
Published as a conference paper at ICLR 2025

A MULTI-POWER LAW FOR LOSS CURVE PREDICTION
ACROSS LEARNING RATE SCHEDULES

Kairong Luo1 Haodong Wen2 Shengding Hu1 Zhenbo Sun1

Zhiyuan Liu1 Maosong Sun1† Kaifeng Lyu3† Wenguang Chen1,4†
1Department of Computer Science and Technology, Tsinghua University
2Qian Xuesen College, Xi’an Jiaotong University
3Simons Institute, University of California, Berkeley
4Peng Cheng Laboratory
{luokr24,sunzb20}@mails.tsinghua.edu.cn
{herrywenh,shengdinghu}@gmail.com
kaifenglyu@berkeley.edu
{liuzy,sms,cwg}@tsinghua.edu.cn

ABSTRACT

Training large models is both resource-intensive and time-consuming, making it
crucial to understand the quantitative relationship between model performance
and hyperparameters. In this paper, we present an empirical law that describes
how the pretraining loss of large language models evolves under different learning
rate schedules, such as constant, cosine, and step decay schedules. Our proposed
law takes a multi-power form, combining a power law based on the sum of learn-
ing rates and additional power laws to account for a loss reduction effect induced
by learning rate decay. We extensively validate this law on various model sizes and
architectures, and demonstrate that after fitting on a few learning rate schedules,
the law accurately predicts the loss curves for unseen schedules of different shapes
and horizons. Moreover, by minimizing the predicted final pretraining loss across
learning rate schedules, we are able to find a schedule that outperforms the widely
used cosine learning rate schedule. Interestingly, this automatically discovered
schedule bears some resemblance to the recently proposed Warmup-Stable-Decay
(WSD) schedule (Hu et al., 2024) but achieves a slightly lower final loss. We be-
lieve these results could offer valuable insights for understanding the dynamics of
pretraining and designing learning rate schedules to improve efficiency.1

1 INTRODUCTION

Large Language Models (LLMs) can achieve strong performance if pretrained with an appropriate
configuration of hyperparameters, such as model width, depth, number of training steps, and learning
rate. However, tuning these hyperparameters at scale is extremely costly since one pretraining run
can take weeks or even months.

To reduce the cost of hyperparameter tuning, various scaling laws have been proposed to predict
pretraining loss or downstream performance by capturing empirical relationships between key hy-
perparameters and model performance. A notable example is the Chinchilla scaling law (Hoffmann
et al., 2022), which approximates the final pretraining loss as a simple function of the model size N
and total training steps T (or total training tokens), L(N,T) = L0 +A ·T−α +B ·N−β . By fitting
parameters L0, A,B, α, β from a few training runs with varying N and T , one can use the formula
to infer the optimal choice of N and T given a fixed compute budget C ∝ NT .

A key challenge that existing scaling laws have not addressed is how to set the Learning Rate (LR)
optimally over time. LR is arguably the most critical hyperparameter in optimization, as it can
significantly affect the training speed and stability. A large LR can quickly reduce the training loss,
but in the long term, it may cause overshooting and oscillation along sharp directions on the loss

†Corresponding authors.
1Code Implementation: https://github.com/thu-yao-01-luo/MultiPowerLaw

1

https://github.com/thu-yao-01-luo/MultiPowerLaw

Published as a conference paper at ICLR 2025

5000 10000 15000 20000 25000
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(L

R
 x

 1
0

4)

17500 18000 185002.9

3.0

3.1

WSD
Cosine
WSD (Tuned)
WSDLD (Tuned)
Opt

(a) Comparison of Optimized LR Schedules

5000 10000 15000 20000 25000
Step

2.8

3.0

3.2

3.4

3.6

Lo
ss

22000 23000
2.72

2.74

WSD
Cosine
WSD (Tuned)
WSDLD (Tuned)
Opt

(b) Loss Curves for Different LR Schedules

Figure 1: Optimizing the LR schedule induces a schedule (Opt) better than cosine and WSD schedules. We
conduct evaluation experiments on a 400M Llama-2 (Touvron et al., 2023) model trained over 12B tokens.
Zoom-in regions facilitate the readers who are interested in the local details. (a) Our optimized schedule
comprises constant and decay stages post-warmup, aligning with WSD (Hu et al., 2024). (b) Loss curves
demonstrate that our optimized schedule outperforms cosine schedules and two major variants of WSD with
tuned hyperparameters (WSD with exponential decay and WSDLD with linear decay).

landscape. In contrast, a small LR ensures a more stable training process but also slows down the
convergence. Practitioners often balance these trade-offs by starting training with a large LR and
then gradually reducing it over time, following a Learning Rate schedule (LR schedule) (Bengio,
2012). These LR schedules sometimes include a warmup phase at the beginning, where the LR
linearly increases from zero to a large value over a few thousand steps, and only after this warmup
phase does the LR start to decay. The most commonly used LR schedule in LLM pretraining is the
cosine schedule (Loshchilov & Hutter, 2017), which decays the LR following a cosine curve. Other
schedules include the cyclic (Smith, 2017), Noam (Vaswani et al., 2017), and Warmup-Stable-Decay
(WSD) schedules (Hu et al., 2024), but there is no consensus on the optimal choice.

Existing scaling laws sidestep the complexity of LR schedules by fitting parameters on a fixed fam-
ily of LR schedules. For instance, Hoffmann et al. (2022) fitted the parameters in the Chinchilla
scaling law for training runs that have gone through the entire cosine LR schedule. As a result, it
does not generalize well to other LR schedules, or even to the same schedule with early stopping.
Moreover, existing scaling laws lack a term to account for LR schedules, limiting their ability to
provide practical guidance on setting the LRs. This issue can become even more pronounced when
scaling up training to trillions of tokens (Dubey et al., 2024; Liu et al., 2024), where the extreme
cost of training makes it impractical to experiment with multiple LR schedules.

In this paper, we aim to quantify how LR schedules influence the evolution of training loss in LLM
pretraining through empirical analysis. More specifically, we study the following problem, which we
call the schedule-aware loss curve prediction problem: Can we use a simple formula to accurately
predict the training loss curve L(t) (1 ≤ t ≤ T) given a LR schedule E := {η1, η2, . . . , ηT } for T
steps of training? To align with standard practices in LLM pretraining and to enable a more precise
analysis tailored to this setting, we impose the following reasonable restrictions on the problem.
First, we take fresh samples from a data stream at each training step, so there is no generalization
gap between the training and test loss. Second, we focus on LR schedules that decay the LR over
time, i.e., η1 ≥ η2 ≥ η3 ≥ · · · . Finally, as most LR schedules used in practice start with a
warmup phase before the LR decays, we make a minor modification to the problem and include a
fixed warmup phase before the decay phase we are interested in. We assume that the shape and
the peak LR ηmax of the warmup phase have been carefully picked, potentially through a series of
short training runs, and we are only interested in understanding how different LR decay schedules
after warmup affect the training loss curve. For convenience, we shift the time index so that t = 1
corresponds to the first step after the warmup phase.

In contrast to most existing scaling laws that rely on only two or three hyperparameters (Kaplan
et al., 2020; Hoffmann et al., 2022; Muennighoff et al., 2023; Goyal et al., 2024), solving the above
problem poses unique challenges, as it requires predicting the loss curve based on the entire LR
schedule, which is inherently high-dimensional. This complexity necessitates a more sophisticated
approach to understand and quantify the relationship between the LR schedule and the loss curve.

Our Contribution: Multi-Power Law. In this paper, we propose the following empirical law (1)
for schedule-aware loss curve prediction:

L(t) = L0 +A · (S1(t) + SW)−α − LD(t), where S1(t) :=

t∑
τ=1

ητ . (1)

2

Published as a conference paper at ICLR 2025

8000 24000

0.50

1.00

1.50

2.00

2.50

3.00

8000 12000
3.05

3.10

3.15

3.20

3.25

8000 16000 24000
2.75

3.00

3.25

3.50

3.75

4.00

25M

400M

100M

20000 24000
2.70

2.75

2.80

2.85

2.90

8000 24000
Step

0.50

1.00

1.50

2.00

2.50

3.00

8000 12000
3.05

3.10

3.15

3.20

3.25

8000 16000 24000
Step

2.75

3.00

3.25

3.50

3.75

4.00

25M

400M

100M

20000 24000
3.25

3.30

3.35

3.40

Training Set Two-Stage
B = 9 × 10 5ConstCosine

Test Set Two-Stage
B = 3 × 10 5

Two-Stage
B = 1.8 × 10 4WSDWSDLD

Le
ar

ni
ng

 R
at

e
(x

10
4)

Lo
ss

LR
Loss
Prediction

LR
Loss
Prediction

Figure 2: The Multi-Power Law (MPL) with parameters fitted on cosine, constant, and two-stage schedules
can accurately predict the loss curves of unseen schedules, including WSDLD, WSD, and two-stage schedules
with a different LR in the second stage. See Table 1 for evaluation metrics.

Here, SW denotes the sum of learning rates used in the warmup phase. The first two terms L0 +
A · (S1(t) + SW)−α can be viewed as an extension of the Chinchilla scaling law by replacing the
number of steps T with the cumulative sum of learning rates up to step t, while neglecting the
dependence on the model size. While this alone provides a crude approximation of the loss curve
by linearizing the contribution of the LR at each step (see Section 3.1 for further discussion), it does
not account for the specific shape of the LR decay. The additional term LD(t) serves as a correction
term, which captures the effect of LR decay in further reducing the loss:

LD(t) := B

t∑
k=1

(ηk−1 − ηk) ·G(η−γ
k Sk(t)), Sk(t) :=

t∑
τ=k

ητ , G(x) := 1− (Cx+ 1)−β . (2)

More specifically, LD(t) is linear with a cumulative sum of the LR reductions ηk−1 − ηk over
time, scaled by a nonlinear factor G(η−γ

k Sk(t)). This factor gradually saturates to a constant as the
training progresses, which follows a power law in a scaled sum of learning rates η−γ

k Sk(t).

We call this law of L(t) the Multi-Power Scaling Law (MPL) as it consists of multiple power-law
forms. L0, A,B,C, α, β, γ are the parameters of the law and can be fitted by running very few
pretraining experiments with different LR schedules. Our main contributions are as follows:

1. We propose the Multi-Power Law (1) for schedule-aware loss curve prediction, and empirically
validate that after fitting the parameters of the law on at most 3 pretraining runs, it can predict
the loss curve for unseen LR schedules with remarkable accuracy (see Figure 2). Unlike the
Chinchilla scaling law, which relies solely on the final loss of each training run to fit its param-
eters, our approach utilizes the entire loss curve of each training run to fit the parameters, thus
significantly reducing the number of training runs and compute resources needed for accurate
predictions (Figure 5). Extensive experiments are presented for various model architectures,
sizes, and training horizons (Section 4).

2. Our Multi-Power Law is accurate enough to be used to search for better LR schedules. We show
that by minimizing the predicted final loss according to the law, we can obtain an optimized LR
schedule that outperforms the standard cosine schedule. Interestingly, the optimized schedule
has a similar shape as the recently proposed WSD schedule (Hu et al., 2024), but its shape is
optimized so well that it outperforms WSD with grid-searched hyperparameters (Section 5).

3. We use a novel “bottom-up” approach to empirically derive the Multi-Power Law. Starting from
two-stage schedules, we conduct a series of ablation studies on LR schedules with increasing
complexity, which has helped us to gain strong insights into the empirical relationship between
the LR schedule and the loss curve (Section 3).

4. We provide a theoretical analysis for quadratic loss functions and demonstrate that the Multi-
Power Law emerges when the Hessian and noise covariance matrices exhibit certain types of
power-law structures (Appendix B).

3

Published as a conference paper at ICLR 2025

2 PRELIMINARY

Learning Rate Schedule. A learning rate (LR) schedule is a sequence E := {η1, . . . , ηT } that
specifies the LR at each step of the training process. For language model pretraining, the cosine
LR schedule (Loshchilov & Hutter, 2017) is the most popular schedule, which can be expressed as
ηt = 1+α

2 ηmax + 1−α
2 ηmax cos(

πt
T). Here, ηmax is the peak LR and α is usually set to 0.1. The

Warmup-Stable-Decay (WSD) schedule (Hu et al., 2024) is a recently proposed LR schedule. This
schedule first goes through a warmup phase, then maintains at a stable LR ηmax with Tstable steps,
and finally decays in the form of f(t−Tstable)ηmax for Tstable ≤ t ≤ Ttotal. Here f(x) ∈ (0, 1) can be
chosen as linear or exponential decay functions. We visualize these two LR schedules in Figure 1(a).

Warmup Phase. Many LR schedules, such as WSD, include a warmup phase in which the LR
gradually increases from 0 to the peak LR ηmax over a few thousand steps. We denote the number
of warmup steps as W . By default, the LR increases linearly, so the total LR sum during warmup is
given by SW = 1

2ηmaxW . Our analysis focuses on the training process after the warmup, where the
LR is decaying in almost all LR schedules. We count training steps starting from the end of warmup
and set t = 1 as the first step after warmup. Accordingly, {η1, . . . , ηT } represents the post-warmup
schedule, and the LR at the last warmup step η0 = ηmax is the peak LR of the entire schedule.

Power Law of Data Scaling Prior studies (Hoffmann et al., 2022; Kaplan et al., 2020) demonstrate
that, for a fixed model size, the final loss follows a power law of the data size or, equivalently, the
total training step number T in a constant-batch-size setting. This relationship is expressed as:

L(T) ≈ L̂(T) := L0 + Ã · T−α, (3)

where L0, Ã, α are parameters to fit. This law is typically fitted over the final losses of a set of
training curves generated from a specific LR schedule family, such as a cosine schedule with a
given peak LR (ηmax), ending LR (αηmax) and warmup steps (W). However, applying (3) directly
to intermediate steps (t < T) introduces bias, as the LR schedule up to t bears insufficient decay
compared to the full schedule over T , resulting in different loss trajectories. This discrepancy is
confirmed in Figure 5(b). We refer to (3) as the Chinchilla Data Scaling Law (abbreviated as CDSL)
throughout the paper since it is simplified from the Chinchilla scaling law (Hoffmann et al., 2022)
to highlight the data dimension.

3 EMPIRICAL DERIVATION OF THE MULTI-POWER LAW

In this section, we present the empirical derivation of the Multi-Power Law (MPL) for schedule-
aware loss curve prediction. Our key insights are summarized as follows:

1. If two training runs share the same sum of learning rates,
∑T

t=1 ηt, then their final losses tend
to be similar, though a non-negligible discrepancy remains (Section 3.1).

2. In particular, for a training run with a given LR schedule, the final loss L(T) is similar to that
of another training run using a constant learning rate schedule with the same total LR sum. This
motivates us to decompose L(T) into two components: (1) the final loss of the corresponding
constant LR run; and (2) a residual term that captures the effect of LR decay, defined as the
difference between the final loss of the target run and the constant LR run. (Section 3.1)

3. Empirically, we observe that training runs with constant learning rates exhibit a Chinchilla-like
power-law behavior in the loss curve and can thus be well approximated by a simple power law.
(Section 3.2.1)

4. To approximate the residual term, instead of analyzing it directly, we imagine a sequence of
training runs with schedules that gradually transition from a constant LR to the target schedule,
all while maintaining the same total LR sum. Using a novel “bottom-up” approach, we derive
an approximation formula for the loss difference introduced by each incremental change in the
LR schedule, first by analyzing simple two-stage schedules and then extending the results to
more complex schedules. (Sections 3.2.2 and 3.3)

Finally, we sum up all the approximation terms above, leading to our MPL. Below, we elaborate on
our approach in detail.

4

Published as a conference paper at ICLR 2025

8000 8180 8360 8540 8720
Step

3.0

2.5

2.0

1.5

1.0

0.5

Le
ar

ni
ng

 R
at

e
(x

10
4)

(0)

(1)

(2)

(3)

(4)

(5)

(6)
(7)
(8)

(2)

t(1) t(2)

Equal LR Sum

8000 8180 8360 8540 8720
Step

3.44

3.46

3.48

3.50

3.52

3.54

Lo
ss

LD(8720)

LD(2)(t(2))

t(1) t(2)

Equal LR Sum

0.3

0.4

0.5

0.8

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Figure 3: A multi-stage schedule (Appendix A.2) example to illustrate the learning rate (LR) sum matching
(Section 3.1) and fine-grained loss reduction decomposition (Section 3.2.2). The steps with equal LR sum as
the final step T9 = 8720 are marked and linked with the dash-point line. Each stage spans 90 steps. T1 = 8000,
T2 = 8090, t(1) = ZT2(T9), t(2) = ZT3(T9). See Appendix F.3 for experiment details. Left: The actual
multi-stage schedule and schedules for auxiliary processes. LR gap between adjacent points denotes the LR
reduction ∆η(i) = η(i−1) − η(i). Right: Corresponding training curves for the multi-stage schedule and
the auxiliary processes. The total loss reduction is LD(T9) and can be decomposed as the intermediate loss
reduction sum. The loss gap between adjacent points denotes the stage-wise loss reduction LD(i)(t(i)).

3.1 OUR APPROACH: LEARNING RATE SUM MATCHING

Auxiliary Training Process. As introduced above, we construct a series of auxiliary training runs
with LR schedules gradually changing from a constant LR schedule to the target schedule E :=
{η1, . . . , ηT }. Our construction is detailed as follows. We define the k-th auxiliary process shares
the first k steps of learning rates, {η1, . . . , ηk}, with the actual training process with LR schedule
E, and continues with the constant LR ηk afterwards. The corresponding loss curve for the k-
th auxiliary process is denoted as Lk(t). In particular, the 0-th auxiliary process shares only the
warmup phase with the actual training process and uses a constant LR η0 = ηmax after warmup. We
especially call it the constant process and use Lconst(t) to represent its loss curve. The T -th auxiliary
process coincides with the actual training run with the target LR schedule, so LT (t) = L(t).
Learning Rate Sum Matching Decomposition The Multi-Power Law (MPL) approximates the
loss curve L(t) of the actual training process through the following decomposition. We define Z(t)
as the equivalent step in a constant LR process that shares the same cumulative LR sum as the actual
process up to step t, where Z(t) = S(t)

η0
and S(t) =

∑t
τ=1 ητ represents the sum of post-warmup

LRs. The loss at step t is then decomposed as:
L(t) = Lconst(Z(t))− (Lconst(Z(t))− L(t))︸ ︷︷ ︸

=: LD(t)

, (4)

where Lconst(Z(t)) interpolates the loss for non-integer Z(t) in the constant LR process. We first
approximate L(t) using the training loss Lconst(Z(t)) at step Z(t), and then write the residual term
LD(t) representing the approximation error. We call LD(t) the Loss reDuction term, as it quantifies
the loss reduction due to LR decay. We will approximate these two terms by parts in Section 3.2,
with Lconst(Z(t)) detailed in Section 3.2.1 and LD(t) in Section 3.2.2.

