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Abstract
Fully Homomorphic Encryption (FHE) facilitates compu-
tations on encrypted data without requiring access to the
decryption key, offering substantial privacy benefits for de-
ploying neural network applications in sensitive sectors such
as healthcare and finance. Nonetheless, programming these
applications within the FHE framework is complex and de-
mands extensive cryptographic expertise to guarantee cor-
rectness, performance, and security.

In this paper, we present ANT-ACE, a production-quality,
open-source FHE compiler designed to automate neural net-
work inference on encrypted data. ANT-ACE accepts ONNX
models and generates C/C++ programs, leveraging its cus-
tom open-source FHE library. We explore the design chal-
lenges encountered in the development of ANT-ACE, which
is engineered to support a variety of input formats and ar-
chitectures across diverse FHE schemes through a novel
Intermediate Representation (IR) that facilitates multiple lev-
els of abstraction. Comprising 44,000 lines of C/C++ code,
ANT-ACE efficiently translates ONNX models into C/C++
programs for encrypted inference on CPUs, specifically uti-
lizing the RNS-CKKS scheme. Preliminary evaluations on
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a single CPU indicate that ANT-ACE achieves significant
speed enhancements in ResNet models, surpassing expert
manual implementations and fulfilling our design goals.

CCS Concepts: • Software and its engineering → Com-
pilers; • Security and privacy→ Software and applica-
tion security; • Computing methodologies→ Artificial
intelligence.

Keywords: FHE, Compilers, Neural Network Inference
ACM Reference Format:
Long Li, Jianxin Lai, Peng Yuan, Tianxiang Sui, Yan Liu, Qing Zhu,
Xiaojing Zhang, Linjie Xiao, Wenguang Chen, and Jingling Xue.
2025. ANT-ACE: An FHE Compiler Framework for Automating
Neural Network Inference. In Proceedings of the 23rd ACM/IEEE
International Symposium on Code Generation and Optimization (CGO
’25), March 01–05, 2025, Las Vegas, NV, USA. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3696443.3708924

1 Introduction
Fully Homomorphic Encryption (FHE) [24] enables com-
putations on encrypted data, allowing privacy-preserving
applications to be outsourced to untrusted cloud providers
without compromising data confidentiality. This allows orga-
nizations to leverage external computational resources while
maintaining control over their information security, elimi-
nating the need to trust cloud software or hardware vendors,
which is critical in sectors like healthcare and finance. For
example, FHE has been used in genotype imputation [29],
ensuring that both the data and results remain secure and
unreadable to unauthorized parties.
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Table 1. Comparing capabilities of FHE compilers for supporting NN inference.

Compiler Auto NN Operator Handling
Linear Nonlinear

Auto Parameter
Selection

Bootstrapping Fixed-Point
Support Not-DSL-Based Open-Source

E3 [15]

nGraph-HE [9]

CHET [19]

EVA [18]

Transpiler [28]

HECO [50]

Fhelipe [33]

ACE (This Paper)

Recent advances in FHE theory and library improvements
have made FHE more practical. Initial schemes like TFHE
[16], which supports Boolean operations, and BGV [12], BFV
[20], and GSW [25], which support integer operations, laid
the groundwork. More recent developments, such as CKKS
[14] and its variant RNS-CKKS [13], support fixed-point
arithmetic by scaling floating-point values to integers, mak-
ing them particularly well-suited for machine learning tasks.

Efficient libraries like SEAL [47] and OpenFHE [6] provide
comprehensive APIs that simplify FHE operations, increas-
ing accessibility. However, programming FHE applications,
including machine learning models, remains challenging
and requires deep cryptographic knowledge. Programmers
must select appropriate security parameters and perform
scheme-specific optimizations, such as configuring tensor
data layouts and improving bootstrapping efficiency [24].
For example, Microsoft’s Edge browser uses FHE to secure
user passwords [34], requiring developers to be proficient
in FHE schemes to ensure correctness, performance, and se-
curity. Creating a correct and efficient FHE implementation
often necessitates repeated manual tuning.
To address the challenges of FHE programming, we in-

troduce ANT-ACE, a production-quality open-source FHE
compiler to fully automate neural network (NN) inference on
encrypted data. As highlighted in Table 1,ANT-ACE differen-
tiates itself from existing solutions like E3 [15], nGraph-HE
[9], and HECO [50], which lack automatic security parame-
ter selection and bootstrapping. Unlike CHET [19] and EVA
[18], which require manual optimization of individual NN
operators through a DSL, and nGraph-HE, which automates
only linear NN operators, ANT-ACE offers a comprehensive
and automated solution. E3 and Transpiler [28] are designed
for C/C++ programs, while nGraph-HE, CHET, and HECO
specifically target neural network inference. EVA attempts
to cater to both general-purpose and machine learning in-
ference tasks but offers only a limited number of APIs. Fhe-
lipe [33] exceeds CHET and EVA in terms of support scope;

however, like these compilers, it also requires manual opti-
mization of NN operators through a DSL.

ANT-ACE is a compiler infrastructure that fully automates
neural network inference on encrypted data using FHE, pro-
viding a robust open-source platform. It transforms ONNX
inference models into C/C++ programs with its custom open-
source FHE library. Designed with a versatile compiler infras-
tructure supporting multiple levels of abstraction, ANT-ACE
aims to support various input formats and computer archi-
tectures across different FHE schemes. Currently, it operates
with the RNS-CKKS scheme [13, 14] on CPU platforms. The
ANT-ACE codebase comprises 44K lines of source code, 11K
lines dedicated to unit and integration tests, and 15K lines
of comments to support open-source development. The de-
velopment of this project required 44 man-months of effort
from several compiler experts by the time of this paper’s
submission. ANT-ACE efficiently translates ONNX models
into C/C++ for encrypted data execution on CPUs, leverag-
ing a custom open-source FHE library to expose advanced
optimizations with the RNS-CKKS scheme to the ANT-ACE
compiler framework. Preliminary performance assessments
on single CPUs show that ANT-ACE achieves 2.24× perfor-
mance speedups in ResNet models, surpassing manual expert
implementations and meeting its design goals.

Our work makes the following main contributions:

• An End-to-End FHE Compiler Framework: Au-
tomatically converts ONNX models into C/C++ pro-
grams that perform encrypted inference via FHE.

• Production-Quality Multi-Level IR Compiler In-
frastructure: Supports detailed analysis and optimiza-
tion specific to FHE, enhancing the framework’s effec-
tiveness, extensibility and portability.

• Open-Source Implementation: Facilitates future ex-
pansions of ANT-ACE to accommodate additional in-
put formats and extend compatibility to various com-
puting architectures and FHE schemes.
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• Superior Performance: ANT-ACE demonstrates re-
markable efficiency by converting small ResNet mod-
els into their FHE equivalents in seconds—a task that
would typically take weeks for an FHE expert to com-
plete manually. It also achieves a performance speedup
of 2.24× compared to expert-crafted versions [35].

2 Background
We begin with the fundamentals of FHE schemes in Section
2.1, followed by an introduction to CKKS [14] and RNS-
CKKS [13] in Section 2.2. Next, we outline the challenges in
developing FHE compilers, specifically for CKKS and RNS-
CKKS, in Section 2.3. Finally, we present the threat model
for our ANT-ACE compiler framework in Section 2.4.

2.1 Fully-Homomorphic Encryption
Consider a plaintext message 𝑝 . The encryption function
Enc encrypts 𝑝 into a ciphertext Enc(𝑝), which is decrypted
by the decryption function Dec such that Dec(Enc(𝑝)) = 𝑝 .
All FHE schemes operate on integers within ring structures.
For two integers 𝑥 and 𝑦, where + represents the addition
operator and × the multiplication operator, an FHE scheme
defines ⊕ as the homomorphic equivalent of addition and ⊗
as the homomorphic equivalent of multiplication. Therefore,
the FHE scheme ensures the following equations hold:

Dec(Enc(𝑥) ⊕ Enc(𝑦)) = 𝑥 + 𝑦
Dec(Enc(𝑥) ⊗ Enc(𝑦)) = 𝑥 × 𝑦

Additionally, an FHE scheme usually supports operations
where ciphertexts can be added to or multiplied by plaintexts.

