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Abstract: Graph databases have gained widespread adoption in various industries and have been utilized in a

range  of  applications,  including  financial  risk  assessment,  commodity  recommendation,  and  data  lineage

tracking. While the principles and design of these databases have been the subject of some investigation, there

remains  a  lack  of  comprehensive  examination  of  aspects  such  as  storage  layout,  query  language,  and

deployment.  The  present  study  focuses  on  the  design  and  implementation  of  graph  storage  layout,  with  a

particular emphasis on tree-structured key-value stores. We also examine different design choices in the graph

storage layer and present our findings through the development of TuGraph, a highly efficient single-machine

graph  database  that  significantly  outperforms  well-known  Graph  DataBase  Management  System  (GDBMS).

Additionally,  TuGraph  demonstrates  superior  performance  in  the  Linked  Data  Benchmark  Council  (LDBC)

Social Network Benchmark (SNB) interactive benchmark.

Key words:  graph database; high-performance; graph storage

1　Introduction

Graph  Database  Management  System  (GDBMS)  has
been  widely  used  in  the  industry.  Typical  scenarios
include  financial  risk  assessment,  Anti-Money-
Laundering  (AML),  social  network  analysis,
commodity  recommendation,  and  epidemic  spreading
analysis.

Although  GDBMSs  share  many  features  with

relational DBMSs, the workloads they serve are largely
different.  For  example,  typical  graph  queries  involve
multiple  hops,  requiring  operations  on  multiple  vertex
types  and  multiple  edge  types,  while  relational
database  queries  rarely  touch  more  than  two  tables.
Multi-hop  graph  queries  usually  read  much  more  data
than  relational  queries.  For  example,  on  a  graph  with
an average degree of ten, a 3-hop query will read 1000
edges on average. Besides, the irregular access patterns
of  graph  queries  bring  extra  challenges  (detailed  in
Section  2.2).  The  distinction  of  workloads  requires
different system designs. More specifically, the storage
layer  of  GDBMSs  needs  to  be  carefully  designed  to
suit its unique access pattern.

Key-value  stores  have  been  used  as  the  underlying
storage engine for most database systems. As a layer of
abstraction,  they  typically  provide  concurrent
read/scan/write/update  operations  on  key-values,  with
certain  transaction  guarantees.  Building  on  top  of  the
key-value  layer,  database  system  designers  can  then
focus  more  on  providing  the  right  abstraction  of  data,
without  worrying  about  the  persistence  of  the  data.
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Tree-structured  key-value  stores  are  most  commonly
used  in  DBMSs  due  to  their  maturity  and  the
availability of a sorting order of the keys.

Many  GDBMSs  have  been  built,  especially  in  the
past  two  decades.  However,  the  design  of  GDBMS
storage  has  not  been  thoroughly  investigated  in  the
literature.  This  paper  discusses  the  design  choices  of
GDBMS storage, with special focus on building on top
of  tree-structured  key-value  stores.  We  start  by
analyzing the common access patterns in graph queries
and  the  requirements  for  the  underlying  key-value
store, then we compare two commonly used tree-based
key-value stores, namely RocksDB and LMDB, to see
which one fits  better  for  our GDBMS, and finally,  we
discuss  the  design  choices  when  building  a  graph
storage  layer  on  top  of  the  key-value  store.  We
implement  our  ideas  on  a  graph  database  called
TuGraph.  The  experimental  results  show  that  our
design  achieves  great  performance  on  micro-
benchmarks,  and  state-of-the-art  performance  on  the
Linked  Data  Benchmark  Council  (LDBC)  Social
Network Benchmark (SNB) interactive benchmark.

The main contribution of this paper involves:
●  Analysis  of  common  access  patterns  of  graph

queries and the requirements of the storage layer.
●  Investigation  of  key  design  choices  of  a  graph

storage layer on top of tree-structured key-value stores.
● Implementation of our ideas on LMDB that shows

good  performance  on  both  micro-  and  macro-
benchmarks.

The rest of the paper is organized as follows. Section
2  introduces  the  background  of  our  work  and  the
common access patterns of  graph databases.  Section 3
discusses important design choices of the graph storage
layer. Then, Section 4 evaluates the performance of our
graph  storage.  In  Section  5  we  discuss  related  works.
Finally, Section 6 concludes this research and identifies
future research directions.

2　Data Model and Access Patterns

In  this  section,  we  first  introduce  the  data  model  we
used,  namely  the  property  graph  model.  Then,  we
summarize  the  common  access  patterns  of  graph
queries  and  analyze  the  challenges  they  present  for
graph databases.

2.1　Property graph model

There  are  two  main  data  models  for  graph  databases:
the Resource Description Framework (RDF) model and

the  property  graph  model.  The  RDF  model  represents
data  as  subject-predicate-object  triples.  The  property
graph  model,  on  the  other  hand,  follows  an  object-
oriented  approach  and  represents  entities  as  vertices
and  relationships  between  entities  as  edges,  with  both
vertices and edges able to have properties. Through our
survey,  finding  that  RDF  model  is  used  in  semantic
scenario,  while  property  graph  model  is  used  across
many  areas.  Many  GDBMSs  use  the  property  graph
model,  such  as  Neo4j,  TigerGraph,  and  GeaBase[1−3].
Therefore, we choose property graph model as our data
model.

An  example  of  a  property  graph  is  shown in Fig. 1,
which  represents  a  money  transfer  between  two
accounts  as  vertices  labeled “Account” and  an  edge
labeled “Transfer” connecting  the  two  vertices.  The
schema  for  each  edge  can  also  have  optional
source/destination  label  constraints,  specifying  the
types  of  vertices  that  the  edge  can  connect.  Each
account  has  two  properties  ID  and  Name,  while  the
transfer has properties Timestamp and Amount.

2.2　Graph query

Graph  databases  are  widely  used  in  various  fields,
including  financial  risk  management,  anti-money
laundering,  and  data  lineage  tracking  at  Ant  Group,
where  they  are  used  by  over  100  scenarios.  In  this
section,  we  discuss  the  most  commonly  used  graph
queries and examine the typical access patterns of these
queries.
2.2.1　Access pattern
A  typical  query  in  AML  is  shown  in Fig. 2.  In  this
application, an account is represented as a vertex in the
graph and a transfer of money is represented as an edge
connecting  the  source  and  destination  accounts,  as
shown  in Fig. 1.  When  a  new  transfer  is  made
(represented  as  a  new  edge  between  the  sender  and
receiver),  a  cycle-detection  algorithm  is  run  to
determine  if  a  cycle  (meeting  predetermined  criteria)
will be formed if the new edge is added to the graph. If
a cycle is detected, the transfer is rejected, otherwise it
is  accepted  and  the  edge  is  added  to  the  graph.  The
 

Account AccountTransfer

ID: 10075
Name: Alice

ID: 10076
Name: Bob

Timestamp: 20221012
Amount: 168.00

 
Fig. 1    Property graph example.
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cycle-detection algorithm only detects cycles that meet
certain  rules,  such  as  having  transfers  of  a  significant
amount  and  having  downstream  transfers  occurring
later  than  their  predecessors.  Some  common  access
patterns can be identified in this query:

● Multi-hop  traversal: multiple  hops  are  required
to detect cycles in the query.

● Filtering  with  properties: filtering  based  on  the
properties of edges and vertices is necessary during the
traversal.

● Transaction: the  entire  query  should  be
completed as a single transaction for atomicity.

Many  graph  application  scenarios  have  similar  data
access patterns. For example, in post-loan risk control,
we search for many-to-one patterns with recursive path
filtering  to  find  potential  avatar  frauds.  Online
gambling can be detected by multiple money transfers
within  a  short  time  range.  Equity  penetration  checks
the share-holding relationships of entities recursively.
2.2.2　Read/write ratio
The  read-to-write  ratio  of  graph  workloads  in  five
online  financial  product  systems  was  found  to  be
around  20∶1  in  an  online  GDBMS[3].  This  indicates
that  read  workloads  have  a  greater  impact  on  overall
performance,  while  write  workloads  should  also  have
strong performance. The unique characteristics of these
access  patterns  pose  significant  challenges  for
GDBMS, particularly in terms of graph storage. There
are various design approaches for graph storage among
popular GDBMSs.

2.2.3　Observation
From  the  discussion  in  the  introduction  and  the
analysis  of  graph  workloads,  we  have  identified  the
following characteristics of these workloads:

● Observation  1. K-hop-like  traversal  in  graph
topology  is  a  common  operation,  which  is  quite
different  from  workload  in  a  Relational  Database
Management System (RDBMS).

● Observation  2. There  exists  locality  in  graph
workloads, with the out-edges of a certain vertex often
visited together, especially edges with the same label.

● Observation  3. During  traversal,  one  or  more
properties of vertices or edges are accessed.

● Observation  4. In  a  temporal  graph  workload,
edges are accessed within a temporal window.

● Observation  5. A  single  query  can  involve  both
read and write operations.

These  observations  lead  to  specific  system
challenges and affect our design principles.
2.2.4　Challenges and design principles
The  following  characteristics  of  graph  data  in  storage
present challenges for graph storage:

● Data  dependence. K-hop  traversal  involves
accessing  the  destination  vertex  along  an  edge,  using
the destination vertex as a new source vertex, and then
accessing  the  new  destination  vertex  again  in  a
repetitive  process.  This  access  pattern  is  highly
dependent on the graph topology data.

● Massive  random  read. Due  to  data  dependence,
the  source  vertex,  destination  vertex,  and  relevant
edges  cannot  always  be  stored  together  for  different
graph  queries.  Accessing  edge  data  are  similar  to
“JOIN” operations  between  tables  in  an  RDBMS,
which  is  always  a  challenge  under  modern  CPU
architectures.

● Heterogeneous  data. Graph  storage  must  handle
data  of  different  labels,  with  the  number  of  edges
connecting a single vertex ranging from one to billions.

● Concurrent  read  and  write  queries.  GDBMSs
must support online data analytics while also allowing
for continued data updates.

To  address  the  challenges  presented  by  the  unique
characteristics  of  graph  data  and  access  patterns,  the
following design principles have been adopted:

● Maintain  Advance  Cargo  Information
Declaration  (ACID)  as  a  basic  requirement: The
correctness  of  concurrent  queries  should  be  the  first
priority.
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Fig. 2    Example  of  a  query  in  AML,  which  involves  both
read and write.
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● Address the critical issue of random read: Each
read query is likely to access many vertices, while each
write query only accesses one vertex or edge. Massive
random read can be particularly severe.

● Explore  the  locality  in  graph  data: Since
memory has a significant advantage over external disk
in terms of latency and throughput, the performance of
accessing data not cached in memory can drop sharply.
Data with locality within one page are more friendly to
external disks.

● Save  storage  capacity  when  possible: Having
more  data  in  memory  means  fewer  external  disk
accesses for read and write operations.

3　Design

In this section, we discuss the considerations and trade-
offs  that  are  taken  into  account  when  designing  a
practical graph storage system.

The first question addressed is how to pack the graph
topology  and  properties  into  a  key-value  pair.  We
propose  using  a  compact  packing  method  with  an
adaptive mapping technique.

The  second  question  is  the  selection  of  a  key-value
store.  We choose  to  use  LMDB with  concurrent  write
enhancement.

3.1　Overall architecture

In  this  work,  we  divide  the  graph  storage  into  two
layers  (see Fig. 3):  the  Property  Graph  storage  layer
(PG layer) and the key-value storage layer (KV layer).
The  PG  layer  maps  graph  operations,  such  as  schema
and  vertex  CRUD,  onto  key-value  operations.  It  also
arranges the source and destination vertex information
of  edges and determines how properties  are  integrated
with  the  graph  topology  through  a  process  called
properties  encoding.  The  KV  layer  contains  a  key-
value  store  that  is  ACID-compliant,  and  has  been
optimized for common read and write patterns in graph
workloads.  It  is  responsible  for  providing  a  data

manipulation  interface  for  graph  computation,  such  as
the cypher query language and stored procedures.

Not  all  graph  storage  systems  follow  this
architecture. Some GDBMSs use native graph storage,
such  as  Neo4j,  which  uses  many  pointers  to  link
vertices,  edges,  and  properties.  This  design  allows  for
minimal  data  access,  but  it  also  means  that  sequential
prefetch  is  not  possible.  We  will  compare  the
performance  of  different  graph  storage  systems  in
Section  4,  but  will  only  focus  on  tree-structured  key-
value stores in the design process.

