

Building a High-Performance Graph Storage on Top of
Tree-Structured Key-Value Stores

Heng Lin, Zhiyong Wang, Shipeng Qi, Xiaowei Zhu, Chuntao Hong*, Wenguang Chen, and Yingwei Luo

Abstract: Graph databases have gained widespread adoption in various industries and have been utilized in a

range of applications, including financial risk assessment, commodity recommendation, and data lineage

tracking. While the principles and design of these databases have been the subject of some investigation, there

remains a lack of comprehensive examination of aspects such as storage layout, query language, and

deployment. The present study focuses on the design and implementation of graph storage layout, with a

particular emphasis on tree-structured key-value stores. We also examine different design choices in the graph

storage layer and present our findings through the development of TuGraph, a highly efficient single-machine

graph database that significantly outperforms well-known Graph DataBase Management System (GDBMS).

Additionally, TuGraph demonstrates superior performance in the Linked Data Benchmark Council (LDBC)

Social Network Benchmark (SNB) interactive benchmark.

Key words: graph database; high-performance; graph storage

1　Introduction

Graph Database Management System (GDBMS) has
been widely used in the industry. Typical scenarios
include financial risk assessment, Anti-Money-
Laundering (AML), social network analysis,
commodity recommendation, and epidemic spreading
analysis.

Although GDBMSs share many features with

relational DBMSs, the workloads they serve are largely
different. For example, typical graph queries involve
multiple hops, requiring operations on multiple vertex
types and multiple edge types, while relational
database queries rarely touch more than two tables.
Multi-hop graph queries usually read much more data
than relational queries. For example, on a graph with
an average degree of ten, a 3-hop query will read 1000
edges on average. Besides, the irregular access patterns
of graph queries bring extra challenges (detailed in
Section 2.2). The distinction of workloads requires
different system designs. More specifically, the storage
layer of GDBMSs needs to be carefully designed to
suit its unique access pattern.

Key-value stores have been used as the underlying
storage engine for most database systems. As a layer of
abstraction, they typically provide concurrent
read/scan/write/update operations on key-values, with
certain transaction guarantees. Building on top of the
key-value layer, database system designers can then
focus more on providing the right abstraction of data,
without worrying about the persistence of the data.

 Heng Lin and Yingwei Luo are with the School of Computer

Science, Peking University, Beijing 100871, China. E-mail:
linheng@peking.edu.cn; lyw@peking.edu.cn.

 Heng Lin, Zhiyong Wang, Shipeng Qi, Xiaowei Zhu, Chuntao
Hong, and Wenguang Chen are with Ant Group, Beijing
100020, China. E-mail: botu.wzy@antgroup.com; qishipeng.
qsp@antgroup.com; robert.zxw@antgroup.com; chuntao.hct@
antgroup.com; cwg@tsinghua.edu.cn.

 Wenguang Chen is also with the Department of Computer
Science and Technology, Tsinghua University, Beijing 100084,
China.

* To whom correspondence should be addressed.
 Manuscript received: 2023-01-07; revised: 2023-06-08;

accepted: 2023-06-19

BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 11/15 pp156−170
DOI: 10.26599/BDMA.2023.9020015
Volume 7, Number 1, March 2024

© The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

mailto:linheng@peking.edu.cn
mailto:lyw@peking.edu.cn
mailto:botu.wzy@antgroup.com
mailto:qishipeng.qsp@antgroup.com
mailto:qishipeng.qsp@antgroup.com
mailto:robert.zxw@antgroup.com
mailto:chuntao.hct@antgroup.com
mailto:chuntao.hct@antgroup.com
mailto:cwg@tsinghua.edu.cn
http://creativecommons.org/licenses/by/4.0/

Tree-structured key-value stores are most commonly
used in DBMSs due to their maturity and the
availability of a sorting order of the keys.

Many GDBMSs have been built, especially in the
past two decades. However, the design of GDBMS
storage has not been thoroughly investigated in the
literature. This paper discusses the design choices of
GDBMS storage, with special focus on building on top
of tree-structured key-value stores. We start by
analyzing the common access patterns in graph queries
and the requirements for the underlying key-value
store, then we compare two commonly used tree-based
key-value stores, namely RocksDB and LMDB, to see
which one fits better for our GDBMS, and finally, we
discuss the design choices when building a graph
storage layer on top of the key-value store. We
implement our ideas on a graph database called
TuGraph. The experimental results show that our
design achieves great performance on micro-
benchmarks, and state-of-the-art performance on the
Linked Data Benchmark Council (LDBC) Social
Network Benchmark (SNB) interactive benchmark.

The main contribution of this paper involves:
● Analysis of common access patterns of graph

queries and the requirements of the storage layer.
● Investigation of key design choices of a graph

storage layer on top of tree-structured key-value stores.
● Implementation of our ideas on LMDB that shows

good performance on both micro- and macro-
benchmarks.

The rest of the paper is organized as follows. Section
2 introduces the background of our work and the
common access patterns of graph databases. Section 3
discusses important design choices of the graph storage
layer. Then, Section 4 evaluates the performance of our
graph storage. In Section 5 we discuss related works.
Finally, Section 6 concludes this research and identifies
future research directions.

2　Data Model and Access Patterns

In this section, we first introduce the data model we
used, namely the property graph model. Then, we
summarize the common access patterns of graph
queries and analyze the challenges they present for
graph databases.

2.1　Property graph model

There are two main data models for graph databases:
the Resource Description Framework (RDF) model and

the property graph model. The RDF model represents
data as subject-predicate-object triples. The property
graph model, on the other hand, follows an object-
oriented approach and represents entities as vertices
and relationships between entities as edges, with both
vertices and edges able to have properties. Through our
survey, finding that RDF model is used in semantic
scenario, while property graph model is used across
many areas. Many GDBMSs use the property graph
model, such as Neo4j, TigerGraph, and GeaBase[1−3].
Therefore, we choose property graph model as our data
model.

An example of a property graph is shown in Fig. 1,
which represents a money transfer between two
accounts as vertices labeled “Account” and an edge
labeled “Transfer” connecting the two vertices. The
schema for each edge can also have optional
source/destination label constraints, specifying the
types of vertices that the edge can connect. Each
account has two properties ID and Name, while the
transfer has properties Timestamp and Amount.