To ensure quantum safety [43], FHE schemes introduce
noise during encryption, which must be removed during
decryption [22]. This noise increases linearly with homo-
morphic addition and exponentially with homomorphic mul-
tiplication, limiting the maximum multiplicative depth. If
the noise exceeds a threshold set by the security parame-
ters, the ciphertext becomes undecryptable. Bootstrapping
[24] is essential for reducing noise, allowing unlimited ho-
momorphic operations and achieving true FHE. However,
bootstrapping is the most computationally intensive FHE
operation. Similar to Transpiler [28] (supporting TFHE [16]
only) and Fhelipe [33], ANT-ACE aims to fully optimize this
crucial noise-reduction process (Table 1).

2.2 CKKS
Currently, CKKS [14] and its RNS-CKKS variant [13] uniquely
support fixed-point arithmetic for floating-point numbers.
Consequently, they are widely supported by FHE libraries
[6, 47] and various FHE compilers [9, 18, 19, 50] for enabling
homomorphic computations on encrypted data.

Figure 1 illustrates the CKKS workflow. Initially, a cleart-
ext message𝑚, typically a vector of floating-point numbers,

Message m
(Floating Point Vector)

Plaintext p
(One Polynomial)

Ciphertext c
(Two Polynomials)

Ciphertext c' = f(c)
(Two Polynomials)

Plaintext p'=f(p)
(One Polynomial)

Message m'=f(m)
(Floating Point Vector)

Compute f

DecryptDecode

EncryptEncode

Figure 1. Workflow of CKKS.

is encoded into a plaintext polynomial 𝑝 with integer coeffi-
cients under the polynomial modulus 𝑋𝑁 + 1, where the ring
degree 𝑁 typically ranges from 212 to 215 for moderate com-
putations. This plaintext is then encrypted into a ciphertext
𝑐 , represented as a pair of polynomials with integer coeffi-
cients modulo 𝑄 , the ciphertext modulus, which generally
ranges from 2180 to 2300. After performing the computation
𝑓 homomorphically on 𝑐 , the resulting ciphertext 𝑐′ is de-
crypted back to the plaintext 𝑝′. Finally, 𝑝′ is decoded into
the message𝑚′, representing the outcome of 𝑓 (𝑚).

CKKS leverages SIMD parallelism through batching, pack-
ing 𝑁 /2 floating-point values into a single ciphertext. This
enhances efficiency and throughput by allowing simultane-
ous operations on multiple values within one cryptographic
operation, significantly speeding up complex computations
like those in machine learning models.
Homomorphic operations like addition or multiplication

on ciphertexts correspond to element-wise addition or mul-
tiplication of their respective cleartext messages.

The RNS-CKKS variant [13] enhances computational effi-
ciency by decomposing 𝑄 into a chain of 𝑟 smaller co-prime
moduli 𝑄0, . . . , 𝑄𝑟−1. This allows ciphertexts, typically mod-
ulo𝑄 , to be expressed as sets of smaller polynomials modulo
each𝑄𝑖 , where𝑄𝑖 can be represented by a 64-bit integer. Op-
erations on these smaller polynomials can be performed in
parallel and recombined using the Chinese Remainder Theo-
rem, reducing computational complexity and memory usage.
Given these advantages, ANT-ACE supports RNS-CKKS. For
simplicity, we will refer to both CKKS and RNS-CKKS inter-
changeably unless a distinction is explicitly required.

CKKS uses rescaling tomanage the scale of ciphertexts and
prevent overflow. For example, a ciphertext 𝑐 that contains
the encoding 0.18 multiplied by the scale 240 will encode
0.0324 at a scale of 280 when squared. Rescaling back to
240 truncates the fixed-point representation but maintains
a consistent scale and shifts the modulus down one level in
the modulus chain [13, 14]. Operands in addition operations
must have the same scale. Although rescaling is less resource-
intensive than bootstrapping, minimizing its frequency is
beneficial. Modulus switching, on the other hand, reduces
the modulus of a ciphertext without altering its scale.

When multiplying two ciphertexts with 𝑘1 and 𝑘2 polyno-
mials, the result contains 𝑘1 +𝑘2 + 1 polynomials. To prevent
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unmanageable growth in polynomial count, relinearization
in CKKS is applied to reduce this number back to 2.

Rotations enable cyclic shifts of cleartext vectors encrypted
within a ciphertext by a constant 𝑘 . This requires special
rotation keys, generated during key setup to manipulate en-
crypted data without decryption. Generating rotation keys
for every possible𝑘 is impractical due to the large ring degree
𝑁 used even for moderate computations. Thus, FHE libraries
[6, 47] typically create rotation keys for powers of 2 and
combine multiple rotations for the desired shift. Rotations
are as computationally costly as multiplications [14].

2.3 Compiler Design Challenges
We discuss the development challenges of the ANT-ACE
compiler aimed at supporting privacy-preserving compu-
tations with FHE, particularly for encrypted inference in
machine learning. While these challenges are presented in
the context of CKKS, they are broadly applicable to other
FHE schemes like TFHE [16], BGV [12], BFV [20], and GSW
[25].

• Security Parameter Selection. In CKKS, the security pa-
rameters𝑄 and 𝑁 are chosen to meet desired security levels,
such as 128-bit security [7, 14]. 𝑄 is influenced by the input
scale Δ for fixed-point arithmetic, the output scale 𝑄0 for
desired output precision, and the maximum multiplicative
depth. The polynomial ring degree 𝑁 is determined by 𝑄

and the required SIMD vector width. Higher𝑄 enables more
operations before bootstrapping, and greater 𝑁 improves
parallelism, both raising computational costs. Compiler opti-
mizations further complicate their optimal settings due to
their interdependent impact on performance.
• Key Generation. In addition to the secret and public keys
for encryption and decryption, CKKS [14], like other FHE
schemes [16, 20], requires various evaluation keys such as
relinearization and rotation keys (generated using the secret
key) for encrypted computations. These keys can occupy
hundreds of gigabytes of memory [35]. Optimizing them can
significantly reduce memory usage and generation time.
• Compiler-Time Analysis and Optimization for Sup-
porting Fast Encrypted Computations. Homomorphic
operations, with complexities such as𝑂 (𝑁 log𝑁𝑟 2) for mul-
tiplications and rotations (where 𝑟 is the number of cipher-
text moduli, Section 2.2), are significantly more expensive
than plaintext operations. These complexities necessitate a
specialized FHE compiler like ANT-ACE, designed to effi-
ciently manage these challenges. ANT-ACE automates se-
curity parameter selection (as discussed above), optimizes
homomorphic operations, and strategically manages rescal-
ing, relinearization, rotation, and bootstrapping. In particular,
ANT-ACE focuses on reducing the maximum multiplicative
depth and improving bootstrapping efficiency, thereby en-
hancing performance.

Image in
Ciphertexts

FHE
Inference

Category in
Ciphertexts

Weights

Biases

Client Server

Keys Image
Encrypt

Decrypt

Figure 2. Threat model.

• Fast Encrypted Inference. Accelerating encrypted in-
ference for neural network models requires the ANT-ACE
compiler to handle all NN operators supported by ONNX
and other models, including non-linear functions like exp,
log, and tanh. These functions are approximated using poly-
nomials [27, 36], increasing homomorphic multiplications
and bootstrapping operations. The precision of these approx-
imations directly impacts multiplicative depth, so ANT-ACE
must balance efficiency and accuracy. Additionally, ANT-
ACE must optimize data layouts for encrypted tensors, such
as user-provided images, as the layout choice affects effi-
ciency through SIMD parallelism and influences security by
altering the number of required homomorphic multiplica-
tions [18, 19].
• Extensibility and Portability.An effective FHE compiler
should provide portable performance, adaptable to various
input formats like PyTorch and C/C++ and multiple com-
puting architectures within different FHE schemes. Modern
optimizations allow encrypted fixed-point multiplications
to occur in microseconds, comparable to early 8086 proces-
sors’ speeds. To enhance practicality in FHE, adoption of
domain-specific architectures (DSAs) to expedite encrypted
computations is expected. The ANT-ACE compiler frame-
work focuses on maximizing hardware capabilities through
high-level FHE library APIs, aiming to streamline encrypted
computations.

To address these challenges, amore flexible domain-specific
compiler is required. This compiler should focus on tailored
IR capabilities to support both general and FHE-specific
analyses and optimizations across various FHE schemes
and architectures. Additionally, it should facilitate software-
hardware co-design for FHE accelerators.

2.4 Threat Model
Figure 2 depicts a scenario where a user benefits from en-
crypted machine learning inference on an untrusted server.
The user encodes and encrypts an image, then sends this
encrypted data to the server. The server performs inference
on the encrypted image without accessing its content. The
encrypted result is sent back to the user, who decrypts and
decodes it with their secret key to obtain the final result.
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We adopt a semi-honest threat model similar to that used
in CryptoNets [27], where both the server and the compiler
are considered semi-honest. This means they are expected
to perform computations accurately but might be tempted to
learn about the user’s data. The integrity of the computation
is maintained, yet the privacy of the user or client data is
crucial and must be rigorously protected under this model.

3 ANT-ACE: Compiler Framework
To tackle these challenges (Section 2.3), we developed the
ANT-ACE compiler framework, illustrated in Figure 3, to
support encrpyed machine learning inference. The process
begins with an NN inference program being parsed by our
front-end (Section 3.1). It is then processed through a multi-
level IR (Section 3.2) and managed by our custom runtime
library, named ACEfhe (Section 3.3). Finally, an equivalent
FHE program is output by the code generator (Section 3.4).

Front End NN IR

SIHE IR

CKKS IR

POLY IR

Code
Generation

ONNX

PyTorch ACE Runtime
Library

SEAL

OpenFHE

C/C++ 
Source Code

CPU
Executable

GPU
Executable

FHE Accelerator
Executable

TFHE IRVECTOR IR

Input Output FHE LibrariesACE

Figure 3. The ANT-ACE compiler framework.

To deploy their machine learning models homomorphi-
cally (e.g., on a cloud provider), developers can simply input
their existing models intoANT-ACE. This approach bypasses
the need for the DSL implementations of NN operators, as
required by compilers such as CHET [19], EVA [18], and
Fhelipe [33], and eliminates the necessity for re-training
even when incorporating non-linear operators mandated by
existing FHE compilers (Table 1).

Currently, ANT-ACE supports encrypted inputs (e.g., im-
ages) encapsulated within single ciphertexts. To accommo-
date larger inputs that may require multiple ciphertexts, de-
velopers must encrypt inputs using an ANT-ACE-generated
encryptor, which encodes the selected parameters, including
data layouts. The encrypted data is subsequently decrypted
using a corresponding ANT-ACE-generated decryptor. In
future work, both tools—which handle all necessary config-
urations similar to those in CHET [19]—will be integrated
to further streamline the deployment process.

3.1 Front End
Currently, ANT-ACE accepts machine learning models de-
fined in the ONNX format, as ONNX encompasses all essen-
tial operations required for machine learning models. Addi-
tionally, tools are available for converting both TensorFlow
[1] and PyTorch [17] models into the ONNX format.
We start by supporting a subset of ONNX operations for

experimenting with encrypted inference on small ResNet
models, with plans to incrementally addmore operations. Ad-
ditionally, we aim to directly accept PyTorch models, leverag-
ing the latest machine learning advancements and avoiding
potential optimization losses from ONNX transformations.
The frontend converts ONNX models into the NN IR, the

first of multiple abstraction levels designed to support en-
crypted computations through FHE, as detailed below.

3.2 Multi-Level Intermediate Representation
We began developing our ANT-ACE compiler with a fo-
cus on CKKS [13, 14] to support encrypted inference for
machine learning tasks on CPUs. Thus, ANT-ACE, as out-
lined in Table 2, is structured with five abstraction levels:
NN, VECTOR, SIHE, CKKS, and POLY. Most analysis and opti-
mization tasks aim to enhance performance, while SIHE IR
focuses on code translation and CKKS IR on security param-
eter selection, targeting both performance and automation.
In Section 8, we discuss how to extend ANT-ACE to support
other FHE schemes on additional platforms.

Table 2. Multiple abstracion levels (for supporting CKKS).

IR Homomorphc Operations
NN NN Operator Fusion1

VECTOR Data Layout Selection1, Batching1, Matrix
Multiplication Optimization1, Convolution
Optimization1,

SIHE FHE Computation Recognition2, Nonlinear Func-
tion Approximation2

CKKS Parameter Selection1,2, Rescaling Placement1,
Multiplication Depth Reduction1, Bootstrapping
Placement1, Relinearization Placement1, Rota-
tion Optimization1, CKKS Operator Fusion1, Key
Generation1

POLY Polynomial Operator Fusion1, Loop Fusion1, FHE-
Accelerator-Specific Optimizations 1

1 Performance-Focused, 2 Translation-Focused

We summarize the functionalities of these IRs below. All
traditional compiler optimizations are omitted in Table 2.
• NN (Neural Network) IR. This IR is the ONNX-equivalent
representation in ANT-ACE, where each ONNX operator op-
erating on tensors is mirrored. Operator fusion is supported
to enhance performance. While ONNXmodels might already
be optimized through operator fusion, PyTorch programs as
input can significantly benefit from this optimization.
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• VECTOR (VECTOR IR). The tensor data types in the NN
IR are converted to vector data types in this IR, enabling
operations like GEMM to be performed as vector multiplica-
tions. During this phase, data layouts for different tensors
are determined, and batching is managed. Critical perfor-
mance optimizations, especially for matrix multiplication
and convolution, are conducted at this stage.
• SIHE (Scheme-Independent Homomorphic Encryp-
tion). VECTOR IR computations are transformed into opera-
tions on ciphertext (type Cipher), plaintext (type Plain), and
cleartext (type Vector) within the SIHE IR. Nonlinear func-
tions are identified and approximated using polynomials [36].
By keeping SIHE independent of a particular FHE scheme,
ANT-ACE can easily adapt to other schemes like TFHE [16]
and BGV [12], accommodating future advancements.
• CKKS (CKKS IR). In this IR, SIHE IR operations are tailored
for CKKS. ANT-ACE automates security parameter selection
and optimizes processes like reducing multiplicative depth,
fusing operators, and managing rescaling, relinearization,
rotation, and bootstrapping. It also determines optimal key
generation at this stage.
• POLY (POLY IR). In this IR, CKKS operations from the
CKKS IR are decomposed into fundamental polynomial oper-
ations. FHE-specific techniques like loop fusion and polyno-
mial operator fusion are employed. Additionally, with future
FHE accelerators, optimizations considering both software
and hardware aspects will be implemented at this stage.

3.3 Runtime Library
Despite available FHE libraries like SEAL [47] and OpenFHE
[6] that support CKKS, we have developedACEfhe, a custom
open-source FHE library, to (1) expose optimization oppor-
tunities within RNS-CKKS operations to the ANT-ACE com-
piler framework; (2) enhance polynomial operations; (3) cus-
tomize the library for various hardware accelerators, boost-
ing portability and performance; and (4) facilitate software-
hardware co-design across multiple IRs.

We have enhanced ACEfhe with optimizations absent in
SEAL [47], OpenFHE [6], and FullRNS-HEAAN [13], improv-
ing performance for CKKS operations. Specifically, we will
detail our advancements in bootstrapping in Section 4.4.

3.4 Code Generation
ANT-ACE’s code generator is designed to adapt input pro-
grams for encrypted execution across various platforms, in-
cluding CPUs, GPUs, and dedicated FHE accelerators. It cur-
rently converts ONNXmodels into C/C++ for CPU execution
using the POLY IR and our ACEfhe library, specifically op-
timizing RNS-CKKS operations. To minimize compile time
and reduce file size, weights and biases are stored externally.
For instance, with ResNet-20, external storage reduces com-
pile time from 30 seconds to about 2 seconds and decreases

the C/C++ file size from 621 MB to 384 KB, with the weights
and biases taking up an additional 215 MB in an external
file. Looking ahead, we plan to introduce options for uti-
lizing the CKKS IR with both SEAL [47] and OpenFHE [6],
as illustrated in Figure 3. This versatility will enable ANT-
ACE’s researchers and users to explore various performance
optimization strategies more effectively.

4 Multi-Level Intermediate Representation
We describe the design of our multi-level abstractions using
a simplified ONNX model in Figure 4. This model, named

Gemm

B <10x84>

C <10x1>

image <84x1>

<10x1>

C: fc.bias

B: fc.weight

Figure 4. An ONNX model.

linear_infer, features a
single gemv operation—a
special case of gemm that
resembles a Linear Regres-
sionmodel—and is used to
demonstrate the transfor-
mations at each IR level.
In this particular gemm

example, the implemen-
tation details come from
ACE’s open-source imple-
mentation. Our focus, however, is on illustrating how GEMV
is successively lowered across the five IRs.

When introducing an instruction at each IR, we omit the
explicit return value, assuming it resides in res.

4.1 NN IR
The NN IR is a tree node-based representation aligned with
the graph structure defined in ONNX.When ANT-ACE loads
a neural network model from a file, it constructs this repre-
sentation by mapping each operator to one or more nodes.
The NN IR is strongly typed, with the input and output of
each node explicitly designated with tensor types.

Table 3. Operators in the NN IR.

Operator Types
average_pool x x, res ∈ Tensor

conv x w b x, w, b, res ∈ Tensor

flatten x x, res ∈ Tensor

gemm a b c a, b, c, res ∈ Tensor

global_average_pool x x, res ∈ Tensor

relu x x, res ∈ Tensor

reshape d s d, s, res ∈ Tensor

strided_slice d i l t d, i, l, t, res ∈ Tensor

Table 3 lists key supported operators that conform to the
semantics of their ONNX counterparts [4], with the excep-
tion of strided_slice. For strided_slice, d represents
the input, i the start index, l the slice size, and t the stride.
Additionally, gemm includes gemv as a special case. For sim-
plicity, all tensor types are uniformly referred to as Tensor.
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The linear_infer model in Figure 4 is translated into a
functionwith the prototype “Tensor linear_infer(Tensor&
image)” in this IR, containing the following statements:� �

st "output "
gemm

ld "image"
ld " fc . weight"
ld " fc . bias "

retv
ld "output "� �

Listing 1. NN IR for linear_infer in Figure 4.

Here, ld and st represent nodes for memory load and store,
respectively, and retv is a node used for returning a value.
We have omitted code handling the weight and bias of the
FC layer, as it is not relevant to this discussion.

4.2 VECTOR IR
The VECTOR IR specifies types, transformations, and opera-
tions tailored to vectors, facilitating the development of op-
timization strategies for vector operations. This IR abstracts
multi-dimensional tensors into one-dimensional vectors, en-
capsulating their multi-dimensional characteristics within
the Vector type. This approach effectively bridges the se-
mantic gap between tensors and their lower-dimensional
operations, with vectors internally implemented as arrays.
This design successfully achieves our primary objective:

to enable progressive lowering from the NN IR to the VECTOR
IR, and further into lower IRs essential for executing FHE-
specific operations and machine-native SIMD operations.

Table 4. Operators in VECTOR IR.

Operator Types
add x y x, y, res ∈ Vector

broadcast x y x, res ∈ Vector, y ∈ Int

mul x y x, y, res ∈ Vector

pad x y x, res ∈ Vector, y ∈ Int

reshape d s d, s, res ∈ Vector

roll x y x, res ∈ Vector, y ∈ Int

slice d i s d, res ∈ Vector, i, s ∈ Int

tile x y x, res ∈ Vector, y ∈ Int

Table 4 lists the operators introduced in the VECTOR IR, pro-
viding NumPy-like semantics and facilitating the abstraction
of higher-level tensor operations into canonical patterns. For
simplicity, we use Vector to denote any vector, irrespective
of its underlying tensor type and dimensions.

Consider linear_infer in Figure 4. The VECTOR IR func-
tion prototype is “Vector linear_infer(Vector& image)”.
Its corresponding NN IR in Listing 1, described by output =
gemm(image, fc.weights, fc.biases), is translated into
the following pseudo loop form in VECTOR IR:

� �
. . .
do_loop

. . .
block

st "output "
VECTOR. add

ld "output "
VECTOR.mul

VECTOR. ro l l
ld "image"
. . .

VECTOR. s l i ce
ld " fc . weight"

. . .� �
Listing 2. VECTOR IR for linear_infer in Figure 4.

In Listing 2, we have omitted handling fc.bias in List-
ing 1 for simplicity. Each operator in the VECTOR IR starts
with “VECTOR” for clarity. The do_loop loop handles ma-
trix multiplication, where Vector.mul will be translated
to homomorphic multiplication during the VECTOR-to-SIHE
phase. VECTOR.roll shifts parameters along an axis, and
VECTOR.slice functions like slicing in NumPy. This IR fo-
cuses on data-flow analysis and optimization for key opera-
tions like matrix multiplication and convolution, determin-
ing tensor data layouts for encryption into CKKS ciphertexts.
It leverages CKKS’s batching vectorization, balancing secu-
rity and performance considerations like vector widths, 𝑁 ,
and multiplicative depth.

4.3 SIHE IR

Table 5. Operators in the SIHE IR.

Operator Types
rotate x y x, res ∈ Cipher, y ∈ Int

add x y x, res ∈ Cipher, y ∈ Cipher|Plain

sub x y x, res ∈ Cipher, y ∈ Cipher|Plain

mul x y x, res ∈ Cipher, y ∈ Cipher|Plain

neg x x, res ∈ Cipher

encode x x ∈ Vector, res ∈ Plain

decode x x ∈ Plain , res ∈ Vector

The SIHE IR is designed to analyze and optimize FHE
operations independently of any specific FHE scheme. Be-
ing scheme-independent, it supports only the common FHE
operations outlined in Table 5. For neural networks, it dis-
tinguishes three data types: ciphertext (Cipher) abstracting
a sequence (e.g., for representing part of a private image),
plaintext (Plain) abstracting a sequence (e.g., for weights and
biases), and cleartext (Vector) inherited from the VECTOR
IR. The encode operator is used by both the ANT-ACE-
generated encryptor and the ANT-ACE compiler, whereas
the decode operator is employed exclusively by the ANT-
ACE-generated decryptor. Recall that the encryptor and de-
cryptor are described in Section 2.4
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In the SIHE IR, a key task is to automatically detect com-
putations on encrypted data that require homomorphic ex-
ecution. This is accomplished by using type inference to
identify ciphertext variables and replace their operations
with homomorphic equivalents via data-flow analysis.

For linear_infer in Figure 4, the do_loop loop in the
VECTOR IR in Listing 2 is now translated into the SIHE IR:� �

st "output "
SIHE . add

ld "output "
SIHE .mul

SIHE . rotate
ld "image"
. . .

SIHE . encode
VECTOR. s l i ce

ld " fc . weight"
. . .� �
Listing 3. SIHE IR for linear_infer in Figure 4.

Initially, “image” is a ciphertext by input. Therefore, the re-
sult of VECTOR.roll, which operates on “image”, as shown
in Listing 2, is recognized as a ciphertext. Since this result
is the first operand in VECTOR.mul, this operation is also
identified as a ciphertext operation. The second operand
of VECTOR.mul, VECTOR.slice, accesses constant (cleart-
ext) data (“fc.weight”). Consequently, SIHE.encode is em-
ployed to convert the result of VECTOR.slice into plain-
text. Moreover, VECTOR.add, which also operates on cipher-
text, does not require SIHE.encode as its output operand
remains a ciphertext, necessitating encrypted execution.

In real-world models, code blocks like those in Figure 4 are
typically linked by ReLU operators, which are approximated
by polynomials in the SIHE IR, as noted in [27]. Specifically,
we use the approximation algorithm from [36] to approxi-
mate these nonlinear functions automatically in ANT-ACE.

4.4 CKKS IR
The CKKS IR, detailed in Table 6, includes six new opera-
tors and retains all operators from the SIHE IR in Table 5,
with some semantic differences. First, Cipher and Plain
now represent a pair of polynomials and one polynomial, re-
spectively. For example, Cipher-Plain multiplication (mul)
produces a Cipher containing two polynomials. Second,
Cipher-Cipher multiplication (mul) results in a Cipher3,
representing three polynomials. A relinearisation operation
(relin) can convert a Cipher3 back to a Cipher [14].

When transitioning from SIHE to CKKS, all arithmetic op-
erations are mapped to their CKKS equivalents, maintaining
the same types except for the Cipher3 adjustment.

In CKKS [14], operands for homomorphic operations must
conform to particular constraints on scales (fixed-point arith-
metic) and levels (available multiplicative depths). For
ciphertext-ciphertext additions and subtractions, operands

Table 6. Operators in the CKKS IR.

Operator Types
rotate, add, sub, neg, encode, and decode in Table 5

mul x y x, res ∈ Cipher, y ∈ Plain

mul x y x, y ∈ Cipher, res ∈ Cipher3

modswitch x x, res ∈ Cipher

upscale x y x, res ∈ Cipher, y ∈ Int

rescale x x, res ∈ Cipher

downscale x x, res ∈ Cipher

bootstrap x x, res ∈ Cipher

relin x x ∈ Cipher3, res ∈ Cipher

must have identical scales and levels, and the operations
preserve these attributes. For multiplications, operands need
only match levels, with the result’s scale being the product
of the operand scales, resembling fixed-point multiplication.
Ciphertext polynomial coefficients in CKKS are repre-

sented modulo 𝑄 . Exceeding 𝑄 causes an overflow, corrupt-
ing the underlying message. To prevent this, values must be
periodically rescaled, as discussed in Section 2.2. ANT-ACE
automatically includes operations like rescale, downscale,
or upscale in the CKKS program, each reducing the cipher-
text scale by one factor or adjusting it to a specified scale.
Additionally, CKKS employs modulus switching to reduce
the ciphertext level without altering the message scale.
Effective scale management through rescale and

downscale reduces ciphertext levels, enhancing efficiency in
subsequent operations. ANT-ACE adopts a similar approach
to EVA [18], focusing on post-multiplication scale adjust-
ments and strategically delaying rescale and downscale
within loops to balance scale management, computational
efficiency, and compile-time considerations.

For our motivating example in Figure 4, the code from the
SIHE IR (Listing 3) is translated into the CKKS IR as follows:� �

. . .
s t "_image_tmp"
CKKS. rotate

ld "image"
. . .

s t "output "
CKKS. add

ld "output "
CKKS.mul

ld "_image_tmp"
CKKS. encode
VECTOR. s l i ce

ld " fc . weight"
. . .

intconst #0x5a
CKKS. scale

ld "_image_tmp"
CKKS. level

ld "_image_tmp"
. . .� �
Listing 4. CKKS IR for linear_infer in Figure 4.
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SIHE.encode is lowered to CKKS.encode, matching the scale
and level of CKKS.rotate in CKKS.mul. To prevent redun-
dant CKKS.rotate computations, it is pre-computed and
hoisted , allowing reuse of _image_tmp in CKKS.mul, reduc-
ing the need for three CKKS.rotate operations to one. All
SIHE operators have been replaced with their CKKS equiva-
lents, and intconst serves to return a constant directly.

Given a ciphertext, bootstrapping latency is influenced by
the refreshed ciphertext’s level. Higher levels increase the
cost of both the bootstrapping and subsequent homomor-
phic operations [13, 31]. Ideally, the level should match the
multiplication depth required until the next bootstrapping
or program exit. In line with [35], we position bootstrapping
operations before ReLU operations, but only bootstrap a ci-
phertext to theminimal levels needed based on the number of
homomorphic multiplications before the next bootstrapping
point. Recently, we have developed a new method to opti-
mize both rescaling and bootstrapping operations through a
region-based approach [38], which will soon be integrated
into the ANT-ACE compiler framework.

Ciphertext operations need evaluation keys for tasks like
relinearization and rotation, which are memory-intensive,
consuming over 1 GB each [35]. It is advisable to generate
only the necessary keys. For example, ANT-ACE can iden-
tify the required rotation keys by analyzing all ciphertext
rotations during the SIHE-to-CKKS lowering phase, using
Vector.roll operators from the VECTOR IR.

Finally, ANT-ACE automatically selects the security pa-
rameters𝑄 and 𝑁 to meet the required security level, such as
128-bit security. It calculates𝑄 using the scaling factor Δ and
the maximum multiplicative depth, as outlined in Section
2.3 [7, 10]. ANT-ACE then establishes the upper bound for
𝑁1, the polynomial modulus for CKKS (𝑋𝑁1 + 1), to align
with the necessary security level [6, 7, 10, 47]. Subsequently,
it assesses 𝑁2, the maximum SIMD width required by the
VECTOR IR, and sets 𝑁 = max(𝑁1, 𝑁2). While selecting an
𝑁 larger than 𝑁1 does not compromise security, it can lead
to decreased efficiency [19]. To mitigate this, ANT-ACE can
incorporate data layout algorithms to enhance performance.
Thus, ANT-ACE serves as a robust platform that effectively
balances correctness, performance, and security.

4.5 POLY IR
All homomorphic operations in the CKKS IR are further low-
ered to the POLY IR, preserving their data types (Cipher,
Cipher3, Plain and Vector). In the RNS-CKKS model [13],
each polynomial is divided into 𝑟 smaller RNS polynomials,
each modulo 𝑄𝑖 , where 𝑄 =

∏𝑟−1
𝑖=0 𝑄𝑖 (Section 2.2).

Table 7 presents key operators from 40 available, catego-
rized into two groups. High-level operations like decomp,
mod_up, and mod_down focus on overall polynomial gran-
ularity and do not distinguish individual RNS components
[13, 31], enabling coarse-grained operator fusion. In contrast,

Table 7. Operators in the POLY IR.

Operator Types
coeff x y x ∈ Poly, y ∈ Int, res ∈ Int*

set_coeffs x y z x ∈ Poly, y ∈ Int, z ∈ Int*

num_q x x ∈ Poly, res ∈ Int

num_p x x ∈ Poly, res ∈ Int

num_decomp x x ∈ Poly, res ∈ Int

decomp x y x,res ∈ Poly, y ∈ Int

mod_up x y x,res ∈ Poly, y ∈ Int

mod_down x x,res ∈ Poly

rescale x x,res ∈ Poly

hw_ntt x x,res ∈ Int*

hw_intt x x,res ∈ Int*

hw_modadd x y z x,y,res ∈ Int*, z ∈ Modulus

hw_modmul x y z x,y,res ∈ Int*, z ∈ Modulus

hw_rotate x y z x,y,res ∈ Int*, z ∈ Modulus

operations prefixed with “hw_” specifically address RNS poly-
nomial granularity. Polynomial functions such as add, mul,
and rotate from the CKKS IR are adapted into RNS loops
in the POLY IR, cycling through moduli, with “hw_” opera-
tions incorporated within these loops, as illustrated by a
ciphertext-ciphertext addition example given below:� �
/ / ciph3 = ciph1 + ciph2
for ( int i = 0; i < num_q( ciph1 . c0 ) ; i ++)
ciph3 . c0[ i ] = hw_modadd( ciph1 . c0[ i ] , ciph2 . c0[ i ] ) ;

for ( int i = 0; i < num_q( ciph1 . c1 ) ; i ++)
ciph3 . c1[ i ] = hw_modadd( ciph1 . c1[ i ] , ciph2 . c1[ i ] ) ;� �

Here, num_q returns 𝑟 , i.e., the count of remaining RNS poly-
nomials. The “hw_” prefix imlies these operators are opti-
mized for conversion into specialized hardware instructions.
Optimizations in the POLY IR leverage traditional tech-

niques specifically tailored for polynomial operations that
constitute CKKS functions. Operator fusion, aimed at min-
imizing memory duplication and movement across library
calls, is implemented through optimized APIs in ourACEfhe
library. These include decomp_modup (fusing decomp and
modup) and hw_modmuladd (combining hw_modmul and
hw_modadd). Our ANT-ACE compiler utilizes data-flow anal-
ysis to identify and apply these fused operators effectively.
RNS-loop fusion is beneficial in RNS-CKKS since RNS

loops have compile-time constant trip counts. Loops with
identical trip counts can be fused, reducing redundant mem-
ory operations and enhancing data locality.

Consider the following code snippet:� �
for ( int i = 0; i < num_q(poly1 ) ; i ++)
poly3[ i ] = hw_modadd( poly1[ i ] , poly2[ i ] ) ;

for ( int i = 0; i < num_q(poly3 ) ; i ++)
poly5[ i ] = hw_modmul( poly3[ i ] , poly4[ i ] ) ;� �

With 𝑁 = 216 and a remaining multiplicative depth of 20 for
five ciphertexts (poly1 to poly5), where num_q(poly1) =

num_q(poly3) = 20, each polynomial necessitates 10MB of
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Table 9. Detailed comparison of ANT-ACE with other FHE compilers from Table 1 on the application of compiler technology
in automating encrypted inference.

FHE Scheme Infrastructure Frontend Backend IR Optimizations
E3 [15] BFV, BGV, TFHE Synopsys Compiler C++ SEAL, TFHE Circuit Circuit
nGraph-HE [9] BFV, CKKS nGraph Compiler TensorFLow SEAL nGraph IR SIMD Packing, Oper-

ator Fusion
CHET [19] CKKS In-House DAG Tensor Circuit DSL SEAL, HEAAN Homo Tensor Circuit,

Homo ISA
FHE Vectorization,
Data Layout

EVA [18] CKKS In-House DAG Python DSL SEAL Abstract Semantic Graph Rescale, ModSwtich
Transpiler [28] TFHE XLS C++ TFHE XLS IR Circuit
HECO [50] BFV, BGV, CKKS MLIR Python DSL SEAL HIR, SIR, PIR, RIR Batching
Fhelipe [33] CKKS In-House DAG Python DSL Lattigo DFG of tensor operators,

DAG of CKKS operators
Data Layout, Rescale,
Bootstrap

ANT-ACE CKKS In-House IR ONNX Custom Library NN, Vector, SIHE, CKKS,
POLY

All the Operations in
Table 2

storage. Following the loop fusion technique described in
[42], poly3 is substituted by a temporary array, tmp, which
requires only 512KB for storage.� �
for ( int i = 0; i < num_q(poly1 ) ; i ++) {

int64_t ∗tmp = hw_modadd( poly1[ i ] , poly2[ i ] ) ;
poly5[ i ] = hw_modmul(tmp, poly4[ i ] ) ;

}� �
In ANT-ACE, a simple model such as the one depicted in

Figure 4 expands to 331 lines of code in the POLY IR, reducing
to 68 lines when translated into C. This code is automatically
generated through a series of analyses, transformations, and
optimizations across our five IRs. Manually performing these
tasks would be error-prone and labor-intensive, even for
users with deep knowledge and expertise in FHE.

5 Implementation
We are developing ANT-ACE as an FHE compiler that auto-
mates the transformation of general-purpose programs into
formats capable of performing computations on encrypted
data, suitable for various FHE schemes and architectures. As
of this paper’s submission, the project has involved multi-
ple compiler specialists, dedicating 44 man-months of effort.
It comprises over 44K+ lines of C++ code, including more
than 11K+ lines dedicated to testing and over 15K+ lines of
comments to ensure clarity, as detailed in Table 8.
Currently, ANT-ACE is capable of automatically trans-

lating ONNX models to CKKS [13, 14] on CPUs. To aid in
debugging, ANT-ACE includes instrumentation capabilities
at both the NN and VECTOR IR levels, enabling support for ma-
chine learning inference in both unencrypted and encrypted
modes.

In Table 9, we enhance the comparison of ANT-ACE with
the FHE compilers from Table 1, focusing on their application
of compiler technology to support encrypted computations.
ANT-ACE excels as the most advanced compiler for automat-
ing encrypted inference, enabled by multiple abstraction
levels.

Table 8. ANT-ACE’s component breakdown by LOC.

ANT-ACE LOC Tests Comments
Infrastructure 17279 3544 4628

NN IR 1902 186 406
VECTOR IR 3214 405 654
SIHE IR 4087 190 803
CKKS IR 1255 369 354
POLY IR 2975 1163 547

Run-Rime Library (ACEfhe) 14101 5551 7860
Total 44813 11390 15252

6 Evaluation
Despite advances [14, 26, 40], FHE remains up to 10, 000×
slower for small machine learning models. ANT-ACE aims
to push forward compiler research to address this challenge.

ANT-ACE currently supports a limited range of NN opera-
tors for smaller models, but it uniquely automates the trans-
lation of ONNX models for encrypted CPU execution, in-
cluding both linear and non-linear operators like ReLU. This
automation distinguishes ANT-ACE from other FHE compil-
ers listed in Tables 1 and 9, which do not fully automate the
encryption process, complicating direct comparisons. Conse-
quently, we evaluate ANT-ACE using small ResNet models,
given the significant demands of FHE (e.g., several hours
per encrypted inference for ResNet-110), and compare it
against expert hand-tuned implementations. Although the
focus on smaller models is typical for FHE compilers, ANT-
ACE’s distinctive automation capability effectively achieves
our design objectives and addresses four research questions.
• RQ1: Can ANT-ACE compile small ResNet models for
encrypted execution both automatically and efficiently?
• RQ2: How does ANT-ACE compare to expert hand-tuned
implementations in executing encrypted NN inference?
• RQ3: Is ANT-ACE capable of selecting security parame-
ters that effectively balance correctness, performance, and
security?
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Figure 5. ANT-ACE’s compile times.

• RQ4:DoesANT-ACEmaintain the accuracy of NNmodels
during encrypted inference?
• Experimental Setup. All experiments were in a Docker
container (version 25.0.1) on a Linux server with an Intel
Xeon Platinum 8369B CPU @2.70GHz and 512 GB memory.

We evaluated six ResNet models using expert hand-tuned
C++ implementations and the SEAL library [35, 47], which
includes ResNet-20, 32, 44, 56, and 110 on CIFAR-10,
as well as ResNet-32 on CIFAR-100 (ResNet-32*). Recog-
nized for its performance, SEAL is highly regarded among
FHE libraries [53]. All models, except for ResNet-110 which
we trained due to its unavailability, were pre-trained. ANT-
ACE compiles these ONNX models to C using GCC (version
10.2.1) with our custom FHE library, ACEfhe, setting input
and output scales at Δ = 259 and 𝑄0 = 260 respectively. The
ring degree 𝑁 is automatically selected, as will be discussed
later. We opted for ACEfhe over SEAL, because SEAL does
not support bootstrapping, whereas ACEfhe does. Unlike
manual tuning in expert implementations, ANT-ACE auto-
matically integrates bootstrapping calls into ACEfhe.
• RQ1: Compile Times. Figure 5 shows the compile times
ANT-ACE requires to translate six models into C programs,
with percentage time breakdowns for each model. ANT-ACE
spent more time on the VECTOR IR than the other IRs, trans-
forming cleartext data to vector form. In "Others", most of
the time was spent writing model weights to external files.
GCC compiles these encrypted C versions in just a few

seconds, faster than ANT-ACE’s translation to C. In contrast,
experts may need weeks to optimize small networks manu-
ally [19].ANT-ACE significantly enhances developer produc-
tivity by automatically translating machine learning models
for encrypted execution on untrusted cloud providers.
• RQ2: Performance and Memory Advantages. Figure 6
shows that ANT-ACE (left bars) consistently outperforms
"Expert" implementations (right bars) across all six mod-
els, providing detailed comparisons of per-image inference
times for Conv (convolution), Bootstrap, and ReLU in single-
thread mode. ANT-ACE significantly reduces the time spent
in Conv by 31.5%, in Bootstrap by 63.3%, and in ReLU by

Figure 6. Per-image inference time comparison between
ANT-ACE (left bar) and “Expert” (right bar) for each model.