Motivation: Continuous Approximations of the Training Dynamics. The rationale behind this
approach is that two training runs with the same LR sum should result in similar training losses,
thus making it natural to decompose the loss curve into a major term corresponding to the loss of
a run with the same LR sum and a small residual term. To see this, we use SGD as an example.
If the learning rates η1, . . . , ηT are small, then SGD can be seen as a first-order approximation of
its continuous counterpart, gradient flow, under mild conditions (Li et al., 2017; Cheng et al., 2020;
Elkabetz & Cohen, 2021). Here gradient flow describes a continuous-time process in which the
parameters θ(τ) evolve according to the differential equation dθ(τ)

dτ = −∇L(θ(τ)), where ∇L(θ)
is the gradient at θ, and τ denotes the continuous time. In this approximation, the t-th step of SGD

5

Published as a conference paper at ICLR 2025

corresponds to evolving θ(τ) over a small time interval of length ηt. When the learning rates are
sufficiently small, the parameters after t steps of SGD are close to θ(τ) at time τ =

∑t
k=1 ηk.

This connection naturally motivates us to compare the losses of two training runs with the same LR
sum. While we use SGD for illustration, other optimization methods such as Adam can be similarly
approximated by their continuous counterparts (Ma et al., 2022).

3.2 APPROXIMATION BY PARTS

3.2.1 CONSTANT PROCESS LOSS APPROXIMATION

Motivated by the continuous approximation of the training dynamics, we hypothesize that losses
of constant LR processes with identical LR sums are closely aligned. This insight inspires us to
represent Lconst(Z(t)) as a function of S(t) + SW , where S(t) + SW represents the cumulative
LR sum up to step t, including the warmup phase part SW . Analogous to (3), we propose that
Lconst(Z(t)) follows a power law over the LR sum:

L̂const(Z(t)) = L0 +A · (S(t) + SW)
−α

, (5)

where A is a parameter counterpart of Ã. We perform extensive empirical validation and ablation
studies across different model sizes, training horizons, and learning rates to confirm the robustness
of (5), as detailed in Appendix F.1 and illustrated in Figure 11.

3.2.2 LOSS REDUCTION APPROXIMATION

Now we turn to the loss reduction term LD(t). We start by proposing a simple yet effective linear
approximation as a warmup, then we further break down the term with a finer-grained LR sum
matching approach.

Warmup: A Crude Linear Approximation. We first generate training loss curves across var-
ious LR schedule types, including cosine and WSD schedules, alongside the loss curves of their
corresponding constant processes. Then we can compute the loss reduction LD(t) for different LR
schedules and analyze their dependency. As demonstrated in Figure 10, LD(t) is approximately pro-
portional to the LR reduction, ∆ηt = η0 − ηt across different schedules. This leads to the following
approximation:

LD(t) ≈ B(η0 − ηt), (6)

where B is a constant. This finding highlights a strong correlation between the loss gap and the LR
gap at equivalent LR sum points on the loss landscape. However, while the linear approximation
offers insights into the shape of LD(t), deviations from the actual loss reduction remain. Notably,
when the LR decreases abruptly (e.g., in step-wise schedules), it predicts an instant loss drop at
the stage switch, whereas the true loss decline remains smoother during the training process. See
Appendix C for further discussion.

Fine-Grained LR Sum Matching Decomposition. In practice, the loss reduction term LD(t)
can have a more complex dependency on the LR schedule. To provide a more accurate approxima-
tion than the linear approximation above, we employ LR sum matching between adjacent auxiliary
processes and decompose the loss reduction LD(t) into a telescoping sum of intermediate loss re-
ductions between adjacent auxiliary processes.

More specifically, consider the step t in the actual training process. Similar to Z(t), we define
tk := Zk(t) as the equal-LR-sum step in the k-th auxiliary process, which is given by

tk := Zk(t) := k − 1 +
1

ηk
Sk(t), (7)

where Sk(t) =
∑t

τ=k ητ . Then, for the k-th and (k + 1)-th processes, we define the intermediate
loss reduction as:

LDk(tk+1) := Lk(tk)− Lk+1(tk+1). (8)

Intuitively, this term compares the loss at step tk+1 in the (k+1)-th process with the loss at the equal-
LR-sum step in a process that stops decaying the LR after the first k steps, i.e., the k-th process. We
then decompose the loss reduction term as a telescoping sum of intermediate loss reductions:

LD(t) = Lconst(Z(t))− L(t) = L0(Z0(t))− Lt(Zt(t)) =

t−1∑
k=0

LDk(tk+1). (9)

6

Published as a conference paper at ICLR 2025

10000 20000 30000 40000 50000 60000 70000
Step

3.2

3.3

3.4

3.5

Lo
ss 60000 62500 65000 67500 70000

3.20

3.22

3.24

3.26

3.28

3.30

Learning Rate
Loss
Multi-power
One-power 0.0

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

(a) Cyclic Schedule

10000 20000 30000 40000 50000 60000 70000
Step

3.2

3.3

3.4

3.5

Lo
ss 60000 62500 65000 67500 70000

3.20

3.22

3.24

3.26

3.28

Learning Rate
Loss
Multi-power
One-power 0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

(b) Random-Polyline Schedule

Figure 4: The examples of long-horizon non-monotonic schedules. The one-power line represents the constant
process prediction. (a) The cyclic schedule with 72000 steps, where each half-cycle spans 8000 steps, and
the first decay begins after 16000 steps. (b) The random-polyline schedule, consisting of piecewise linear
interpolation between randomly selected intermediate learning rates in the range of 3×10−5 to 3×10−4, with
LR milestones occurring at intervals of 8000 steps.

By leveraging this fine-grained decomposition, a good estimation of LDk(tk+1) can lead to a more
accurate approximation of LD(t). Where the context is clear, we simplify notation by omitting
subscripts and denoting intermediate loss reduction as LDk(t).

3.3 BOTTOM-UP DERIVATION: TWO-STAGE, MULTI-STAGE, AND GENERAL SCHEDULES

The challenges in approximating the intermediate loss reduction LDk(t) are twofold. First, for
commonly used schedules, the learning rate (LR) reduction at intermediate steps is often too small
to induce a measurable loss reduction. Second, LDk(t) may depend intricately on all previous
learning rates {η1, . . . , ηk}, which we refer to as the LR prefix in this section.

To address these issues, we derive the form of LDk(t) using a “bottom-up” approach regarding
schedule structures. First, we propose its form through schedules comprising two constant LR
stages, leveraging significant LR reductions. Next, we examine its dependency on the LR prefix
using schedules of multiple stages. Our main finding is that LDk(t) depends weakly on the LR
prefix and can be approximated by the following form:

LDk(t) ≈ L̂Dk(t) := B(ηk − ηk+1)

(
1−

(
Cη1−γ

k+1 (t− k) + 1
)−β

)
, (10)

with LR-prefix independent constants B, C, γ and β. Due to space constraints, we refer readers
to Appendices A.1 and A.2 for detailed derivations of (10).

For general LR schedules, we extrapolate this findings and propose to approximate the total loss
reduction term as:

L̂D(t) :=

t−1∑
k=0

L̂Dk(tk+1) =

t−1∑
k=0

B(ηk − ηk+1)

(
1−

(
Cη1−γ

k+1 (tk+1 − k) + 1
)−β

)
.

By the definition of tk+1 (7), we have tk+1 − k = Sk+1(t)
ηk+1

. Therefore, we can conclude

LD(t) ≈ L̂D(t) =

t∑
k=1

B(ηk−1 − ηk)
(
1− (Cη−γ

k Sk(t) + 1)−β
)
, (11)

where we also change the subscript indices from k+1 to k. Combining the above ansatz for the loss
reduction term with the power-law ansatz for the auxiliary loss in (5) leads to our Multi-Power Law:

L(t) ≈ L0 +A · (S1(t) + SW)−α −
t∑

k=1

B(ηk−1 − ηk)
(
1− (Cη−γ

k Sk(t) + 1)−β
)
. (12)

See Appendix C for the ablation studies on different components of the Multi-Power Law.

4 EMPIRICAL VALIDATION OF THE MULTI-POWER LAW

The Multi-Power Law (MPL) comes from our speculations based on our experiments with special
types of LR schedules. Now we present extensive experiments to validate the law for common LR
schedules used in practice. Our experiments demonstrate that MPL requires only two or three LR

7

Published as a conference paper at ICLR 2025

Table 1: Evaluation metrics for the Momentum Law and Multi-Power Law on predicting the loss curves
of 25M, 100M, and 400M models with unseen schedules. R2, MAE, RMSE, PredE, and WorstE are the
coefficient of determination, Mean Absolute Error, Root Mean Square Error, Prediction Error, and Worst-case
Error, respectively.

Model Size Method R2 ↑ MAE ↓ RMSE ↓ PredE ↓ WorstE ↓

25M Momentum Law 0.9904 0.0047 0.0060 0.0014 0.0047
Multi-Power Law (Ours) 0.9975 0.0039 0.0046 0.0012 0.0040

100M Momentum Law 0.9959 0.0068 0.0095 0.0022 0.0094
Multi-Power Law (Ours) 0.9982 0.0038 0.0051 0.0013 0.0058

400M Momentum Law 0.9962 0.0071 0.0094 0.0025 0.0100
Multi-Power Law (Ours) 0.9971 0.0053 0.0070 0.0019 0.0070

schedules and their corresponding loss curves in the training set to fit the law. The fitted MPL can
then predict loss curves for test schedules with different shapes and extended horizons.

4.1 RESULTS

Generalization to Unseen LR Schedules. MPL accurately predicts loss curves for LR schedules
outside the training set. As illustrated in Figure 2 and Table 1, despite the absence of WSD schedules
in the training set and the variety of decay functions, MPL successfully predicts their loss curves
with high accuracy. Furthermore, MPL generalizes to two-stage schedules with different ηB values
from the training set, effectively extrapolating curves for both continuous and discontinuous cases.

Generalization to Longer Horizons. MPL demonstrates the ability to extrapolate loss curves
for horizons exceeding three times the training set length. In our runs, the training set contains
approximately 22000 post-warmup steps, while the test set includes curves with up to 70000 post-
warmup steps. These results validate MPL’s capability to generalize to longer horizons. Notably, the
data-to-model ratio for a 25M-parameter model trained over 72000 steps (36B tokens) is comparable
to Llama2 pretraining (70B model, 2T tokens), consistent with trends favoring higher data volumes
for fixed model sizes (Dubey et al., 2024).

Generalization to Non-monotonic Schedules. MPL extends effectively to complex non-
monotonic schedules, although derived for monotonic decay schedules. We test the fitted MPL over
challenging cases such as cyclic schedules and the random-polyline schedule, where LR values are
randomly selected at every 8000 steps and connected by a polyline. These experiments, conducted
on a 25M-parameter model over 72000 steps, also represent a demanding long-horizon scenario. As
shown in Figure 4, MPL accurately predicts these long-horizon non-monotonic schedules.

4.2 COMPARISON WITH BASELINES

Comparison with Chinchilla Law. While Chinchilla-style data scaling laws, which we abbreviate
as CDSLs, are widely adopted (Muennighoff et al., 2023; Hoffmann et al., 2022), MPL offers several
distinct advantages: (1) MPL incorporates LR dependency, unlike CDSLs, and (2) MPL predicts the
entire loss curve, whereas CDSLs are limited to estimating only the final loss. These advantages
enable MPL to achieve higher sample efficiency than CDSLs. Notably, we demonstrate that a single
constant and cosine schedule curve suffices to fit MPL with strong generalization. As illustrated in
Figure 5(a), MPL reduces final loss prediction to less than 1/3 that of CDSLs while requiring about
1/5 compute budget. Furthermore, MPL excels in fitting the open-source 7B OLMo (Groeneveld
et al., 2024), as shown in Figure 5(b). Additional details of the comparison with Chinchilla Law are
provided in Appendix G.2.

Comparison with Momentum Law. The MPL outperforms the recently proposed Momentum
Law(MTL) (Tissue et al., 2024) in both accuracy and applicability to discontinuous learning rate
schedules. While MTL incorporates LR annealing effects by modeling loss reduction through the
momentum of LR decay, it indicates an exponential loss reduction for two-stage LR schedules, in-
consistent with our observations (see Appendix A.1). Across the diverse schedules in the test set,
MPL consistently outperforms MTL in both average and worst-case prediction accuracy, as sum-
marized in Table 1. Additionally, for WSD schedules with linear LR decay, MPL more accurately
captures the loss reduction trend during the decay stage, as highlighted in Figure 14(b), compared to
MTL. Further details on MTL and its relationship to MPL can be found in Appendix C, with fitting
specifcs provided in Appendix G.2.

8

Published as a conference paper at ICLR 2025

0 2 4 6 8 10 12
Step (x104)

2.6

2.8

3.0

3.2

Lo
ss 12.50 12.75 13.00

2.550

2.575
Loss Curves(C)
Loss Curves(M)
Loss Ends(C)
Loss Ends(M)
Pred(C)
Pred(M)
Loss Curve(Test)
Target Loss

(a) Fitting Sample Efficiency Comparison

0 1 2 3 4 5
Step (x105)

2.0

2.1

2.2

2.3

2.4

2.5

Lo
ss

Loss
Multi-power
Chinchilla

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Linear Schedule

(b) Whole Curve Fitting Comparison

Figure 5: (a) Target loss predictions at 128000-step for a cosine schedule using MPL and CDSL fitting, with
a 400M model. CDSL fitting requires six cosine losses (Loss Curve(C)) from 14,960 steps to 72000 steps but
relies solely on their final losses (Loss Ends(C)). In contrast, MPL leverages the entire 24000-step constant and
cosine loss curves (Loss Curves(M)). Final loss predictions are denoted as Pred(C) for CDSL and Pred(M) for
MPL respectively. (b) Comparison of MPL and CDSL fittings on the whole loss curve of the open-source 7B
OLMo model, trained with a linear schedule.

Table 2: Downstream performance comparison for the cosine and our optimized schedules. Percent-
age changes (↑ or ↓) indicate relative improvements or regressions compared to the cosine schedule.

Schedule LAMBADA HellaSwag PIQA ARC-E C3 RTE
Cosine 46.54 37.12 65.13 43.56 48.44 52.71

Optimized 48.71 37.74 65.07 44.09 50.30 53.79
(↑ 2.17%) (↑ 0.62%) (↓ 0.06%) (↑ 0.53%) (↑ 1.86%) (↑ 1.08%)

5 THE MULTI-POWER LAW INDUCES BETTER LR SCHEDULES

Due to the high cost of each pretraining run and the curse of dimensionality for LR schedules, it is
generally impractical to tune the LR for every training step. To address this, we propose leveraging
the Multi-Power Law (MPL) to predict the final loss as a surrogate function to optimize the entire
LR schedule, achieving a lower final loss and outperforming the cosine schedule and WSD variants.

5.1 METHOD

The Multi-Power Law (MPL) provides an accurate loss estimation, enabling its final loss prediction
to serve as a surrogate for evaluating schedules. We represent the learning rate (LR) schedule as a
T -dimensional vector E = (η1, . . . , ηT), with the final loss denoted as L(E) under given hyper-
parameters. Our goal is to find the optimal LR schedule E∗ = argminE L(E). Using MPL, we
parameterize the predicted final loss as LΘ(E) with parameters Θ = {L0, A,B,C, α, β, γ}, esti-
mated as outlined in Section 4. We approximate E∗ by optimizing the surrogate loss LΘ(E) subject
to monotonicity constraints:

min
E

LΘ(E) s.t. 0 ≤ ηt ≤ ηt−1, ∀ 1 ≤ t ≤ T. (13)

This optimization induces an “optimal” schedule under the MPL approximation. In practice, we set
the peak LR η0 = 3 × 10−4 We view E as a high-dimensional vector and optimize it using the
Adam optimizer. Further details are provided in Appendix H. Results for a 400M model are shown
in Figure 1, with additional experiments for 25M and 100M models in Figure 18.

5.2 RESULTS

Optimized LR Schedule Exhibits Stable-Decay Pattern. Our optimized LR schedule follows a
Warmup-Stable-Decay (WSD) pattern, comprising two main post-warmup phases: a stable phase
with a constant peak LR, and a decay phase ending with a lower LR, as illustrated in Figures 1
and 18. By contrast, the momentum law (Tissue et al., 2024) theoretically yields a collapsed learning
rate schedule, which we will prove in Appendix I.

Optimized LR Schedule Outperforms Cosine Schedules. Across comparison experiments of
different model sizes and training steps, our optimized schedules consistently outperform the co-

9

Published as a conference paper at ICLR 2025

0 2 4 6
Step (x104)

2.5

3.0

3.5

4.0

Lo
ss

25M

100M

400M

1B

Const loss
Const pred
Cosine loss
Cosine pred

(a) Long-Horizon Prediction of MPL

0 2 4 6
Step (x104)

2.4

2.6

2.8

3.0

3.2

Lo
ss

6 7

2.375
2.400
2.425

0.0

0.5

1.0

1.5

2.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Cosine
Opt(Ours)
WSDSC(Ours)

Loss
LR

Cosine
Opt(Ours)
WSDSC(Ours)

Loss
LR

(b) Loss Curves Comparison for 1B Models

Figure 6: (a) Long-horizon loss predictions using MPL for cosine and constant schedules, with model sizes
ranging from 25M to 1B (top to bottom). (b) Loss curve comparison for 1B models across the optimized sched-
ule (Opt), cosine schedule (Cosine), and simplified optimized schedule (WSDSC, see Section 5.2), featuring a
WSD schedule with sqrt-cube decay.

sine schedules, achieving a margin exceeding 0.02. Notably, no WSD-like schedule is present in
the training set, highlighting MPL’s extrapolation capability. Figure 19 extends this comparison to
longer training horizons and Figure 6(b) validates the superiority for 1B model. we further validate
the effectiveness of our optimized schedules by evaluating the downstream task performance. As
shown in Table 2, our optimized schedule leads to overall improvements in downstream tasks against
the cosine schedules, showing practical gains from loss improvements. Ablation details for longer
horizons and larger models are in Appendix H.