3.2　Topology packing

In  the  property  graph  model,  the  topology  of  a  graph
refers not only to how vertices are connected by edges,
but  also  to  the  order  of  vertices  and  edges.  When
designing  a  graph  storage  system,  it  is  important  to
consider  the  order  of  vertices  and  edges  in  order  to
optimize performance when accessing data.

In  this  work,  the  unique  identifiers  for  vertices  and
edges,  VertexUid  and  EdgeUid,  are  used  to  order
vertices  and  edges.  The  VertexUid  is  an  auto-
incrementing  integer  starting  from  0,  while  the
EdgeUid  consists  of  the  source  vertex  VertexUid
(SrcVid),  the  destination  vertex  VertexUid  (DstVid),
the  edge’s  label  identifier  (LabelId),  and  a  unique
identifier  for  the  edge  within  a  given  label  and
source/destination pair (Eid).

To  take  advantage  of  the  observation  that  edges
sharing  the  same  label  are  likely  to  be  accessed
together, the order of elements in EdgeUid is chosen to
prioritize  the  LabelId  followed  by  the  destination
vertex  VertexUid  (DstVid)  and  the  unique  edge
identifier  (Eid).  In  addition,  a  temporal  identifier
(TemporalId) is included in EdgeUid to allow for easy
access to edges within a given time frame.

To save storage space, the EdgeUid is compressed by
taking  advantage  of  the  fact  that  the  LabelId,  DstVid,
and Eid are auto-incrementing integers starting from 0,
which means that  their  values are typically small.  The
TemporalId can also be left empty if the edge does not
have  a  timestamp  property.  A  length-based
compression  technique  is  used  to  further  reduce  the
size of EdgeUid.

Figure 4 illustrates the graph topology packing of our
design.

3.3　Property packing

Section  3.2  solves  the  problem  of  graph  topology
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Property graph
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Graph topology layout Index

Properties encodingProperties layout
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Fig. 3    Architecture of graph storage.
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layout.  Besides,  the  properties’ layout  should  also  be
well organized to suit the graph workload.

In  general,  there  are  two  methods  for  packing  the
properties.  Index  packing  separates  the  properties  into
a  new  key-value  pair,  and  leaves  an  index  in  the
topology layout to locate the properties. Index packing
has the advantage of quickly topology traversal without
visiting  properties,  since  properties  are  separately
stored.  Also,  single  property  updating  is  fast  because
only the properties of one edge need to be updated. The
other method is compact packing (see Fig. 5), it mixes
all  the  properties  in  topology  layout  compact,  and  the
properties  are  placed  next  to  corresponding  vertex  or
edge.  If  graph  traversal  visits  topology  and  properties
of  edges  and  vertices  together,  compact  packing  only
visits  the  mixed  topology  layout,  while  index  packing
needs  an  additional  key-value  lookup  for  every
property.

Due  to  Observation  3  in  Section  2.2.3,  we  prefer
compact  packing  to  suit  to  topology  and  properties
together  visiting  pattern.  Furthermore,  each  edge

property  is  stored  twice  on  both  in-edge  and  out-edge
to  avoid  one-side  random  data  access.  The  random
property  problem is  solved using adaptive  mapping in
Section 3.4.

Edges and vertices in the property graph model have
the  ability  to  accommodate  an  arbitrary  number  of
properties. These properties can be of either fixed size,
such as INT64, or variable size, such as String.

3.4　Adaptive mapping

In  Sections  3.2  and  3.3,  we  have  packed  all  the
topology  and  properties  data  in  one  value  of  a  vertex.
The value can be very large and inefficient for random
access  and  updating.  For  example,  all  the  data  should
be repacked when one edge is added or a variable size
property  is  updated.  We  use  an  adaptive  mapping
method  to  map  a  vertex’s  data  to  multiple  key-value
pairs using a threshold value size.

In Fig. 6,  there  are  two  types  of  mapping  between
graph topology and key-value, i.e., mixed mapping and
split  mapping.  The  mixed  mapping  has  only  one  key-
value pair,  and all  data are packed, whose total  size is

 

SrcVid

VertexUid OutEdgeUid OutEdgeUid OutEdgeUid InEdgeUid… …InEdgeUid

LabeIId TemporalId DstVid Eld

 
Fig. 4    CSR-like graph topology packing.
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Fig. 5    Compact properties packing, the properties arranged intersections of topology data.
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Fig. 6    Adaptive mapping among graph data and underlying key-value store.
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smaller  than the threshold size.  The split  mapping has
three  types  of  keys,  namely  vertex  properties,  out-
edges with properties, and in-edges with properties.

Now  let  us  discuss  the  performance  of  the  split
mapping.  In  terms  of  sequential  access,  all  the  values
of  the  split  mapping  are  arranged  together,  without
performance  slowdown,  thanks  to  the  same  prefix  of
three types of keys.

In  terms  of  random  read,  the  order  inner-value  and
inter-value  are  kept  the  same.  Therefore,  two  simple
binary  search  operations  can  locate  the  aimed  data,
similar  to  split  before.  In  terms  of  random  write,  the
value should be repacked. After splitting, the value size
is limited to the threshold size.

A  proper  threshold  is  important  to  leverage
sequential performance and repack size. In the phase of
repack, the data need to be written back to disk in the
same transaction. The cost of repack in the CPU cache
should  be  comparable  to  latency  on  the  external  disk,
i.e.,  150  μs  for  SSD.  We  can  limit  the  threshold  to
several  KB  to  fit  the  data  in  L1  Cache  and  make  it
happen.

3.5　B+ tree based key-value storage

O(logn)
The basic idea of tree-structure is sorting data in order
to  support  complexity  lookup  and  modify.
Among  the  tree-structured  key-value  store,  B+  tree,
Log  Structured  Merge  (LSM)  tree  as  well  as  their
variants  are  mostly  used.  For  example,  InnoDB  and
LMDB use B+ tree, while RocksDB uses the LSM tree.

A  B+  tree  uses  a  split  and  merge  style  in  the  tree
node to update sorted data, while the LSM tree appends
updates  in  log  for  lazy  data  compaction.  The  key
advantage  of  LSM  tree  is  sequential  update  operation
in  log,  therefore  the  update  operations  complete
immediately,  which  means  delaying  the  actual
compaction  of  data  in  the  future.  When  reading
happens in none-compaction data,  the LSM tree needs
to  read  through  several  levels  of  logs  and  results  in
read  amplification  and  space  amplification,  causing  a
slowdown  in  read  operations.  In  addition,  periodical
compaction  is  almost  unpredictable  above  the  PG
layer.

After analyzing and evaluating the two representative
key-value stores, LMDB for B+ tree and RocksDB for
the  LSM  tree,  LMDB  has  shown  much  better  read
performance,  as  well  as  matching  sequential  write
performance,  in  spite  of  worse  random  write
performance (see Section 4). In another aspect, LMDB

has  stable  and  predictable  performance  for  further
graph  storage  optimization.  We  prefer  LMDB  to
RocksDB,  as  prefer  reading  performance  to  writing
performance.

In terms of other B+ tree stores such as InnoDB and
BerkeleyDB, benchmark[4] has shown that LMDB gets
better  read  and  write  latency  because  of  its  lock-free
design and simplified implementation.

3.6　Concurrent writer

LMDB  has  a  significant  shortcoming,  i.e.,  single
writer,  which  cannot  even  match  the  20∶1  read-to-
write  performance  requirement.  We  are  going  to
enhance the single writer  to  a  concurrent  writer  above
key-value store by characteristics of graph workloads.

A  single  writer  means  each  write  transaction  is
processed  one  after  another,  and  write  transactions
cannot  be  processed  concurrently  in  a  multi-thread
modern  CPU.  Furthermore,  only  one  thread  can  be
used  to  write  data  to  disk,  which  can  hardly  exhaust
disk  IO  bandwidth.  We  reform  single  writer  to  have
concurrent  ability  in  two  ways.  One  is  optimistic
query-level  concurrent  control,  and the other  is  Write-
Ahead-Log (WAL) based data durability.

query op sync op

sync
op

sync

According  to  Observation  5,  we  propose  an
optimistic  concurrent  writer.  When  graph  storage
receives many read-write mixed queries, as Fig. 7, and
each  is  composed  of  and .  The 
indicates  the  operations  in  memory,  and  outputs  the
KVs should be written back to  disk,  while  is  the
write  back  process.  In  read-write  mixed  queries, 
costs much more than .

op

By  default,  the  queries  are  executed  sequentially,
while queries can be executed in a concurrent way after
optimization. In the below part of Fig. 7, the  part of
each  query  is  processed  immediately  when  the  query
 

opA

opA

opB

opB

opC

opC

syncBC

syncA

syncA syncB syncC

queryCqueryBqueryA

queryA+queryB+queryC 
Fig. 7    Concurrent  writer  example.  Queries  can  be
processed  concurrently,  leaving  synchronization  processed
sequentially.
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op check

sync

sync

arrives. After  is done, an extra  is triggered to
check if the current data version is equal to the version
transaction begins, to ensure no other contention. If no
contention  happens,  this  query  goes  to  the  next  stage
and waits for .  Otherwise,  this query fails and the
transaction  aborts.  There  is  a  background  thread  that
continuously checks if there is .

sync

syncA opA opB
opC syncB syncC

syncA syncA syncB syncC

All of the  should be processed sequentially but
get  the  opportunity  to  be  processed  in  batches.  In  this
example,  starts  when  finishes.  When 
and  end,  and  are blocked by ongoing

. After  finishes,  and  are both
ready and can be processed in batches.

op
sync

The  concurrent  writer  is  able  to  process  part
concurrently  and  potentially  process  in  batch,
efficiently improving the performance.  The side effect
is  that  a  few  writers  may  fail  because  of  writing
contention.  It  can  be  solved  by  redo  or  just  left  alone
due  to  the  very  low  possibility  and  no  harm  to  the
ACID principle.

The writing performance bottleneck comes to single
writer on external disks, especially random writing. We
are  going  to  improve  writing  performance  without
sacrificing  reading  performance.  It  is  a  trade-off
between  LMDB’s  simplicity  currently  control  and
multi-writer’s  functionality  completeness.  In  micro-
benchmark[4],  InnoDB  of  MySQL  using  multi-writer
has much worse read performance compared to LMDB
using  single-writer.  Therefore,  we  keep  the  single-
writer  design  of  LMDB  at  this  work,  and  we  use  a
WAL  to  speed  up  single  writer  (see Fig. 8).  Firstly,
incoming  write  transactions  are  sequentially  appended
to a log file, and then do compaction every one minute.
In  LMDB  case,  the  update  is  immediately  applied  to
graph storage in memory, which means the data of B+
tree  has  been  updated,  and  all  the  read  operations  do
not  need  extra  check  in  log,  which  is  very  different
from compaction in RocksDB.

Optimistic concurrent control solves the unnecessary
contention  of  read  operations,  while  WAL  solves  the
write  bandwidth  of  external  disks.  These  two

techniques  enhance  the  concurrent  writer  ability  of
LMDB,  and  make  LMDB  obvious  shortcoming  and
qualified key-value store for graph storage.

3.7　Other design

Along with the key techniques enabling graph storage’s
efficiency  and  functionality,  it  also  adopts  some
existing techniques that are used in common databases,
but requires extension and optimization to match graph
models.

Batched  data  import. It  is  observed  that  inserting
sorted data are about 10 times faster than discrete data.
To accelerate  the import  stage when storage is  empty,
we  use  an  external  sorting  based  importing  method.
The  assumption  of  this  technique  is  that  the  primary
keys  of  vertices  can  be  loaded  into  memory,  while
edges  are  not  necessary.  During  the  import,  firstly,
each  vertex  is  assigned  a  unique  VertexUid  and  the
mapping  is  held  in  memory.  Secondly,  replace  the
primary  key to  VertexUid in  edges’ original  data,  and
store  them  as  SrcVid  and  DstVid  correspondingly.
Finally,  edges  are  batch-loaded  as  buckets,  and  each
bucket  is  loaded  to  memory  and  sequentially  writes
data to graph storage. By this technique, the throughput
of  data  import  is  able  to  achieve as  much as  70 MB/s
on a modern computer.

Index. Each  property  of  a  vertex  or  edge  can  be
indexed as unique or non-unique. The B+ tree design is
naturally  applied  to  build  compare-based  index,  e.g.,
INT64,  String.  In  terms  of  full  text  index,  the  graph
storage  is  integrated  with  Lucene[5] using  a  JNI
interface.

