
An AI-Enhanced 1km-Resolution Seamless Global
Weather and Climate Model to Achieve Year-Scale

Simulation Speed using 34 Million Cores
Xiaohui Duan𝑎,∗, Yi Zhang𝑏,𝑘,𝑙,∗,†, Kai Xu𝑐,∗, Haohuan Fu𝑑,𝑓 ,𝑔, Bin Yang𝑒 , Yiming Wang𝑘 , Yilun Han𝑑 ,
Siyuan Chen𝑘 , Zhuangzhuang Zhou𝑓 , Chenyu Wang𝑓 , Dongqiang Huang𝑓 , Huihai An𝑎 , Xiting Ju𝑑 ,
Haopeng Huang𝑑 , Zhuang Liu𝑑 , Wei Xue𝑑,𝑗,𝑓 ,† ,Weiguo Liu𝑎,†, Bowen Yan𝑑 , Jianye Houℎ , Maoxue

Yu𝑐 , Wenguang Chen𝑑 , Jian Li𝑖 , Zhao Jing𝑐 , Hailong Liu𝑐,†, Lixin Wu𝑐
𝑎School of Software, Shandong University, Jinan, China

𝑏Chinese Academy of Meteorological Sciences, Beijing, China
𝑐Laoshan Laboratory, Qingdao, China
𝑑Tsinghua University, Beijing, China

𝑒College of Intelligence and Computing, Tianjin University, Tianjin, China
𝑓 National Supercomputing Center in Wuxi, Wuxi, China

𝑔 National Supercomputing Center in Shenzhen, Shenzhen, China
ℎ The Chinese University of Hong Kong, Shenzhen, China

𝑖 Chinese Academy of Meteorological Sciences, Beijing, China
𝑗 Qinghai University, Qinghai, China

𝑘Piesat Information Technology Co.,Ltd., Beijing, China
𝑙Beijing Research Institute, Nanjing University of Information Science and Technology, Beijing, China

Abstract
Global Storm Resolving Models (GSRMs) is crucial for under-
standing extreme weather events under the climate change
background. In this study, we optimize Global-Regional Inte-
grated Forecast System (GRIST), which is a unified weather-
climate modeling system designed for research and oper-
ation, for the next-generation Sunway supercomputer, in-
corporating AI-enhanced physics suite, OpenMP-based par-
allelization, and mixed-precision optimizations to enhance
both efficiency and performance portability, as well as the
unified modeling capability. Our experiments successfully
capture significant events during the “23.7” extreme rainfall
over northern China influenced by super Typhoon Doksuri,
at 1km resolution. Notably, our work scales to 34 million
cores, enabling simulation speeds at 491 SDPD (3km) and
181 SDPD (1km).

CCS Concepts: • Applied computing → Earth and at-
mospheric sciences; • Computing methodologies →
Parallel computing methodologies; Artificial intelli-
gence.
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1 Introduction
The Earth, which is the home of our human beings, is one of
the most complicated subject of our research and exploration.
Fig. 1(a), known as the “Blue Marble" photographed by one of
the astronauts on Apollo 17 in 1972, is generally recognized
as one of the first image we acquire for the entire planet.
This unique image, which helped to raise people’s concepts
about protecting Mother Gaia [19] or Mother Earth, also
accidentally captured a severe cyclonic storm crossing Tamil
Nandu [3] that led to heavy rain, flood, and severe losses
of human lives and properties. Since then, satellite (such as
Landsat [37] and MODIS [26]) and communication technolo-
gies have been developed to help us achieve constant earth
observation from the space, producing an updated 1km reso-
lution of the Earth (Fig. 1(b), merged from MODIS images
that cover several months), demonstrating even more details
of the global atmospheric system.
Besides Earth observation, Earth system modeling has

been another major approach for scientists to understand
the climate change mechanisms, and more importantly, to
provide predictions that support hazard mitigation of more
frequent and severe extreme weather/climate events, and
sensible policy making processes that ensure a better future
for all humans as one united community. Fig. 1(c) shows the
modeling results of the early efforts by S.Manabe et al. [29] to
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Blue Marble(1972) Blue Marble(2002) Smagorinsky-Manabe model(1965) GRIST-1km(2024)

Figure 1. History and progress on observing and modeling the Earth system. (a) the very first Blue Marble photo taken
by Apollo 17 astronauts in 1972 (with the red arrow pointing to the Tamil Nandu storm captured in the photo);(b) the 1km
Blue Marble merged from MODIS satellite images in 2002; (c) the Smagorinsky-Manabe model [29] (500km resolution) result
(relative humidity) in 1965; (d) example of 1km global simulation result (water vapor mixing ratio) of our GRIST model in 2024.

develop a global circulation models (GCM) with a resolution
of around 500 km. Over the years, with the improvement
of supercomputers’ capacities, we see a gradual increase of
the model resolution from the scale of 100 km to the scale
of 10 km, with an expectation to finally achieve 1km global
simulation with the emergence of exascale systems [23].
The benefits of 1km global simulations are multi-fold.

Firstly, with a resolution finer than 5 km, we achieve a Global
Storm-Resolving Model (GSRM) that can explicitly simulate
non-hydrostatic fine-scale atmospheric fluid dynamics, en-
abling a seamless modeling approach where a single model
effectively captures both transient and statistical features of
the climate system. This provides the missing parts for haz-
ard prediction and mitigation as in the Tamil Nadu case men-
tioned above. Secondly, while a 10km resolution already cap-
tures many vital atmospheric phenomena, such as mesoscale
convective systems and tropical cyclones, an 1km resolution
is crucial for accurately resolving smaller convective updrafts
and the interactions between multiscale flow, thus removing
uncertainties in empirical parameterizations of subgrid cloud
and convection processes [30]. Thirdly, 1km modeling reso-
lution (an example result of our work, as shown in Fig. 1(d)),
would finally bridge the resolution gap between modeling
and the satellite observation (such as the stitched MOIDS
result in Fig. 1(b)). Such a seamless bridge, would eventually
promote better approaches to fuse the numerical models and
the data-driven learning methods [2, 13, 33], and gives better
depiction and interaction between the short-term weather
processes and the long-term climate processes [20, 25, 31].
While 1km resolution brings all the benefits mentioned

above, the involved computational challenges are tremen-
dous. A jump from 10 km to 1 km global simulation would
already bring around three orders of magnitude increase
in computation amount, eating up all the increased com-
puting capacity from peta-scale machines to exa-scale sys-
tems. Moreover, the architectural changes from homogenous

CPU clusters to heterogeneous machines with many-core
AI-oriented accelerators make it tough to achieve efficient
transition of scientific codes to a new system, especially
for complicated community codes like climate models (with
codes spanning through decades, and a distributed workload
among hundreds of modules).
As a pioneering project to address the above challenges

and to explore the potential of 1km global simulation, this
work builds upon the Global-Regional Integrated Forecast
System (GRIST), a unified weather-climate modeling system
designed for research and operational applications [40–42].
Such a model enables us to successfully conduct long-term
and multiple-resolution climate simulations and gain a rea-
sonable performance in both physical accuracy and compu-
tational efficiency. Achieving year-scale simulation speed is
of paramount importance for meeting the grand weather and
climate prediction challenges. This unified hybrid modeling
approach not only improves the weather-climate simula-
tion and forecasting accuracy but also enhances our under-
standing of weather-climate processes, paving a way to more
effective weather hazard mitigation and climate change adap-
tation strategies. Our contributions can be summed up as
follows:

• We achieve an optimal mapping of the 1km GRIST
model to the next-generation Sunway supercomputer.
Our approach employs a scalable solver design and
an OpenMP-based programming model, which facili-
tates automated porting, thereby maximizing compu-
tational efficiency and scalability.

• We integrate an AI-enhanced physics suite and uti-
lizes mixed-precision techniques. These innovations
close the performance gap and ensure that the model
operates efficiently at such a large scale.
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• We achieve a highly-scalable and highly-efficient hy-
brid global weather and climate model, which can em-
ploy up to 34 million cores to achieve 0.5 simulated-
year-per-day (SYPD) for 1km resolution scenarios.

The remainder of this paper is structured as follows. Sec-
tion 2 provides related works on porting climate models to
supercomputers. Section 3 presents implementation details
of our work. Section 4 evaluates the accuracy and efficiency
of our implementation. Section 5 concludes the paper.

2 Related Works
Weather and climate models, being one of the first few ap-
plications run on the first electronic computer ENIAC [24],
have long been the major applications on supercomputers.
With the enormous yet complex Earth system as the sim-
ulation target, each step of resolution improvement would
translate into 3 orders of magnitude in compute increase,
and generally require decades’ improvement in hardware
and software evolution.
As a result, even though km-scale GSRM represents sig-

nificant advancements in simulation detail and accuracy (re-
duction of convective parameterization uncertainties[21, 27],
and more accurate representations of cloud-to-meso scale
dynamics, precipitation patterns, and their interactions with
atmospheric circulation [31]), GSRM efforts only become
popular in the most recent decade, with the dawning of ex-
ascale systems, such as Frontier [32].
Fig. 2 summarizes most of the major GSRM efforts on

recent supercomputer systems, such as E3SM on Summit [1]
and Frontier [32], IFS on Summit [35], NICAMonK computer
and Fugaku [28, 38], CESM on Sunway TaihuLight [6] and
its successor [39], and COSMO (a regional model) on Piz
Daint [9]. Note that, in our discussion, we focus on series
of continuous efforts that try improving the model with the
update of leading-edge supercomputers. The DYAMOND
project [31] , an international GSRM model intercomparison
initiative, provides amore complete list of modeling activities
that target horizontal resolutions ranging from 1.5 km to 5
km, such as GEOS, gSAM, ICON, MPAS, NICAM, SHiELD,
and GRIST.

Among the efforts, E3SM is the sole project that is specif-
ically targeting an Exascale system, and has gone through
years of development iterations [1, 11, 17, 32]. On the system
of Summit, E3SM achieves a highly-scalable nonhydrostatic
dycore at the resolution of 1 km and 3 km [1]. The dycore
itself achieves a simulation speed of 0.97 SYPD at 3 km and
0.049 SYPD at 1 km. Following the dycore work, in 2023,
Taylor et al.[32] presented a complete global atmoshpere
model, the Simple Cloud Resolving E3SMAtmosphere Model
(SCREAM) with a performance of 1.26 SYPD for 3.5km cloud-
resolving simulations using 32768 GPUs on 8192 Frontier
computing nodes, which won the 2023 Gordon Bell Prize for
Climate Modelling.

On the Sunway series of supercomputers, there have also
been a long-going project that tries to refactor [7], redesign
[6] the CAM model for Sunway architectures, and eventu-
ally upgrade it for 5km-atmosphere and 3km-ocean coupled
simulations [4], shown as a continuous line of efforts in Fig.
2. In contrast to the E3SM project, tremendous efforts on
the tools were dedicated to migrating existing code to a new
many-core architecture. The tools and a nearly complete
porting of the model prove to be key elements for achieving
close to 1 SYPD speed of CAM.

NICAM is another high-resolution effort on both K Com-
puter [28] and Fugaku [38]. Through a careful redesign for
the transition from K to Fugaku, NICAM scaled to 512 nodes
with a performance of 0.089 and 0.027 SYPD for 14km and
3.5km resolution cases respectively[38]. As the work on Fu-
gaku focused on large-scale ensemble runs, NICAM itself
was not running on a large scale. We can further project the
performance of 3.5km resolution case over 131,072 nodes of
Fugaku to 0.36 SYPD.
ICON-Sapphire achieved a simulation speed of 4 SDPD

with a 1.25km resolution case of atmospheric component
over 908 nodes of Levant Supercomputer[15], but it only re-
tained parameterizations for the physical processes of radia-
tion, microphysics, and turbulence, impacting its accuracy at
finer resolutions[5, 34]. The atmospheric component of ICON
has also been tuned and evaluated over GPU architecture[10]
and demostrates the performance of 0.58 SYPD for the 5km
resolution case with 256 nodes of JUWELS Booster Super-
computer.

The Consortium for Small-ScaleModeling (COSMO)model
is the first regional weather model that gets fully migrated to
a GPU platform and achieves a performance of 0.043 SYPD
for a near-global 1km resolution configuration by using up
to 4,888 GPUs on the Piz Daint supercomputer [9]. We show
the line of different COSMO configurations in Fig. 2, which
demonstrates fairly efficient performance on the 26-Pflops
Piz Daint system, due to a reduced complexity in regional
forecasting, and a well-tuned GPU implementation.

A recentwork demostrates that the CPU-version of ECWMF
IFS can be scaled to all the CPUs of the entire Summit super-
computer with a performance of 0.3 SYPD for a global 1.4km
resolution configuration with hydrostatic configuration (0.09
SYPD with non-hydrostatic configuration on the PizDaint
supercomputer) [35].