2.2　Graph query

Graph databases are widely used in various fields,
including financial risk management, anti-money
laundering, and data lineage tracking at Ant Group,
where they are used by over 100 scenarios. In this
section, we discuss the most commonly used graph
queries and examine the typical access patterns of these
queries.
2.2.1　Access pattern
A typical query in AML is shown in Fig. 2. In this
application, an account is represented as a vertex in the
graph and a transfer of money is represented as an edge
connecting the source and destination accounts, as
shown in Fig. 1. When a new transfer is made
(represented as a new edge between the sender and
receiver), a cycle-detection algorithm is run to
determine if a cycle (meeting predetermined criteria)
will be formed if the new edge is added to the graph. If
a cycle is detected, the transfer is rejected, otherwise it
is accepted and the edge is added to the graph. The

Account AccountTransfer

ID: 10075
Name: Alice

ID: 10076
Name: Bob

Timestamp: 20221012
Amount: 168.00

Fig. 1 Property graph example.

 Heng Lin et al.: Building a High-Performance Graph Storage on Top of Tree-Structured Key-Value Stores 157

cycle-detection algorithm only detects cycles that meet
certain rules, such as having transfers of a significant
amount and having downstream transfers occurring
later than their predecessors. Some common access
patterns can be identified in this query:

● Multi-hop traversal: multiple hops are required
to detect cycles in the query.

● Filtering with properties: filtering based on the
properties of edges and vertices is necessary during the
traversal.

● Transaction: the entire query should be
completed as a single transaction for atomicity.

Many graph application scenarios have similar data
access patterns. For example, in post-loan risk control,
we search for many-to-one patterns with recursive path
filtering to find potential avatar frauds. Online
gambling can be detected by multiple money transfers
within a short time range. Equity penetration checks
the share-holding relationships of entities recursively.
2.2.2　Read/write ratio
The read-to-write ratio of graph workloads in five
online financial product systems was found to be
around 20∶1 in an online GDBMS[3]. This indicates
that read workloads have a greater impact on overall
performance, while write workloads should also have
strong performance. The unique characteristics of these
access patterns pose significant challenges for
GDBMS, particularly in terms of graph storage. There
are various design approaches for graph storage among
popular GDBMSs.

2.2.3　Observation
From the discussion in the introduction and the
analysis of graph workloads, we have identified the
following characteristics of these workloads:

● Observation 1. K-hop-like traversal in graph
topology is a common operation, which is quite
different from workload in a Relational Database
Management System (RDBMS).

● Observation 2. There exists locality in graph
workloads, with the out-edges of a certain vertex often
visited together, especially edges with the same label.

● Observation 3. During traversal, one or more
properties of vertices or edges are accessed.

● Observation 4. In a temporal graph workload,
edges are accessed within a temporal window.

● Observation 5. A single query can involve both
read and write operations.

These observations lead to specific system
challenges and affect our design principles.
2.2.4　Challenges and design principles
The following characteristics of graph data in storage
present challenges for graph storage:

● Data dependence. K-hop traversal involves
accessing the destination vertex along an edge, using
the destination vertex as a new source vertex, and then
accessing the new destination vertex again in a
repetitive process. This access pattern is highly
dependent on the graph topology data.

● Massive random read. Due to data dependence,
the source vertex, destination vertex, and relevant
edges cannot always be stored together for different
graph queries. Accessing edge data are similar to
“JOIN” operations between tables in an RDBMS,
which is always a challenge under modern CPU
architectures.

● Heterogeneous data. Graph storage must handle
data of different labels, with the number of edges
connecting a single vertex ranging from one to billions.

● Concurrent read and write queries. GDBMSs
must support online data analytics while also allowing
for continued data updates.

To address the challenges presented by the unique
characteristics of graph data and access patterns, the
following design principles have been adopted:

● Maintain Advance Cargo Information
Declaration (ACID) as a basic requirement: The
correctness of concurrent queries should be the first
priority.

Transaction
begin

Check if Account
blocked

Add transfer edge

Detect if transfer cycle
exists

Transaction
abort

Transaction
commit

Yes

Read operation

Write operation

Yes

No

No

Fig. 2 Example of a query in AML, which involves both
read and write.

 158 Big Data Mining and Analytics, March 2024, 7(1): 156−170

● Address the critical issue of random read: Each
read query is likely to access many vertices, while each
write query only accesses one vertex or edge. Massive
random read can be particularly severe.

● Explore the locality in graph data: Since
memory has a significant advantage over external disk
in terms of latency and throughput, the performance of
accessing data not cached in memory can drop sharply.
Data with locality within one page are more friendly to
external disks.

● Save storage capacity when possible: Having
more data in memory means fewer external disk
accesses for read and write operations.

3　Design

In this section, we discuss the considerations and trade-
offs that are taken into account when designing a
practical graph storage system.

The first question addressed is how to pack the graph
topology and properties into a key-value pair. We
propose using a compact packing method with an
adaptive mapping technique.

The second question is the selection of a key-value
store. We choose to use LMDB with concurrent write
enhancement.

3.1　Overall architecture

In this work, we divide the graph storage into two
layers (see Fig. 3): the Property Graph storage layer
(PG layer) and the key-value storage layer (KV layer).
The PG layer maps graph operations, such as schema
and vertex CRUD, onto key-value operations. It also
arranges the source and destination vertex information
of edges and determines how properties are integrated
with the graph topology through a process called
properties encoding. The KV layer contains a key-
value store that is ACID-compliant, and has been
optimized for common read and write patterns in graph
workloads. It is responsible for providing a data

manipulation interface for graph computation, such as
the cypher query language and stored procedures.

Not all graph storage systems follow this
architecture. Some GDBMSs use native graph storage,
such as Neo4j, which uses many pointers to link
vertices, edges, and properties. This design allows for
minimal data access, but it also means that sequential
prefetch is not possible. We will compare the
performance of different graph storage systems in
Section 4, but will only focus on tree-structured key-
value stores in the design process.

3.2　Topology packing

In the property graph model, the topology of a graph
refers not only to how vertices are connected by edges,
but also to the order of vertices and edges. When
designing a graph storage system, it is important to
consider the order of vertices and edges in order to
optimize performance when accessing data.

In this work, the unique identifiers for vertices and
edges, VertexUid and EdgeUid, are used to order
vertices and edges. The VertexUid is an auto-
incrementing integer starting from 0, while the
EdgeUid consists of the source vertex VertexUid
(SrcVid), the destination vertex VertexUid (DstVid),
the edge’s label identifier (LabelId), and a unique
identifier for the edge within a given label and
source/destination pair (Eid).

To take advantage of the observation that edges
sharing the same label are likely to be accessed
together, the order of elements in EdgeUid is chosen to
prioritize the LabelId followed by the destination
vertex VertexUid (DstVid) and the unique edge
identifier (Eid). In addition, a temporal identifier
(TemporalId) is included in EdgeUid to allow for easy
access to edges within a given time frame.

To save storage space, the EdgeUid is compressed by
taking advantage of the fact that the LabelId, DstVid,
and Eid are auto-incrementing integers starting from 0,
which means that their values are typically small. The
TemporalId can also be left empty if the edge does not
have a timestamp property. A length-based
compression technique is used to further reduce the
size of EdgeUid.

Figure 4 illustrates the graph topology packing of our
design.

3.3　Property packing

Section 3.2 solves the problem of graph topology

Computation layer

Property graph
storage layer

Key-value
storage layer

Graph topology layout Index

Properties encodingProperties layout

Key-Value store Read-write optimization

Fig. 3 Architecture of graph storage.

 Heng Lin et al.: Building a High-Performance Graph Storage on Top of Tree-Structured Key-Value Stores 159

layout. Besides, the properties’ layout should also be
well organized to suit the graph workload.

In general, there are two methods for packing the
properties. Index packing separates the properties into
a new key-value pair, and leaves an index in the
topology layout to locate the properties. Index packing
has the advantage of quickly topology traversal without
visiting properties, since properties are separately
stored. Also, single property updating is fast because
only the properties of one edge need to be updated. The
other method is compact packing (see Fig. 5), it mixes
all the properties in topology layout compact, and the
properties are placed next to corresponding vertex or
edge. If graph traversal visits topology and properties
of edges and vertices together, compact packing only
visits the mixed topology layout, while index packing
needs an additional key-value lookup for every
property.

Due to Observation 3 in Section 2.2.3, we prefer
compact packing to suit to topology and properties
together visiting pattern. Furthermore, each edge

property is stored twice on both in-edge and out-edge
to avoid one-side random data access. The random
property problem is solved using adaptive mapping in
Section 3.4.

Edges and vertices in the property graph model have
the ability to accommodate an arbitrary number of
properties. These properties can be of either fixed size,
such as INT64, or variable size, such as String.

3.4　Adaptive mapping

In Sections 3.2 and 3.3, we have packed all the
topology and properties data in one value of a vertex.
The value can be very large and inefficient for random
access and updating. For example, all the data should
be repacked when one edge is added or a variable size
property is updated. We use an adaptive mapping
method to map a vertex’s data to multiple key-value
pairs using a threshold value size.

In Fig. 6, there are two types of mapping between
graph topology and key-value, i.e., mixed mapping and
split mapping. The mixed mapping has only one key-
value pair, and all data are packed, whose total size is

SrcVid

VertexUid OutEdgeUid OutEdgeUid OutEdgeUid InEdgeUid… …InEdgeUid

LabeIId TemporalId DstVid Eld

Fig. 4 CSR-like graph topology packing.

Nullable FixedData VariableOffset VariableData

PropPropProp InEdgeUidOutEdgeUidOutEdgeUidVertexPropVertexUid

LabelId Nullable FixedData VariableOffset VariableData

… …

Fig. 5 Compact properties packing, the properties arranged intersections of topology data.

Mixed mapping

Split mapping

VertexUid

VertexUid

MIX

VERTEX

OUTEDGE

INEDGE

VertexProp

VertexProp

OutEdgeUid

OutEdgeUid OutEdgeUid

OutEdgeUid InEdgeUid

InEdgeUid InEdgeUid

OutEdgeUid

InEdgeUid

Prop

Prop

Prop

Prop
Less than 2 KB, merging

More than 4 KB, splittingProp

Prop Prop

…

…

…

…

…

Fig. 6 Adaptive mapping among graph data and underlying key-value store.

 160 Big Data Mining and Analytics, March 2024, 7(1): 156−170

smaller than the threshold size. The split mapping has
three types of keys, namely vertex properties, out-
edges with properties, and in-edges with properties.

Now let us discuss the performance of the split
mapping. In terms of sequential access, all the values
of the split mapping are arranged together, without
performance slowdown, thanks to the same prefix of
three types of keys.

In terms of random read, the order inner-value and
inter-value are kept the same. Therefore, two simple
binary search operations can locate the aimed data,
similar to split before. In terms of random write, the
value should be repacked. After splitting, the value size
is limited to the threshold size.

A proper threshold is important to leverage
sequential performance and repack size. In the phase of
repack, the data need to be written back to disk in the
same transaction. The cost of repack in the CPU cache
should be comparable to latency on the external disk,
i.e., 150 μs for SSD. We can limit the threshold to
several KB to fit the data in L1 Cache and make it
happen.

3.5　B+ tree based key-value storage

O(logn)
The basic idea of tree-structure is sorting data in order
to support complexity lookup and modify.
Among the tree-structured key-value store, B+ tree,
Log Structured Merge (LSM) tree as well as their
variants are mostly used. For example, InnoDB and
LMDB use B+ tree, while RocksDB uses the LSM tree.

A B+ tree uses a split and merge style in the tree
node to update sorted data, while the LSM tree appends
updates in log for lazy data compaction. The key
advantage of LSM tree is sequential update operation
in log, therefore the update operations complete
immediately, which means delaying the actual
compaction of data in the future. When reading
happens in none-compaction data, the LSM tree needs
to read through several levels of logs and results in
read amplification and space amplification, causing a
slowdown in read operations. In addition, periodical
compaction is almost unpredictable above the PG
layer.

After analyzing and evaluating the two representative
key-value stores, LMDB for B+ tree and RocksDB for
the LSM tree, LMDB has shown much better read
performance, as well as matching sequential write
performance, in spite of worse random write
performance (see Section 4). In another aspect, LMDB

has stable and predictable performance for further
graph storage optimization. We prefer LMDB to
RocksDB, as prefer reading performance to writing
performance.

In terms of other B+ tree stores such as InnoDB and
BerkeleyDB, benchmark[4] has shown that LMDB gets
better read and write latency because of its lock-free
design and simplified implementation.

3.6　Concurrent writer

LMDB has a significant shortcoming, i.e., single
writer, which cannot even match the 20∶1 read-to-
write performance requirement. We are going to
enhance the single writer to a concurrent writer above
key-value store by characteristics of graph workloads.

A single writer means each write transaction is
processed one after another, and write transactions
cannot be processed concurrently in a multi-thread
modern CPU. Furthermore, only one thread can be
used to write data to disk, which can hardly exhaust
disk IO bandwidth. We reform single writer to have
concurrent ability in two ways. One is optimistic
query-level concurrent control, and the other is Write-
Ahead-Log (WAL) based data durability.

query op sync op

sync
op

sync

According to Observation 5, we propose an
optimistic concurrent writer. When graph storage
receives many read-write mixed queries, as Fig. 7, and
each is composed of and . The
indicates the operations in memory, and outputs the
KVs should be written back to disk, while is the
write back process. In read-write mixed queries,
costs much more than .

op

By default, the queries are executed sequentially,
while queries can be executed in a concurrent way after
optimization. In the below part of Fig. 7, the part of
each query is processed immediately when the query

opA

opA

opB

opB

opC

opC

syncBC

syncA

syncA syncB syncC

queryCqueryBqueryA

queryA+queryB+queryC
Fig. 7 Concurrent writer example. Queries can be
processed concurrently, leaving synchronization processed
sequentially.