Profiler. A profiler is integrated into graph storage to
enhance  stability.  The  profiler  detects  runtime
transaction  behavior  and  monitors  memory  leakage  in
system development and pre-release running.

4　Evaluation

4.1　Setup

We evaluated our graph storage design in Aliyun[6]; the
parameters  are  listed  in Table 1.  All  the  tests  are
 

Table 1    Environment of evaluation.
Item Description

Instance ecs.i3g.4xlarge
CPU Intel 8269CY, 8 cores, 16 threads

Memory 128 GB
Disk NVMe SSD

 

syncBC syncD syncEF

syncBCDEFlogBCDEF 
Fig. 8    WAL  example.  B+  tree  in  memory  is  always
updated,  while  B+  tree  on  disk  is  updated  asynchronously
using WAL to ensure durability.
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ulimitcompleted  on  a  single  machine,  and  is  used  in
some experiments to simulate the out-of-memory case.

Different  operations  are  designed  for  different
purposes of evaluation.

● Key-value operations. The operations can be read
or write, sequential or random of different value sizes.

● Graph  queries. The  targets  of  graph  queries  are
vertices  or  edges.  Writing  related  graph  queries  are
vertex singular insert, vertex batch insert, edge singular
insert and edge batch insert. Update and delete are not
included to make it simple. Read-related graph queries
are K-hop  based,  e.g.,  neighborhood  lookup  and
pairwise shortest path.

● Comprehensive graph workloads. We follow the
official  audit  process  of  LDBC  SNB  Interactive[7],
which is similar to TPC-H for relational database. SNB
Interactive  is  composed of  seven short  queries,  eleven
complex queries, and eight insert queries.

Synthetic  and  real-world  data  are  used  during
evaluation.  The  former  contains  uniformly  distributed
data  and  SNB defined  free-scale  data,  while  the  latter
contains  Twitter2010[8],  which  has  around  41.65
million  vertices  and  1.47  billion  edges.  The
Twitter2010  graph  has  a  power-law  distribution,  e.g.,
the maximal out-degree is 3.0 million.

4.2　Scalability

Table 2 shows  the  throughput  of  six  graph  queries
when  the  volume  of  data  in  graph  storage  changes,
namely,  strong  scalability.  The  edge  factor  is  10  and
one  INT64  property  and  one  String  property  are
assigned to vertex, while the edge has no property.

The performance of the six queries may experience a
slight  decrease  in  throughput  when  the  data  can  fit  in

memory.  This  is  due  to  the  fact  that  the  B+  tree
structure used to store the graph data  has more levels,
which can slightly slow down both reading and writing
processes.  However,  when  the  data  exceed  the
available  memory,  the  throughput  experiences  a
significant decline.

Vertex  insert  is  sequential  write  in  graph  storage,
since  every  vertex  is  assigned  an  auto-increment
integer.  Vertex  batch  insert  has  about  30  times  higher
throughput  than  vertex  singular  insert,  meaning  that
synchronizing  small  pieces  to  disk  costs  much  more
than sequential data structure update in memory.

Edge  insert  randomly  selects  two  existing  vertices
and  inserts  an  edge  between  them.  This  means  that
edge  insert  is  a  random  write  in  graph  storage.  Both
edge  singular  insert  and  vertex  singular  insert  have
similar  throughput,  as  the  main  overhead  comes  from
synchronization rather than in-memory operations. The
significant  difference  in  throughput  between  edge
batch  insert  and  vertex  batch  insert  is  due  to  the
difference between sequential and random writes.

Neighborhood lookup accesses the out-edges and in-
edges  of  a  randomly  selected  vertex.  The  topology  of
the graph is adaptively packed into one value or more.
Because  the  edges  are  evenly  distributed  with  20
neighborhoods  per  vertex,  the  split  situation  merely
appears. The access pattern of neighborhood lookup is
1-hop  like  reading  one  key-value.  The  throughput  of
neighborhood  lookup  exceeds  one  million  Query  Per
Second (QPS), but sharply drops to 71 000 QPS when
accessing data on disk.

Pairwise  shortest  path  computes  the  shortest  path
between  two  vertices  at  the  longest  length  of  three.
Pairwise shortest path behaves as 3-hop random read in

 

Table 2    QPS  of  graph  workloads  in  different  database  sizes.  Memory  is  limited  to  10  GB.  -S-Ins.  and  -B-Ins.  stand  for
singular and batch insert, respectively.

| V | Vertex-B-Ins. Edge-B-Ins. Vertex-S-Ins. Edge-S-Ins. Neighborhood lookup Shortest path DB size (MB)
100 000 330 590 66 460 11 318 12 848 1 310 460 131 118 25
200 000 328 543 56 419 10 896 12 302 1 381 920 146 216 61
400 000 330 042 48 897 10 798 12 502 1 356 900 139 376 113
800 000 324 460 43 758 10 203 11 092 1 336 650 139 396 227

1 600 000 316 510 39 652 9841 10 197 1 299 270 137 984 466
3 200 000 307 936 36 843 9757 10 636 1 275 310 137 096 955
6 400 000 298 254 34 147 9078 10 258 1 314 730 136 333 1909
12 800 000 301 011 31 794 9300 10 016 1 230 460 137 507 3824
25 600 000 298 293 29 326 9110 9598 1 188 270 133 115 8056
51 200 000 301 298 15 302 8826 4954 129 393 17 898 16 589
102 400 000 299 288 5715 8727 3253 71 053 10 801 33 467
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graph  data  access  pattern.  The  throughput  is  around
130  000  QPS,  which  is  an  important  metric  for  the
following optimization evaluation.

4.3　Comparison  of  tree-structured  key-value
stores

In  this  experiment,  we  are  going  to  discuss  the  trade-
off  between  B+  tree  and  LSM  tree,  i.e.,  LMDB  and
RocksDB.  The  experiment  starts  with  operations  in
underlying  key-value,  then  graph  queries  used  in
Section 4.2.

RocksDB is  configured  using  TransactionDB,  while
LMDB  has  the  default  configuration.  In Table 3,
sequential  and  random  read  are  compared  with
different value sizes. Within key-value store, zero-copy
technique is used in reading, and we record the latency
of getting the reading pointers for comparison. LMDB
has  nearly  constant  latency  on  sequential  and  random
read.  This  is  likely  due  to  the  mmap  memory
management  of  LMDB,  which  depends  on  4  KB  OS
page  size,  resulting  in  lower  latency  for  sequential
reads. In contrast, the multi-level structure of LSM tree
in RocksDB requires multiple comparisons,  leading to
higher latency as the database size increases. When the
value size reaches 64 KB, the total data can no longer

fit  in  memory,  causing  a  dramatic  increase  in  latency
for  RocksDB.  Overall,  LMDB  exhibits  significantly
better  sequential  reading  latency  and  is  more  stable
when the database size increases.

In Table 4,  RocksDB has a random write bandwidth
of about 26 times more than LMDB when value size is
small,  thanks  to  WAL  feature,  while  the  sequential
write gap is about two times. When the value size goes
above  4  KB,  LMDB  catches  up  with  RocksDB  in
sequential write. LMDB uses mmap as the data access
method, resulting in a 4 KB minimal access block and
being  inefficient  below  4  KB.  RocksDB  is  not
suggested for  larger  value sizes;  its  writing bandwidth
becomes even lower when value size increases,  which
should be configured using the BlobDB engine[9].

To confirm it,  the above evaluation is  repeated on a
slower disk, with the maximal Input/output Operations
Per Second (  IOPS) dropping from 200 000 to 10 000.
Under  this  condition,  the  random  write  query  of
RocksDB  outperforms  LMDB  by  two  to  six  times.
Therefore,  we  can  conclude  that  the  advantages  of
RocksDB  are  much  fewer  when  the  ability  of  disks
rapidly increases.

As a conclusion of Tables 3 and 4, LMDB has better
and  stable  read  latency  over  RocksDB,  and  a

 

Table 3    Reading  latency  of  key-value  queries  in  LMDB  and  RocksDB  in  different  value  sizes,  lower  is  better.  The  tested
database has per-inserted one million key-value pairs of desired size, and it reads one million values of ten threads.

Value size
Reading latency (ms)

Read-Seq-LMDB Read-Seq-RocksDB Read-Rand-LMDB Read-Rand-RocksDB
16 B 4 487 185 33
64 B 6 523 197 36
256 B 9 584 205 43
1024 B 17 728 201 78
4 KB 5 1958 185 210
16 KB 5 5153 184 234
64 KB 5 38 314 185 32 407

 

Table 4    Write bandwidth of key-value write queries in LMDB and RocksDB in different value sizes using ten threads, larger
is better.

Value size
Write bandwidth (MB/s)

Write-Seq-LMDB Write-Seq-RocksDB Write-Rand-LMDB Write-Rand-RocksDB
16 B 12.97 24.50 0.30 7.79
64 B 47.55 93.70 1.10 1.10
256 B 143.34 345.01 4.27 104.66
1024 B 360.18 721.13 15.17 312.39
4 KB 686.67 533.75 53.38 516.00
16 KB 1258.95 421.39 158.80 271.22
64 KB 994.04 150.37 352.67 70.00
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comparable writing performance when the value size is
no less than 4 KB. For a read optimized graph storage
design, LMDB is a better candidate.

|V |

Synthetic  graph  data  and  workloads  in  Section  4.2
are  used  for  graph  workloads  evaluation,  and  the
RocksDB  is  configured  as  TransactionDB  while
leaving  most  of  the  configurations  default.  As Fig. 9
shows,  LMDB  has  up  to  4.6  times  better  reading
performance  compared  with  RocksDB,  thanks  to  the
quick  lookup  mechanism  in  B+  tree.  Vertex  insert  is
only 0.1 times because the vertex property is 20 B, and
the gap can be much narrower  when the  property  size
becomes  over  4  KB.  In  terms  of  edge  batch  insert,
LMDB  performs  at  50% slowdown  when  the  number
of vertices, , is 51 200 000, while RocksDB drops to
30%.  This  results  in  a  4.3  times  difference  in
performance.  The  size  of  the  database  for  LMDB  is
16.6  GB,  while  it  is  9.8  GB  for  RocksDB.  Even
RocksDB  has  a  smaller  database  size,  it  consumes
more memory for  data  processing and reaches  an out-
of-memory performance drop earlier. As the graph data
becomes  too  large  to  make  use  of  memory,  the
difference  between  the  two  storage  engines  becomes
smaller  as  the  bottleneck  shifts  to  disk-memory  data
exchange.

The  inefficient  reading  performance  of  RocksDB
comes  for  several  reasons.  One  of  the  most  serious
reasons  is  unpredictable  background  compaction.  The
read  query  performance  on  data  before  and  after
compaction  has  a  two  to  three  times’ difference.  We
also  use  the  official  profiling  tool[10] to  analyse  the
reading  performance  of  RocksDB,  finding  that
RocksDB  needs  to  build  an  iterator  data  structure  to

abstract the data flow, and this part of the cost occupies
about 80% overall. Simplifying the principle of LMDB
can avoid such kinds of cost.

The  write  workloads  in  the  evaluation  use  a  single
thread, while read workloads use ten threads. RocksDB
is  able  to  get  better  writing  results  to  outperform
LMDB.  An  early  implementation  of  multi-thread
writing can speed up to three times in vertex insert and
six  times  in  edge  insert.  It  is  obvious  that  RocksDB
does  better  in  writing  performance,  especially  when
properties are small.

In  conclusion,  LMDB  is  read-optimized  and  deals
with  larger  property  data  better,  while  RocksDB  is
more  suitable  for  smaller  property  and  gets  better
writing  performance.  We  prefer  LMDB  due  to  the
reading  performance  requirement  in  financial  real
application profiling.

4.4　Graph packing

Figure 10 compares  the  QPS  of  compact  packing  and
indexed packing. Regardless of vertex or edge, read or
write, compact packing always has better performance.
The read-related queries, i.e., neighborhood lookup and
pairwise  shortest  path,  have  up  to  1.5  times’ speedup,
thanks to less key-value access of packing.

