205

[30] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji
Ruwase, Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He.
2021. ZeRO-Offload: Democratizing Billion-Scale Model Training. In
2021 USENIX Annual Technical Conference, USENIX ATC 2021, July 14-
16, 2021, Irina Calciu and Geoff Kuenning (Eds.). USENIX Association,
551–564. https://www.usenix.org/conference/atc21/presentation/
ren-jie

[31] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish
Vaswani, Penporn Koanantakool, Peter Hawkins, HyoukJoong Lee,
Mingsheng Hong, Cliff Young, et al. 2018. Mesh-tensorflow: Deep
learning for supercomputers. arXiv preprint arXiv:1811.02084 (2018).

[32] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. 2019. Megatron-LM: Training
Multi-Billion Parameter Language Models Using Model Parallelism.
CoRR abs/1909.08053 (2019). arXiv:1909.08053 http://arxiv.org/abs/
1909.08053

[33] Zhenbo Sun, Huanqi Cao, Yuanwei Wang, Guanyu Feng, Shengqi
Chen, HaojieWang, andWenguang Chen. 2024. AdaPipe: Optimizing
Pipeline Parallelism with Adaptive Recomputation and Partitioning.
In Proceedings of the 29th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems, Vol-
ume 3, ASPLOS 2024, La Jolla, CA, USA, 27 April 2024- 1 May 2024, Ra-
jiv Gupta, Nael B. Abu-Ghazaleh, Madan Musuvathi, and Dan Tsafrir
(Eds.). ACM, 86–100. doi:10.1145/3620666.3651359

[34] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, Dan Bikel, et al. 2023. Llama 2: Open Foun-
dation and Fine-Tuned Chat Models. CoRR abs/2307.09288 (2023).
doi:10.48550/ARXIV.2307.09288 arXiv:2307.09288

[35] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuai-
wen Leon Song, Zenglin Xu, and Tim Kraska. 2018. Superneurons: dy-
namic GPU memory management for training deep neural networks.
In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2018, Vienna, Austria, Febru-
ary 24-28, 2018, Andreas Krall and Thomas R. Gross (Eds.). ACM, 41–
53. doi:10.1145/3178487.3178491

[36] Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xinwei Fu,
T. S. Eugene Ng, and Yida Wang. 2023. GEMINI: Fast Failure Recov-
ery in Distributed Training with In-Memory Checkpoints. In Proceed-
ings of the 29th Symposium on Operating Systems Principles, SOSP 2023,
Koblenz, Germany, October 23-26, 2023, Jason Flinn, Margo I. Seltzer,
Peter Druschel, Antoine Kaufmann, and Jonathan Mace (Eds.). ACM,
364–381. doi:10.1145/3600006.3613145

[37] Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming
Ding, Zhuoyi Yang, Yifan Xu, Wendi Zheng, Xiao Xia, Weng Lam
Tam, et al. 2023. GLM-130B: An Open Bilingual Pre-trained Mo-
del. In The Eleventh International Conference on Learning Represen-
tations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net.
https://openreview.net/forum?id=-Aw0rrrPUF

[38] Shixiong Zhao, Fanxin Li, Xusheng Chen, Xiuxian Guan, Jianyu Jiang,
Dong Huang, Yuhao Qing, Sen Wang, Peng Wang, Gong Zhang,
Cheng Li, et al. 2022. vPipe: A Virtualized Acceleration System for
Achieving Efficient and Scalable Pipeline Parallel DNN Training. IEEE
Trans. Parallel Distributed Syst. 33, 3 (2022), 489–506. doi:10.1109/
TPDS.2021.3094364

[39] Quan Zhou, Haiquan Wang, Xiaoyan Yu, Cheng Li, Youhui Bai, Feng
Yan, and Yinlong Xu. 2023. MPress: Democratizing Billion-Scale
Model Training on Multi-GPU Servers via Memory-Saving Inter-
Operator Parallelism. In 2023 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). 556–569. doi:10.1109/
HPCA56546.2023.10071077

1277

https://doi.org/10.1145/3458817.3476145
https://arxiv.org/abs/2102.07988
https://openreview.net/forum?id=WsRHpHH4s0
https://openreview.net/forum?id=WsRHpHH4s0
https://doi.org/10.1145/3581784.3607073
https://doi.org/10.1145/3581784.3607073
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209
https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=tuzTN0eIO5
https://openreview.net/forum?id=tuzTN0eIO5
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1909.08053
https://doi.org/10.1145/3620666.3651359
https://doi.org/10.48550/ARXIV.2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.1145/3178487.3178491
https://doi.org/10.1145/3600006.3613145
https://openreview.net/forum?id=-Aw0rrrPUF
https://doi.org/10.1109/TPDS.2021.3094364
https://doi.org/10.1109/TPDS.2021.3094364
https://doi.org/10.1109/HPCA56546.2023.10071077
https://doi.org/10.1109/HPCA56546.2023.10071077

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Zhenbo Sun, Shengqi Chen, Yuanwei Wang, Jian Sha, Guanyu Feng, and Wenguang Chen

A Artifact Appendix
A.1 Abstract
MEPipe is a memory-efficient training framework incorpo-
rating the slice-level pipeline scheduling method and fine-
grained weight gradient computation for LLMs.The artifact
comprises three components:

• The source code of MEPipe, DAPPLE, Virtual Pipeline
Parallelism, and Zero Bubble Pipeline. We have en-
hanced the implementation of Zero Bubble Pipeline
to support context parallelism.