As shown in these different projects demonstrated in Fig.
2, moving up the models in resolution and simulation speed,
even with the world’s fastest computers, is still an extremely
tough challenge, which involves a wide range of issues in-
cluding scaling, code porting, architecture mapping, as well
as the development of science itself.
Besides, a recent work ports an ocean model, LICOM, to

the Sunway platform with a port of Kokkos performance
portable framework [36]. This work translated hotspots from
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Figure 2. A summary of recent high-resolution weather and climate modeling efforts on supercomputers: a continuous journey
towards affordable global storm-resolving modeling.

Fortran to C++, which is the prerequisite of applying Kokkos-
based parallelization. In contrast, atmosphere models has
significantly larger codebase, using Kokkos requires heavy
human efforts to translate the code. So our work employs
OpenMP offloading, which can parallelize Fortran code with
CPEs by simply adding directives.
In contrast to existing efforts, our AI-enhanced GRIST

model is, as far as we know, one of the first efforts that
try to combine a highly-scalable mixed-precision dynam-
ical core, with a machine learning(ML)-based resolution-
adaptive physics suite, for an 1km global simulation. As
shown in Fig. 2, built upon the previous GRISTwork on CPUs
(0.07 SYPD with a 5km resolution case when using 30,720
cores of Chinese EarthLab supercomputer), the AI-enhanced
GRIST has made a concrete step towards year-scale speed
for GSRM (1.35 SYPD for 3km global simulation, and 0.5
SYPD for 1km global simulation), and also has demonstrated
a clear improvement in the efficiency of converting com-
puting performance into simulation capabilities (in terms of
ratio between peak performance utilized, and the simulation
speed achieved). Our approach is innovative in three aspects:
coarse-grained strategies, multi-variable machine learning
models, and the GSRM dataset. Moreover, for the first time,
the ML-based resolution-adaptive physics suite improves
a GSRM in terms of the unified modeling capability that
can approach the fast and reasonable weather and climate
simulations across resolutions.

3 Implementation
3.1 An AI-Enhanced GRIST Model
3.1.1 Architecture of the Hybrid Model. Fig. 3 illus-
trates the architecture of the GRIST AI-hybrid model, which
comprises two primary components: the dynamical core
and the physics suite. The dynamical core operates on a
globally decomposed horizontal mesh and is numerically
resolved. The physics suite includes the conventional pa-
rameterization modules, as well as an ML-based physics
suite, which leverages multiscale interactions distilled from
global storm-resolving simulations to improve the coarse-
resolution hydrostatic-scale simulations, reduces computa-
tional demands and addresses the load balancing issues. A
detailed description about the ML physics suite is provided
in section 3.2.

3.1.2 Highly-Scalable Solver for the Dynamical Core.
TheGRIST nonhydrostaticmodel is driven by its layer-averaged
unstructured hexagonal-C grid dynamical core [41]. The
horizontal domain decomposition, facilitated by the METIS
library [16], optimizes both load balancing and scaling. A
horizontally explicit and vertically implicit approach is used
to discretely solve the nonhydrostatic compressible equation
set, requiring minimal data exchange procedures across the
horizontal computations without the need for global com-
munication. The discretization employs the staggered finite-
volumemethod, approximately second-order, leading tomod-
erate computational load for basic operators (e.g., divergence
and gradient). The dynamical core utilizes MPI+OpenMP
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Figure 3. The architecture of our AI-enhanced GRISTmodel.
programming model, which is further extended to the Sun-
way architecture (section 3.3). A mixed-precision dynamical
core (Fig. 3) has been developed to reduce the computa-
tional load, which maintains the stability and accuracy of
the original double-precision code based on a careful itera-
tive development procedure and a hierarchy of tests. This
mixed-precision dynamical core is detailed in section 3.4.

3.1.3 Parallelization Facilitation Layer. To provide a
consistent support of the solver across different degrees of
parallelism, we include a parallelization facilitation layer to
handle mapping of grids, data communication, and parallel
I/O.

To support a smooth and balanced mapping of the unstruc-
tured grid, we perform themapping through indirect address-
ing, and optimize the index sequence using the breadth-first-
search method to enhance the cache hit rate. To refine the
granularity of data exchange and minimize inter-process
communications, a linked list is utilized to gather variables
for exchange, and a single call to the communication inter-
face efficiently completes the data exchange for all listed
variables. In such a way, the model has achieved approxi-
mately 83% parallel efficiency scaling from 1920 to 30720
CPU cores. Lastly, a grouped parallel I/O strategy was de-
signed and implemented to ensure efficient data I/O across a
large number of MPI processes.

3.2 A Resolution-adaptive ML-based Physics Suite
3.2.1 Generation of TrainingData. Due to the extremely
expensive cost of 1km simulation, in our methodology de-
sign process, we utilize hourly generated 5km GRIST-GSRM
data for training and testing our ML-physics suite. To ensure
stability and high precision, experiments are conducted over
80 days, with 20 days to cover each of the four seasons, and
varying ENSO and MJO events across different cases. To mit-
igate overfitting, the testing set consists of three randomly
selected time steps per day, while the remaining time steps
are allocated for training, maintaining a training/testing ratio
of 7:1. The details of data are listed int Table 1.

Table 1. Selected time periods and climate characteristics
Time period Oceanic Niño Real-time

Index Multivariate MJO index
1-20 January 1998 2.2(El Niño) 0.69 to 1.98
1-20 April 2005 0.4(neutral) 2.72 to 3.71
10-29 July 2015 -0.4(neutral) 0.17 to 1.05

1-20 October 1988 -1.5(La Niña) 0.67 to 2.98
3.2.2 Selection of Physical Tendency Outputs. Before
training the ML-physics suite, it is crucial to carefully se-
lect the coarse graining method and output variables for
the parameterization. We introduces a novel approach by
using residual calculations to derive Q1 and Q2 as outputs
for our ML-based parameterization physics suite, replacing
traditional methods for calculating all temperature and hu-
midity tendencies caused by physical processes. Zhang et
al. [43] have indicated that Q1 and Q2 calculated from coarse-
grained 5km GRIST-GSRM data using the residual method
are essentially compatible to theory. This provides signifi-
cant potential for our resolution-adaptive physics package.
Our experiments demonstrate that the ML-based physics
suite trained with 30km coarse-grained data perform well
not only at G8 (Table 2) resolution but also at G6 (Table 2)
resolution.