EdgeUid
VertexUid

The  total  key  number  of  indexed  packing  is  twenty
times more than compact packing, equal to twice of the
edge  factor.  Also,  the  key  size  of  is  around
four times larger than , which largely inflates
the  storage  size,  up  to  five  times.  Therefore,  writing
related  queries  also  have  up  to  1.4  times’ speedup.
Edge singular insert of indexed packing is supposed to
write only the edge related data while compact packing
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Fig. 9    QPS ratio of graph workloads of LMDB and RocksDB. The larger the number, the better the performance of LMDB.
Memory usage is limited to 10 GB. -S-Ins. and -B-Ins. stand for singular and batch insert, respectively.
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needs to rewrite the whole value of the vertex. Indexed
packing quickly runs out of memory, resulting in 11.07
to  18.39  times’ huge  gaps  in  read  queries.  When both
methods read data  on external  disks,  compact  packing
keeps 1.71 to 1.88 times’ benefit.

However,  the  data  that  need  to  be  updated  is  both
within  4  KB,  i.e.,  the  basic  access  block  of  LMDB.
Therefore,  the  performance  of  edge  singular  insert
makes no difference.

4.5　Writer optimization

To solve the performance bottleneck of singer writer in
LMDB, concurrent writer optimization is introduced in
Section  3.6.  The  experimental  result  in Table 5 shows
the random writing bandwidth compared with  original
direct  synchronization  using  128-bytes  value.  WAL
can replace random writing in B+ tree with sequential
writing  in  the  log  file,  and  the  bandwidth  improved
from 7.53 MB/s to 10.73 MB/s in single writer. When
the  number  of  writers  increased  to  ten,  the  bandwidth
also  increased  to  21.19  MB/s,  thanks  to  concurrent
access  to  log  files.  In  the  compaction  stage  to  replay
logs,  the  operation  on  the  same key can  be  merged to
reduce the total write amount in LMDB.

4.6　GDBMS comparison

We  use K-hop  as  a  typical  graph  access  workload  on

real  world  data,  i.e.,  Twitter’s  social  network,  to
compare the performance with other well-known graph
databases,  including  Neo4j[1],  JanusGraph[11],
Dgraph[12], and an anonymous graph database TG.

14%
In Table 6,  TG  has  the  shortest  import  cost  and

smallest on-disk size. TuGraph is  slower because
of  the  single  write  limitation,  but  faster  than the  other
three  GDBMSs.  The  original  Twitter  data  size  is
24.6  GB;  TuGraph  merely  has  compression,  i.e.,
occupies  24  GB.  The  in-memory  design  of  TG  trades
off  between  immediate  write  to  disk  and  extreme
memory compress, while TuGraph does not implement
any  content-based  compression,  and  chooses  a  more
balanced design, focusing on high reading performance
as  well  as  ACID  guarantee.  Thanks  to  batched  data
import  in  Section  3.7,  TuGraph  gets  first-class  import
throughput.

In Fig. 11,  the  latency of K-hop in  various  GDBMS
is  given.  Each  test  should  be  completed  within  2  h.
During the runtime of Dgraph 6-hop test, it runs out of
memory  and  crashes.  In  spite  of  being  1.8  ms  slower
than Dgraph in 1-hop, TuGraph has the best latency of
all other tests, with even better orders of magnitudes.

This  substantial  advantage  can  be  attributed  to
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Fig. 10    QPS ratio  of  compacting and indexed packing using LMDB. The larger the number,  the better  the performance of
compacting. Memory usage is limited to 10 GB. -S-Ins. and -B-Ins. stand for singular and batch insert, respectively.

 

Table 5    Bandwidth  of  WAL  and  direct  synchronization,
using random write of 128-bytes value.

Sync. method
Bandwidth (MB/s)

Single writer Ten writers
Direct 7.53 9.19
WAL 10.73 21.19

 

Table 6    Import  cost  and on-disk size  of  importing Twitter
data.

GDBMS Import cost (s) On-disk size (GB)
TuGraph 652 24

Neo4j 979 48
TG 577 6.1

Dgraph 2704 8.8
ArangoDB 8851 106
JanusGraph 2802 51
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several factors related to TuGraph’s storage model and
implementation.  Firstly,  TuGraph  employs  a  compact
packing design that efficiently handles read-only K-hop
workloads  with  a  smaller  memory  footprint  compared
to other GDBMS. Secondly, TuGraph leverages inner-
query parallelism to effectively utilize CPU resources.
This feature is  not  supported in some other GDBMSs,
such  as  JanusGraph.  Thirdly,  TuGraph  avoids
unnecessary data copying by utilizing pointers within a
single machine.

We  plan  to  conduct  a  write  benchmark  using  graph
operations  to  evaluate  the  write  performance  of
TuGraph and Neo4j, representing GDBMSs. Figure 12
illustrates  the  QPS  ratio  of  TuGraph  and  Neo4j  for
singular  and  batch  inserts  of  vertices  and  edges.  It  is
worth noting that Neo4j adopts a linked block approach
for storing graph data, which differs significantly from
TuGraph’s B+ tree based compact packing, resulting in
divergent performance outcomes.

In terms of vertex inserts, TuGraph and Neo4j show
similar  performance  in  singular  conditions,  with  no

significant  difference  between  them.  However,  when
batch  inserts  are  performed,  TuGraph  outperforms
Neo4j by 1.55 times. This improvement is attributed to
the  sequential  write  pattern  of  vertex  insert,  which
comes  from  the  single-writer  nature  of  TuGraph’s
LMDB.  By  batching  the  inserts  together,  the  overall
write QPS is significantly enhanced.

On  the  other  hand,  when  it  comes  to  edge  inserts,
TuGraph faces some challenges. Each randomly added
edge  requires  repacking  the  value,  resulting  in  a  less
favorable  batch  edge  insert  pattern.  In  fact,  in
comparison  to  Neo4j,  TuGraph’s  batch  edge  insert
performance  is  only  0.44  times.  When  examining
singular edge inserts, Neo4j’s performance is similar to
that  of TuGraph. This similarity is  due to the fact  that
Neo4j needs to manage numerous small data blocks to
ensure ACID guarantees, resulting in comparable QPS
for singular edge inserts.

In Fig. 12,  there  are  some  noteworthy  observations.
When the  data  scale  is  small,  Neo4j’s  implementation
incurs  additional  overhead  due  to  fixed  internal  data
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Fig. 11    K-hop latency of different GDBMSs.
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structures. As the data scale increases, Neo4j is the first
to  exceed  memory  limits  and  subsequently  slows
down.  The  QPS  ratio  stabilizes  again  when  both
TuGraph and Neo4j encounter memory limitations.