• A subset of the OpenWebText dataset, processed with
the Llama2 tokenizer.

• Scripts and instructions for validating the function-
ality and reproducing the experiment result in Sec-
tion 7.2 and Section 7.4.

A.2 Description & Requirements
A.2.1 How to access. The artifact can be retrieved from
https://zenodo.org/records/14942680.

A.2.2 Hardware dependencies. MEPipe needs NVIDIA
A100 / RTX 4090 GPUs or subsequent generation architec-
tures. The functionality validation requires a single server
equipped with 8 A100 40GB GPUs connected via PCIe. The
reproduction of the experiments in the paper requires 8 ser-
vers interconnected with 100 Gbps Infiniband NICs, each
having 8 NVIDIA RTX 4090 GPUs.

A.2.3 Software dependencies. The required software in-
cludes Python 3.10, CUDA 12.4, CUDNN 8.9.7, apex, Trans-
formerEngine 1.12.0, and FlashAttention 3.5.8. Additional
Python packages are documented in the requirements.txt
in the MEPipe repository.

A.2.4 Benchmarks. We process the OpenWebText cor-
pus with the Llama2 tokenizer for evaluation. Preprocessed
dataset and the tokenizer can be found in the dataset di-
rectory within the artifact.

A.3 Set-up
The detailed instructions for installing software dependen-
cies and configuring the environment are documented in
the MEPipe.md file within the MEPipe repository.

A.4 Evaluation workflow
A.4.1 Major Claims.

C1: MEPipe outperforms existing state-of-the-art works
with different global batch sizes. This is proven by
the experiment (E1) described in Section 7.2, results
of which are illustrated in Figure 8. This can also be
proved by the functionality experiment (E0).

C2: Sequence pipeline parallelism has superior perfor-
mance compared to context parallelism when split-
ting each sample into the same number of slices. This

is proven by the experiment (E2) in Section 7.3, results
of which are illustrated in Figure 9.

A.4.2 Experiments.
Experiment (E0) : [functionality] [4 compute-hours]: Vali-
date the functionality of MEPipe.
[Preparation] Modify the DATA_DIR variable following the
instructions in the MEPipe.md file.
[Execution] Run the test for MEPipe and other systems.
cd repo-name

sh e0_run.sh

sh e0_collect.sh

[Results] The expected results are in the e0_expected.md
file within the respective repositories.
Experiment (E1) : [End-to-End] [24 compute-hours]: Com-
pare the throughput of MEPipe with other systems on the
Llama 13B model across different global batch sizes.
[Preparation] Modify the DATA_DIR variable following the
instructions in the MEPipe.md file.
[Execution] Run the test for MEPipe and other systems.
cd repo-name

sh e1_run.sh

sh e1_collect.sh

[Results] The expected results are in the e1_expected.md
file within the respective repositories. Then we can plot the
Figure 8 with the following command:
python3 plot_e1.py

Experiment (E2) : [SPP/CP profiling] [1 compute-hours]:
Profiles the performance of each transformer layer with dif-
ferent SPP/CP sizes.
[Preparation] Modify the DATA_DIR variable following the
instructions in the MEPipe.md file.
[Execution] Run the test within the MEPipe and Megatron-
LM repositories.
cd repo-name

sh e2_run.sh

sh e2_collect.sh

[Results] The expected results are in the e2_expected.md
file within the MEPipe and Megatron-LM repository. Fig-
ure 9 can be plotted with the following command:
python3 plot_e2.py

1278

https://zenodo.org/records/14942680

	Abstract
	1 Introduction
	2 Background
	2.1 Pipeline Parallelism
	2.2 Other Types of Parallelism

	3 Overview of MEPipe
	4 Sequence Virtual Pipeline Parallelism
	4.1 SVPP Scheduling Method
	4.2 Variants of SVPP Scheduling Methods
	4.3 Generation of Scheduling Methods
	4.4 Memory Consumption and Bubble Ratio
	4.5 Selection of the SVPP Scheduling Method Variants

	5 Fine-grained Computation of Weight Gradients
	6 Implementation
	7 Evaluation
	7.1 Experimental Setup
	7.2 End-to-End Performance
	7.3 Influence of Different Parallel Strategies
	7.4 Influenence of Model Size
	7.5 The Evaluation of Fine-grained Weight Gradient Computation
	7.6 Analysis of FLOPS and Cost

	8 Related Work
	9 Discussion
	10 Conclusion
	11 Acknowledgment
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow

