
Scaling Graph Traversal to 281 Trillion Edges with 40

Million Cores

Huanqi Cao
caohq18@mails.tsinghua.edu.cn

Department of Computer Science and
Technology & BNRist
Tsinghua University

Beijing, China

Yuanwei Wang
wangyw20@mails.tsinghua.edu.cn
Department of Computer Science and

Technology & BNRist
Tsinghua University

Beijing, China

Haojie Wang
wanghaojie@tsinghua.edu.cn

Department of Computer Science and
Technology & BNRist
Tsinghua University

Beijing, China

Heng Lin
linheng@pku.edu.cn

School of Computer Science
Peking University
Beijing, China

Zixuan Ma
ma-zx19@mails.tsinghua.edu.cn

Department of Computer Science and
Technology & BNRist
Tsinghua University

Beijing, China

Wanwang Yin
26700402@qq.com

National Supercomputing Center in
Wuxi

Wuxi, Jiangsu, China

Wenguang Chen
cwg@tsinghua.edu.cn

Department of Computer Science and
Technology & BNRist
Tsinghua University

Beijing, China

Abstract

Graph processing, especially high-performance graph tra-
versal, plays a more and more important role in data ana-
lytics. The successor of Sunway TaihuLight, New Sunway,
is equipped with nearly 10 PB memory and over 40 million
cores, which brings the opportunity to process hundreds of
trillions of edges graphs. However, the graph with an un-
precedented scale also brings severe performance challenges,
including load imbalance, poor locality, and irregular access
of graph traversal workload.
To address the scalability problem, we propose a novel

3-level degree-aware 1.5D graph partitioning, which benefits
from both delegated 1D and 2D partitioning. By delegating
extremely heavy vertices globally and other heavy vertices
on columns and rows in the processes mesh, we break the
scalability wall of previous partitioning methods. Together
with sub-iteration direction optimization, core group -aware
core subgraph segmenting, and a new on-chip sorting mech-
anism using RMA, we achieve 180,792 GTEPS on a graph
with 281 trillion edges, using 103,912 processors with over 40

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9204-4/22/04.
https://doi.org/10.1145/3503221.3508403

million cores, achieving 1.75× performance and 8× capacity
compared to the previous state of the art and conforming to
the Graph 500 BFS benchmark[14].

CCSConcepts: •Computingmethodologies→Massively

parallel algorithms.

Keywords: massively parallel algorithm, breadth-first search,
heterogeneous architecture

1 Introduction

Graph processing has the potential to solve critical data
analytics problems across different scenarios, including fi-
nancial risk management, epidemic trajectory analysis, pro-
tein sequence prediction, search engines ranking, knowledge
graphs, etc., and becomes more and more important. As the
graph scales up, graph processing is recognized as a challeng-
ing problem due to the access irregularity, lack of locality,
and inherent load imbalance[12, 13, 19, 26]. This paper fo-
cuses on Breadth-First Search (BFS), a basic graph traversal
algorithm regarded as one of the most representative graph
workloads. Meanwhile, BFS is proposed by the Graph 500
Benchmark [14] as a computation kernel to evaluate the data
analysis ability of different machines, especially supercom-
puters. Graph 500 runs BFS on a synthetic small-world graph
with 2𝑆 vertices and 16 × 2𝑆 edges when configured with
SCALE 𝑆 .

234

https://doi.org/10.1145/3503221.3508403


PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Huanqi Cao, Yuanwei Wang, et al.

Current supercomputers are primarily designed to adapt
typical HPC workloads, usually floating-point intensive sci-
entific and engineering computing applications. While su-
percomputers enable unprecedented capacity and perfor-
mance for typical HPC workloads, the scalability issue of
data-intensive workloads in terms of capacity and perfor-
mance remains unanswered. The skewness of graph data,
which causes severe load imbalance and unnecessary commu-
nication, is one of the most challenging problems in running
the BFS algorithm efficiently on supercomputers. It requires
well-designed graph partitioning methods to address the
issue.