 Heng Lin et al.: Building a High-Performance Graph Storage on Top of Tree-Structured Key-Value Stores 161

op check

sync

sync

arrives. After is done, an extra is triggered to
check if the current data version is equal to the version
transaction begins, to ensure no other contention. If no
contention happens, this query goes to the next stage
and waits for . Otherwise, this query fails and the
transaction aborts. There is a background thread that
continuously checks if there is .

sync

syncA opA opB
opC syncB syncC

syncA syncA syncB syncC

All of the should be processed sequentially but
get the opportunity to be processed in batches. In this
example, starts when finishes. When
and end, and are blocked by ongoing

. After finishes, and are both
ready and can be processed in batches.

op
sync

The concurrent writer is able to process part
concurrently and potentially process in batch,
efficiently improving the performance. The side effect
is that a few writers may fail because of writing
contention. It can be solved by redo or just left alone
due to the very low possibility and no harm to the
ACID principle.

The writing performance bottleneck comes to single
writer on external disks, especially random writing. We
are going to improve writing performance without
sacrificing reading performance. It is a trade-off
between LMDB’s simplicity currently control and
multi-writer’s functionality completeness. In micro-
benchmark[4], InnoDB of MySQL using multi-writer
has much worse read performance compared to LMDB
using single-writer. Therefore, we keep the single-
writer design of LMDB at this work, and we use a
WAL to speed up single writer (see Fig. 8). Firstly,
incoming write transactions are sequentially appended
to a log file, and then do compaction every one minute.
In LMDB case, the update is immediately applied to
graph storage in memory, which means the data of B+
tree has been updated, and all the read operations do
not need extra check in log, which is very different
from compaction in RocksDB.

Optimistic concurrent control solves the unnecessary
contention of read operations, while WAL solves the
write bandwidth of external disks. These two

techniques enhance the concurrent writer ability of
LMDB, and make LMDB obvious shortcoming and
qualified key-value store for graph storage.

3.7　Other design

Along with the key techniques enabling graph storage’s
efficiency and functionality, it also adopts some
existing techniques that are used in common databases,
but requires extension and optimization to match graph
models.

Batched data import. It is observed that inserting
sorted data are about 10 times faster than discrete data.
To accelerate the import stage when storage is empty,
we use an external sorting based importing method.
The assumption of this technique is that the primary
keys of vertices can be loaded into memory, while
edges are not necessary. During the import, firstly,
each vertex is assigned a unique VertexUid and the
mapping is held in memory. Secondly, replace the
primary key to VertexUid in edges’ original data, and
store them as SrcVid and DstVid correspondingly.
Finally, edges are batch-loaded as buckets, and each
bucket is loaded to memory and sequentially writes
data to graph storage. By this technique, the throughput
of data import is able to achieve as much as 70 MB/s
on a modern computer.

Index. Each property of a vertex or edge can be
indexed as unique or non-unique. The B+ tree design is
naturally applied to build compare-based index, e.g.,
INT64, String. In terms of full text index, the graph
storage is integrated with Lucene[5] using a JNI
interface.

Profiler. A profiler is integrated into graph storage to
enhance stability. The profiler detects runtime
transaction behavior and monitors memory leakage in
system development and pre-release running.

4　Evaluation

4.1　Setup

We evaluated our graph storage design in Aliyun[6]; the
parameters are listed in Table 1. All the tests are

Table 1 Environment of evaluation.
Item Description

Instance ecs.i3g.4xlarge
CPU Intel 8269CY, 8 cores, 16 threads

Memory 128 GB
Disk NVMe SSD

syncBC syncD syncEF

syncBCDEFlogBCDEF
Fig. 8 WAL example. B+ tree in memory is always
updated, while B+ tree on disk is updated asynchronously
using WAL to ensure durability.

 162 Big Data Mining and Analytics, March 2024, 7(1): 156−170

ulimitcompleted on a single machine, and is used in
some experiments to simulate the out-of-memory case.

Different operations are designed for different
purposes of evaluation.

● Key-value operations. The operations can be read
or write, sequential or random of different value sizes.

● Graph queries. The targets of graph queries are
vertices or edges. Writing related graph queries are
vertex singular insert, vertex batch insert, edge singular
insert and edge batch insert. Update and delete are not
included to make it simple. Read-related graph queries
are K-hop based, e.g., neighborhood lookup and
pairwise shortest path.

● Comprehensive graph workloads. We follow the
official audit process of LDBC SNB Interactive[7],
which is similar to TPC-H for relational database. SNB
Interactive is composed of seven short queries, eleven
complex queries, and eight insert queries.

Synthetic and real-world data are used during
evaluation. The former contains uniformly distributed
data and SNB defined free-scale data, while the latter
contains Twitter2010[8], which has around 41.65
million vertices and 1.47 billion edges. The
Twitter2010 graph has a power-law distribution, e.g.,
the maximal out-degree is 3.0 million.

4.2　Scalability

Table 2 shows the throughput of six graph queries
when the volume of data in graph storage changes,
namely, strong scalability. The edge factor is 10 and
one INT64 property and one String property are
assigned to vertex, while the edge has no property.

The performance of the six queries may experience a
slight decrease in throughput when the data can fit in

memory. This is due to the fact that the B+ tree
structure used to store the graph data has more levels,
which can slightly slow down both reading and writing
processes. However, when the data exceed the
available memory, the throughput experiences a
significant decline.

Vertex insert is sequential write in graph storage,
since every vertex is assigned an auto-increment
integer. Vertex batch insert has about 30 times higher
throughput than vertex singular insert, meaning that
synchronizing small pieces to disk costs much more
than sequential data structure update in memory.

Edge insert randomly selects two existing vertices
and inserts an edge between them. This means that
edge insert is a random write in graph storage. Both
edge singular insert and vertex singular insert have
similar throughput, as the main overhead comes from
synchronization rather than in-memory operations. The
significant difference in throughput between edge
batch insert and vertex batch insert is due to the
difference between sequential and random writes.

Neighborhood lookup accesses the out-edges and in-
edges of a randomly selected vertex. The topology of
the graph is adaptively packed into one value or more.
Because the edges are evenly distributed with 20
neighborhoods per vertex, the split situation merely
appears. The access pattern of neighborhood lookup is
1-hop like reading one key-value. The throughput of
neighborhood lookup exceeds one million Query Per
Second (QPS), but sharply drops to 71 000 QPS when
accessing data on disk.