44.6%, resulting in an average performance speedup over the
"Expert" implementations.

For context, unencrypted inference with ONNX Runtime
1.18.1 [5] in the same setup ranges from 1.60ms for ResNet-20
to 9.73 ms for ResNet-110 per image in single-thread mode.
We describe how ANT-ACE boosts Conv, Bootstrap, and

ReLU performance through sophisticated analyses and opti-
mizations, emphasizing its role in integrating these enhance-
ments effectively within our compiler framework:
– Conv.ANT-ACE boosts the performance of Conv across all
five IRs—NN, VECTOR, SIHE, CKKS, and POLY —by optimizing
data layout selection in the VECTOR IR and refining it through
the subsequent lower-level IRs. In the CKKS IR, placement
of rescaling and rotation keys is optimized, and in the POLY
IR, polynomial operations are further enhanced. These so-
phisticated analyses and optimizations lead to the notable
performance improvements ANT-ACE achieves over the "Ex-
pert" implementations.
– Bootstrap. ACEfhe enhances bootstrapping in the CKKS
IR by strategically placing operations and setting levels for
refreshed ciphertexts according to the program’s multiplica-
tive depth constraints. This optimization enables ANT-ACE
to surpass expert implementations through faster bootstrap-
ping. We have also developed a new method to simultane-
ously optimize rescaling and bootstrapping [38]. Despite
these advancements, bootstrapping continues to be a major
bottleneck, highlighting the persistent need for efficiency
improvements in cryptographic and compiler technologies.
– ReLU. ANT-ACE facilitates polynomial approximations
of nonlinear functions like ReLU in the SIHE IR, allowing
precise monitoring of homomorphic multiplication depths
consumed in the CKKS IR. This capability not only posi-
tions ANT-ACE for future integration of advanced approxi-
mation algorithms but also enhances the accuracy of max-
imum multiplicative depth obtained. Such detailed infor-
mation aids in the optimal placement of bootstrapping in
the CKKS IR, improving computational efficiency. To handle
𝑅𝑒𝐿𝑈 (𝑥) = 0.5 ∗ 𝑥 ∗ (1 + sign(𝑥)) in ResNet models, we
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Figure 7. Memory usage comparison between ANT-ACE
(left bar) and “Expert” (right bar) for each model.

Table 10. Security parameters selected automatically for
CKKS by the ANT-ACE compiler.

Model log2 (𝑁 ) log2 (𝑄0) log2 (Δ)
ResNet-20 16 60 56
ResNet-32 16 60 56
ResNet-32* 16 60 56
ResNet-44 16 60 56
ResNet-56 16 60 56
ResNet-110 16 60 56

approximate sign(𝑥) using a composition of polynomials
with odd-degree terms [36]. The comprehensive workflow
provided by ANT-ACE for nonlinear function approximation
significantly enhances its performance, enabling it to surpass
the "Expert" implementations.
Figure 7 shows further that ANT-ACE surpasses the "Ex-

pert" implementations in memory efficiency, highlighting
memory usage percentages for key optimization (CKKS-Keys).
On average, ANT-ACE reduces memory consumption by
84.8% by generating only the necessary keys in the CKKS IR
through data-flow analysis, after completing all optimiza-
tions from the NN IR to the CKKS IR.
However, CKKS evaluation keys still represent a signifi-

cant portion of total memory. For example, in ResNet-20,
ANT-ACE allocates 34.5 GB for keys, with evaluation keys
alone accounting for 34.3 GB. This highlights the need for
more efficient management of evaluation keys and their asso-
ciated homomorphic operations, such as relinearization and
rotation, through advanced memory-centric optimizations
and potentially software-hardware co-design.
• RQ3: Automatic Security Parameter Selection. Ta-
ble 10 lists the security parameters 𝑁 and𝑄 chosen by ANT-
ACE, based on the input scale Δ = 256 and the output scale
Δ = 260 given for these models, to ensure 128-bit security.
• RQ4: Inference Accuracy. Table 11 shows that ANT-
ACE nearly maintains the accuracy of all six ResNet models

Table 11. Comparing inference accuracy between unen-
crypted and ANT-ACE-encrypted ResNet models.

Model Unencrypted Encrypted Accuracy Loss

ResNet-20 90.6% 91.2% -0.7%
ResNet-32 92.8% 92.8% 0.0%
ResNet-32* 66.4% 65.9% 0.8%
ResNet-44 92.5% 90.7% 1.9%
ResNet-56 93.9% 93.8% 0.1%
ResNet-110 93.9% 93.4% 0.5%

during encrypted inference, aligning with their original pre-
trained performance levels. Despite the substantial computa-
tional demands of FHE, which limited testing to 1,000 images,
ANT-ACE only exhibits a minor average accuracy decrease
of 0.43%. This reduction is due to the inherent precision lim-
itations of the CKKS scheme [13, 14] and the approximation
of nonlinear functions like ReLU [36]. For comparison pur-
poses, corresponding expert hand-tuned implementations
exhibit a slight accuracy drop, ranging from 0.1% to 0.6%.

7 Relate Work
Gentry’s initial FHE scheme, based on ideal lattices [22], was
impractical, taking 31 minutes for a bootstrapping opera-
tion [23]. The BGV [12] and BFV [20] schemes, based on
the LWE [44] and ring-LWE (RLWE) [41] problems, sup-
ported a fixed number of “leveled” homomorphic operations
without bootstrapping by using large parameters. They in-
troduced SIMD-style “batching” to pack multiple messages
into a single ciphertext, enhancing throughput. The GSW
[25] scheme and its successor, TFHE [16], also based on LWE,
drastically reduced bootstrapping times to milliseconds but
lacked batching, creating a latency-throughput trade-off. The
CKKS scheme [13, 14], supporting efficient fixed-point arith-
metic, has broadened FHE applications in machine learning.
Advancements in FHE schemes have led to the develop-

ment of libraries that streamline operations via APIs. HElib
[30], the first such library, initially supported only BGV. SEAL
[47], supporting BGV, BFV, and CKKSwithout bootstrapping,
is now widely used in FHE research. Recently, OpenFHE [6],
which includes support for BGV, BFV, CKKS, and TFHE with
bootstrapping, has gained popularity among researchers.
Efforts to minimize FHE expertise in development have

led to the exploration of programming language extensions
and compiler frameworks. E3 [15] offers C++ extensions for
encrypted data handling but requires manual configuration
of FHE libraries, schemes, and parameters. CHET [19] uses a
DSL to convert tensor operations into FHE operations with
basic optimizations. EVA [18] extends and improves upon
CHET by embedding a DSL into Python for Neural Network
(NN) inference using CKKS in the SEAL library [47], designed
for general-purpose use. nGraph-HE [9] enables TensorFlow
computations to be converted into BFV or CKKS using SEAL
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with minimal code changes but also requires user-defined
FHE parameters. Transpiler [28] specifically translates C++
into TFHE, while HECO [50] provides a Python DSL for
general-purpose programs targeting the SEAL library. Fhe-
lipe [33] provides a numpy-style programming interface, spe-
cializing in automatic data packing and bootstrap placement.
It matches the performance of the "Expert" implementations
by Lee et al. [35] in ResNet-20 per-image inference, utilizing
the Lattigo FHE library [3]. Meanwhile, HEIR [8] focuses
on its cross-scheme compilation capabilities but has not yet
demonstrated its effectiveness in NN inference.
Compared to other expert-written and highly-tuned NN

inference programs in FHE [9, 11, 18, 27, 39], Lee et al. [35] of-
fer a relatively fair comparison point for ANT-ACE in terms
of using the CKKS scheme, particularly with bootstrapping
enabled. They developed and optimized a set of ResNet mod-
els with significant latencies, overcoming limitations in the
SEAL library’s [47] bootstrapping capabilities.