Optimized LR Schedule Outperforms Tuned WSD Variants. Our optimized schedules lead to
smaller final loss than the WSD and WSDLD schedules proposed in Hu et al. (2024). For a 400M
model, we find that the decay step of a 24000-step optimized schedule (Figure 1) is close to the
optimally tuned step (∼6000) for these WSD schedules, determined via grid search over {3000,
4000, 5000, 6000, 7000}. However, even when the decay ratios of WSD and WSDLD schedules are
optimally tuned, our optimized schedule still outperforms them. Further, we analyze key differences
between our optimized schedule and these two WSD schedules as follows. The optimized schedule
decays to below 1/20 of the peak LR, even approaching to zero, while WSD schedules decay linearly
or exponentially to 1/10 of the peak LR. However, simply adjusting the ending LR to near-zero
(Appendix H) does not close the gap. Another key difference is the decay function: we find through
symbolic regression that in the decay phase, the optimized schedule roughly follows a power decay
function rather than a linear or exponential decay: ηt ≈ ηmax ·(1−τ)1.5, where τ is the step number
in the decay phase, normalized to [0, 1]. Motivated by this, we propose a WSD variant with sqrt-cube
decay (WSDSC), which decays the LR exactly as ηt = ηmax · (1−τ)1.5. WSDSC is effective across
various model sizes and architectures and outperforms the WSD schedule, as shown in Figures 6(b)
and 13(a), though it still falls behind our optimized schedule. See Appendix H for details.

6 CONCLUSIONS

This paper proposes the Multi-Power Law (MPL) to capture the relationship between loss and LR
schedule. The fitted MPL accurately predicts the entire loss curve while requiring much fewer
training runs compared to existing scaling laws. Furthermore, our MPL is accurate enough to be used
for optimizing schedules, and we extensively validate the superiority of our optimized schedules over
commonly used ones. However, we do observe slight deviations between our predictions and actual
training curves, especially for long-horizon and high peak LR cases like in Figures 15 and 16. likely
due to several simplifications in our derivation: (1) the coefficient β remains constant across different
LR scales; (2) the intermediate loss reduction does not depend on the LR prefix; (3) variations in LR
during the warm-up phase are ignored.

In future work, we aim to (1) further explore the theoretical foundation of our MPL to uncover
its underlying mechanisms; (2) investigate empirical laws for schedule-aware loss curve prediction
with varying peak LRs and other hyperparameters; and (3) refine our MPL to further enhance its
prediction accuracy and generalizability.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENT

We would like to thank Kaiyue Wen, Huanqi Cao, and all anonymous reviewers, for their insightful
comments and feedback. We also thank Hongzhi Zang for improving figure readability. This work
is supported by the National Natural Science Foundation of China under Grant Number U20B2044.

REFERENCES

Steven Adriaensen, Herilalaina Rakotoarison, Samuel Müller, and Frank Hutter. Efficient bayesian
learning curve extrapolation using prior-data fitted networks. In A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing
Systems, volume 36, pp. 19858–19886. Curran Associates, Inc., 2023.

Ibrahim M Alabdulmohsin, Behnam Neyshabur, and Xiaohua Zhai. Revisiting neural scaling laws
in language and vision. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 22300–22312.
Curran Associates, Inc., 2022.

Alexander Atanasov, Jacob A Zavatone-Veth, and Cengiz Pehlevan. Scaling and renormalization in
high-dimensional regression. arXiv preprint arXiv:2405.00592, 2024.

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural
scaling laws. Proceedings of the National Academy of Sciences, 121(27):e2311878121, 2024.
doi: 10.1073/pnas.2311878121.

Yoshua Bengio. Practical Recommendations for Gradient-Based Training of Deep Architectures,
pp. 437–478. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-35289-8.
doi: 10.1007/978-3-642-35289-8 26.

Shane Bergsma, Nolan Simran Dey, Gurpreet Gosal, Gavia Gray, Daria Soboleva, and Joel Hestness.
Straight to zero: Why linearly decaying the learning rate to zero works best for LLMs. In The
Thirteenth International Conference on Learning Representations, 2025.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
et al. Deepseek LLM: Scaling open-source language models with longtermism. arXiv preprint
arXiv:2401.02954, 2024.

Yonatan Bisk, Rowan Zellers, Ronan Le bras, Jianfeng Gao, and Yejin Choi. PIQA: Reasoning about
physical commonsense in natural language. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(05):7432–7439, Apr. 2020. doi: 10.1609/aaai.v34i05.6239.

Blake Bordelon, Abdulkadir Canatar, and Cengiz Pehlevan. Spectrum dependent learning curves in
kernel regression and wide neural networks. In Hal Daumé III and Aarti Singh (eds.), Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pp. 1024–1034. PMLR, 13–18 Jul 2020.

Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. A dynamical model of neural scaling
laws. In Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 4345–4382. PMLR, 21–27 Jul 2024.

Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. How feature learning can improve
neural scaling laws. In The Thirteenth International Conference on Learning Representations,
2025.

David Brandfonbrener, Nikhil Anand, Nikhil Vyas, Eran Malach, and Sham M. Kakade. Loss-to-
loss prediction: Scaling laws for all datasets. Transactions on Machine Learning Research, 2025.
ISSN 2835-8856. Featured Certification.

Ethan Caballero, Kshitij Gupta, Irina Rish, and David Krueger. Broken neural scaling laws. arXiv
preprint arXiv:2210.14891, 2022.

11

Published as a conference paper at ICLR 2025

Abdulkadir Canatar, Blake Bordelon, and Cengiz Pehlevan. Spectral bias and task-model align-
ment explain generalization in kernel regression and infinitely wide neural networks. Nature
communications, 12(1):2914, 2021.

Xiang Cheng, Dong Yin, Peter Bartlett, and Michael Jordan. Stochastic gradient and Langevin pro-
cesses. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 1810–1819.
PMLR, 13–18 Jul 2020.

Daeyoung Choi, Hyunghun Cho, and Wonjong Rhee. On the difficulty of dnn hyperparameter opti-
mization using learning curve prediction. In TENCON 2018 - 2018 IEEE Region 10 Conference,
pp. 0651–0656, 2018. doi: 10.1109/TENCON.2018.8650070.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Jeremy Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent on
neural networks typically occurs at the edge of stability. In International Conference on Learning
Representations, 2021.

Jeremy Cohen, Alex Damian, Ameet Talwalkar, J Zico Kolter, and Jason D. Lee. Understanding
optimization in deep learning with central flows. In The Thirteenth International Conference on
Learning Representations, 2025.

Hugo Cui, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborova. Generalization error rates
in kernel regression: The crossover from the noiseless to noisy regime. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing
Systems, 2021.

Alex Damian, Eshaan Nichani, and Jason D. Lee. Self-stabilization: The implicit bias of gra-
dient descent at the edge of stability. In The Eleventh International Conference on Learning
Representations, 2023.

Aaron Defazio, Ashok Cutkosky, Harsh Mehta, and Konstantin Mishchenko. Optimal linear decay
learning rate schedules and further refinements. arXiv preprint arXiv:2310.07831, 2023.

Aaron Defazio, Xingyu Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and Ashok
Cutkosky. The road less scheduled. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Pa-
quet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing Systems,
volume 37, pp. 9974–10007. Curran Associates, Inc., 2024.

Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperparam-
eter optimization of deep neural networks by extrapolation of learning curves. In Proceedings
of the 24th International Conference on Artificial Intelligence, IJCAI’15, pp. 3460–3468. AAAI
Press, 2015. ISBN 9781577357384.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Omer Elkabetz and Nadav Cohen. Continuous vs. discrete optimization of deep neural networks. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, volume 34, pp. 4947–4960. Curran Associates, Inc.,
2021.

Elias Frantar, Carlos Riquelme, Neil Houlsby, Dan Alistarh, and Utku Evci. Scaling laws for
sparsely-connected foundation models. arXiv preprint arXiv:2309.08520, 2023.

Ce Ge, Zhijian Ma, Daoyuan Chen, Yaliang Li, and Bolin Ding. Bimix: Bivariate data mixing law
for language model pretraining. arXiv preprint arXiv:2405.14908, 2024.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, et al. Accurate, large minibatch SGD: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017.

12

Published as a conference paper at ICLR 2025

Sachin Goyal, Pratyush Maini, Zachary C. Lipton, Aditi Raghunathan, and J. Zico Kolter. Scal-
ing laws for data filtering– data curation cannot be compute agnostic. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 22702–22711,
June 2024.

Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya
Jha, et al. OLMo: Accelerating the science of language models. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
15789–15809, Bangkok, Thailand, aug 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.841.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and Martin
Jaggi. Scaling laws and compute-optimal training beyond fixed training durations. In A. Glober-
son, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in
Neural Information Processing Systems, volume 37, pp. 76232–76264. Curran Associates, Inc.,
2024.

Tatsunori Hashimoto. Model performance scaling with multiple data sources. In Marina Meila
and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 4107–4116. PMLR, 18–24 Jul
2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, et al. Scaling laws for autoregressive generative modeling. arXiv preprint arXiv:2010.14701,
2020.

Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for transfer.
arXiv preprint arXiv:2102.01293, 2021.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Mostofa Ali Patwary, et al. Deep learning scaling is predictable, empirically. arXiv preprint
arXiv:1712.00409, 2017.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the general-
ization gap in large batch training of neural networks. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, et al. Training compute-optimal large language models. arXiv
preprint arXiv:2203.15556, 2022.

Shengding Hu, Yuge Tu, Xu Han, Ganqu Cui, Chaoqun He, Weilin Zhao, Xiang Long, et al.
MiniCPM: Unveiling the potential of small language models with scalable training strategies.
In First Conference on Language Modeling, 2024.

Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics:
Methodology and distribution, pp. 492–518. Springer, 1992.

Marcus Hutter. Learning curve theory. arXiv preprint arXiv:2102.04074, 2021.

Adam Ibrahim, Benjamin Thérien, Kshitij Gupta, Mats Leon Richter, Quentin Gregory Anthony,
Eugene Belilovsky, Timothée Lesort, et al. Simple and scalable strategies to continually pre-train
large language models. Transactions on Machine Learning Research, 2024. ISSN 2835-8856.

13

Published as a conference paper at ICLR 2025

Ayush Jain, Andrea Montanari, and Eren Sasoglu. Scaling laws for learning with real and surrogate
data. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang
(eds.), Advances in Neural Information Processing Systems, volume 37, pp. 110246–110289.
Curran Associates, Inc., 2024.

Arlind Kadra, Maciej Janowski, Martin Wistuba, and Josif Grabocka. Scaling laws for hyperpa-
rameter optimization. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
(eds.), Advances in Neural Information Processing Systems, volume 36, pp. 47527–47553. Cur-
ran Associates, Inc., 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, et al. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361,
2020.

Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Learning curve prediction
with bayesian neural networks. In International Conference on Learning Representations, 2017.

Qianxiao Li, Cheng Tai, and Weinan E. Stochastic modified equations and adaptive stochastic gradi-
ent algorithms. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp.
2101–2110. PMLR, 06–11 Aug 2017.

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial
large learning rate in training neural networks. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

Zhiyuan Li and Sanjeev Arora. An exponential learning rate schedule for deep learning. In
International Conference on Learning Representations, 2020.

Licong Lin, Jingfeng Wu, Sham M. Kakade, Peter L. Bartlett, and Jason D. Lee. Scaling laws in
linear regression: Compute, parameters, and data. In A. Globerson, L. Mackey, D. Belgrave,
A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing
Systems, volume 37, pp. 60556–60606. Curran Associates, Inc., 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, et al.
Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024.

Xiaoran Liu, Hang Yan, Shuo Zhang, Chenxin An, Xipeng Qiu, and Dahua Lin. Scaling laws of
rope-based extrapolation. arXiv preprint arXiv:2310.05209, 2023.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In
International Conference on Learning Representations, 2017.

Jan Ludziejewski, Jakub Krajewski, Kamil Adamczewski, Maciej Pióro, Michał Krutul, Szymon
Antoniak, Kamil Ciebiera, et al. Scaling laws for fine-grained mixture of experts. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Research, pp. 33270–33288. PMLR, 21–27 Jul
2024.

Bochen Lyu, Di Wang, and Zhanxing Zhu. A solvable attention for neural scaling laws. In The
Thirteenth International Conference on Learning Representations, 2025.

Kaifeng Lyu, Zhiyuan Li, and Sanjeev Arora. Understanding the generalization benefit of nor-
malization layers: Sharpness reduction. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp.
34689–34708. Curran Associates, Inc., 2022.

Chao Ma, Lei Wu, and E Weinan. A qualitative study of the dynamic behavior for adaptive gradient
algorithms. In Mathematical and Scientific Machine Learning, pp. 671–692. PMLR, 2022.

14

Published as a conference paper at ICLR 2025

Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, and Sanjeev Arora. On the sdes and scaling
rules for adaptive gradient algorithms. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp.
7697–7711. Curran Associates, Inc., 2022.

Alexander Maloney, Daniel A Roberts, and James Sully. A solvable model of neural scaling laws.
arXiv preprint arXiv:2210.16859, 2022.

Ben Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, A Neelakantan, P Shyam, et al. Language
models are few-shot learners. arXiv preprint arXiv:2005.14165, 1:3, 2020.

Eric Michaud, Ziming Liu, Uzay Girit, and Max Tegmark. The quantization model of neural scaling.
In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 28699–28722. Curran Associates, Inc.,
2023.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, et al. Scaling data-constrained language models. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information
Processing Systems, volume 36, pp. 50358–50376. Curran Associates, Inc., 2023.

Yoonsoo Nam, Nayara Fonseca, Seok Hyeong Lee, Chris Mingard, and Ard A. Louis. An ex-
actly solvable model for emergence and scaling laws in the multitask sparse parity problem. In
A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.),
Advances in Neural Information Processing Systems, volume 37, pp. 39632–39693. Curran As-
sociates, Inc., 2024.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia,
et al. 2 olmo 2 furious. arXiv preprint arXiv:2501.00656, 2024.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, et al. The LAMBADA dataset: Word prediction requiring a
broad discourse context. In Katrin Erk and Noah A. Smith (eds.), Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1525–
1534, Berlin, Germany, aug 2016. Association for Computational Linguistics. doi: 10.18653/v1/
P16-1144.

Elliot Paquette, Courtney Paquette, Lechao Xiao, and Jeffrey Pennington. 4+3 phases of compute-
optimal neural scaling laws. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, et al. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal
of Machine Learning Research, 21(140):1–67, 2020.

Fabian Schaipp, Alexander Hägele, Adrien Taylor, Umut Simsekli, and Francis Bach. The surpris-
ing agreement between convex optimization theory and learning-rate scheduling for large model
training. arXiv preprint arXiv:2501.18965, 2025.

Utkarsh Sharma and Jared Kaplan. Scaling laws from the data manifold dimension. Journal of
Machine Learning Research, 23(9):1–34, 2022.

Yikang Shen, Matthew Stallone, Mayank Mishra, Gaoyuan Zhang, Shawn Tan, Aditya Prasad, Adri-
ana Meza Soria, et al. Power scheduler: A batch size and token number agnostic learning rate
scheduler. arXiv preprint arXiv:2408.13359, 2024.

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter conference
on applications of computer vision (WACV), pp. 464–472. IEEE, 2017.

Stefano Spigler, Mario Geiger, and Matthieu Wyart. Asymptotic learning curves of kernel methods:
empirical data versus teacher–student paradigm. Journal of Statistical Mechanics: Theory and
Experiment, 2020(12):124001, 2020.

15

Published as a conference paper at ICLR 2025

Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. Investigating prior knowledge for challenging
Chinese machine reading comprehension. Transactions of the Association for Computational
Linguistics, 8:141–155, 2020. doi: 10.1162/tacl a 00305.

Yunfei Teng, Jing Wang, and Anna Choromanska. Autodrop: Training deep learning models with
automatic learning rate drop. arXiv preprint arXiv:2111.15317, 2021.

Howe Tissue, Venus Wang, and Lu Wang. Scaling law with learning rate annealing. arXiv preprint
arXiv:2408.11029, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, et al. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, et al. Superglue: A stickier benchmark for general-purpose language understanding sys-
tems. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019.

Alexander Wei, Wei Hu, and Jacob Steinhardt. More than a toy: Random matrix models predict how
real-world neural representations generalize. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pp. 23549–23588. PMLR, 17–23 Jul 2022.

Kaiyue Wen, Zhiyuan Li, Jason S. Wang, David Leo Wright Hall, Percy Liang, and Tengyu Ma.
Understanding warmup-stable-decay learning rates: A river valley loss landscape view. In The
Thirteenth International Conference on Learning Representations, 2025.

Xingyu Xie, Kuangyu Ding, Shuicheng Yan, Kim-Chuan Toh, and Tianwen Wei. Optimization
hyper-parameter laws for large language models. arXiv preprint arXiv:2409.04777, 2024.

Zhen Xu, Andrew M Dai, Jonas Kemp, and Luke Metz. Learning an adaptive learning rate schedule.
arXiv preprint arXiv:1909.09712, 2019.

Jiasheng Ye, Peiju Liu, Tianxiang Sun, Yunhua Zhou, Jun Zhan, and Xipeng Qiu. Data mixing
laws: Optimizing data mixtures by predicting language modeling performance. arXiv preprint
arXiv:2403.16952, 2024.

Kaichao You, Mingsheng Long, Jianmin Wang, and Michael I Jordan. How does learning rate decay
help modern neural networks? arXiv preprint arXiv:1908.01878, 2019.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluı́s Màrquez (eds.),
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
4791–4800, Florence, Italy, jul 2019. Association for Computational Linguistics. doi: 10.18653/
v1/P19-1472.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transform-
ers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 12104–12113, June 2022.

16

Published as a conference paper at ICLR 2025

7000 8000 9000 10000 11000 12000
Step t

0

1

2

3

Le
ar

ni
ng

 R
at

e
(L

R
 x

 1
0

4)
Area B Area A=

A B

LR A
LR B

Area A
Area B

Mark A
Mark B

(a) LR vs Step t

8000 10000 12000
Step t

3.400

3.425

3.450

3.475

3.500

3.525

3.550

3.575

Lo
ss

LD(TA + xB)

Loss A
Loss B

Mark A
Mark B

(b) Loss vs Step t

0 1000 2000 3000 4000
Step x

0.00

0.02

0.04

0.06

0.08

Lo
ss

 R
ed

uc
tio

n

LD(TA + xB)Power:
Error=5.16e-07

Exponential:
Error=1.21e-05

Exponential Model
Power Model
Loss Reduction

(c) Loss Reduction vs Step x

Figure 7: Loss reduction (LD) of two-stage schedule exhibits a power law. Example setting: tB = 11000,
xB = 3000, ηB = 9× 10−5, ηA = 3× 10−4, TA = 8000. (a) A and B have the equal LR sums: xA = 900,
tA = 8900. (b) Loss reduction at B: LD(TA + xB) = LA(tA) − LB(tB). (c) Fitting loss reduction
L̂D(TA + xB) with power form results in 0.13(1 − (1 + 0.21x)−0.15); Fitting with exponential form results
in 0.0790(1− e−0.01x). The shape of loss reduction is closer to a power form than exponential.

A BOTTOM-UP DERIVATION: TWO-STAGE, MULTI-STAGE (SECTION 3.3)

A.1 CASE 1: TWO-STAGE LEARNING RATE SCHEDULE

The two-stage schedule keeps learning rates at ηA for TA steps, directly drops to ηB, and continues
for TB steps. Then the LR reduction ηA−ηB could be significant enough to induce LDTA

(t), which
is also the loss reduction LD(t) for step t on Stage 2. See Appendix F.2 for experiment details.

Loss Reduction Term Follows a Power Law. As shown in Figure 7, the number of steps x :=
t− TA in Stage 2 increases, LD(TA + x) monotonically rises from 0 to around 0.09 and eventually
saturates. This motivates us to approximate LD(TA+x) in the form B̃ · (1−U(ηBx)), where B̃ is a
parameter and U(s) is a function that decreases from 1 to 0 as s = ηBx increases from 0 to infinity.
The reason we choose ηBx instead of x as the argument of U will be clear in the general case.

But at what rate should U(s) decrease? After trying different forms of U(s) to fit LD(TA + x), we
find that the power-law form U(s) = (C̃ · s+ 1)−β for some C̃, β > 0 fits most properly as shown
in Figure 7, which leads to the following power-law form for the loss reduction term:

LD(TA + x) ≈ L̂D(TA + x) := B̃(1− (C̃ · ηBx+ 1)−β). (14)
Appendix A.1 shows that this power law aligns well with the actual loss reduction term LD(TA+x).
In contrast, the exponential form U(s) = e−Bs (so LD(TA + x) ≈ A(1 − e−BηBx)) struggles to
match the slow and steadily increase of LD(TA + x) when x is large.

Parameter Pattern of Power Law. We further investigate how to estimate the parameters B̃, C̃, β
in the power law. Based on our preliminary experiments, we set β = 0.4, a constant that works well.
Then we conduct experiments to understand how the best parameters B̃, C̃ to fit LD(t) depend on
ηA, ηB, TA, where we set default values ηA = 3×10−4, ηB = 3×10−5, TA = 8000 and change one
variable at a time. The details of ablation experiments can refer to Appendix F.2. The observations
are summarized as follows.

(1) B̃ is Linear to LR Reduction. As shown in the first row of Figure 8, B̃ linearly decreases with
ηB and approximately increases linearly with ηA, especially when ηA is not too large. Moreover,
the slope of B̃ over ηA and ηB are approximately opposite to each other. This motivates us to
hypothesize that B̃ ∝ ηA−ηB and reparameterize B̃ as B̃ = B(ηA−ηB), where B is a constant.

(2) C̃ Follows a Power Law of ηB. As shown in the second row of Figure 8, C̃ is very sensitive to
ηB but much less dependent on ηA. We hypothesize that C̃ follows a power law C̃ ∝ η−γ

B , and
reparameterize C̃ as C̃ = Cη−γ

B , where C > 0 and γ > 0 are constants.

(3) LR Reduction Term Depends Less on TA. We also find that B̃ and C̃ are less sensitive to TA,
relatively stable as TA varies, as shown in the last column in Figure 8. This suggests that the
loss reduction has a weak dependency of loss reduction on LR prefix length.

17

Published as a conference paper at ICLR 2025

0.05

0.10

0.15

B B = 400.521 A + 0.027

B vs A

Fit
B = 403.270 B + 0.126

B vs B

Fit
B vs TA

2.5 5.0 7.5
A (x10 4)

500

1000
C

C vs A

0 1 2 3
B (x10 4)

C = 5.707 0.480
B

C vs B

Fit

1 2
TA (x104)

C vs TA

Figure 8: The dependency patterns of B̃, C̃ over ηA, ηB and TA in the two-stage cases. B̃ is approximately
proportional to ηA − ηB , and C̃ manifests power-law pattern over ηB . The dependency of ηA over C̃ and the
impacts of TA on B̃, C̃ are unpredictable or negligible, which are approximately ignored in our discussion.

Approximation Form. Putting all the above observations together, we have the final approxima-
tion form for the loss reduction term in the two-stage schedule:

LD(TA + x) ≈ L̂D(TA + x) := B(ηA − ηB)
(
1− (Cη1−γ

B x+ 1)−β
)
. (15)

A.2 CASE 2: MULTI-STAGE LEARNING RATE SCHEDULE

In the two-stage case, the LR prefix is constant at ηA, leaving uncertainty about whether the interme-
diate loss reduction conforms to the power form when the LR prefixes vary. To investigate this, we
analyze the multi-stage step decay schedule. Consider an n-stage LR schedule E = {η1, . . . , ηT },
where the i-th stage spans from step Ti+1 to Ti+1 and uses the LR η(i) (0 ≤ T1 < · · · < Tn+1 = T ,
with η0 = η(0) > η(1) > · · · > η(n), 1 ≤ i ≤ n). An example is illustrated in Figure 3.

Stage-Wise Loss Reduction. In the multi-stage schedule, given stage index 1 ≤ i ≤ n, the
stage-wise loss reduction is defined as LD(i)(t) = LDTi

(t)2. The LR reduction between stages,
∆η(i) = η(i−1)−η(i), is also measurable. Using this, we estimate the shape of LD(i)(t) for different
stages. Regard Ti as TA in the two-stage case and define x := t − Ti. As shown in Figure 9(a),
LD(i)(Ti + x) approximately conforms to a similar power law as (14) for the two-stage case:

LD(i)(Ti + x) ≈ L̂D
(i)
(Ti + x) := B̃(i)

(
1−

(
C̃(i) · η(i)x+ 1

)−β
)
, (16)

where B̃(i) and C̃(i) are constants dependent on the LR prefix {η1, . . . , ηTi
} for stage i.

Intermediate Loss Reduction Weakly Depends on the LR Prefix Shape. For stage i, the LR
prefix is {η1, . . . , ηTi

}, which varies in length and scale across stages. To evaluate the effect of the
LR prefix on the intermediate loss reduction form, we examine its impact on B̃(i) and C̃(i). Inter-
estingly, as shown in Figure 9(b), we observe that B̃(i) ≈ B(η(i−1) − η(i)) and C̃(i) ≈ C(η(i))−γ ,
which align closely with the two-stage results. Here, B, C, and γ are constants largely independent
of the stage index. This suggests that intermediate loss reductions are relatively insensitive to the
LR prefix compared to the LR reductions ∆η(i) and the stage LR η(i). Moreover, this weak depen-
dence on the LR prefix may extend to general schedules, indicating a broader applicability of the
power-law form for intermediate loss reduction.

B HOW MIGHT THE MULTI-POWER LAW ARISE?

In this section, we present a preliminary theoretical analysis to understand how the Multi-Power
Law might arise. More specifically, we consider a simple setting where SGD optimizes a quadratic
loss function with noisy gradients, and show that the Multi-Power Law naturally emerges when the
Hessian and noise covariance matrices exhibit certain types of power-law structures. While this
analysis does not fully capture the complexity of deep learning, we believe it offers insight into how
the Multi-Power Law relates to underlying spectral properties in the optimization landscape.

2Note that LD(i)(t) = LDt(i)(t) for each Ti + 1 ≤ t(i) ≤ Ti+1, as these auxiliary processes for a specific
stage coincide.

18

Published as a conference paper at ICLR 2025

0 20 40 60 80
Stage Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Lo
ss

 R
ed

uc
tio

n
(x

10
3)

(1)=2.5e-04
(2)=2.0e-04
(3)=1.5e-04
(4)=1.0e-04
(5)=8.0e-05
(6)=5.0e-05
(7)=4.0e-05
(8)=3.0e-05

(a) Power Fitting of LD(i)(t)

1 2 3 4 5
(i 1) (i) (x10 5)

0.005

0.010

0.015

0.020

0.025

0.030

B

B=547.767((i 1) (i))

lr=3e-04
lr=2e-04
lr=2e-04
lr=1e-04
lr=8e-05
lr=5e-05
lr=4e-05
lr=3e-05

0.5 1.0 1.5 2.0 2.5
(i) (x10 4)

200

300

400

500

600

700

800

C

C = 4.951((i)) 0.483

lr=3e-04
lr=2e-04
lr=2e-04
lr=1e-04
lr=8e-05
lr=5e-05
lr=4e-05
lr=3e-05

(b) LD(i)(t) Parameter Patterns

Figure 9: The intermediate loss reductions of a multi-stage schedule (Figure 3) and their shape patterns. (a)
The loss reduction LD(i)(t) between the adjacent stages of the multi-stage schedules still follows the power
form. (b) B̃ ∝ η(i−1) − η(i), C̃ ∝ (η(i))−γ . The parameter patterns in the two-stage setting hold in the
multi-stage setting approximately. The shape of patterns is similar to the patterns in the two-stage experiments,
as shown in Figure 8.

B.1 SETUP

We consider a quadratic loss function L(θ) = 1
2 (θ−θ∗)

⊤H(θ−θ∗), where θ ∈ Rd represents the
trainable parameters, θ∗ is the ground truth and H ∈ Rd×d is the Hessian matrix. Linear regression
is a special case of this formulation. More generally, any sufficiently smooth loss function can be
locally approximated by such a quadratic form near a minimizer.

We use SGD with LR schedule E = {η1, . . . , ηT } to optimize the loss function, where the t-th
iteration is given by θt = θt−1 − ηtgt, with gt being the stochastic gradient at step t. We assume
that the stochastic gradient gt equals the true gradient ∇L(θt−1) = Hθt−1 plus Gaussian noise
N (0,Σ), where Σ ∈ Rd×d is the covariance matrix. That is, gt ∼ N (Hθt−1,Σ).

From spectra to scaling law. The scaling behavior of the loss during training is typically deter-
mined by the spectra of the Hessian matrix H and the noise covariance matrix (Canatar et al., 2021;
Spigler et al., 2020; Maloney et al., 2022; Cui et al., 2021; Brandfonbrener et al., 2025). By carefully
analyzing the training dynamics, we show that certain structures of Hessian and noise covariance
matrices can lead to a scaling behavior similar to our empirical Multi-Power Law. In the following,
we use λi to denote the i-th eigenvalue of H and use Σii to denote the i-th diagonal entry of Σ in the
eigenbasis of H (i.e., v⊤

i Σvi, where vi is the i-th eigenvector of H). We initialize the parameters
at θ0 and use ∆i to denote the i-th corrdinate of θ0 − θ∗ in the eigenbasis of H (i.e., v⊤

i (θ0 − θ∗)).
We consider a scenario where Hessian, noise covariance, and initial point are drawn from certain
distributions before training, and make the following assumptions:

Assumption 1. For all 1 ≤ i ≤ d, the marginal distribution of (λi,Σii,∆i) is a fixed distribution
p(λ, E ,∆) with following properties:

• λ is supported on [0,Λ] for some Λ > 0, and p(λ) ∝ λ−ν for some exponent ν ∈ [0, 1). That is,
p(λ) = 1{λ∈[0,D]}

λ−ν

Z for some normalization constant Z > 0.

• Ep[E | λ] ∝ λ−ρ exp(−rλ), for some ρ < 1− ν and r > 0.

• Ep[∆
2 | λ] = D2 · λ−κ for some κ ∈ [0, 2− ν) and D > 0

B.2 MAIN THEOREM

Consider an SGD training process with an arbitrary LR schedule E = {η1, . . . , ηT }. Define
Sk(t) :=

∑t
τ=k ητ for 1 ≤ k ≤ t ≤ T . Fix any η0 > 0. We define the following function

L̂(t) as an estimate of the expected loss at step t:
L̂(t) := L0 +A · S1(t)

−α − L̂D(t), (17)

L̂D(t) := B

t∑
k=1

(ηk−1 − ηk) · Ĝ(Sk(t)), Ĝ(x) := 1− γ(β, (2x+ r)Λ)

γ(β, rΛ)
· (Cx+ 1)−β , (18)

19

Published as a conference paper at ICLR 2025

where the constants L0, A, α,B, β above are given by

L0 :=
d

4
η0Ep[E], A :=

d · Γ(α)
2α+1Z

D2, α := 2−ν−κ, B :=
d

4
Ep[E], β := 1−ν−ρ, C :=

2

r
. (19)

Here, Γ(x) :=
∫ +∞
0

ts−1e−tdt denotes the gamma function, and γ(s, x) :=
∫ x

0
ts−1e−tdt denotes

the lower incomplete gamma function.

The theorem below establishes L̂(t) as a precise estimate of the expected loss curve of SGD. See
Appendix J for the detailed proof.

Theorem 1. Under Assumption 1, for all 1 ≤ t ≤ T , if ηmax := max0≤t≤T {ηt} is sufficiently
small and S1(t) is sufficiently large, then we have the following estimate of E[L(θt)]:

|E[L(θt)]− L̂(t)| = O(ηmaxS1(t)
−min{α+1,β} + η2max).

Here, Equation (17) is the same as Equation (1), and we can see that the exponent α is determined
by the rate of eigenvalue decay of the Hessian and the rate of variance decay of the initial parameter.
The coefficients L0 ∝ η0Ep[E], A ∝ D2 depend on the learning rate, variance of gradient noise,
and the initial distance to the optimal parameter.

Equation (18) gives the loss reduction term L̂D(t), which is similar to the loss reduction term in
Equation (2). A change in the learning rate at step k induces a loss reduction B(ηk−1−ηk)Ĝ(Sk(t)),
where B ∝ Ep[E] depends on the variance of gradient noise. Similar to (2), this loss reduction
saturates as B(ηk−1 − ηk)(1−Θ(S−β

k)) when Sk(t) becomes large, where β is determined by the
rate of eigenvalue decay of the Hessian and the rate of variance decay of the gradient noise. But a
slight misalignment between theory and practice here is that the form of Ĝ(Sk(t)) is not the same as
G(η−γ

k Sk(t)) in (2). The main discrepancy here is that G(η−γ
k Sk(t)) has an explicit dependence on

the current learning rate ηk, while Ĝ(Sk(t)) does not. We suspect that this is due to that in practice,
changing the learning rate can also change the local loss landscape, such as the well-known Edge
of Stability (EoS) phenomenon (Cohen et al., 2021; Damian et al., 2023; Lyu et al., 2022; Cohen
et al., 2025), but the quadratic loss function we consider here is not complex enough to exhibit such
a behavior. In addition, the function G(x) is in a simple power form, while Ĝ(x) also involves a
lower incomplete gamma function γ(β, (2x+r)Λ) and only approximately follows the power form.
We argue that this is a minor difference since these functions are approximately the same especially
for large x, as we plot in Figure 21. Further, if Λ → +∞, i.e., the maximum eigenvalue of the
Hessian is very large, it is easy to see that Ĝ(x) → G(x) with the same C and β.

Extending the analysis of our Multi-Power Law beyond quadratic cases is a key direction for fu-
ture work. A deeper understanding of loss landscape properties in deep learning is crucial for this
generalization. For example, a recent paper (Wen et al., 2025) conjectures that the loss landscape
in LLM pretraining exhibits a river valley landscape, which is similar to a deep valley with a river
at its bottom. Based on this conjecture, they further explained the success of WSD schedules. For
future work, it would be interesting to extend our analysis to this river valley landscape or other
frameworks that better capture the complex structure of the loss function in practical deep learning
scenarios.

C FORMULA COMPONENT ABLATION

To understand and evaluate the role of each component in our Multi-Power Law (MPL; See (1)),
we systematically simplify the MPL formula at various levels and explore alternative formulations.
Table 3 summarizes the fitting performance of these simplified versions and variants of the MPL.
The fitting experiments are conducted on 25M models, using the same experimental setup described
in Appendix E.

No Loss Reduction. The necessity of the loss reduction term LD(t) can be assessed by fitting a
One-Power Law (OPL), a simplified MPL where LD(t) = 0 or equivalently B = 0:

LOPL(t) = L0 +A · (S1(t) + SW)
−α

, S1(t) :=

t∑
τ=1

ητ . (20)

20

Published as a conference paper at ICLR 2025

This formulation approximates the loss curve by matching the LR sum without correction term,
as discussed in Section 3.1. The fitted results (first row of Table 3) exhibit significant degradation
compared to the full MPL, demonstrating the critical role of LD(t).

Linear Approximation of Loss Reduction. Based on the observation in Section 3.2.2, the loss
reduction term LD(t) (defined in Equation (2)) can be simplified by treating the scaling function
G(x) as a constant:

LD(t) ≈
t∑

k=1

B(ηk−1 − ηk) = B(η0 − ηt). (21)

Despite its simplicity, we observe a near-linear relationship between LD(t) and the LR reduction
(η0−ηt), regardless of the LR schedule type, as shown in Figure 10. This motivates the Linear Loss
reDuction Law (LLDL):

LLLDL(t) = L0 +A · (S1(t) + SW)
−α

+B(η0 − ηt). (22)
As shown in Table 3, LLDL achieves significantly better accuracy than OPL, although it underper-
forms the full MPL. However, this formulation is unsuitable for optimizing schedules, as its results
collapse to a trivial solution: ηk = η0 when k ≤ T − 1 and ηk = 0 when k = T .

Loss Reduction Without γ. Next, we simplify G(x) by setting γ = 0, yielding the No-γ Law:

LNo−γ = L0 +A · (S1(t) + SW)
−α

+B

t∑
k=1

(ηk−1 − ηk) ·G(Sk(t)). (23)

Results (third row of Table 3) show a slight performance drop, confirming that γ enhances fitting
accuracy with minimal additional computational cost. Thus, we retain γ in the final MPL.

Step-Based Approximation. An alternative is to replace G(η−γ
k Sk(t)) with a step-based formu-

lation, G(t− k + 1). This yields the Step Power Law (SPL):

LSPL = L0 +A · (S1(t) + SW)
−α

+B

t∑
k=1

(ηk−1 − ηk) ·G(t− k + 1). (24)

While simpler, this approximation reduces prediction accuracy and contradicts empirical results,
because it implies loss reduction continues to increase even when LR reaches zero.

Exponential Approximation. Substituting G(x) with an exponential function G(x) = 1− e−Cx

gives the Multi-Exponential Law (MEL):

LMEL = L0 +A · (S1(t) + SW)
−α

+B

t∑
k=1

(ηk−1 − ηk) ·G(Sk(t)). (25)

Results (fifth row of Table 3) show a performance drop compared to the power-based MPL, consis-
tent with observations in Appendix A.1 that Ũ(t, ηk) takes a power form rather than an exponential
form.

Relation to Momentum Law. The concurrently proposed MomenTum Law (MTL) is in the form
of

LMTL(t) = L0 +A · (S1 + SW)
−α

+B · S2, where S1 =

t∑
i=1

ηi, S2 =

t∑
i=1

i∑
k=1

(ηk−1 − ηk)λ
i−k,

where λ is a hyper-parameter of MTL and λ < 1. It is indeed a variant of MPL since

S2 =

t∑
i=1

i∑
k=1

(ηk−1 − ηk)λ
i−k =

t∑
k=1

(ηk−1 − ηk)

t∑
i=k

λi−k =

t∑
k=1

(ηk−1 − ηk)

(
1− λt−k+1

1− λ

)
.

Thus, MTL is a variant of MPL with an exponential step-based approximation:
LMTL(t) = L0 +A · (S1(t) + SW)

−α
+B′ ·G(t− k + 1), G(x) = 1− e−C′x.

Here, B′ = B
1−λ , C ′ = − log λ. MTL incorporates step-based decay and its performance (last

second row of Table 3) even lags behind MEL, highlighting the limitations of step-based approxi-
mations.

21

Published as a conference paper at ICLR 2025

5000 10000 15000 20000 25000
Step

3.4

3.6

3.8

4.0
Lo

ss

loss
LR
loss
LR

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

0.0 0.5 1.0 1.5 2.0 2.5
LR Reduction (x10 4)

0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

 R
ed

uc
tio

n

linear regression
(LR reduction, Loss reduction)

Const
WSDLD
WSD-Cosine
Cosine
WSD

Figure 10: Linear regression of loss reduction versus LR reduction across different schedules for a 25M model
over 24000 steps. Decay steps are set at 4000 for WSD and its variants, among which WSD-Cosine specifically
denotes the WSD schedule with cosine decay function. Left: Visualization of learning rate schedules and
their corresponding loss curves. Right: Scatter plot of loss reductions against LR reductions, accompanied
by a linear regression fit (mean R2 = 0.9980), demonstrating a strong linear relationship between the two
variables.

Table 3: Summary of fitting results for simplified versions and variants of the MPL. Metrics include
R2, MAE, RMSE, PredE, and WorstE, where higher R2 values and lower values of other metrics
indicate better fitting performance. See Table 1 for metric definitions.

Formula Features R2 ↑ MAE↓ RMSE↓ PredE↓ WorstE↓
OPL LD(t) = 0 (B = 0) 0.8309 0.0378 0.0412 0.0111 0.0241

LLDL G(x) = 1 0.9797 0.0077 0.0101 0.0023 0.0108
No-γ γ = 0 0.9961 0.0046 0.0053 0.0014 0.0041
SPL x = t− k 0.9921 0.0066 0.0075 0.0020 0.0069
MEL G(x) = 1− e−Cx, γ = 0 0.9934 0.0044 0.0057 0.0013 0.0047
MTL G(x) = 1− e−Cx, x = t− k 0.9904 0.0047 0.0060 0.0014 0.0047
MPL G(x) = 1− (Cx+ 1)−β , 0.9975 0.0039 0.0046 0.0012 0.0040

(Ours) x = η−γ
k

∑t
τ=k ητ

D RELATED WORK

Scaling Laws and Loss Curve Prediction. Scaling laws reveal empirical power-law relationships
between training losses and various factors such as model size, dataset size, and computational re-
sources. Hestness et al. (2017) initially observed that generalization errors in deep learning decrease
predictably with larger model and dataset scales, following a power-law trend. Subsequently, Ka-
plan et al. (2020) investigated these scaling laws in the context of training Transformers (Vaswani
et al., 2017), demonstrating a persistent power-law decay in loss and contributing to the rise of
LLMs (Mann et al., 2020; Bi et al., 2024; Touvron et al., 2023; Dubey et al., 2024). Later stud-
ies refined these scaling laws by improving fitting and evaluation pipelines, refining parameter size
metrics, ensuring consistent hyperparameter configurations across scales, and extending their appli-
cability to broader training scenarios (Hoffmann et al., 2022; Henighan et al., 2020; Bi et al., 2024;
Caballero et al., 2022; Alabdulmohsin et al., 2022).

Scaling laws have been used to predict the model performance in various settings, hyperparameter
optimization (Kadra et al., 2023), multi-epoch training (Muennighoff et al., 2023), training sparsely-
connected models (Frantar et al., 2023; Ludziejewski et al., 2024), length extrapolation (Liu et al.,
2023), transfer learning (Hernandez et al., 2021), and data mixing (Hashimoto, 2021; Ge et al., 2024;
Ye et al., 2024; Jain et al., 2024). However, most existing work neglects the impact of the learning
rate, making their predictions unreliable for assessing model performance throughout training (Hoff-
mann et al., 2022). As a result, deriving scaling laws for final losses under specific schedules (e.g.,
the cosine schedule (Hoffmann et al., 2022; Muennighoff et al., 2023)) requires more than 10 full

22

Published as a conference paper at ICLR 2025

training runs. Another line of works extrapolate loss curves with Bayesian methods (Klein et al.,
2017; Domhan et al., 2015; Choi et al., 2018; Adriaensen et al., 2023) for hyperparameter opti-
mization, but they also need a large number of training runs. In comparison, our work introduces a
multi-power law that extends the existing power-law form of specific LR schedules by incorporating
terms to capture LR schedule effects. Unlike prior work, our approach is LR-dependent and can
predict full loss curves across various schedules using fewer than three training curves.

Concurrent to our work, Tissue et al. (2024) proposed a momentum law that also incorporates LR
into scaling laws. However, our work outperforms theirs by identifying a power-law decay rather
than an exponential decay in loss reduction relative to LR reduction (detailed in Section 4.2). This
results in a more accurate formula capable of inducing optimized schedules, whereas the momentum
law provably yields suboptimal collapsed schedules (detailed in Appendix I). In another concurrent
work, Xie et al. (2024) derived a LR-dependent scaling law based on theoretical insights drawn from
SDE-based continuous-time approximation of training dynamics. However, their scaling law relies
on manually defined training phases and is limited to predicting the final loss value. In contrast, our
proposed scaling law is arguably more general, as it can predict the entire loss curves for various LR
schedules, even including discontinuous and non-monotonic ones. This also allows us to optimize
the LR schedule by minimizing the predicted loss over all possible LR decay schedules, which may
not be easily achievable using their method.

Theoretical Insights on Scaling Laws. Many works have explored theoretical explanations for
the observed power-law behavior. Sharma & Kaplan (2022) attribute the power-law behavior to the
intrinsic dimension of data manifold. Hutter (2021); Michaud et al. (2023) draw insights from a toy
case where an infinite amount of distinct knowledge pieces need to be memorized, and the power
law of the loss curve can arise when the frequency of knowledge exhibits a power-law distribution.
Many other works analyze the scaling law of linear models (Spigler et al., 2020; Bordelon et al.,
2020; Maloney et al., 2022; Bahri et al., 2024; Wei et al., 2022; Bordelon et al., 2024; Lin et al., 2024;
Atanasov et al., 2024; Paquette et al., 2024), assuming certain power-law properties in the input data
or ground truth functions. A few others examine how power law behaviors arise in simple neural
networks (Nam et al., 2024; Bordelon et al., 2025; Lyu et al., 2025). Similar to these works, we also
provide a theoretical explanation for our multi-power law assuming certain power-law properties in
the optimization landscape, but our analysis is accurate enough to capture the effects of learning rate
schedules on the loss curve.

Optimal Learning Rate Schedule. Setting a proper schedule for the learning rate is crucial for
training deep neural networks. He et al. (2016) introduced the warmup strategy, which is now stan-
dard in modern schedules. Early work by Smith (2017) proposed cyclical LR schedules, featuring
periodic linear decay with warmup restarts, later extended to cosine decay with warmup restarts
by Loshchilov & Hutter (2017). Some works explored adaptive approaches, such as Bayesian or
reinforcement learning-based methods (Xu et al., 2019; Teng et al., 2021), but they are compu-
tationally expensive for LLMs. Li & Arora (2020) demonstrated that training with one schedule
accompanied by weight decay is equivalent to training with the same network with an exponentially
increasing LR schedule without weight decay. Goyal et al. (2017); Hoffer et al. (2017); Malladi
et al. (2022) studied how to scale the LR when increasing the batch size. Li et al. (2019); You et al.
(2019) showed that LR decay can benefit generalization by suppressing the memorization of noisy
data early in training and learning complex patterns late in training.

In the context of large model training, Hu et al. (2024) introduced the Warmup-Stable-Decay (WSD)
schedule, which starts with a warmup phase, continues a main stable phase, and ends with a rapid
decay phase. This schedule has shown strong performance in LLM pretraining and efficient con-
tinual training. Similar patterns have been adopted in other works (Zhai et al., 2022; Hägele et al.,
2024). Ibrahim et al. (2024); Zhai et al. (2022); Raffel et al. (2020) adopt a reciprocal (inverse)-sqrt
LR schedule in full process or as a component. Wen et al. (2025) analyze the benefits of WSD
schedules by conjecturing that the loss landscape exhibits a river valley structure, and propose alter-
natives for WSD in continual training. Inspired by these works, recent open-source models advocate
schedules with a slow-decay or stable phase followed by a rapid decay (Liu et al., 2024; OLMo et al.,
2024).

Our resulting scaling law can induce optimized schedules share a similar pattern with the WSD
schedule, even though we do not fit the law on WSD schedules. Concurrent to our work, other
schedules have claimed optimality under specific conditions. Defazio et al. (2023) proposed linear

23

Published as a conference paper at ICLR 2025

decay schedules as optimal based on worst-case analysis. Shen et al. (2024) introduced a power
schedule for continual training, which outperforms WSD schedules. Schaipp et al. (2025) drew
parallels between convex optimization and LR scheduling for LLMs, using simulation results to
guide continual training strategies and peak LR selection. Bergsma et al. (2025) argued for a linear-
to-zero LR schedule as optimal, ablating on peak LR, data size, and model size. Defazio et al.
(2024) proposed a schedule-free approach using weight averaging techniques, but it underperforms
WSD schedules (Hägele et al., 2024). Existing methods often optimize schedules under specific
constraints, such as ending LR (Bergsma et al., 2025), decay ratio (Schaipp et al., 2025), continual
training (Shen et al., 2024), or worst-case convergence bounds (Defazio et al., 2023). In contrast,
our approach integrates LR schedules into scaling laws, which enables gradient-based optimization
over all possible schedules.

E EXPERIMENT SETTING

Unless otherwise specified, the model training in the Section 3, 4 and 5 follows the following set-
tings.

Codename Embedding Dimension #Heads #Layers #Non-embeddings #Params

25M 640 5 5 25 89
100M 1024 8 8 101 205
400M 1536 12 12 340 493

1B 2048 32 16 822 1026
GPT-2 768 12 12 85 162

Table 4: The model series run in all the experiments. Hoffmann et al. (2022) utilizes the number
of non-embedding parameters (#Non-embeddings) to count model sizes, while Kaplan et al. (2020)
counts the total number of parameters (#Params). The unit of the Parameter is M in this table.

Default Hyperparameter Value
Sequence Batch Size 128
Sequence Length 4096
Optimizer Type AdamW
β1 0.9
β2 0.95
ϵ 1× 10−8

Weight Decay 0.1
Gradient Clipping 1.0
Peak Learning Rate 3× 10−4

Final Learning Rate 3× 10−5

Warmup Steps 2160

Table 5: Hyperparameters related to model training.

Our validation contains two steps: (1) fitting schedule-curve pairs from the training set and (2) pre-
dicting the loss curves for schedules in the test set. The training set contains only a single 24,000-step
constant and cosine schedule pair, alongside a 16,000-step two-stage schedule of ηB = 0.3ηA. The
test set has one 72,000-step constant and cosine schedule, 24,000-step unseen WSD and WSDLD
schedules, and 16,000-step two-stage schedules with ηB = 0.1ηA and ηB = 0.6ηA. The details are
provided in Table 6. We train Llama2 (Touvron et al., 2023) models of 25M, 100M, and 400M, and
collect their loss curves, with model parameter details in Table 4. Training employs the AdamW
optimizer, with a weight decay of 0.1, gradient clipping at 1.0, β1 = 0.90, and β2 = 0.95, consistent
with the Llama2 training setup. Default hyperparameters include a peak LR of 3× 10−4, a warmup
period of 2160 steps, and a batch size of 0.5M. Additional hyperparameters are detailed in Table 5.
In ablation studies, we simplify the experiment to fit short constant and cosine schedules and predict
the loss for a long-horizon cosine schedule. The MPL fitting employs Huber loss (Huber, 1992) as
the objection function, aligning with prior work (Hoffmann et al., 2022; Muennighoff et al., 2023),

24

Published as a conference paper at ICLR 2025

2000 4000 6000 8000 10000 12000 14000
Step

3.4

3.5

3.6

3.7

3.8

3.9

4.0

4.1

Lo
ss

loss
pred
loss
pred 36

24

16

12

10

6

3

1

Le
ar

ni
ng

 R
at

e
(x

10
4)

(a) Peak LR Ablation for Constant Schedules

0 10000 20000 30000 40000 50000 60000 70000
Step

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Lo
ss

Loss(400M)
Pred(400M)
Loss(100M)
Pred(100M)
Loss(25M)
Pred(25M)

(b) Model Size Ablation for Long-Horizon Training

Figure 11: Loss curves for constant LR schedules. pred denotes the fitted law prediction and loss represents
the ground-truth loss curve. See Appendix F.1 for details.

and uses the Adam optimizer for optimization. Unless otherwise specified, we report validation loss.
For fitting approaches and additional details see Appendix G.

F DISCUSSIONS OF MULTI-POWER LAW DERIVATION (SECTION 3)

F.1 CONSTANT PROCESS LOSS APPROXIMATION (SECTION 3.1)

The constant process employs a constant LR schedule with the same warmup phase and peak LR as
the actual process schedule. We validate (5), the LR sum power law of the loss curves for constant
schedules, through two series of experiments. First, we conduct ablation over the peak LR, ranging
from 3.0 × 10−4 to 3.6 × 10−3 over 14,400 steps, achieving an MSE of 1.55 × 10−5 and R2 of
0.9976 (Figure 11(a)). Second, we validate the power form over long-horizon curves (72000 steps)
for model sizes of 25M, 100M, and 400M, with a peak LR of 3.0× 10−4, yielding an average MSE
of 8.04× 10−5 and R2 of 0.9947 (Figure 11(b)).

F.2 TWO-STAGE EXPERIMENTS (SECTION A.1)

In this section, we provide details on the investigation of the variation of coefficients in the power
law for two-stage LR schedules.

Experiment Setting and Law Fitting. The experiment setting aligns with Appendix E. Default
configuration uses ηA = 3 × 10−4, ηB = 3 × 10−5, TA = 8000. In the ablation experiments, ηA
ranges from 5×10−5 to 1×10−3, ηB ranges from 4×10−5 to 2.9×10−4, and TA ranges from 4000
to 28000. The second stage lengths spanning 1000 to over 6000 steps. Validation loss is sampled
every 2 steps due to the rapid loss changes after the stage switch. Following Hoffmann et al. (2022),
we fit the law utilizing Huber loss as the objection function (Huber, 1992),

min
Θ

∑
x

Huberδ(log L̂DΘ(TA + x)− log LD(TA + x)), (26)

where Θ = {B̃, C̃, β}, and we set δ = 1× 10−2. For each experiment, we use the Adam optimizer
with a learning rate at 1 × 10−4 and total steps of 20000. Here we do not conform to the L-BFGS
algorithm like Hoffmann et al. (2022) due to its sensitivity to the initialization. In our fitting, the
parameters are initialized based on the loss reduction curve shape: B̃ corresponds to the estimation
of asymptotic values of loss reduction and C̃ can be estimated according to the slope at x = 0 step
(Equation (14)).

Fixed β Experiments for Parameter Patterns. We fit the power-law form in Equation (14) across
ablation experiments to identify the loss curve shape and power-law parameter patterns. For the sake
of further derivation, we fix the exponent β as LR-independent parameter 0.4 based on the warmup

25

Published as a conference paper at ICLR 2025

experiments. Then we re-fit the loss curves fixing β = 0.4 to confirm the validity of the power
form. Figure 12 includes the re-fitted curves and ground truths for the ablation experiments over ηA
and ηB, showing feasible error margins for further derivation despite fixed β. We further investigate
the dependency of different parameters on the ηA, ηB, and TA, with pair-wise relations presented in
Figure 8 and summarized in Appendix A.1.