Pairwise shortest path computes the shortest path
between two vertices at the longest length of three.
Pairwise shortest path behaves as 3-hop random read in

Table 2 QPS of graph workloads in different database sizes. Memory is limited to 10 GB. -S-Ins. and -B-Ins. stand for
singular and batch insert, respectively.

| V | Vertex-B-Ins. Edge-B-Ins. Vertex-S-Ins. Edge-S-Ins. Neighborhood lookup Shortest path DB size (MB)
100 000 330 590 66 460 11 318 12 848 1 310 460 131 118 25
200 000 328 543 56 419 10 896 12 302 1 381 920 146 216 61
400 000 330 042 48 897 10 798 12 502 1 356 900 139 376 113
800 000 324 460 43 758 10 203 11 092 1 336 650 139 396 227

1 600 000 316 510 39 652 9841 10 197 1 299 270 137 984 466
3 200 000 307 936 36 843 9757 10 636 1 275 310 137 096 955
6 400 000 298 254 34 147 9078 10 258 1 314 730 136 333 1909
12 800 000 301 011 31 794 9300 10 016 1 230 460 137 507 3824
25 600 000 298 293 29 326 9110 9598 1 188 270 133 115 8056
51 200 000 301 298 15 302 8826 4954 129 393 17 898 16 589
102 400 000 299 288 5715 8727 3253 71 053 10 801 33 467

 Heng Lin et al.: Building a High-Performance Graph Storage on Top of Tree-Structured Key-Value Stores 163

graph data access pattern. The throughput is around
130 000 QPS, which is an important metric for the
following optimization evaluation.

4.3　Comparison of tree-structured key-value
stores

In this experiment, we are going to discuss the trade-
off between B+ tree and LSM tree, i.e., LMDB and
RocksDB. The experiment starts with operations in
underlying key-value, then graph queries used in
Section 4.2.

RocksDB is configured using TransactionDB, while
LMDB has the default configuration. In Table 3,
sequential and random read are compared with
different value sizes. Within key-value store, zero-copy
technique is used in reading, and we record the latency
of getting the reading pointers for comparison. LMDB
has nearly constant latency on sequential and random
read. This is likely due to the mmap memory
management of LMDB, which depends on 4 KB OS
page size, resulting in lower latency for sequential
reads. In contrast, the multi-level structure of LSM tree
in RocksDB requires multiple comparisons, leading to
higher latency as the database size increases. When the
value size reaches 64 KB, the total data can no longer

fit in memory, causing a dramatic increase in latency
for RocksDB. Overall, LMDB exhibits significantly
better sequential reading latency and is more stable
when the database size increases.

In Table 4, RocksDB has a random write bandwidth
of about 26 times more than LMDB when value size is
small, thanks to WAL feature, while the sequential
write gap is about two times. When the value size goes
above 4 KB, LMDB catches up with RocksDB in
sequential write. LMDB uses mmap as the data access
method, resulting in a 4 KB minimal access block and
being inefficient below 4 KB. RocksDB is not
suggested for larger value sizes; its writing bandwidth
becomes even lower when value size increases, which
should be configured using the BlobDB engine[9].

To confirm it, the above evaluation is repeated on a
slower disk, with the maximal Input/output Operations
Per Second (IOPS) dropping from 200 000 to 10 000.
Under this condition, the random write query of
RocksDB outperforms LMDB by two to six times.
Therefore, we can conclude that the advantages of
RocksDB are much fewer when the ability of disks
rapidly increases.

As a conclusion of Tables 3 and 4, LMDB has better
and stable read latency over RocksDB, and a

Table 3 Reading latency of key-value queries in LMDB and RocksDB in different value sizes, lower is better. The tested
database has per-inserted one million key-value pairs of desired size, and it reads one million values of ten threads.

Value size
Reading latency (ms)

Read-Seq-LMDB Read-Seq-RocksDB Read-Rand-LMDB Read-Rand-RocksDB
16 B 4 487 185 33
64 B 6 523 197 36
256 B 9 584 205 43
1024 B 17 728 201 78
4 KB 5 1958 185 210
16 KB 5 5153 184 234
64 KB 5 38 314 185 32 407

Table 4 Write bandwidth of key-value write queries in LMDB and RocksDB in different value sizes using ten threads, larger
is better.

Value size
Write bandwidth (MB/s)

Write-Seq-LMDB Write-Seq-RocksDB Write-Rand-LMDB Write-Rand-RocksDB
16 B 12.97 24.50 0.30 7.79
64 B 47.55 93.70 1.10 1.10
256 B 143.34 345.01 4.27 104.66
1024 B 360.18 721.13 15.17 312.39
4 KB 686.67 533.75 53.38 516.00
16 KB 1258.95 421.39 158.80 271.22
64 KB 994.04 150.37 352.67 70.00

 164 Big Data Mining and Analytics, March 2024, 7(1): 156−170

comparable writing performance when the value size is
no less than 4 KB. For a read optimized graph storage
design, LMDB is a better candidate.

|V |

Synthetic graph data and workloads in Section 4.2
are used for graph workloads evaluation, and the
RocksDB is configured as TransactionDB while
leaving most of the configurations default. As Fig. 9
shows, LMDB has up to 4.6 times better reading
performance compared with RocksDB, thanks to the
quick lookup mechanism in B+ tree. Vertex insert is
only 0.1 times because the vertex property is 20 B, and
the gap can be much narrower when the property size
becomes over 4 KB. In terms of edge batch insert,
LMDB performs at 50% slowdown when the number
of vertices, , is 51 200 000, while RocksDB drops to
30%. This results in a 4.3 times difference in
performance. The size of the database for LMDB is
16.6 GB, while it is 9.8 GB for RocksDB. Even
RocksDB has a smaller database size, it consumes
more memory for data processing and reaches an out-
of-memory performance drop earlier. As the graph data
becomes too large to make use of memory, the
difference between the two storage engines becomes
smaller as the bottleneck shifts to disk-memory data
exchange.

The inefficient reading performance of RocksDB
comes for several reasons. One of the most serious
reasons is unpredictable background compaction. The
read query performance on data before and after
compaction has a two to three times’ difference. We
also use the official profiling tool[10] to analyse the
reading performance of RocksDB, finding that
RocksDB needs to build an iterator data structure to

abstract the data flow, and this part of the cost occupies
about 80% overall. Simplifying the principle of LMDB
can avoid such kinds of cost.

The write workloads in the evaluation use a single
thread, while read workloads use ten threads. RocksDB
is able to get better writing results to outperform
LMDB. An early implementation of multi-thread
writing can speed up to three times in vertex insert and
six times in edge insert. It is obvious that RocksDB
does better in writing performance, especially when
properties are small.