4.7　Mixed throughput

LDBC SNB interactive defines  graph workload which
simulates a social network scenario, to evaluate overall
performances  of  GDBMSs.  The  environment  is
Amazon Web Services, using an r5d/12xlarge instance.
Two machines  are  used  for  driver  instance  and  server
instance,  to  simulate  the  real  client/server  network
connection.

In Table 7, a scale factor of 300 means the total data
size  is  about  300  GB,  and  Time  Compression  Ratio
(TCR) is a parameter for turning inside the benchmark.
We can see that the load rate is up to 77.12 MB/s and
the  total  throughput  is  up  to 12 934.61 queries  per
second.  During  benchmarking,  the  execution  time  of
read  and  write  is  about  ten  to  one,  which  is  indicated
by  Facebook  online  system  profiling.  The  storage  of
TuGraph is designed to handle SNB’s mixed read and
write graph workload, and it achieves the first place on
the  board  of  SNB  Interactive.  The  full  result  can  be
found on LDBC’s official website[7].

5　Related Work

Graph  storage  refers  to  the  organization  of  vertices,
edges,  and properties  data  in  persistent  storage,  which
is  important  for  both  query  performance  and  storage
capacity. There are several approaches to graph storage
used by different GDBMSs.

Some  GDBMSs  design  their  own  graph  storage
solutions. Neo4j[1] uses a linked storage block to adapt
the random vertex and edge access.  The vertex record
and  edge  record  are  stored  at  a  fixed  size,  using  a
pointer to link two related data,  resulting in losing the
opportunity  to  compress  data  and  sequential  access.
ArangoDB[13] uses  hash  tables  for  quick  vertex  and
edge  lookup,  while  the  edges  of  a  vertex  are  put  in  a
linked list. The shortage of hash tables includes lacking
support  for  range  scan,  which  may  benefit  from  the

locality of vertex.
Other  GDBMSs,  such  as  JanusGraph[11],  use

established  NoSQL  stores  as  their  underlying  graph
storage.  JanusGraph  is  able  to  use  different  storage
backend  as  a  wide-column  store,  including
Cassandra[14],  HBase[15],  Google  Cloud  Bigtable[16],
and  Berkeley  DB[17].  This  allows  for  flexibility,  but
requires  a  standard  interface  and  may  not  allow  for
deep co-design.

Document  stores,  such  as  OrientDB[18],  are  well-
suited  for  storing  and  indexing  hierarchical  data,  such
as  property  graph  data  in  this  case.  OrientDB  has
vertex documents and edge documents to record graph
data and supports abundant property operations. At the
same  time,  document  structured  data  are  not  as
efficient  as  hand-tuned  data  arrangement.  Wide-
column  stores,  such  as  JanusGraph[11],  can  store
different  numbers  of  columns  for  each  row,  which  is
useful  for  storing  indeterminate  numbers  of  edges  for
each vertex. JanusGraph packs each vertex’s properties
and  neighbor  edges  in  a  wide-column  store.  Each
property  and  edge  are  regarded  as  cells  that  can  be
further  stored  as  key-value  pairs  to  store  properties  of
edges.  TuGraph  uses  key-value  store  to  achieve
simplicity  and  scalability.  The  value  can  be  furthest
redesigned to adapt to graph-specific processing.

Some  GDBMSs,  such  as  TigerGraph[2],
GraphflowDB[19],  and  A1[20],  focus  on  in-memory
graph  workloads.  TigerGraph  compresses  graph  data
and tries  to  load the whole graph into memory,  which
always reserves memory for the whole graph data even
if the data is currently not required in workload.

Distributed  processing  is  supported  by  some  other
GDBMSs,  which  comes  with  the  data  consistency
problem. It can be handled by user-side, or only master
replica  is  able  to  write[21, 22],  or  two-phase  committed
related design. For example, Cosmos DB[23] uses a last-
write-win  policy  to  resolve  writing  conflicts.
Distributed  processing  is  likely  having  order  of
magnitude slows down compared with  single  machine
implementation,  in  the  case  data  can  be  handled  in  a
single machine.

Hybrid  Transactional/Analytical  Processing  (HTAP)
is another area of GDBMS research, with systems like
LiveGraph[24] using  a  transactional  edge  log  and
concurrency  control  mechanism  to  support  both
analytical and transactional graph workloads.

This  work  focuses  on  graph  storage,  and  could

 

Table 7    LDBC  SNB  Interactive  benchmarking  result  of
TuGraph.

Scale factor Load (MB/s) TCR Throughput QPS
30 67.29 0.0028 12 252.50
100 75.70 0.0104 12 934.61
300 77.12 0.0360 12 721.24
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potentially  be  combined  with  research  on  execution
models,  such  as  those  presented  in  Tao[25] and
Grasper[26].

6　Conclusion

Graph databases are rapidly gaining popularity as they
provide  efficient  storage  and  retrieval  of  graph-
structured  data.  In  this  paper,  we  have  presented  the
design  and  implementation  of  our  graph  storage
engine,  TuGraph. We began by summarizing common
access  patterns  for  graph  databases,  followed  by  the
introduction of key techniques aimed at  enhancing the
performance of graph storage engines, such as adaptive
compact  packing  of  graph  data  and  property  packing.
Subsequently,  we provide an in-depth overview of the
implementation of these techniques in TuGraph.

The  experimental  results  have  showcased  the
outstanding performance of TuGraph, surpassing other
popular graph database management system like Neo4j
and  JanusGraph  by  several  orders  of  magnitude.
Moreover,  TuGraph  has  demonstrated  good
performance  on  standard  GDBMS  benchmarks,
including the LDBC SNB.

While  these  achievements  are  commendable,  there
are  still  opportunities  for  further  improvement  in  this
field.  For  instance,  exploring  a  hash  table  based
approach  for  vertex  lookup  holds  the  potential  to
deliver  faster  results  compared  to  tree-structured  key-
value stores. Additionally, extending the capabilities of
TuGraph to support distributed graph storage is an area
that we aim to explore.

In  conclusion,  our  work  on  TuGraph  represents
notable advancements in graph storage technology. The
impressive  performance  demonstrated  by  TuGraph,
coupled  with  the  identified  areas  for  future
improvement,  lays  a  foundation  for  further  research
and development in the field of graph databases.
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