0 1000 2000 3000 4000 5000 6000
Step

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Lo
ss

 R
ed

uc
tio

n

Average Error: 2.75e-06
loss reduction
pred
loss reduction
pred 5

10
15
20
25
30

40

60

100

A
 (x

10
5)

(a) ηA Ablation

0 1000 2000 3000 4000 5000 6000
Step

0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

 R
ed

uc
tio

n

Average Error: 4.99e-06
loss reduction
pred
loss reduction
pred

4

7

12

16

18

22

26

29

B
 (x

10
5)

(b) ηB Ablation

Figure 12: Power-law fitting of loss reductions versus steps x for two-stage LR schedules.

F.3 MULTI-STAGE EXPERIMENTS (SECTION A.2)

We analyze intermediate loss reduction dependency on the LR prefix, through experiments of a
multi-stage schedule and its auxiliary (intermediate) processes. As shown in Figure 3, our multi-
stage schedule consists of 9 stages, with a first stage of 8000 steps at 3 × 10−4, followed by eight
90-step stages. The validation interval is also set to 2 steps. For adjacent stages i−1 and i (x ≤ 90),
We compute LD(i)(Ti+x), as defined in Appendix A.2 and fit it going through the same law fitting
process as Equation (26). The fitting of loss reductions for different stages is presented in the left
panel of Figure 9. Moreover, parameter trends, analogous to the two-stage findings, reveal B̃(i)

changing with η(i−1) − η(i) and C̃(i) changing with η(i), shown in the right two sub-figures of
Figure 9.

G DETAILS OF VALIDATION EXPERIMENTS (SECTION 4)

G.1 TRAINING SET AND TEST SET

Set Schedule Type Total Lengths ηB/ηA

Training
Constant 24000
Cosine 24000

Two-stage 16000 0.3

Test

WSD 24000
WSDLD 24000

Two-stage 16000 0.1
Two-stage 16000 0.6
Constant 72000
Cosine 72000

Table 6: Summary of training and test sets.

Our validation frames the Multi-Power Law (MPL) fitting as a machine learning task, training on
schedule-loss curve pairs from the training set and predicting loss curves for the test set. The training
set contains a 24000-step constant and cosine schedule pair, and a 16000-step two-stage schedule
with ηB = 0.3ηA. The test set includes a 72000-step constant and cosine schedule, a 24000-step
unseen WSD and WSDLD schedule, and 16000-step two-stage schedules with ηB = 0.1ηA and

26

Published as a conference paper at ICLR 2025

5000 10000 15000 20000 25000
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Cosine
WSD
WSDSC
Loss
LR

3.25

3.50

3.75

4.00

4.25

4.50

Lo
ss

18000 19000 20000 21000 22000 23000

3.25

3.30

(a) Loss Curve Comparison for GPT-2

10000 20000 30000 40000 50000 60000 70000
Step

3.2

3.3

3.4

3.5

3.6

Lo
ss 60000 62500 65000 67500 70000

3.14

3.16

3.18

3.20

3.22

Learning Rate
Loss
Multi-power
One-power

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

(b) Long-Horizon Prediction for GPT-2

Figure 13: Loss curves of GPT-2 models with Multi-Power Law fitted over 24000-step constant and cosine
schedule losses. (a) Comparison between the cosine, WSD, and WSDSC schedules (see Section 5.2); (b)
Prediction for a 72000-step cosine schedule loss curve.

5 10 15 20 25
Step(×103)

3.4

3.6

3.8

4.0

Lo
ss

22.0 22.5 23.0 23.5 24.0
3.3100

3.3125

3.3150

3.3175

3.3200

Seed 45018
Seed 337
Seed 1660

(a) Random Seed Ablation

5000 10000 15000 20000 25000
Step

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

WSDLD

3.0

3.2

3.4

3.6

3.8

Lo
ss

18000 20000 22000

2.95

3.00

3.05

3.10

Loss
Multi-power
One-power
Momentum

(b) Comparison with Momentum Law

Figure 14: (a) Experiments with a 25M model over 24000 steps across different seeds, showing a final loss
standard deviation of 0.0007 and a maximum gap of 0.0014. (b) Comparison between Multi-Power Law (MPL)
and Momentum Law (MTL). In the decay stage, MPL achieves higher fitting accuracy and matches the curva-
ture of the loss curve, whereas MTL fits the stable stage but predicts a counterfactual concave curve during the
decay stage.

ηB = 0.6ηA. The peak learning rate is 3×10−4, and the ending learning rate is 3×10−5 for the co-
sine, WSD, and WSDLD schedules. For all two-stage schedules, TA = 8000. All schedules include
a warmup phase of 2,160 steps. Detailed descriptions of the training and test sets are summarized in
Table 6.

G.2 FITTING THE LAW

Similar to the two-stage fitting, we fit the parametric law using the Huber loss as the objective (Hu-
ber, 1992):

min
Θ

∑
t

Huberδ(logLΘ(Xt)− logLgt(Xt)), (27)

where Lgt(Xt) denotes the ground truth of validation loss, LΘ(Xt) is the predicted loss, δ is a
hyperparameter for the Huber loss, and Θ denotes parameters to fit. The total fitting loss sums up the
Huber loss over the validation steps. In practice, we compute the area under the linearly interpolated
polyline of the learning rate at validation steps as a surrogate for the LR sum. This approach reduces
the computational cost since requiring only step numbers, learning rates, and losses at validation
steps.

Multi-Power Law. For the Multi-Power Law (MPL), Θ = {A,B,C, α, β, γ, L0}, and Xt =
{η1, . . . , ηt}. We use the Adam optimizer to fit the MPL due to its flexibility, with a learning rate
of 5 × 10−3 for the index parameters (α, β, and γ) and 5 × 10−2 for the coefficient or constant
parameters (A, B, C, and L0). We also perform a second optimization with a learning rate of
1 × 10−5 and 1 × 10−6, initialized with parameters from the first optimization. Each optimization
runs for 5×104 steps, selecting the lowest training loss result. Fitted parameters are listed in Table 7.

27

Published as a conference paper at ICLR 2025

Table 7: Parameter values for optimized schedules across different model sizes, rounded to two
decimal places.

Model Size A B C α β γ L0

400M 0.66 614.30 0.16 0.42 0.88 0.56 2.52
100M 0.59 521.40 0.24 0.46 0.60 0.65 2.79
25M 0.51 446.40 2.07 0.53 0.41 0.52 3.17

In the discussion of Appendix C, we also fit simplified MPL or MPL variants in this manner, except
for the momentum law (Appendix G.2). In Figure 15, we present the fitting and prediction results for
a subset of experiments, with a zoom-in window highlighting predictions near the end of training.
In long-horizon experiments, the zoomed-in view reveals slight discrepancies between the MPL
predictions and the actual training curves, targeted for future refinement.

Momentum Law. For the momentum law (MTL; Appendix C), Θ = {A,B, α, L0}, with
λ as a tunable hyperparameter. The input Xt for MTL is the same as MPL’s input. Fol-
lowing Tissue et al. (2024), we use L-BFGS to minimize Equation (27), grid-searching λ ∈
{0.95, 0.99, 0.995, 0.999, 0.9995} and selecting the best fit based on training accuracy. Predictions
are evaluated across the test set (Table 6), with comparisons to MPL in Table 1 and Figure 14. In
Figure 14, we compare them specifically over the WSDLD schedule. In the decay stage, MPL not
only achieves higher fitting accuracy but also aligns with the curvature of the loss curve. In contrast,
MTL fits the stable stage well but predicts a counterfactual concave curve during the decay stage.

Chinchilla Data Scaling Law. The Chinchilla Data Scaling Law (CDSL) is similar to the one-
power law mentioned in Appendix C, but uses the power of steps instead of the LR sum, with Θ =
{A,α, L0}, and Xt = t (final steps only) for Equation (27). The fitting of CDSL follows Hoffmann
et al. (2022) and uses the L-BFGS algorithm to minimize the Huber loss. With regard to sample
efficiency (Figure 5(a)), CDSL uses cosine curves at 14960, 20080, 27760, 40560, 53360, and
72000 steps, requiring 4.8 times more compute than MPL (two 24000-step curves), with prediction
errors of 0.007 (MPL) versus 0.024 (CDSL). MPL achieves less than one-third the prediction error
of CDSL. In Figure 5(b), CDSL fits all intermediate steps, ignoring the effect of LR schedule and
loss reductions for the comparison with MPL.

Discussion on the Optimization Method. We also explored the use of the L-BFGS algorithm
for fitting MPL but found it highly sensitive to parameter initialization. For instance, under certain
initializations, the fitted parameters may include a high β value and a near-zero C. Note that 1 −
(1 + Cx)−β = 1− exp(−β log(1 + Cx)) ≈ 1− exp(−βCx) in this case, making MPL resemble
a multi-exponential form. In practice, this issue can be mitigated by constraining parameters such
as β and γ to the interval (0, 1). Additionally, we can initialize C, β, and γ through grid search to
obtain more feasible results. However, using the Adam optimizer is not without limitations, as it
lacks theoretical convergence guarantees. Future work will focus on enhancing the fitting process to
achieve greater robustness and stability.

28

Published as a conference paper at ICLR 2025

7500 10000 12500 15000 17500 20000 22500
Step

3.30

3.35

3.40

3.45

3.50

3.55

Lo
ss 20000 21000 22000 23000

3.30

3.32

3.34

Learning Rate
Loss
Multi-power
One-power

0.5

1.0

1.5

2.0

2.5

Le
ar

ni
ng

 R
at

e
(x

10
4)

6000 8000 10000 12000 14000 16000
Step

2.85

2.90

2.95

3.00

3.05

Lo
ss 13000 13500 14000 14500 15000 15500

2.84

2.86

2.88

Learning Rate
Loss
Multi-power
One-power 1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

7000 8000 9000 10000 11000 12000 13000 14000
Step

3.400

3.425

3.450

3.475

3.500

3.525

3.550

Lo
ss 11500 12000 12500 13000 13500 14000

3.39

3.40

3.41

3.42

3.43

Learning Rate
Loss
Multi-power
One-power 1.8

2.0

2.2

2.4

2.6

2.8

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

10000 20000 30000 40000 50000 60000 70000
Step

2.6

2.7

2.8

2.9

3.0

Lo
ss 60000 62500 65000 67500 70000

2.60

2.62

2.64

2.66

2.68

Learning Rate
Loss
Multi-power
One-power

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

7500 10000 12500 15000 17500 20000 22500
Step

2.95

3.00

3.05

3.10

3.15

3.20

3.25

Lo
ss 20000 21000 22000 23000

2.94

2.96

2.98

3.00

3.02

3.04

Learning Rate
Loss
Multi-power
One-power

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

10000 20000 30000 40000 50000 60000 70000
Step

2.95

3.00

3.05

3.10

3.15

3.20

3.25

Lo
ss 60000 62500 65000 67500 70000

2.935

2.940

2.945

2.950

Learning Rate
Loss
Multi-power
One-power 2.85

2.90

2.95

3.00

3.05

3.10

3.15

Le
ar

ni
ng

 R
at

e
(x

10
4)

Figure 15: Fitting and Prediction Details. Subfigures depict loss curve fitting (training set) and prediction
(test set) across various configurations, labeled as (X,Y) for row X , column Y . The columns in the accom-
panying table indicate: F/P for Fitting (F) or Prediction (P), Model Size, Step Length, and Learning Rate
Schedule. Subfigure details follow:

(X,Y) F/P Model Size Step Length LR Schedule

(1, 1) F 25M 24000 Cosine
(1, 2) F 400M 16000 2-stage (3× 10−4 → 9× 10−5)
(2, 1) P 25M 16000 2-stage (3× 10−4 → 1.8× 10−4)
(2, 2) P 400M 72000 Cosine
(3, 1) P 100M 24000 WSD
(3, 2) P 100M 72000 Constant

29

Published as a conference paper at ICLR 2025

5000 10000 15000 20000 25000
Step

1

2

3

4

Le
ar

ni
ng

 R
at

e
(x

10
4)

Const
Cosine
Two-Stage

B = 1.2 × 10 4

5000 10000 15000 20000 25000
Step

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Lo
ss

loss
pred

5000 10000 15000 20000 25000
Step

1

2

3

4

Le
ar

ni
ng

 R
at

e
(x

10
4)

Two-Stage
B = 4 × 10 5

Two-Stage
B = 2.4 × 10 4

WSD
WSDLD

5000 10000 15000 20000 25000
Step

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Lo
ss

loss
pred

0 10000 20000 30000 40000 50000 60000 70000
Step

1

2

3

4

Le
ar

ni
ng

 R
at

e
(x

10
4)

Const
Cosine

0 10000 20000 30000 40000 50000 60000 70000
Step

3.2

3.4

3.6

3.8

4.0

Lo
ss

loss
pred

5000 10000 15000 20000 25000
Step

1

2

3

4

5

6

Le
ar

ni
ng

 R
at

e
(x

10
4)

Const
Cosine
Two-Stage

B = 1.8 × 10 4

5000 10000 15000 20000 25000
Step

3.3

3.4

3.5

3.6

3.7

3.8

Lo
ss

loss
pred

5000 10000 15000 20000 25000
Step

1

2

3

4

5

6

Le
ar

ni
ng

 R
at

e
(x

10
4)

Two-Stage
B = 6 × 10 5

Two-Stage
B = 3.6 × 10 4

WSD
WSDLD

5000 10000 15000 20000 25000
Step

3.3

3.4

3.5

3.6

3.7

3.8

Lo
ss

loss
pred

0 10000 20000 30000 40000 50000 60000 70000
Step

1

2

3

4

5

6

Le
ar

ni
ng

 R
at

e
(x

10
4)

Const
Cosine

0 10000 20000 30000 40000 50000 60000 70000
Step

3.2

3.4

3.6

3.8

Lo
ss

loss
pred

Figure 16: Ablation study on peak learning rates. Left: Learning rate schedules; Right: Corresponding loss
curves. Layout: The first three rows show the results for a peak LR of 4 × 10−4 while the last three rows are
for the peak LR of 6×10−4. Within each set of the three rows, the first row shows the fitting on the training set,
the second row displays the prediction over unseen schedules and the third row demonstrates the extrapolation
capability on a long horizon loss curve.

30

Published as a conference paper at ICLR 2025

5000 10000 15000 20000 25000
Step

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Const
Cosine
Two-Stage

B = 9 × 10 5

5000 10000 15000 20000 25000
Step

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Two-Stage
B = 3 × 10 5

Two-Stage
B = 1.8 × 10 4

WSD
WSDLD

0 20000 40000 60000
Step

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Const
Cosine

5000 10000 15000 20000 25000
Step

3.4

3.5

3.6

3.7

3.8

3.9

4.0

4.1

Lo
ss

loss
pred

5000 10000 15000 20000 25000
Step

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.0

4.1

Lo
ss

loss
pred

0 20000 40000 60000
Step

3.4

3.6

3.8

4.0

4.2

Lo
ss

loss
pred

5000 10000 15000 20000 25000
Step

3.3

3.4

3.5

3.6

3.7

3.8

Lo
ss

loss
pred

5000 10000 15000 20000 25000
Step

3.3

3.4

3.5

3.6

3.7

3.8

Lo
ss

loss
pred

0 20000 40000 60000
Step

3.2

3.4

3.6

3.8

4.0

Lo
ss

loss
pred

Figure 17: Ablation study on batch sizes, with R2 values of 0.9977 (batch size 64) and 0.9973 (batch size
256). The subfigure layout is as follows. Rows: (1) Learning rate schedules, (2) Loss curves for batch size
64, (3) Loss curves for batch size 256. Columns: (1) Training set results, (2) Test set results (same horizon as
training), (3) Test set results (extended horizon).

31

Published as a conference paper at ICLR 2025

5000 10000 15000 20000 25000
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Cosine
WSDLD
WSD
Opt

5000 10000 15000 20000 25000
Step

3.4

3.6

3.8

4.0

Lo
ss

19000 20000 21000 22000 23000
3.26

3.28

3.30

3.32

3.34

Cosine
WSDLD
WSD
Opt

5000 10000 15000 20000 25000
Step

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Cosine
WSDLD
WSD
Opt

5000 10000 15000 20000 25000
Step

3.0

3.2

3.4

3.6

3.8

Lo
ss

19000 20000 21000 22000 23000

2.94

2.96

2.98

3.00

3.02

3.04

Cosine
WSDLD
WSD
Opt

Figure 18: Comparison of our optimized LR schedules and their loss curves with cosine, WSD, and WSDLD
schedules over 24000 steps. The decay step for WSD and WSDLD is set to 4000. Upper: 25M model; Lower:
100M model. Left: Learning rates over steps. Right: Losses over steps.

H DETAILS OF LR SCHEDULE OPTIMIZATION (SECTION 5)

Optimizing the Surrogate Objective. To enhance optimization stability, we redefine the learning
rate schedule E = {η1, . . . , ηT } using ∆ = {∆1,∆2, . . . ,∆T }, where ∆t = ηt−1 − ηt and η0
denotes the initial peak LR. Thus, ηt = η0−

∑t
k=1 ∆k, establishing a one-to-one mapping between

E and ∆. We transform the objective LΘ(E) from (13) into L̃Θ(∆) and alternatively optimize:
min
∆

L̃Θ(∆)

s.t. ∆t ≥ 0, ∀t = 1, . . . , T,

T∑
t=1

∆t ≤ η0.

In practice, we enforce these constraints through clipping: after each optimization step, we restrict
∆t into [0, η0] and set ∆t = 0 when ηt ≤ ϵ, with ϵ = 10−10, to ensure numerical stability.
Applied to the MPL fitted from Appendix G.1, this reformulation empirically stabilizes optimization
by aligning learning rate reductions with zero initialization. For optimization, we use the Adam
optimizer with a constant learning rate, grid searched from 2 × 10−8 to 1 × 10−9, over 50,000 to
200,000 for better convergence.