In conclusion, LMDB is read-optimized and deals
with larger property data better, while RocksDB is
more suitable for smaller property and gets better
writing performance. We prefer LMDB due to the
reading performance requirement in financial real
application profiling.

4.4　Graph packing

Figure 10 compares the QPS of compact packing and
indexed packing. Regardless of vertex or edge, read or
write, compact packing always has better performance.
The read-related queries, i.e., neighborhood lookup and
pairwise shortest path, have up to 1.5 times’ speedup,
thanks to less key-value access of packing.

EdgeUid
VertexUid

The total key number of indexed packing is twenty
times more than compact packing, equal to twice of the
edge factor. Also, the key size of is around
four times larger than , which largely inflates
the storage size, up to five times. Therefore, writing
related queries also have up to 1.4 times’ speedup.
Edge singular insert of indexed packing is supposed to
write only the edge related data while compact packing

6.00

5.00

4.00

Q
PS

 ra
tio

3.00

2.00

1.00

0
20 21 22 23 24 25 26 27 28 29 210

Vertex-B-Ins. Edge-B-Ins. Edge-S-Ins.Vertex-S-Ins.
|V| in storage (×105)

Neighborhood lookup Shortest path
Fig. 9 QPS ratio of graph workloads of LMDB and RocksDB. The larger the number, the better the performance of LMDB.
Memory usage is limited to 10 GB. -S-Ins. and -B-Ins. stand for singular and batch insert, respectively.

 Heng Lin et al.: Building a High-Performance Graph Storage on Top of Tree-Structured Key-Value Stores 165

needs to rewrite the whole value of the vertex. Indexed
packing quickly runs out of memory, resulting in 11.07
to 18.39 times’ huge gaps in read queries. When both
methods read data on external disks, compact packing
keeps 1.71 to 1.88 times’ benefit.

However, the data that need to be updated is both
within 4 KB, i.e., the basic access block of LMDB.
Therefore, the performance of edge singular insert
makes no difference.

4.5　Writer optimization

To solve the performance bottleneck of singer writer in
LMDB, concurrent writer optimization is introduced in
Section 3.6. The experimental result in Table 5 shows
the random writing bandwidth compared with original
direct synchronization using 128-bytes value. WAL
can replace random writing in B+ tree with sequential
writing in the log file, and the bandwidth improved
from 7.53 MB/s to 10.73 MB/s in single writer. When
the number of writers increased to ten, the bandwidth
also increased to 21.19 MB/s, thanks to concurrent
access to log files. In the compaction stage to replay
logs, the operation on the same key can be merged to
reduce the total write amount in LMDB.

4.6　GDBMS comparison

We use K-hop as a typical graph access workload on

real world data, i.e., Twitter’s social network, to
compare the performance with other well-known graph
databases, including Neo4j[1], JanusGraph[11],
Dgraph[12], and an anonymous graph database TG.

14%
In Table 6, TG has the shortest import cost and

smallest on-disk size. TuGraph is slower because
of the single write limitation, but faster than the other
three GDBMSs. The original Twitter data size is
24.6 GB; TuGraph merely has compression, i.e.,
occupies 24 GB. The in-memory design of TG trades
off between immediate write to disk and extreme
memory compress, while TuGraph does not implement
any content-based compression, and chooses a more
balanced design, focusing on high reading performance
as well as ACID guarantee. Thanks to batched data
import in Section 3.7, TuGraph gets first-class import
throughput.

In Fig. 11, the latency of K-hop in various GDBMS
is given. Each test should be completed within 2 h.
During the runtime of Dgraph 6-hop test, it runs out of
memory and crashes. In spite of being 1.8 ms slower
than Dgraph in 1-hop, TuGraph has the best latency of
all other tests, with even better orders of magnitudes.

This substantial advantage can be attributed to

32.00

16.00

8.00

Q
PS

 ra
tio

4.00

2.00

1.00

0.50
20 21 22 23 24 25 26 27 28 29 210

Vertex-B-Ins. Edge-B-Ins. Edge-S-Ins.Vertex-S-Ins.
|V| in storage (×105)

Neighborhood lookup Shortest path
Fig. 10 QPS ratio of compacting and indexed packing using LMDB. The larger the number, the better the performance of
compacting. Memory usage is limited to 10 GB. -S-Ins. and -B-Ins. stand for singular and batch insert, respectively.

Table 5 Bandwidth of WAL and direct synchronization,
using random write of 128-bytes value.

Sync. method
Bandwidth (MB/s)

Single writer Ten writers
Direct 7.53 9.19
WAL 10.73 21.19

Table 6 Import cost and on-disk size of importing Twitter
data.

GDBMS Import cost (s) On-disk size (GB)
TuGraph 652 24

Neo4j 979 48
TG 577 6.1

Dgraph 2704 8.8
ArangoDB 8851 106
JanusGraph 2802 51

 166 Big Data Mining and Analytics, March 2024, 7(1): 156−170

several factors related to TuGraph’s storage model and
implementation. Firstly, TuGraph employs a compact
packing design that efficiently handles read-only K-hop
workloads with a smaller memory footprint compared
to other GDBMS. Secondly, TuGraph leverages inner-
query parallelism to effectively utilize CPU resources.
This feature is not supported in some other GDBMSs,
such as JanusGraph. Thirdly, TuGraph avoids
unnecessary data copying by utilizing pointers within a
single machine.

We plan to conduct a write benchmark using graph
operations to evaluate the write performance of
TuGraph and Neo4j, representing GDBMSs. Figure 12
illustrates the QPS ratio of TuGraph and Neo4j for
singular and batch inserts of vertices and edges. It is
worth noting that Neo4j adopts a linked block approach
for storing graph data, which differs significantly from
TuGraph’s B+ tree based compact packing, resulting in
divergent performance outcomes.

In terms of vertex inserts, TuGraph and Neo4j show
similar performance in singular conditions, with no

significant difference between them. However, when
batch inserts are performed, TuGraph outperforms
Neo4j by 1.55 times. This improvement is attributed to
the sequential write pattern of vertex insert, which
comes from the single-writer nature of TuGraph’s
LMDB. By batching the inserts together, the overall
write QPS is significantly enhanced.

On the other hand, when it comes to edge inserts,
TuGraph faces some challenges. Each randomly added
edge requires repacking the value, resulting in a less
favorable batch edge insert pattern. In fact, in
comparison to Neo4j, TuGraph’s batch edge insert
performance is only 0.44 times. When examining
singular edge inserts, Neo4j’s performance is similar to
that of TuGraph. This similarity is due to the fact that
Neo4j needs to manage numerous small data blocks to
ensure ACID guarantees, resulting in comparable QPS
for singular edge inserts.

In Fig. 12, there are some noteworthy observations.
When the data scale is small, Neo4j’s implementation
incurs additional overhead due to fixed internal data

104

103

102

R
el

at
iv

e
la

te
nc

y

101

100

10−1

1-hop
TuGraph Neo4j TG Dgraph ArangoDB JanusGraph Out of bound

2-hop 3-hop 4-hop 5-hop 6-hop

Fig. 11 K-hop latency of different GDBMSs.

4.00

2.00

1.00

Q
PS

 ra
tio

0.50

0.25
22

Vertex-B-Ins. Edge-B-Ins. Edge-S-Ins.Vertex-S-Ins.
|V| in storage (×105)

23 24 25 26 27 28 29 210

Fig. 12 QPS ratio of graph workloads of TuGraph and Neo4j. The larger the number, the better the performance of
TuGraph. Neo4j uses 10 threads.

 Heng Lin et al.: Building a High-Performance Graph Storage on Top of Tree-Structured Key-Value Stores 167

structures. As the data scale increases, Neo4j is the first
to exceed memory limits and subsequently slows
down. The QPS ratio stabilizes again when both
TuGraph and Neo4j encounter memory limitations.

4.7　Mixed throughput

LDBC SNB interactive defines graph workload which
simulates a social network scenario, to evaluate overall
performances of GDBMSs. The environment is
Amazon Web Services, using an r5d/12xlarge instance.
Two machines are used for driver instance and server
instance, to simulate the real client/server network
connection.

In Table 7, a scale factor of 300 means the total data
size is about 300 GB, and Time Compression Ratio
(TCR) is a parameter for turning inside the benchmark.
We can see that the load rate is up to 77.12 MB/s and
the total throughput is up to 12 934.61 queries per
second. During benchmarking, the execution time of
read and write is about ten to one, which is indicated
by Facebook online system profiling. The storage of
TuGraph is designed to handle SNB’s mixed read and
write graph workload, and it achieves the first place on
the board of SNB Interactive. The full result can be
found on LDBC’s official website[7].

5　Related Work

Graph storage refers to the organization of vertices,
edges, and properties data in persistent storage, which
is important for both query performance and storage
capacity. There are several approaches to graph storage
used by different GDBMSs.

Some GDBMSs design their own graph storage
solutions. Neo4j[1] uses a linked storage block to adapt
the random vertex and edge access. The vertex record
and edge record are stored at a fixed size, using a
pointer to link two related data, resulting in losing the
opportunity to compress data and sequential access.
ArangoDB[13] uses hash tables for quick vertex and
edge lookup, while the edges of a vertex are put in a
linked list. The shortage of hash tables includes lacking
support for range scan, which may benefit from the

locality of vertex.
Other GDBMSs, such as JanusGraph[11], use

established NoSQL stores as their underlying graph
storage. JanusGraph is able to use different storage
backend as a wide-column store, including
Cassandra[14], HBase[15], Google Cloud Bigtable[16],
and Berkeley DB[17]. This allows for flexibility, but
requires a standard interface and may not allow for
deep co-design.

Document stores, such as OrientDB[18], are well-
suited for storing and indexing hierarchical data, such
as property graph data in this case. OrientDB has
vertex documents and edge documents to record graph
data and supports abundant property operations. At the
same time, document structured data are not as
efficient as hand-tuned data arrangement. Wide-
column stores, such as JanusGraph[11], can store
different numbers of columns for each row, which is
useful for storing indeterminate numbers of edges for
each vertex. JanusGraph packs each vertex’s properties
and neighbor edges in a wide-column store. Each
property and edge are regarded as cells that can be
further stored as key-value pairs to store properties of
edges. TuGraph uses key-value store to achieve
simplicity and scalability. The value can be furthest
redesigned to adapt to graph-specific processing.

Some GDBMSs, such as TigerGraph[2],
GraphflowDB[19], and A1[20], focus on in-memory
graph workloads. TigerGraph compresses graph data
and tries to load the whole graph into memory, which
always reserves memory for the whole graph data even
if the data is currently not required in workload.

Distributed processing is supported by some other
GDBMSs, which comes with the data consistency
problem. It can be handled by user-side, or only master
replica is able to write[21, 22], or two-phase committed
related design. For example, Cosmos DB[23] uses a last-
write-win policy to resolve writing conflicts.
Distributed processing is likely having order of
magnitude slows down compared with single machine
implementation, in the case data can be handled in a
single machine.

Hybrid Transactional/Analytical Processing (HTAP)
is another area of GDBMS research, with systems like
LiveGraph[24] using a transactional edge log and
concurrency control mechanism to support both
analytical and transactional graph workloads.

This work focuses on graph storage, and could

Table 7 LDBC SNB Interactive benchmarking result of
TuGraph.

Scale factor Load (MB/s) TCR Throughput QPS
30 67.29 0.0028 12 252.50
100 75.70 0.0104 12 934.61
300 77.12 0.0360 12 721.24

 168 Big Data Mining and Analytics, March 2024, 7(1): 156−170

potentially be combined with research on execution
models, such as those presented in Tao[25] and
Grasper[26].

6　Conclusion

Graph databases are rapidly gaining popularity as they
provide efficient storage and retrieval of graph-
structured data. In this paper, we have presented the
design and implementation of our graph storage
engine, TuGraph. We began by summarizing common
access patterns for graph databases, followed by the
introduction of key techniques aimed at enhancing the
performance of graph storage engines, such as adaptive
compact packing of graph data and property packing.
Subsequently, we provide an in-depth overview of the
implementation of these techniques in TuGraph.

The experimental results have showcased the
outstanding performance of TuGraph, surpassing other
popular graph database management system like Neo4j
and JanusGraph by several orders of magnitude.
Moreover, TuGraph has demonstrated good
performance on standard GDBMS benchmarks,
including the LDBC SNB.

While these achievements are commendable, there
are still opportunities for further improvement in this
field. For instance, exploring a hash table based
approach for vertex lookup holds the potential to
deliver faster results compared to tree-structured key-
value stores. Additionally, extending the capabilities of
TuGraph to support distributed graph storage is an area
that we aim to explore.

In conclusion, our work on TuGraph represents
notable advancements in graph storage technology. The
impressive performance demonstrated by TuGraph,
coupled with the identified areas for future
improvement, lays a foundation for further research
and development in the field of graph databases.

References

 Neo4j, https://neo4j.com, 2023.[1]
 A. Deutsch, Y. Xu, M. Wu, and V. Lee, TigerGraph: A
native MPP graph database, arXiv preprint arXiv:
1901.08248, 2019.

[2]

 Z. Fu, Z. Wu, H. Li, Y. Li, M. Wu, X. Chen, X. Ye, B. Yu,
and X. Hu, GeaBase: A high-performance distributed
graph database for industry-scale applications, Int. J. High

[3]

Perform. Comput. Netw., vol. 15, nos. 1&2, pp. 12−21,
2019.
 Symas Corp, Memcache benchmark, http://www.lmdb.
tech/bench/memcache/, 2013.

[4]

 Lucene, https://lucene.apache.org/, 2023.[5]
 Alibaba cloud, https://www.aliyun.com/, 2023.[6]
 Ldbc social network benchmark, https://ldbcouncil.
org/benchmarks/snb/, 2023.

[7]

 Twitter follower network 2010, https://snap.stanford.
edu/data/twitter-2010.html, 2023.

[8]

 L. Lu, T. S. Pillai, H. Gopalakrishnan, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, WiscKey: Separating
keys from values in SSD-conscious storage, ACM Trans.
Storage, vol. 13, no. 1, pp. 5, 2017.

[9]

 Perf context and IO stats context, https://github.com/
facebook/rocksdb/wiki/perf-context-and-io-stats-context,
2022.

[10]

 JanusGraph, https://janusgraph.org, 2023.[11]
 Dgraph, https://github.com/dgraph-io/dgraph, 2023.[12]
 ArangoDB, https://www.arangodb.com/, 2023.[13]
 Apache Cassandra, https://cassandra.apache.org/, 2023.[14]
 Apache HBase, https://hbase.apache.org/, 2023.[15]
 Google Cloud Bigtable, https://cloud.google.com/bigtable/,
2023.

[16]

 Oracle Berkeley DB, https://www.oracle.com/database/
technologies/related/berkeleydb.html, 2023.

[17]

 OrientDB, https://orientdb.com, 2023.[18]
 C. Kankanamge, S. Sahu, A. Mhedbhi, J. Chen, and S.
Salihoglu, Graphflow: An active graph database, in Proc.
2017 ACM Int. Conf. Management of Data, Chicago, IL,
USA, 2017, pp. 1695–1698.

[19]

 C. Buragohain, K. M. Risvik, P. Brett, M. Castro, W. Cho,
J. Cowhig, N. Gloy, K. Kalyanaraman, R. Khanna, J. Pao,
et al., A1: A distributed in-memory graph database, in
Proc. 2020 ACM SIGMOD Int. Conf. Management of
Data, Portland, OR, USA, 2020, pp. 329–344.

[20]

 Aws Neptune, https://aws.amazon.com/neptune/, 2023.[21]
 Alibaba GDB, https://www.aliyun.com/product/gdb/,
2023.

[22]

 Azure Cosmos DB documentation, https://docs.microsoft.
com/en-us/azure/cosmos-db, 2023.

[23]

 X. Zhu, G. Feng, M. Serafini, X. Ma, J. Yu, L. Xie, A.
Aboulnaga, and W. Chen, LiveGraph: A transactional
graph storage system with purely sequential adjacency list
scans, arXiv preprint arXiv: 1910.05773, 2019.

[24]

 N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov,
H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. Li, et al.,
TAO: Facebook’s distributed data store for the social
graph, in Proc. 2013 USENIX Conf. Annual Technical
Conf. (USENIX ATC 13), San Jose, CA, USA, 2013, pp.
49–60.

[25]

 H. Chen, C. Li, J. Fang, C. Huang, J. Cheng, J. Zhang, Y.
Hou, and X. Yan, Grasper: A high performance distributed
system for OLAP on property graphs, in Proc. ACM Symp.
on Cloud Computing, Santa Cruz, CA, USA, 2019, pp.
87–100.

[26]

 Heng Lin et al.: Building a High-Performance Graph Storage on Top of Tree-Structured Key-Value Stores 169

https://neo4j.com
http://www.lmdb.tech/bench/memcache/
http://www.lmdb.tech/bench/memcache/
https://lucene.apache.org/
https://www.aliyun.com/
https://ldbcouncil.org/benchmarks/snb/
https://ldbcouncil.org/benchmarks/snb/
https://snap.stanford.edu/data/twitter-2010.html
https://snap.stanford.edu/data/twitter-2010.html
https://github.com/facebook/rocksdb/wiki/perf-context-and-io-stats-context
https://janusgraph.org
https://github.com/dgraph-io/dgraph
https://www.arangodb.com/
https://cassandra.apache.org/
https://hbase.apache.org/
https://cloud.google.com/bigtable/
https://www.oracle.com/database/technologies/related/berkeleydb.html
https://www.oracle.com/database/technologies/related/berkeleydb.html
https://orientdb.com
https://aws.amazon.com/neptune/
https://www.aliyun.com/product/gdb/
https://docs.microsoft.com/en-us/azure/cosmos-db
https://docs.microsoft.com/en-us/azure/cosmos-db

Heng Lin is currently a postdoctoral
researcher at Peking University and a
technical expert at Ant Group, China. He
received the PhD degree in computer
science from Tsinghua University in 2018.
His interests include graph database and
parallel computing.

Zhiyong Wang received the bachelor
degree from Hangzhou Dianzi University
in 2014. He previously worked at DiDi
Global Inc., and is currently a technical
expert of Ant Group, China. He has many
years of experience in large-scale
distributed storage system development,
including SQL, NOSQL, GRAPH, OLTP,

and OLAP.

Shipeng Qi received the bachelor degree
in computer science and technology from
Huazhong University of Science and
Technology, and the second bachelor
degree in economics from Wuhan
University in 2017. He is currently a graph
database engineer at Ant Group, China, a
developer relations advocate in TuGraph-

DB community, and a benchmark expert in Linked Data
Benchmark Council leading the LDBC Financial Benchmark.
Before he joined Ant Group, he served as a co-founder in a
startup building ToB AI platforms.

Xiaowei Zhu is currently a researcher at
Ant Technology Research Institute, Ant
Group, China. He received the bachelor
and PhD degrees in computer science from
Tsinghua University in 2013 and 2018,
respectively. His research focuses on
storage and computation aspects of graph
processing systems.

Chuntao Hong received the PhD degree
from Tsinghua University, China in 2011.
He later joined Microsoft Research Asia
and co-founded Beijing FMA Technology
Co., Ltd. In 2020, he joined Ant Group,
where he currently leads the development
of Ant Group’s graph database.

Wenguang Chen is currently a professor
at Tsinghua University, and the president
of Ant Technology Research Institute, Ant
Group, China. He received the bachelor
and PhD degrees in computer science from
Tsinghua University in 1995 and 2000,
respectively. His research focuses on
parallel and distributed systems and

programming systems.

Yingwei Luo received the PhD degree in
computer science from Peking University,
China in 1999. He is a full professor of
computer science at the School of
Computer Science, Peking University. His
research interests include operating
system, system virtualization, and cloud
computing.

 170 Big Data Mining and Analytics, March 2024, 7(1): 156−170