3.2.3 Configuration of the ML-based Physics Suite.
While Q1 and Q2 can replace the sum tendencies of all phys-
ical processes, to ensure the stable and efficient operation
of the model, it is necessary to additionally predict some
of the diagnostic processes within the physical parameter-
izations. Through several trials, we find that the radiation
diagnostic scheme has the most significant impact on both
model stability and operational efficiency. Therefore, we sep-
arately construct the tendencies of all physical processes (ML
physical tendency module) and the radiation diagnostics (ML
radiation diagnostic module) to enhance the stability, accu-
racy, and efficiency of the machine learning physics suite.
The structure of the ML tendency module is shown in

Fig. 3, which employs one-dimensional convolutional layers
to capture the vertical characteristics of temperature, hu-
midity, and other atmospheric variables during events such
as convection and atmospheric instability. With the incor-
poration of residual connections, this structure is proven
to be stable and accurate [12]. To balance computational
efficiency with performance, the module incorporates five
ResUnits, culminating in an 11-layer deep Convolutional
Neural Network (CNN) with a parameter count close to half
a million.
For the ML radiation diagnosis module, we additionally

train a deep neural network to compute surface downward
shortwave radiation (gsw) and longwave radiation (glw),
which are provided to the land surface model and surface
layer scheme. In order to mimic the radiation process, we
add skin temperature (tskin) and cosine of solar zenith angle
(coszr) as inputs to provide physical features of the model
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top insolation and surface state [33]. This can improve the
stability of ML radiation diagnostic module coupled with
physical diagnosis modules. Because the radiation diagnostic
variables are only scalars for the model surface, we introduce
a 7-layer Multilayer Perceptron (MLP) with residual connec-
tions to process one-dimensional vector computation. It can
significantly improve computational efficiency by replacing
conventional radiative transfer calculations with continuous
matrix multiplication.

3.2.4 Coupling the ML-based Physics Suite with the
Dynamical Core. The online coupling process involves
computing the dynamical core and passing input variables (U,
V, T, Q, P, tskin, coszr) from the physics-dynamics coupling
interface of GRIST model to our trained ML-physics suite,
which includes an ML physical tendency module, an ML
radiation diagnostic module, and a conventional physics di-
agnostic module. They together form the new model physics
suite, which returns full physical tendencies and diagnos-
tic variables back to the physics-dynamics coupling inter-
face of GRIST for the next-step dynamical core integration.
Compared to the conventional physics suite, the ML-physics
suite offers significant computational advantages: it features
a simplified, unified computational pattern (primarily matrix
multiplication), reduced code complexity, ease of optimiza-
tion, and greater flexibility for adaptation across different
architectures.

3.3 A Generalized Programming Model for Sunway
Architecture

Our work is based on the next-generation Sunway super-
computer that succeeds TaihuLight [8]. To address the huge
amount of efforts required for porting and tuning the various
kernels of the 272,000 lines of code in GRIST, we develop a
generalized programmingmodel for the upgraded SW26010P
processor. One advantage of SW26010P, as compared with
SW26010 in TaihuLight, is that we have a 256KB local device
memory (LDM), half of which can be configured as a one-
level 4-way group associated cache (LDCache), and resolves
the issues of writing manual DMA instructions in previous
SW26010 cases.

In contrast to SW26010, the computing power of SW26010P
is also increased from 4 core groups (CGs) to 6 CGs, each
of which still consists of one management processing ele-
ment (MPE) and 64 computing processing elements (CPEs)
organized as an 8×8 array, in total 390 cores per processor.
Each CG has a DDR4 shared main memory of 16 GB with a
bandwidth of 51.2 GB/s.
Previously, SW26010 and SW26010P faced compatibility

issues due to their distinct architectures. However, in this
work, we try to achieve a balance between performance
and portability. To maintain the generalized MPI+OpenMP
programming model in the GRIST model, we have developed
SWGOMP, a compatibility layer for OpenMP applications

!$omp target !Just add this
!$omp parallel private(ie,v1,v2,ilev)
!$omp do

do ie = 1, mesh%ne
v1 = mesh%edt_v(1, ie)
v2 = mesh%edt_v(2, ie)
do ilev = 1, nlev

tend_grad_ke_at_edge_full_level(ilev,ie) = &
-edt_edpNr_edtTg(ie)*(kinetic_energy(ilev,v2) &
-kinetic_energy(ilev,v1))/(rearth*edt_leng(ie))

end do
end do

!$omp end do nowait
!$omp end parallel
!$omp end target !and this, and enjoy CPEs

!$omp target parallel workshare !or for fortran arrayop
kinetic_energy(:,:) = 0
!$omp end target parallel workshare

Figure 4. An example of swgomp usage. In parallel region,
loops can be distributed to CPEs via !$omp do, and array
operations can be distributed via !$omp workshare.
running on Sunway architecture. SWGOMP is compatible
with the OpenMP 4.5 specification and includes a backport
of the unified shared memory feature from OpenMP 5.0,
aligning with the shared main memory configuration of
SW26010P.

3.3.1 Implementation of OpenMP Offload. SWGOMP
is developed as a compiler-plugin-based tool, enabling the
adoption of code parallelized in the OpenMP Offloading
scheme. Also, non-Offloaded code in OpenMP can be easily
ported to CPEs by simply adding !$omp target directive
and leveraging the unified shared main memory feature to
eliminate the need for data copy directives. An example is
shown in Fig. 4.

To align with the “teams parallel" scheme of OpenMP Of-
fload, we have developed a flexible thread launching scheme
built on top of the Athread library, as shown in Fig. 5. The
job server exhibits a high flexibility, allowing new tasks to be
assigned to CPE by either the MPE or another CPE. The job
server is initialized by MPE using the Athread library. The
MPE spawns team-head threads via the job server to execute
target portions. These team-head CPEs have the capability
to spawn threads on other CPEs within the team to execute
parallel code pieces.

3.3.2 Enabling LDM and DMA Usage via omnicopy.
The current design of SW26010P memory hierarchy leaves
half of the 256KB LDM as cache, the other half as user-
programmable buffer to facilitate fine-grained optimizations.
While such fine-grained tuning brings significant perfor-
mance benefits in certain cases, it violates our target to keep
a generalized OpenMP model, and reduces the scope of the
code that our work could cover. Therefore, to further uti-
lize the rest 128KB LDM, we use the device clause to enable
functions to allocate their stack and private variables in LDM,
and implement a cross-platform omnicopy function as a re-
placement for memcpy. This function can determine whether
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Figure 5. The job spawning hierarchy of SWGOMP. Job
servers are initiated on CPEs through the Athread library.
MPE can launch target portions on team head CPEs via
the job server, while team head CPEs can further distribute
parallel tasks to team members via the job server.
data transfer occurs between main memory and LDM, uti-
lizing DMA automatically when feasible. On non-Sunway
platforms, omnicopy functions identically to memcpy, ensur-
ing compatibility of the optimized code with other platforms.

3.3.3 Memory Address Distribution for LDCache. We
have noted a significant performance decline in specific
OpenMP parallelized kernels, attributed to elevated LDCache
miss ratios in some specific processes. Investigation revealed
that many of these kernels access more than four arrays
within a single loop, surpassing the number of LDCache
ways. Arrays, when well-aligned to a size larger than one
cache way and accessed with similar indices, are mapped to
the same cache lane, leading to cache thrashing, as depicted
in Fig. 6(a). To address this issue, we have implemented a
memory-address-distributor enabled pool-based memory al-
locator to replace the original malloc function. This allocator
ensures that the starting addresses of arrays are uniformly
distributed across cache lanes, thus improving cache perfor-
mance, as illustrated in Fig. 6(b).

3.3.4 Applying OpenMP Offload in GRIST. GRIST uses
finite volume scheme in dynamics core and column model
in physics scheme. Most of loops are conflict-free, so adding
directives like Figure 4 is enough for the parallelization on
CPEs. Loops with a symmetric update on a vertice and its
neighbor are split into a edges-from-vertices loop and an
vertices-from-edges loop. For loops identified with cache
thrashing, we copy a number of variables onto CPE stack
with omnicopy function until the cache thrashing is elimi-
nated.

3.4 Optimization with Mixed Precision Computing
With amaximumof 4 times performance benefits on SW26010P
processors, mixed-precision computing is another approach
to close the gap towards year-scale simulation speed when
performing 1km global simulation.
Traditionally, weather and climate models make use of

double-precision (64-bit) floating-point arithmetic. Convert-
ing them to single-precision (32-bit) arithmetic offers a promis-
ing avenue for improving computational efficiency. However,
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(a) Without distribution, arrays
accessed with similar indices
may be mapped into the same
cache lane. If the number of
arrays exceeds the number of
cache ways, at least one array
will be swapped out. However,
it will be accessed again soon,
leading to cache thrashing.
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array data in the cache. Dur-
ing loops, the mapped cache ad-
dresses move along with the
loop index increase, thereby re-
ducing the risk of cache thrash-
ing.

Figure 6. LDCache mapping with and without address dis-
tribution.
using single precision for all calculations in our model leads
to unacceptable loss of accuracy. Since exploiting a mixed-
precision scheme for ML-based parameterizations is straight-
forward at the operator level due to the model’s compact
design (refer to Section 3.2 for details), we focus on reducing
variable precision within the dynamical core, which accounts
for approximately 60% to 80% of the total runtime in high-
resolution scenarios.

3.4.1 Overall evaluation metric. To investigate the del-
icate balance between precision and performance, we des-
ignate surface pressure (𝑝𝑠) and relative vorticity (𝑣𝑜𝑟 ) as
pivotal observation points for tracking deviations within the
mass and velocity fields, which serve as indicators of the
overall status and the regional dynamics respectively. Subse-
quently, we gauge error discrepancies resulting from varied
precisions using the relative 𝐿2 norm. This metric harmo-
nizes with existing convergence criteria within the model,
streamlining the process of comparing precision reductions
effectively.

For accuracy evaluation, we use the original double-precision
outcomes as the gold standard. Through experiments, we
establish a 5% error threshold to ensure the dynamical core’s
reliability during extended simulations in this investigation.

3.4.2 Identification of Insensitive Variables. We eval-
uate all six prognostic equations (Fig. 3) in the GRIST dy-
namical core and identify viable single-precision or mixed-
precision terms. This process reveals that terms associated
with pressure gradient and gravity exhibit notable precision
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sensitivity. Most advective terms utilized in high-order oper-
ators demonstrate precision insensitivity, yet they contribute
significantly to computational load. Reducing their precision
results in substantial speedup for the dynamical core. The
passive tracer transport equation (depicted at the bottom of
the left panel in Fig. 3) encompasses six prognostic variables.
This equation can be computed almost entirely using lower
precision. The sole exception is the mass flux 𝛿𝜋𝑉 , which is
accumulated from the dry mass equation (illustrated at the
top of the left panel in Fig. 3) and requires double precision
information. We have performed a hierarchy of tests ranging
from idealized tropical cyclone, supercell, baroclinic waves
to real-world long-term climate simulations and GSRM sim-
ulations. The stability and accuracy of the mixed-precision
code remain robust in all the tests.

3.4.3 Implementation of Mixed-Precision Schemes.
We employ a custom Fortran type, designated as ns, to effi-
ciently manage precision switching for insensitive variables.
When ns is configured to lower precision, the code seam-
lessly conducts mixed-precision computations; otherwise, it
executes the original code unchanged in double precision.
To ensure a smooth transition to mixed precision with

minimal alterations to the code structure, only the solver sub-
routines undergo modification, while the model initialization
remains in double-precision. Moreover, if the solver necessi-
tates single-precision operands, double-precision variables
are converted to single precision after initialization. Exploit-
ing on-the-fly precision conversion alongside, SWGOMP
entails no additional modifications, and further reduces the
memory footprint on the Sunway platform.

4 Evaluation
4.1 Hardware Platform Details
Our performance evaluations have been conducted on the
next-generation Sunway supercomputer [18] that succeeds
TaihuLight. The next-generation Sunway supercomputer has
more than 107,520 nodes. Each node has one SW26010P 390-
core CPU, resulting in a parallel scale of 41,932,800 cores. In
addition, each node in the next-generation supercomputer
has a dedicated network connection to a leaf switch with
304 ports. Of these, 256 ports are connected to nodes, and
48 are connected to secondary switches. Each 256-processor
node group connected to the same leaf switch forms a super
node, which enables high-speed communication bandwidth
across CPUs. All supernodes are connected through a 16:3
(256:48) oversubscribed multilayer fat tree network. In our
evaluation, we assign one process per CG, with the MPE
offloading its computation tasks to the CPEs within the same
CG.

Table 2. Configuration of our grids and timesteps

Label Resolution Layers Timestep Number of
(km) Dyn Trac Phy Rad Cells Edges Vertices

G12 1.47~1.92 30 4 30 60 180 167M 503M 336M
G11W 2.94~3.83 30 4 30 60 180 41.9M 126M 83.9M
G11S 2.94~3.83 30 8 60 120 360 41.9M 126M 83.9M
G10 5.87~7.66 30 4 30 60 180 10.5M 31.5M 21.0M
G9 10.6~14.6 30 4 30 60 180 2.62M 7.86M 5.24M
G8 21.7~28.4 30 4 30 60 180 655K 1.97M 1.31M
G6 92.5~113. 30 4 30 60 180 41.0K 123K 81.9K

4.2 Configuration of Modeling Experiments
With successful G12 (30 Layers) scientific simulations using
the conventional physics suite, we have evaluated GRIST un-
der different grids and scheme combinations. The grid and
timestep configurations of our experiments are shown in
TABLE 2. Here G11 has two timestep configurations: G11W
is for evaluating weak scalability, it uses the same timestep
as G12, and G11S is used to test strong scalability with its
largest possible timestep. The configurations mainly vary
in different precisions of the dynamical core and physical
schemes, which are shown in TABLE 3. For weak scaling
tests, we use the same timestep configuration as the G12L30
case to keep the computational cost only related to the num-
ber of grids.

Table 3. Configuration of our schemes
Label Dycore Physics

DP-PHY double precision Conventional
DP-ML double precision ML-physics

MIX-PHY mixed precision Conventional
MIX-ML mixed precision ML-physics

4.3 Major Performance Metrics
In terms of timing, the performance is measured using the av-
erage time recorded by running the same case for three times.
For the climate modeling scenario, the simulation speed that
we can achieve is obviously a more important metrics to con-
sider. For most performance results, we describe the speed
of simulation using SDPD (simulated-days-per-day). Note
that, these metrics need to be evaluated jointly with the
corresponding resolution configurations.

4.4 High-Resolution Simulations Using 1km GRIST
The highest resolution of the GRIST model is configured to
icosahedral Grid level 12 (G12, 1.47 to 1.92 km). Prescribed
sea surface temperature and sea ice concentration data and
an active land surface model [22] have been coupled to the
atmosphere model. The atmosphere and land initial field
data are taken from ERA5 [14]. The model top is kept the
same in all setup (2.25 hPa; ∼40 km).
To demonstrate that the model configuration works rea-

sonably, we select a “23.7” extreme rainfall case over North
China in 2023. Super Typhoon Doksuri moved northward
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Figure 7. Super Typhoon Doksuri and the “23.7” extreme rainfall event over North China. The left panel shows the mean
rainfall rate (mm/day) during UTC00, 29th-UTC00,30th, July, 2023, for CMPA, G11L60 and G12L30, the right panel shows the
cloud top temperature (unit: K).

and weakened the influence of low pressure, and an ex-
tremely rare heavy rainstorm weather process occured over
North China. We ran two GRIST-GSRM simulations, G11L60
(G11, 2.94 to 3.83 km, 60 vertical layers) and G12L30 (G12,
30 vertical layers). Horizontal resolution is vital to this simu-
lation. As shown in Fig. 7, compared with G11L60, G12L30
better simulates the Typhoon rain band, and the extreme
rainfall magnitude over North China, closer to that in the
CMPA observational data, as quantified by G12L30’s higher
spatial correlation coefficients.

4.5 Evaluation of the ML-based Physics Suite
For the ML-based parameterization, limited to the computa-
tional resource, we firstly derive from the 5km GRIST model-
ing results (using conventional physics) to produce a coarse-
grained 30km modeling data. We obtain the functional re-
lationship between dynamical inputs and Q1, Q2. While we
plan to feed more training data at different resolutions in the
future to further improve the performance of the AI part, the
workflow of the AI-enhanced GRIST model remain consis-
tent across all resolutions. Therefore, even though the lack
of high-resolution input might impair the modeling accuracy
in 3km or 1km cases, the computational performance and
efficiency of the ML-based physics suite would be valid in
our scaling tests.
Physically, the currently trained ML-physics suite is in

principle only justified for modeling at similar horizontal
resolutions (e.g., G8; Table 2). Experiments indicate that it
also works for lower resolutions (e.g., G6; Table 2), probably
because a 30km grid serves as a sub-grid to a 120km grid.
Fig. 8 shows the annual mean precipitation rate over United
States from one-year climate simulation. The AI-enhanced
GRIST also demonstrate stable runs for at least 10 years. Both
G6 and G8 with the ML-based physics suite generates the

mm/day

mm/day

G12-PHY G12-ML 

G6-PHY 

G8-PHY 

G6-ML 

G8-ML 

(a) (b)

(c)

(e)

(d)

(f)

Figure 8. (a) (b) predicted rainfall rate during 3-hour in-
tegration simulated by GRIST with the conventional and
ML-based parameterization; (c)(d) one-year annual mean
rainfall rate (mm/day) over North America simulated by
G6 with conventional and ML-based parameterization; (e)(f)
same as (c)(d) but for the G8 model resolution.
observed rainfall band well. GRIST with the conventional
physics suite can only simulate this rainfall band at G8.While
using the present ML suite is theoretically problematic for
resolutions higher than 30 km, we attempt to perform G12 ( 1
km) experiments , and obtain reasonable short-term (3-hour)
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weather simulations (Fig. 8). We anticipate that further train-
ing based on GRIST results of a varied set of resolutions will
produce a more physically accurate and resolution-adaptive
ML-based parameterization suite.

4.6 Accelerations of Major Kernels Over Multiple
CPEs
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Figure 9. Performance improvements on CPEs for major
kernels, DP and MIX represents double precision and mixed
precision, DST means the adoption of the memory address
distribution strategy.

We have evaluated the acceleration of major kernels over
64 CPEs wthin a CG, under G6 grid with DP-PHY and MIX-
PHY configurations in one node, with results shown in Fig. 9.
Kernels such as tracer_transport_hori_flux_limiter and
compute_rrr feature mixed precision optimization and in-
volve a large number of arrays, showcasing clear speedup
with mixed precision and address distribution on CPEs. On
the other hand, primal_normal_flux_edge involves numer-
ous division, power, and other computationally expensive
calculations, resulting in significant mixed precision speedup.
However, calc_coriolis_term, lacking mixed precision opti-
mization and accessing relatively few arrays, derivesminimal
benefit from mixed-precision and memory address distribu-
tion.
A notable observation is that mixed precision typically

does not yield significant speedup on the MPE side but pro-
vides notable speedup on CPE-parallelized kernels. Consider-
ing that the Sunway architecture generally does not exhibit
higher calculation performance in single precision compared
to double precision, except for division and elemental func-
tions, we can infer from the results that the MPE code is
computation-bound. On CPEs, mixed precision code demon-
strates better speedup. One possible reason is that CPE code
appears to be constrained by memory bandwidth, and mixed
precision reduces data size, conserving memory bandwidth
and increasing cache hit ratio.
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Figure 10. Weak scaling results of the model. Our weak
scaling test starts from 128 processes (corresponding to 128
CGs, and 8,320 cores), and scales till 524,288 processes (cor-
responding to 524,288 CGs, and 34,078,720 cores).
4.7 Weak Scaling
The weak scaling is evaluated under mixed precision, and the
results are shown in Fig. 10. All grids use the same timestep
settings as G12. Taking 128 core groups running G6 test case
as a baseline, all test cases has almost the same number of
vertices per core group. Thus, the weak scaling efficiency is
calculated by (1):

𝑒 𝑓 𝑓𝑤𝑒𝑎𝑘 (𝑁 ) = 𝑃𝑁

𝑃128
(1)

Where 𝑃𝑛 is the time-to-solution (SDPD) at 𝑛 processes. The
proportion of communication time rises from 19% to 37% as
the number of processes increases. This increase is attributed
to both the growing number of communicating processes
and the computational load unbalance distributed among
them. We observe a clear drop of scalability a the scale of
32,768 CGs, possibly due to bandwidth oversubscription in
the fat-tree network topology.
Additionally, we observe that the AI-enhanced model

(MIX-ML) outperforms the one with conventional parameter-
izations (MIX-PHY). This does not necessarily imply that the
AI-enhanced version reduces computational workload. In-
stead, we expect learning-based model to exhibit better com-
putation efficiency due to improved memory access patterns
and computation vectorization. For instance, ML diagnosed
surface radiation requires approximately twice the number
of FLOPS operations compared to RRTMG. However, it can
achieve peak FLOPS ranging from 74% to 84% during com-
putation, a significant improvement over the 6% in RRTMG,
resulting in a substantial improvement of modeling speed.

4.8 Strong Scaling
We have evaluated all configurations of the G12 (1.47~1.92
km) and the MIX-ML configuration of G11S (2.93~3.83 km)
for strong scaling, with the number of processes ranging
from 32,768 to 524,288. The former value is the minimal
number process that can run a G12 test case and the latter
value is the largest integral power of 2 less than the total
CG number of the next-generation Sunway supercomputer.
Since the total workload is fixed, the strong scaling efficiency
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Figure 11. Strong scaling results of the model. Our strong
scaling test starts from 32,768 processes (corresponding to
32,768 CGs, and 2,129,920 cores), and scales till 524,288 pro-
cesses (corresponding to 524,288 CGs, and 34,078,720 cores).
is evaluated as (2):

𝑒 𝑓 𝑓𝑠𝑡𝑟𝑜𝑛𝑔 (𝑁 ) =
𝑃𝑁
𝑁

𝑃32768
32768

(2)

Where 𝑃𝑛 is the time-to-solution (SDPD) at 𝑛 processes. The
strong scaling results are shown in Fig. 11. In the G12 cases,
we have observed a continuous decrease in scalabing effi-
ciency, although the rate of decline decreases over time. This
trend can be attributed to the drop of cache hit ratio as the
number of processes increases significantly. The G11S grid
test demonstrates a marginal increase in computation speed
as the number of CGs increases from 131,072 to 262,144. It
is worth noting that 131,072 CGs may represent the first
plateau in cache hit ratio. However, when the CG count
reaches 524,288, the LDCache demonstrates the potential to
accommodate several arrays, resulting in another increment
in computation efficiency. Ultimately, we achieved a perfor-
mance of 491 SDPD for the G11S grid and 181 SDPD (around
half year per day) for the G12 grid with 524,288 processes.

5 Conclusion
This paper reports our efforts towards 1km global seamless
weather and climate model, which is a common goal that
the weather and climate community have been exploring
throughout the recent decade.

Facing the enormous computing cost of 1km global simu-
lation, we manage to (1) achieve a highly-scalable version
of GRIST that can eventually utilize the 34 million cores of
the next-generation Sunway Supercomputer; (2) employ AI
to achieve more efficient description of the physical parame-
terizations for different resolutions; (3) derive an OpenMP-
compatible programming model, which can map almost all
compute kernels to 64 CPEs in a CG, with no extra code
needed from the original OpenMP directives; (4) perform
effective mixed-precision optimization to further improve
the computing speed of the dynamical core part.

With all the above efforts combined, our AI-enhanced
GRIST model can finally perform 1km global simulation with
an unprecedented speed of 0.5 SYPD, touching the bar of
one SYPD and opening the potential chances of performing
practical seamless weather and climate studies. Such a model
also facilitates us to try performing 1km simulation for ex-
treme weather events, such as the super Typhoon Doksuri.
One potential finding from such extreme-scale experiments
is that the increase of horizontal resolutions seem to be far
more important than the increase of vertical levels (as shown
in Fig. 7).
Another important progress that we have made is an AI-

enhanced GRIST model that takes a hybrid approach to con-
cretely fuse numerical schemes and data-driven machine
learning schemes. Besides the competitive performance in
both short-term high-resolution simulation and long-term
climate simulation provided by the hybridmodel, the resolution-
adaptive ML-based parameterization has also demonstrated
its scalability and stability across multiple scales, from G6
(92 to 113 km) to G12 (1.47 to 1.92 km). This success not only
proves the large-scale applicability of AI in scientific con-
texts but also opens new pathways for innovative modeling
techniques of unified weather-climate modeling in terms of
accuracy and speed. As AI continues to evolve, its role in
shaping the future of earth system modeling would grow
steadily.
The last point we make here is the importance of tools.

The prosperity of AI-related research in the recent decade is
a typical example, showing that the open-source and flexible
deep learning frameworks and data ecosystem play an key
role in expanding the scope and population of AI. In contrast,
climate modeling, which is both a science and an engineering
domain, requires even better tools. In our work, SWGOMP
enables a feasible porting of GRIST to a new supercomputer,
thus expanding its resolution and speed to an unprecedented
level, and incurring interesting research projects to follow. In
the near future, we expect that software tools that facilitate
extreme-scale simulation, large-scale data-driven learning,
and their fusion would be the key to the next generation
weather and climate modeling systems.
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Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

A Overview of Contributions and Artifacts
A.1 Paper’s Main Contributions

𝐶1 An OpenMP based programming model support Sun-
way many-core heterogeneous systems, which facili-
tates automated porting, thereby maximizing compu-
tational efficiency and scalability.

𝐶2 We employ mixed-precision computing to address the
memory bottleneck and improve the computing speed
of the dynamical core part.

𝐶3 We integrate an AI-enhanced physics suite to achieve
more efficient description of the physical parameteri-
zations for different resolutions

A.2 Computational Artifacts

Contributions Related Supported
Paper Elements

𝐶1 Figure 9
Figure 10
Figure 11

𝐶2 Figure 9
Figure 10
Figure 11

𝐶3 Figure 9
Figure 10
Figure 11

B Artifact Identification
B.1 Computational Artifact 𝐴1

Relation To Contributions
In our work, we optimize a global storm resolving model,
Global-Regional Integrated Forecast System (GRIST), for
the next-generation Sunway supercomputer, incorporating
an ML-enhanced physics suite, OpenMP-based paralleliza-
tion for SW26010P heterogeneous architecture, and mixed-
precision code optimizations to improve both efficiency and
performance portability. This appendix includes experimen-
tal setups and step-by-step instructions to replicate the find-
ings of the paper.