Optimized Schedule of Longer Horizons and Different Model Sizes. Beyond Figure 1 and Fig-
ure 18, we validate the optimized schedules for extended horizons and different model sizes. For
models ranging from 25M to 400M, we optimize LR schedules for 72000-step training based on
the MPL fit over the training set. As shown in Figure 19, the resulting schedules exhibit a WSD-
like shape, consisting of a stable phase and a decay phase, outperforming cosine schedules across

32

Published as a conference paper at ICLR 2025

0 10000 20000 30000 40000 50000 60000 70000
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Cosine
Opt(25M)
Opt(100M)
Opt(400M)
Loss
Learning Rate

50000 55000 60000 65000 70000
Step

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

Lo
ss

Figure 19: Left: Optimized and cosine LR schedules over 72000 steps for models ranging from 25M to 400M.
Right: Corresponding loss curves for optimized and cosine schedules.

5000 10000 15000 20000 25000
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

WSDLD
WSDLD(ZE)
WSD
WSD(ZE)
Opt

5000 10000 15000 20000 25000
Step

3.4

3.6

3.8

4.0
Lo

ss

19000 20000 21000 22000 23000
3.26

3.28

3.30

3.32

3.34

WSDLD
WSDLD(ZE)
WSD
WSD(ZE)
Opt

Figure 20: Comparison between the optimized schedules and WSD variants with a near-zero ending LR. WSD
(ZE) and WSDLD (ZE) denote WSD and WSDLD schedules with an ending learning rate of 3× 10−7. Left:
Learning rate comparison. Right: Loss comparison.

sizes. For the 1B model, we derive a 72000-step schedule based on the MPL fitted from 24000-
step constant and cosine schedule curves, with results in Figure 6(b) confirming superiority over the
cosine schedule. Additionally, for the 1B model, we evaluate the downstream performance of the
MPL-induced schedule against the cosine schedule across several tasks, including LAMBADA (Pa-
perno et al., 2016), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), ARC-easy (Gu &
Dao, 2023; Clark et al., 2018), C3 (Sun et al., 2020), and RTE (Wang et al., 2019). The MPL-
induced schedule achieves an average score improvement of 1.03 compared to the cosine schedule,
as shown in Table 2. This highlights the effectiveness of the MPL-induced schedule in enhancing
model performance across diverse downstream tasks.

Zero-Ending Learning Rate Experiments. Optimized schedules consistently outperform WSD
variants with near-zero learning rates (3×10−7, approximately 1/100 of the default setting). To test if
a higher ending LR (e.g., 1/10 peak LR) degrades baseline performance, we compare the optimized
schedules against WSD(LD) variants with near-zero ending learning rates and the original ones. As
shown in Figure 20, the optimized schedule still outperforms these WSD variants. In addition, lower
ending learning rates do not consistently improve the final loss (e.g., zero-ending WSD exceeds
baseline loss), suggesting a complex interaction between the ending learning rate and the decay
function. This highlights the advantage of the optimized schedule in reducing the need for extensive
hyperparameter tuning.

WSD with Sqrt-Cube Decay (WSDSC). We derive the decay function for optimized schedules
by analyzing the decay phase across Llama2 models ranging from 25M to 400M. We compute

33

Published as a conference paper at ICLR 2025

normalized steps and learning rates (LRs) within the decay phase for schedules of varying step
counts and model sizes. After averaging the normalized LRs, we perform symbolic regression

against the normalized steps and approximate the decay function as f(t−Tstable) =
(

Ttotal−t
Ttotal−Tstable

)1.5
.

Validation experiments on 1B Llama2 and GPT models confirm its efficacy: Figure 6(b) shows
that WSDSC outperforms the cosine schedule for the 1B model, though it falls short of the MPL-
optimized schedule. Figure 13(a) demonstrates WSDSC’s superiority over both the standard WSD
and cosine schedules for GPT.

34

Published as a conference paper at ICLR 2025

I OPTIMAL LEARNING RATE SCHEDULE FOR MOMENTUM LAW

In this section, we derive the optimal learning rate schedules for the Momentum Law (Tissue et al.,
2024):

L(T) = L0 +A · S−α
1 − C · S2,

where S1 =
∑T

t=1 ηt and S2 =
∑T

t=1

∑t
k=1(ηk−1 − ηk) · λt−k. λ is a hyperparameter typically

ranges from 0.99 to 0.999, and L0, A,C > 0 are parameters.

Similar to Section 5, here we could also optimize this law to get a learning rate schedule achieving
lowest final loss by solving

min
η1,η2,...,ηT

LΞ(η1, η2, . . . , ηT) (A)

s.t. 0 ≤ ηt ≤ ηt−1, ∀1 ≤ t ≤ T,

where Ξ = {L0, A,C, λ} represents the hyperparameters and parameters in L(T). For simplicity of
derivation, we introduce η0 in front of E as the maximal LR. Compared with our Multi-Power Law
(MPL), this optimization problem is obviously convex, so we can characterize its minimizer more
easily in math. In our result, the Momentum Law yields optimal schedules that go through a stable
phase at peak LR and then directly drop to zero LR in no more than two steps. However, these kinds
of schedules are clearly far from the optimal schedules in practice. As a comparison, in Section 5,
MPL can induce a WSD-like schedule, which is empirically effective.

Next, we formalize the above arguments mathematically.

Theorem 2. For any LR schedule E∗ := {η∗1 , . . . , η∗T } that minimizes the optimization problem (A),
there exists k ∈ {0, 1, . . . , T} such that the following holds for all t ∈ {1, . . . , T}:

1. If t ≤ k, then η∗t = η0;

2. If t ≥ k + 2, then η∗t = 0.

For convenience, we first prove the following lemma.

Lemma 1. For a function f(x) = x − M(1 − λx) with M > 0 and 0 < λ < 1, we have the
following properties:

1. f(x) is strictly convex and has a unique minimizer over x ∈ [0,∞).

2. If f(y) ≥ 0 for some y ∈ [0,∞), then f(x) ≥ f(y) for all x ∈ [y,∞).

Proof. First, it is easy to check

f(0) = 0,
df

dx
(x) = 1 +Mλx log λ,

d2f

dx2
(x) = Mλx(log λ)2 > 0.

Therefore, f(x) is strictly convex. Then we can discuss the property of f(x) over x ∈ (0,∞) by
discussing df

dx (0).

(1) When df
dx (0) ≥ 0, df

dx (x
′) > df

dx (0) ≥ 0 for all x′ ∈ (0, x). Thus, f(x) is monotonically
increasing over (0, x) and f(x) > f(0) = 0. So x = 0 is the unique minimizer over x ∈ [0,∞)
and f(x) ≥ f(y) when x ≥ y ≥ 0.

(2) When df
dx (0) < 0, limx→∞

df
dx (x) = 1. Then there exists x∗ ∈ (0,∞) such that df

dx (x
∗) = 0.

Thus, f(x) monotonically decreases over (0, x∗) and monotonically increases over (x∗,∞).
Hence x∗ is the unique minimizer over x ∈ [0,∞). Moreover, f(x∗) < f(0) = 0 and
limx→∞ f(x) = ∞, so there exists x̃ ∈ (x∗,∞), such that f(x) < 0 over (0, x̃) and f(x) > 0
over (x̃,∞). Clearly, f(x) monotonically increases over x ∈ [x̃,∞). Therefore, if f(y) ≥ 0
for some y ∈ [0,∞), then y ≥ x̃ and f(x) ≥ f(y) for all x ∈ [y,∞).

This completes the proof.

Next, we prove Theorem 2.

35

Published as a conference paper at ICLR 2025

Proof for Theorem 2. First, we reparameterize ηt as ηt = η0 −
∑t

k=1 ∆k, then the optimization
problem (A) becomes

min
∆1,∆2,...,∆T

L̂Ξ(∆1,∆2, . . . ,∆T)

s.t. ∆t ≥ 0, ∀1 ≤ t ≤ T,

T∑
i=1

∆i ≤ η0,

where L̂Ξ(∆1,∆2, . . . ,∆T) is given by

L̂Ξ(∆1,∆2, . . . ,∆T) = L0 +A ·

(
Tη0 −

T∑
t=1

t∑
k=1

∆k

)−α

− C ·
T∑

t=1

t∑
k=1

∆kλ
t−k.

Define the Lagrangian by

L(∆, λ, µ) = L̂Ξ(∆1, . . . ,∆T)−
T∑

t=1

λt∆t + µ

(
T∑

t=1

∆t − η0

)
,

where λ1, . . . , λT and µ are the Lagrange multipliers associated with the constraints ∆t ≥ 0 and∑T
i=1 ∆t ≤ η0, respectively. By Karush-Kuhn-Tucker (KKT) conditions, there exist λ1, . . . , λT ≥

0 and µ ≥ 0 such that the following conditions hold:

• Complementary Slackness: λt∆t = 0 for all t = 1, . . . , T and µ

(∑T
t=1 ∆t − η0

)
= 0.

• Stationary: ∂L̂Ξ

∂∆t
(∆1, . . . ,∆T)− λt + µ = 0 for all t = 1, . . . , T .

Here, we have
∂L̂Ξ

∂∆t
= αAΦ−α−1 · (T − t+ 1)− C · (λ0 + λ1 + · · ·+ λT−t)

= αAΦ−α−1 · (T − t+ 1)− C · 1− λT−t+1

1− λ

= Kf(T − t+ 1),

where Φ := Tη0 −
∑T

t=1

∑t
k=1 ∆k, K := αAΦ−α−1 > 0, and f(x) := x − M(1 − λx) with

M := C
(1−λ)K > 0.

Note that Φ does not depend on t. We can rewrite the stationary condition as
λt = Kf(T − t+ 1) + µ.

By Lemma 1, f(x) is strictly convex and has a unique minimizer over x ∈ [0,∞). Let x∗ be this
unique minimizer. Let fmin := mint∈{1,...,T}{f(T − t+1)} be the minimum value of f(T − t+1),
and S be the set of indices that minimize f(T − t+1). Then |S| ≤ 2 and S ⊆ {⌊T −x∗+1⌋, ⌈T −
x∗ + 1⌉}.

Now we discuss the following two cases by the value of Kfmin + µ.

Case 1. If Kfmin + µ > 0, then λt > 0 for all t = 1, . . . , T . By the complementary slackness
condition, ∆t = 0 for all t = 1, . . . , T . This implies that E∗ is a constant schedule, η0 = η∗1 =
η∗2 = · · · = η∗T .

Case 2. If Kfmin + µ = 0, then λt = 0 for all t ∈ S and λt > 0 for all t /∈ S. By the
complementary slackness condition, the latter implies that ∆t = 0 for all t /∈ S. Then E∗ falls into
one of the two categories:

1. If S = {s} for some s, then η0 = η∗1 = η∗2 = · · · = η∗s−1 and η∗s = η∗s+1 = · · · = η∗T ;

2. If S = {s− 1, s} for some s, then η0 = η∗1 = η∗2 = · · · = η∗s−2 and η∗s = η∗s+1 = · · · = η∗T .

36

Published as a conference paper at ICLR 2025

We claim that η∗T = 0 if s < T . If not, then we have µ = 0 due to the complementary slackness
condition. Moreover, s < T implies T /∈ S, and then we have 0 < λT = Kf(1) + µ = Kf(1).
By Lemma 1, f(x) ≥ f(1) > 0 for all x ≥ 1, which implies that λt = Kf(T − t + 1) + µ =
Kf(T − t+ 1) > 0 for all t = 1, . . . , T , which contradicts the fact that λt = 0 for all t ∈ S.

Putting all these together, we conclude that E∗ must exhibit the pattern described in the theorem.

37

Published as a conference paper at ICLR 2025

J PROOF OF THEOREM 1

The proof of Theorem 1 consists of two main parts. First, we explicitly derive the formula for any
quadratic loss function after t steps, without making Assumption 1. Then, we take the expectation
over Σ, H , and the initialization θ0 to prove the theorem.

WLOG, we assume that H = diag(λ1, . . . , λd), and set θ∗ = 0. Otherwise, due to the rotational
and translational invariance of SGD, we can always transform the coordinate system so that the
eigenbasis of H is the standard basis, and the optimal solution is at the origin. In this case, Σii is
just the i-th diagonal entry of Σ in the standard basis.

J.1 GENERAL THEOREM FOR ALL QUADRATIC LOSS FUNCTIONS

In the first part, we establish the following theorem that characterizes the expected loss. We use
Φ(θ0, E) to denote the distribution of the T -th iteration θT of SGD with initialization θ0 and LR
schedule E := {η1, . . . , ηT }.
Theorem 3. For θT ∼ Φ(θ0, E) and any fixed η0 > 0, we have the following estimate of E[L(θT)]:

M(θ0, E) :=
1

2

d∑
i=1

(
θ20,iλi exp(−2λiS1) + η0Σii ·

1− exp(−2λiS1)

2

)

− 1

2

T∑
k=1

(ηk−1 − ηk)

d∑
i=1

Σii
1− exp(−2λiSk)

2
,

where Sk :=
∑T

τ=k ητ . The estimation error is bounded as

|E[L(θT)]−M(θ0, E)| ≤ 5ηmax

d∑
i=1

λ3
iS1 exp(−2λiS1)θ

2
0,i +

15

2
η2max

d∑
i=1

Σiiλi,

where ηmax := max0≤k≤T ηk.

To prove the theorem, we first introduce some notations and auxiliary expectations. We define

U(θ, η, S) :=
1

2

d∑
i=1

(
θ2i λi exp(−2λiS) + ηΣii ·

1− exp(−2λiS)

2

)
.

We decompose the expected loss EθT∼Φ(θ0,E)[L(θT)] into a telescoping sum of T + 1 auxiliary
expectations A0, A1, . . . , AT :

EθT∼Φ(θ0,E)[L(θT)] = A0 +

T∑
k=1

(Ak −Ak−1),

Ak := Eθk∼Φ(θ0,E≤k)[U(θk, ηk, Sk+1)],

(28)

where we define ST+1 = 0, so AT = EθT∼Φ(θ0,E)[L(θT)].
The above theorem needs the following two lemmas.
Lemma 2. If x ∈ [0, 1], then

∃ξ1 ∈ [−10, 0] s.t. (1− x)2 = exp(−2x)(1 + ξ1x
2),

∃ξ2 ∈ [−10, 0] s.t. (1− 2x) = exp(−2x)(1 + ξ2x
2).

Proof. The above inequalities hold for x = 0. For the case of x ∈ (0, 1], we must have

ξ1 = −1− (1− x)2 exp(2x)

x2
, ξ2 = −1− (1− 2x) exp(2x)

x2
.

So it suffices to show that both 1−(1−x)2 exp(2x)
x2 and 1−(1−2x) exp(2x)

x2 lie in [0, 10]. Noting that
1− 2x ≤ (1− x)2 ≤ exp(−2x), we obtain the following lower bounds:

1− (1− 2x) exp(2x)

x2
≥ 1− (1− x)2 exp(2x)

x2
≥ 1− exp(−2x) exp(2x)

x2
= 0.

Also note that 1−(1−2x) exp(2x)
x2 is an increasing function of x. So we have
1− (1− 2x) exp(2x)

x2
≤ 1− (−1) · exp(2)

12
≤ 10.

38

Published as a conference paper at ICLR 2025

Putting these two inequalities together, we have

10 ≥ 1− (1− 2x) exp(2x)

x2
≥ 1− (1− x)2 exp(2x)

x2
≥ 0,

which completes the proof.

Lemma 3. If ηmax ≤ 1
λmax

, then for all k ∈ [T],
k−1∑
t=1

ηt exp(−2λiSt) ≤
1

2λi
exp(−2λiSk)

k−1∑
t=1

ηt exp(−2λiSt+1) ≤
4

λi
exp(−2λiSk).

Proof. The first inequality follows from the fact that a lower Darboux sum is smaller than the cor-
responding Darboux integral

k−1∑
t=1

ηt exp(−2λiSt) =

k−1∑
t=1

(St − St+1) exp(−2λiSt)

≤
∫ S1

Sk

exp(−2λiS)dS

=
1

2λi
[exp(−2λiSk)− exp(−2λiS1)]

≤ 1

2λi
exp(−2λiSk).

For the second inequality,
k−1∑
t=1

ηt exp(−2λiSt+1) =

k−1∑
t=1

ηt exp(−2λiSt) exp(2λiηt)

≤
k−1∑
t=1

ηt exp(−2λiSt) exp(2)

≤ exp(2)

2λi
exp(−2λiSk)

≤ 4

λi
exp(−2λiSk),

which completes the proof.

The following lemma characterizes the difference between two consecutive auxiliary expectations
Ak and Ak−1.
Lemma 4. If ηmax ≤ 1

λmax
, then for all k ∈ [T],

Ak −Ak−1 = −1

2
(ηk−1 − ηk)

d∑
i=1

1− exp(−2λiSk)

2
Σii + ϵk,

where the error term ϵk is bounded by

|ϵk| ≤ 5

d∑
i=1

η2kλ
3
i exp(−2λiSk)Eθk−1∼Φ(θ0,E≤k−1)[θ

2
k−1,i] + 5

d∑
i=1

η3kΣiiλ
2
i exp(−2λiSk).

Proof. By the definition of Ak and Ak−1, we have
Ak −Ak−1 = Eθk∼Φ(θ0,E≤k)[U(θk, ηk, Sk+1)]− Eθk−1∼Φ(θ0,E≤k−1)[U(θk−1, ηk−1, Sk)]

= Eθk−1∼Φ(θ0,E≤k−1)[∆Ū(θk−1)],

where
∆Ū(θk−1) := Egk∼N (Hθk−1,Σ)[U(θk−1 − ηkgk, ηk, Sk+1) | θk−1]︸ ︷︷ ︸

=: Ū(θk−1)

−U(θk−1, ηk−1, Sk).

39

Published as a conference paper at ICLR 2025

Expanding Ū(θk−1) based on the definition of U gives

Ū(θk−1) = Egk∼N (Hθk−1,Σ)

[
1

2

d∑
i=1

(θk−1,i − ηkgk,i)
2λi exp(−2λiSk+1)

∣∣∣∣∣ θk−1

]
︸ ︷︷ ︸

=:Ū1(θk−1)

+
1

2

d∑
i=1

ηkΣii ·
1− exp(−2λiSk+1)

2︸ ︷︷ ︸
=:Ū2(θk−1)

.