8 Future Work
The ANT-ACE compiler framework represents the initial
phase of our research into FHE compiler technology.We have
developed key functionalities for an FHE compiler aimed
at privacy-preserving machine learning inference, showcas-
ing the automation of ONNX model inference with CKKS-
encrypted data on CPUs across multiple abstraction levels.
Future developments of ANT-ACE will expand support to
various input formats and FHE schemes on diverse com-
puting architectures, including GPUs. These enhancements
will be further strengthened by contributions from the open-
source community, as outlined below.

• Enhancing Large LanguageModels (LLMs). In response
to the growing interest in LLMs and the leading role of Py-
Torch in LLM research, we aim to upgrade the ANT-ACE
compiler front-end to support direct compilation of PyTorch
models via the TORCH.FX [2] toolkit. This enhancement will
involve integrating additional NN operators currently un-
supported by ANT-ACE, as listed in Table 3, to fully leverage
this capability.
• Integrating Diverse FHE Schemes.While CKKS [13, 14]
is preferred for machine learning applications, alternative
schemes like TFHE [16] have gained attention for features
like lossless comparison and fast bootstrapping. We aim
to integrate these schemes into the ANT-ACE framework
through the SIHE IR and plan to introduce a TFHE IR similar
in scale to the CKKS IR, which comprises approximately 1300
lines of code (Table 8). In the POLY IR, existing polynomial
operators like POLY.add and POLY.mul will be utilized, with
the addition of new operators such as POLY.hw_fft and
POLY.hw_ifft to accommodate TFHE’s requirements.
• Exploring Parallelism on GPUs. We are considering
several strategies to harness GPU capabilities for enhancing

FHE performance. One approach is to generate CUDA code
from the CKKS IR using a CUDA-based FHE library, which
would support coarse-grained homomorphic operations such
as modulus switching and bootstrapping. Alternatively, we
could translate the POLY IR directly into Triton [48]. Ad-
ditionally, leveraging the advanced parallelization features
of GPUs could significantly enhance ciphertext-level paral-
lelism [52] and accelerate FHE operations [21, 51].
• Embracing Hardware Acceleration. Hardware acceler-
ation is crucial for transitioning FHE from theory to practice
[45]. Efforts to accelerate multiplications [46], key reuse [32],
and bootstrapping [49] exist. We plan to integrate an FHE
accelerator into our ACE framework via the POLY IR.
• Developing Aggressive Optimizations for speed.We
will continuously explore optimization opportunities across
all IR abstractions, targeting both general and FHE-specific
enhancements. For example, optimizing data layouts for en-
crypted data like tensors and enhancing bootstrapping effi-
ciency are vital for improving performance.
• Innovating Memory Management. FHE computing is
known for its high memory demands but predictable access
patterns. We aim to exploit these patterns for targeted mem-
ory optimization through theANT-ACE compiler framework
and its runtime, enhancing efficiency and scalability with
fine-grained memory management strategies.

9 Conclusion
In this paper, we introduce ANT-ACE, an open-source com-
piler framework designed to facilitate privacy-preserving
computations using Fully Homomorphic Encryption (FHE).
Currently, ANT-ACE is capable of automatically convert-
ing ONNX models for efficient homomorphic execution on
CPUs. Preliminary evaluations using small machine learn-
ing models have verified that ANT-ACE achieves its design
objectives. Moving forward, we plan to enhance ANT-ACE
to overcome existing barriers and make FHE more practi-
cal, with contributions from the open-source community.
Future efforts will focus on broadening support for various
FHE schemes and incorporating hardware acceleration to
enhance performance. Through continuous improvements to
ANT-ACE, our goal is to make privacy-preserving machine
learning more accessible and efficient.

10 Data-Availability Statement
The ANT-ACE compiler framework is now open-source and
available at https://github.com/ant-research/ace-compiler.
The corresponding artifact is also publicly available at [37].
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A Artifact
A.1 Abstract
ANT-ACE is available as open-source software at https://
github.com/ant-research/ace-compiler.

A.2 Artifact check-list (meta-information)
• Binary: Source code and scripts included to regenerate
binaries.

• Model: ResNet-[20|32|44|56|110].
• Data set: CIFAR-[10|100].
• Run-time environment: Docker container version 25.0.1,
dependencies detailed in https://github.com/ace-compiler/

ace-compiler/blob/main/Dockerfile.
• Output: Figure5.pdf, Figure6.pdf, Figure7.pdf, Table10.pdf
and Table11.pdf or Table11-10-ImagesOnly.pdf.

• Experiments: Detailed in https://github.com/ace-compiler/

ace-compiler/blob/main/README.md.
• How much disk space required (approximately)?: 20
GB.

• How much time is needed to complete experiments
(approximately)?: 25+ hours.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: Apache-2.0 WITH
LLVM-exception.

A.3 Description
A.3.1 How to Access.

• Source code: https://github.com/ace-compiler/ace-compiler

• Docker Hub: opencc/ace:latest

A.3.2 Hardware Dependencies.
• To match configurations in this paper: Intel Xeon Platinum
8369B CPU @ 2.70 GHz with 512 GB memory.

A.3.3 Software Dependencies.
• Docker container version 25.0.1, other dependencies detailed
in https://github.com/ace-compiler/ace-compiler/blob/main/

Dockerfile.

A.4 Installation
There are two options to setup the artifact environments
which are described on https://github.com/ace-compiler/ace-

compiler. It is recommended to pull the pre-built docker
image (opencc/ace:latest) from Docker Hub:� �
cd [YOUR_DIR_TO_DO_AE]
mkdir −p ace_ae_result
docker pull opencc/ ace : l a tes t
docker run − i t −−name ace −v "$ (pwd) " / ace_ae_result : / app/

ace_ae_result −−privileged opencc/ ace : l a tes t bash� �
Alternatively, if you encounter issues pulling the pre-built
image, you can build the image from the Dockerfile:� �
cd [YOUR_DIR_TO_DO_AE]
git clone https : / / github .com/ace−compiler / ace−compiler . g i t
cd ace−compiler
mkdir −p ace_ae_result
docker build −t ace : l a tes t .

docker run − i t −−name ace −v "$ (pwd) " / ace_ae_result : / app/
ace_ae_result −−privileged ace : l a tes t bash� �

A local directory "ace_ae_result" is created and mounted in
the docker container to collect the generated figures and
tables.

A.5 Experiment workflow
• Build the ACE compiler, navigate to the /app directorywithin
the container and run:� �
/app/ scr ipts / build_cmplr . sh Release� �

• Build EXPERT hand-tuned implementations, in the /app
directory of the container, run:� �
python3 /app/FHE−MP−CNN/build_cnn .py� �

• Run test, in the /app directory of the container, run:� �
python3 /app/ scr ipts / perf . py −a� �
A log file named with the date and time the command was
launched will be generated, such as 2024_05_26_13_18.log.
It will take approximately 18 hours for this command to
complete in given hardware configurations.

• Reproduce Figure 5–7 and Table 10, in the /app directory of
the container, run:� �
python3 /app/ scr ipts / generate_figures . py −f 2024

_05_26_13_18 . log� �
• Build the ACE compiler with OpenMP support, in the /app
directory of the container, run:� �
/app/ scr ipts /build_cmplr_omp . sh Release� �

• Reproduce Table 11 with 10 images per model, in the /app
directory of the container, run:� �
python3 /app/ scr ipts / accuracy_all . py −n 10� �
With 10 cores assumed to be available, the expected comple-
tion time is approximately 7 hours.
Alternatively, to reproduce Table 11 with 1000 images per
model, execute the following command in the /app directory
of the container:� �
python3 /app/ scr ipts / accuracy_all . py −n 1000� �
This process will take over 140 hours to complete on the
recommended computing platform, utilizing 64 threads.

A.6 Evaluation and Expected Results
During artifact evaluation, the newly generated Figures 5
and 6 may differ slightly from those in our paper due to vari-
ations in workload and I/O on the hardware. Similarly, the
generated Figure 7 may exhibit minor differences compared
to the one in our paper. However, the generated Table 10
should match exactly with the published version. Finally, the
generated Table 11, which uses 10 images, should closely
resemble the table at https://github.com/ace-compiler/ace-

compiler/blob/main/scripts/Table11-10-ImagesOnly.png.
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