Expected Results
The artifact will provide instructions for running GRIST
model on the Sunway System. The experiments with 128
processes(18 nodes) at 100km resolution yield results consis-
tent with Figure 9. The experiments with configuration in
Table 1 yield results consistent with Figure 10 and Figure 11.

These experiments demonstrate the feasibility of success-
fully executing GRIST model on the Sunway system, sup-
porting the claims made in this paper’s C1, C2 and C3.

Expected Reproduction Time (in Minutes)
This artifact is compiled using Makefile, which encompass
compilation information for various configuration. The com-
pilation time does not exceed 5 minutes.
During the Artifact Execution phase, the execution time

for running GRIST depends on the simulation time.
For experiments at high resolution, the increased data

volume results in longer processing times. We recommend
simulating approximately 3 days, which may take between
3 to 20 minutes depending on the resolution.
GRIST outputs simulation times during execution. You

can intuitively observe the computation speed in the output
files. This step is expected to take approximately 2 minutes.

Artifact Setup (incl. Inputs)
Hardware. Our experiments are mainly tested on the next-
generation Sunway supercomputer. Computation resources
for next-generation Sunway supercomputer are not currently
publically available, but it is expected to be available after
release. The information about the Sunway supercomputer
is as follows:

Software. There are two kinds of software in our experi-
ments:

1. GRIST: which is a original version on Sunway. It can
run directly on SW processors.
URL:
https://github.com/Xu-Kai/SW-GRIST

2. GRIST-OPT: which is an optimized versionwithmixed-
precision and AI-enhanced physics suite:
URL:
https://github.com/Xu-Kai/SW-GRIST

The artifact’s source code includes the naive version and
optimized version on Sunway. Below, we list the software
environments on Sunway as a reference.

New Sunway System
• Compiler:
– GNU Fortran (GCC) 7.1.0 20170502
– swgcc (GCC) 7.1.0 20170502

• MPI:MPICH version 3.2b2
• NetCDF: netCDF 4.9.2
• OpenMP: SWGOMP 0.2.0

Datasets / Inputs. The 100km (G6) data and the weight
of AI-enhanced physics suite along with its corresponding
parameter files, are available for download on
https://github.com/Xu-Kai/SW-GRIST

Please contact xukai16@foxmail.com to access other data.
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Installation and Deployment. The required libraries for
compiling or running on Sunway have been listed in the
software section above. The project already contains config-
uration schemes for multiple versions. To compile and run
the program on Sunway platform, navigate to the file which
path is SW-GRIST/GRIST/bld and SW-GRIST/GRIST-OPT/bld.
The steps are listed as below:

1. Pull the source code from the repository
https://github.com/Xu-Kai/SW-GRIST

2. Before building, you can use:
make clean

to clean up the previous compilation and recompile
the source code of software.

3. Build MPE double-precision(MPE-DP) version:
cd GRIST
sh build-mpe-dp.sh

4. Build MPE mixed-precision(MPE-MIXED) version:
cd GRIST
sh build-mpe-mixed.sh

5. Build CPE double-precision(CPE-DP) version:
cd GRIST-OPT
sh build-cpe-dp.sh

6. Build CPE mixed-precision(CPE-MIXED) version:
cd GRIST-OPT
sh build-cpe-mixed.sh

Artifact Execution
After executing the build command, the executable file of the
program ParGRIST-GCM_AMIPW* will be generated. Then
you can cd demo-g6-aqua to run the program. There are run-
*.sh for different versions of GRIST. For example, you can
execute "sh run-cpe-mixed.sh" to run CPE mixed-precision
verison with AI-enhanced physics suite. For more detailed
execution instructions, please refer to

https://github.com/Xu-Kai/SW-GRIST

Artifact Analysis (incl. Outputs)
The performance will be written by GRIST in the console
and log file named “grist-*.log”. The default output files will
be placed in demo-g6-aqua. Through these output files, you
can obtain the runtime of this task and many kernels. In our
experiments, we chose Simulation Year Per Day(SYPD) as
the performance measure.

Artifact Evaluation (AE)

The overall process of this artifact can refer to the steps
provided in the AD. For AE, we recommend conducting it
on New Sunway System to compare with the data provided
in the paper. Next, we will provide a detailed introduction
on how to run this artifact on these two supercomputers.

B.1 Computational Artifact 𝐴1

Artifact Setup (incl. Inputs)
You can use this command to obtain the artifact’s source
code:

git clone https://github.com/Xu-Kai/SW-GRIST.git
In the following text, we will use "GRIST" to represent the

root directory of the artifact.
The software environment and compilation options for

the system have already been prepared in the
GRIST/bld/build*.sh and GRIST-OPT/bld/build*.sh. You only
need to execute the shell scripts to build the application.

Artifact Execution
After the build command complete the compilation of the
application, AE reviewers can submit the job to New Sun-
way System. In the directory GRIST/demo-g6-aqua, there
are run-*.sh to run different versions of GRIST. Upon exe-
cution of the command, the job will be dispatched to the
System with the application’s output in current directory. If
reviewers want to run high resolution data, please contact
xukai16@foxmail.com to prepare the data. The duration of
the application’s execution, ranging from 3 to 20 minutes, is
contingent upon the resolution and the number of processes
on the platform.

Artifact Analysis (incl. Outputs)
The default output fileswill be stored in the directoryGRIST/demo-
g6-aqua. Through the output files, you can obtain the runtime
of this task and the corresponding SYPD (Simulation Year
Per Day).

The 100km(G6) experiment results from the runs on New
Sunway platform should be close to the Figure 9 in the paper,
indicating that the work presented in this article can fully
utilize Sunway heterogeneous computing resources and has
achieved an acceleration ratio of about 20-70x compared to
MPE double-precesion version for major kernels.
For weak scaling, we take the number of the process 128

for 100km(G6) resolution. When the resolution is increased
by factor of 2, we scale the number of processes by a factor
of 4. The performance result of weak scaling in Figure 10
can be measured with the configuration in Table 1.

For strong scaling, the resolutions of 1km(G12) and 3km(G11)
are used to evaluate the results. We start from 32768 pro-
cesses and scale up to 524288 processes which run on near
full Next Generation Sunway Supercomputer.The result for
strong scaling is shown in Figure 11.
The results of weak scaling and strong scaling indicates

that the work presented in this article can fully utilize the
heterogeneous computing resources on the Sunway platform,
and has demonstrated a high degree of scalability.
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