For Ū1(θk−1), evaluating the expectation gives

Ū1(θk−1) =
1

2

d∑
i=1

(
λi exp(−2λiSk+1)

(
(1− ηkλi)

2θ2k−1,i + η2kΣii

))
,

Then, we split Ū1(θk−1) into two parts:

Ū1(θk−1) =
1

2

d∑
i=1

λi exp(−2λiSk+1)(1− ηkλi)
2θ2k−1,i︸ ︷︷ ︸

=:Ū11(θk−1)

+
1

2

d∑
i=1

λi exp(−2λiSk+1)η
2
kΣii︸ ︷︷ ︸

=:Ū12(θk−1)

.

Let Ū3(θk−1) := Ū12(θk−1) + Ū2(θk−1). Then Ū(θk−1) = Ū11(θk−1) + Ū3(θk−1). We can
rewrite Ū3(θk−1) as

Ū3(θk−1) =
1

2

d∑
i=1

(
ηkΣii ·

1− exp(−2λiSk)(1− 2ηkλi)

2

)
.

Since ηkλi ∈ [0, 1] for all i, by Lemma 2, we can find ξ1,i, ξ2,i ∈ [−10, 0] such that
(1− ηkλi)

2 = exp(−2ηkλi)(1 + ξ1,iη
2
kλ

2
i), (1− 2ηkλi) = exp(−2ηkλi)(1 + ξ2,iη

2
kλ

2
i).

Then we can rewrite Ū11(θk−1) as

Ū11(θk−1) =
1

2

d∑
i=1

(1 + ξ1,iη
2
kλ

2
i)λi exp(−2λiSk)θ

2
k−1,i

=
1

2

d∑
i=1

λi exp(−2λiSk)θ
2
k−1,i +

1

2

d∑
i=1

ξ1,iη
2
kλ

3
i exp(−2λiSk)θ

2
k−1,i.

Similarly, we can rewrite Ū3(θk−1) as

Ū3(θk−1) =
1

2

d∑
i=1

(
ηkΣii ·

1− (1 + ξ2,iη
2
kλ

2
i) exp(−2λiSk)

2

)

=
1

2

d∑
i=1

(
ηkΣii ·

1− exp(−2λiSk)

2

)
− 1

2

d∑
i=1

ξ2,iη
3
kΣiiλ

2
i exp(−2λiSk).

Therefore, we can rewrite Ū(θk−1) as

Ū(θk−1) =
1

2

d∑
i=1

(
λi exp(−2λiSk)θ

2
k−1,i + ηkΣii ·

1− exp(−2λiSk)

2

)
+ ϵ̃k(θk−1),

where

ϵ̃k(θk−1) :=
1

2

d∑
i=1

ξ1,iη
2
kλ

3
i exp(−2λiSk)θ

2
k−1,i −

1

2

d∑
i=1

ξ2,iη
3
kΣiiλ

2
i exp(−2λiSk).

Subtracting U(θk−1, ηk−1, Sk) from the above expression, we can obtain the following formula for
∆Ū(θk−1) := Ū(θk−1)− U(θk−1, ηk−1, Sk),

∆Ū(θk−1) = −1

2
(ηk−1 − ηk)

d∑
i=1

1− exp(−2λiSk)

2
Σii + ϵ̃k(θk−1).

40

Published as a conference paper at ICLR 2025

Taking the expectation of ∆Ū(θk−1) over θk−1 ∼ Φ(θ0, E≤k−1), we have
Ak −Ak−1 = Eθk−1∼Φ(θ0,E≤k−1)[∆Ū(θk−1)]

= −1

2
(ηk−1 − ηk)

d∑
i=1

1− exp(−2λiSk)

2
Σii + Eθk−1∼Φ(θ0,E≤k−1)[ϵ̃k(θk−1)].

Letting ϵk := Eθk−1∼Φ(θ0,E≤k−1)[ϵ̃k(θk−1)] completes the proof.

The following lemma gives an upper bound for the term Eθk−1∼Φ(θ0,E≤k−1)[θ
2
k−1,i] that appears

in Lemma 4.
Lemma 5. If ηmax ≤ 1

λmax
, then for all k ∈ [T] and i ∈ [d],

Eθk−1∼Φ(θ0,E≤k−1)[θ
2
k−1,i] ≤ θ20,i exp(−2λi(S1 − Sk)) +

4

λi
ηmaxΣii.

Proof. By the update rule, for all 1 ≤ t ≤ k − 1, we have
E[θ2t,i] = (1− ηtλi)

2E[θ2t−1,i] + η2tΣii.

Since (1− ηtλi)
2 ≤ exp(−2ηtλi) and ηt ≤ ηmax, we have the following bound:

E[θ2t,i] ≤ exp(−2ηtλi)E[θ2t−1,i] + ηtηmaxΣii.

Expanding the recursion, we have

E[θ2k−1,i] ≤ θ20,i exp(−2λi(S1 − Sk)) +

k−1∑
t=1

ηtηmaxΣii exp(−2λi(St+1 − Sk))

= θ20,i exp(−2λi(S1 − Sk)) + exp(2λiSk)ηmaxΣii

k−1∑
t=1

ηt exp(−2λiSt+1),

where the first line uses the identity
∏k−1

τ=t+1 exp(−2ητλi) = exp(−2λi(St+1 − Sk)).

Further, by Lemma 3, we have
∑k−1

t=1 ηt exp(−2λiSt+1) ≤ 4
λi

exp(−2λiSk). Thus, we have

E[θ2k−1,i] ≤ θ20,i exp(−2λi(S1 − Sk)) + exp(2λiSk)ηmaxΣii ·
4

λi
exp(−2λiSk)

= θ20,i exp(−2λi(S1 − Sk)) +
4

λi
ηmaxΣii,

which completes the proof.

Lemma 6. In the setting of Lemma 4, we can bound the sum of the error terms ϵk as∣∣∣∣∣
T∑

k=1

ϵk

∣∣∣∣∣ ≤ 5ηmax

d∑
i=1

λ3
iS1 exp(−2λiS1)θ

2
0,i +

15

2
η2max

d∑
i=1

Σiiλi.

Proof. By the upper bound of |ϵk|,∣∣∣∣∣
T∑

k=1

ϵk

∣∣∣∣∣ ≤
T∑

k=1

|ϵk| ≤ 5

d∑
i=1

(T∑
k=1

η2kλ
3
i exp(−2λiSk)Eθk−1∼Φ(θ0,E≤k−1)[θ

2
k−1,i]︸ ︷︷ ︸

=: E1,i

+

T∑
k=1

η3kΣiiλ
2
i exp(−2λiSk)︸ ︷︷ ︸

=: E2,i

)
.

For E1,i, we apply Lemma 5 and have

E1,i ≤
T∑

k=1

η2kλ
3
i exp(−2λiSk)

(
θ20,i exp(−2λi(S1 − Sk)) +

4

λi
ηmaxΣii

)

= λ3
i exp(−2λiS1)θ

2
0,i

T∑
k=1

η2k + 4ηmaxλ
2
iΣii

T∑
k=1

η2k exp(−2λiSk).

41

Published as a conference paper at ICLR 2025

For the first term, we have
∑T

k=1 ηk ≤ ηmax

∑T
k=1 ηk = ηmaxS1. For the second term, by Lemma 3,

we have
T∑

k=1

η2k exp(−2λiSk) ≤ ηmax

T∑
k=1

ηk exp(−2λiSk) ≤
ηmax

2λi
exp(−2λiST+1) =

ηmax

2λi
.

Putting these bounds together, we have
E1,i ≤ ηmaxλ

3
iS1 exp(−2λiS1)θ

2
0,i + 2η2maxΣiiλi.

For E2,i, we have

E2,i =
T∑

k=1

η3kΣiiλ
2
i exp(−2λiSk) ≤ η2maxΣiiλ

2
i

T∑
k=1

ηk exp(−2λiSk)

≤ η2maxΣiiλ
2
i ·

1

2λi
exp(−2λiST+1)

=
1

2
η2maxΣiiλi,

where the second inequality uses Lemma 3.

Putting the upper bounds of E1,i and E2,i together proves the lemma.

Now we are ready to prove Theorem 3.

Proof for Theorem 3. According to (28), we have

E[L(θT)] = A0 +

T∑
k=1

(Ak −Ak−1).

Using Lemma 4 and Lemma 6, we have that
T∑

k=1

(Ak −Ak−1) = −1

2

T∑
k=1

(ηk−1 − ηk)

d∑
i=1

1− exp(−2λiSk)

2
Σii + ϵ,

where the error bound ϵ can be bounded as

ϵ ≤ 5ηmax

d∑
i=1

λ3
iS1 exp(−2λiS1)θ

2
0,i +

15

2
η2max

d∑
i=1

Σiiλi.

Putting these together with the expression of A0 leads to the results in Theorem 3.

J.2 PROOF FOR THEOREM 1

Now we take expectation over H , Σ and θ0 to prove Theorem 1. Throughout the proof, we use γ
to denote the lower incomplete gamma function, γ(s, x) :=

∫ x

0
ts−1e−tdt, and use Γ to denote the

gamma function, Γ(s) :=
∫∞
0

ts−1e−tdt, and use Γ(s, x) := Γ(s) − γ(s, x) to denote the upper
incomplete gamma function.

We first present two lemmas on gamma functions.

Lemma 7. For all a > −1 and C > 0, we have∫ Λ

0

λa exp(−Cλ)dλ = γ(a+ 1, CΛ)C−a−1. (29)

Proof. We substitute u = Cλ and have∫ Λ

0

λa exp(−Cλ)dλ =

∫ CΛ

0

(u

C

)a
exp(−u)

1

C
du

=
1

Ca+1

∫ CΛ

0

ua exp(−u)du

= γ(a+ 1, CΛ)C−a−1,

which completes the proof.

42

Published as a conference paper at ICLR 2025

Lemma 8. For all a > −1 and x ≥ 0,
Γ(a, x) ≤ 2(a+ 1)(a+1)e−x/2.

Proof. For all t ≥ 0, it holds that ta−1e−t ≤ (a + 1)a+1e−t/2. To see this, it suffices to show that
g(t) := ta+1e−t/2 ≤ (a + 1)(a+1). Note that the function g(t) is increasing on [0, 2(a + 1)] and
decreasing on [2(a+ 1),+∞). When t = 2(a+ 1), we have

g(2(a+ 1)) = (2(a+ 1))a+1e−(a+1) ≤ (2(a+ 1))a+12−(a+1) = (a+ 1)a+1.

Therefore, for all t ≥ 0, we have g(t) ≤ (a+ 1)(a+1). Then, for all x ≥ 0, we have

Γ(a, x) =

∫ +∞

x

ta−1e−tdt ≤
∫ +∞

x

(a+ 1)(a+1)e−t/2dt = 2(a+ 1)(a+1)e−x/2,

which completes the proof.

Now we are ready to prove Theorem 1.

Proof for Theorem 1. First, we recap some definitions from Assumption 1. The distribution of λ
is given by p(λ) = 1

Zλ−ν . We define µ := E[Σ]. By the definition of E[Σ | λ] in Assumption 1,
E[Σ | λ] = Fµλ−ρ exp(−rλ) for some constant F > 0, and E[∆2 | λ] = D2λ−κ for some constant
D > 0. Furthermore, we introduce the notations α := 2− ν − κ, and β := 1− ν − ρ.

By the identity E[Σ] = E [E[Σ | λ]], we have µ =
∫ Λ

0
Fµλ−ρ exp(−rλ) · 1

Zλ−νdλ, from which we
can obtain F = 1

1
Z

∫ Λ
0

λ−ρ−ν exp(−rλ)dλ
= 1

1
Z γ(β,rΛ)r−β . So F = Zrβ

γ(β,rΛ) .

It suffices to prove |E[L(θt)] − L̂(t)| = O(S1(t)
−α−1 + η2max) only for t = T . Once we prove it

for t = T , we can easily apply the theorem for E≤t, which is the original schedule truncated to the
first t steps, to get the result for all 1 ≤ t ≤ T .

Based on the estimate of L(θT) given in Theorem 3, we can take the expectation over λi,Σii and
θ0,i to obtain the following bound:

|E[L(θT)]− E[M(θ0, E)]| ≤ E

[
5ηmax

d∑
i=1

λ3
iS1 exp(−2λiS1)θ

2
0,i

]
︸ ︷︷ ︸

=:Q1

+E

[
15

2
η2max

d∑
i=1

Σiiλi

]
︸ ︷︷ ︸

=:Q2

,

where

E[M(θ0, E)] = E

[
1

2

d∑
i=1

θ20,iλi exp(−2λiS1)

]
︸ ︷︷ ︸

=:I1

+E

[
1

2

d∑
i=1

η0Σii
1− exp(−2λiS1)

2

]
︸ ︷︷ ︸

=:I2

− E

[
1

2

T∑
k=1

(ηk−1 − ηk)

d∑
i=1

Σii
1− exp(−2λiSk)

2

]
︸ ︷︷ ︸

=:I3

.

In the following, we bound Q1, Q2, I1, I2, I3 separately with the help of Lemma 7 and Lemma 8.

For Q1, we have

Q1 = 5dηmaxS1Ep

[
λ3 exp(−2λiS1)∆

2
]
=

5dηmaxD
2

Z
S1

∫ Λ

0

λ3−ν−κ exp(−2λiS1)dλ

=
5dηmaxD

2

Z
S1 · γ(α+ 2, 2S1Λ)(2S1)

−α−2

= O(ηmaxS
−α−1
1).

For Q2, we have

Q2 =
15d

2
η2maxEp[Eλ] = O(η2max).

43

Published as a conference paper at ICLR 2025

For I1, we have

I1 =
d

2
Ep[∆

2λ exp(−2λS1)] =
d

2Z
D2

∫ Λ

0

λ1−ν−κ exp(−2λS1)dλ

=
d

2Z
D2γ(α, 2S1Λ)(2S1)

−α

=
d

2α+1Z
D2γ(α, 2S1Λ)S

−α
1 .

By Lemma 8, we have γ(α, 2S1Λ) = Γ(α)− e−Ω(S1). Thus, we can rewrite I1 as

I1 =
d · Γ(α)
2α+1Z

D2S−α
1 +O(e−Ω(S1)).

For I2, we have

I2 =
d

4
η0Ep[E]−

d

4
η0Ep[E exp(−2λS1)]

=
d

4
η0µ− d

4
η0 ·

Fµ

Z

∫ Λ

0

λ−ρ exp(−rλ) · exp(−2λS1) · λ−ν dλ

=
d

4
η0µ− dF

4Z
η0µγ(β, (2S1 + r)Λ)(2S1 + r)−β

=
d

4
η0µ+O(ηmaxS

−β
1).

For I3, we have

I3 =
d

4

T∑
k=1

(ηk−1 − ηk) (Ep[E]− Ep[E exp(−2λSk)])

=
d

4

T∑
k=1

(ηk−1 − ηk)

(
µ− Fµ

Z

∫ Λ

0

λ−ρ exp(−rλ) · exp(−2λSk) · λ−νdλ

)

=
d

4

T∑
k=1

(ηk−1 − ηk)

(
µ− Fµ

Z
γ(β, (2Sk + r)Λ)(2Sk + r)−β

)
.

Replacing F with Zrβ

γ(β,rΛ) , then we have

I3 =
d

4

T∑
k=1

(ηk−1 − ηk) · µ ·
(
1− γ(β, (2Sk + r)Λ)

γ(β, rΛ)
rβ(2Sk + r)−β

)

=
d

4
µ

T∑
k=1

(ηk−1 − ηk)

(
1− γ(β, (2Sk + r)Λ)

γ(β, rΛ)
(
2

r
Sk + 1)−β

)
.

Setting the constants L0, A, α,B, β, C as (19), we can summarize our results for Q1, Q2, I1, I2, I3
as

Q1 = O(ηmaxS
−α−1
1), Q2 = O(η2max),

I1 = AS−α
1 +O(e−Ω(S1)), I2 = L0 +O(ηmaxS

−β
1),

I3 = B

T∑
k=1

(ηk−1 − ηk)Ĝ(Sk),

where

Ĝ(x) := 1− γ(β, (2x+ r)Λ)

γ(β, rΛ)
· (Cx+ 1)−β .

Putting everything together, we have
|E[L(θt)]− L̂(t)| =

∣∣∣E[L(θT)]− E[M(θ0, E)] +O(e−Ω(S1) + ηmaxS
−β
1)

∣∣∣
= O(ηmaxS

−α−1
1 + η2max + e−Ω(S1) + ηmaxS

−β
1)

= O(ηmaxS
−min{α+1,β}
1 + η2max),

which completes the proof.

44

Published as a conference paper at ICLR 2025

Figure 21: A comparison of G(x) defined in (2) and Ĝ(x) defined in (18). G(x) follows a exact
power form, while Ĝ(s) follows a power form approximately. The gap between G(x) and Ĝ(x)

converges to 0 as x → +∞. Here Ĝ(x) is defined as in (18) with parameter C = 2
r = 1, and G(x)

is defined as in (2) with parameters C = (Γ(β)
γ(β,rΛ))

− 1
β . In both cases, we set the exponent β = 0.2.

45

	Introduction
	Preliminary
	Empirical Derivation of the Multi-Power Law
	Our Approach: Learning Rate Sum Matching
	Approximation by Parts
	Constant Process Loss Approximation
	Loss Reduction Approximation

	Bottom-Up Derivation: Two-Stage, Multi-Stage, and General Schedules

	Empirical Validation of the Multi-Power Law
	Results
	Comparison with Baselines

	The Multi-Power Law Induces Better LR Schedules
	Method
	Results

	Conclusions
	Bottom-Up Derivation: Two-Stage, Multi-Stage (Section 3.3)
	Case 1: Two-Stage Learning Rate Schedule
	Case 2: Multi-Stage Learning Rate Schedule

	How Might the Multi-Power Law Arise?
	Setup
	Main Theorem

	Formula Component Ablation
	Related Work
	Experiment Setting
	Discussions of Multi-Power Law Derivation (Section 3)
	Constant Process Loss Approximation (Section 3.1)
	Two-Stage Experiments (Section A.1)
	Multi-Stage Experiments (Section A.2)

	Details of Validation Experiments (Section 4)
	Training Set and Test Set
	Fitting the Law

	Details of LR Schedule Optimization (Section 5)
	Optimal Learning Rate Schedule for Momentum Law
	Proof of Theorem 1
	General Theorem for All Quadratic Loss Functions
	Proof for Theorem 1