Researchers have proposed various solutions in partition-
ing the graph, including heavy vertices delegation on 1D
partitioning [7, 17, 17], and 2D partitioning [8, 21]. A vanilla
1D partitioning contiguously assigns intervals of vertices to
the nodes and assigns adjacent edges to where the vertex is,
based on which vertices with higher degrees are delegated
on every process. 2D partitioning is equivalent to delegat-
ing all vertices on rows and columns in the virtual mesh of
processes. They both aim at resolving load balance and re-
dundant communication issues at scale, but in different ways.
We list the previous records and corresponding partitioning
methods in Table 1.

While successful at their problem scale, those choices on
graph partitioning would face scalability issues at the un-
precedented large graphs. Methods based on 1D partitioning
would require too many heavy vertices to be delegated glob-
ally. Methods based on 2D partitioning similarly have too
many vertices on rows and columns to delegate. The emerg-
ing large graphs and supercomputers raise new challenges
on scalable graph partitioning methods.
Irregular workloads such as graph processing also pose

significant challenges to heterogeneous architectures widely
adapted by recent supercomputers. Regarding Graph 500 BFS
top 10, Lin et al. [12] created the only record with hetero-
geneous architecture on Sunway TaihuLight. It fell behind
the K Computer, even with a more powerful hardware sys-
tem. It requires more effort to optimize graph processing on
heterogeneous architectures.
This paper targets Breadth-First Search (BFS) optimiza-

tion, conforming to Graph 500 benchmark specification[14],
on New Sunway, a new supercomputer with over 40 mil-
lion cores and about 10 PB main memory, the successor of
Sunway TaihuLight[11]. This supercomputer is equipped
with the successor of SW26010, a new model with 390 het-
erogeneous cores in SW series many-core chips, namely
SW26010-Pro. It replaces the previous register communi-
cation with a new inter-core communication mechanism
called Remote Memory Access (RMA), allowing intra- Core
Group (CG) peer-to-peer communication. SW26010-Pro con-
sists of 6 CGs, each with 64 Computing Processing Elements
(CPEs), which provide the main computing power of the chip.
SW26010-Pro has optional Local Data Cache (LDCache) in

accelerator cores. The vast main memory of the machine
makes it possible to tackle SCALE 44 in Graph 500 bench-
mark, which means 281 trillion edges.

To efficiently implement a massively parallel BFS on New
Sunway, we propose four novel techniques as follows:
3-Level Degree-Aware 1.5D Graph Partitioning. Many
real-world graphs expose extremely skewed degrees, causing
load imbalance and redundant communication in graph pro-
cessing. The R-MAT graph generating algorithm employed
in the Graph 500 benchmark also simulates such features.
Graph partitioning methods targeting extreme-scale graph
traversal have been proposed to address those problems, in-
cluding degree-aware 1D partitioning and 2D partitioning.
As mentioned above, both the partitioning methods have
specific problems limiting the problem size. We thus propose
3-level degree-aware 1.5D graph partitioning. The vertices
in the graph are divided into three levels of degree. Vertices
with the highest degree level, identified as Extremely heavy
(E), are delegated on all nodes. These in the second level,
namely Heavy (H ), are delegated only on columns and rows
of the communication mesh, following the delegation strat-
egy in 2D partitioning. Other Light (L) vertices are treated
the same as 1D partitioning. This novel partitioning method
ensures scalability and reduces communication.
Sub-Iteration Direction Optimization. Direction optimi-
zation [1, 2] has been a critical technique for optimizing BFS.
It involves two kinds of iterations: top-down and bottom-up.
In dense iterations, bottom-up is used instead of conven-
tional top-down. We observe that due to degree skewness,
hub vertices including E and H are intensively visited earlier
than vertices with lower degrees. To this end, we propose
sub-iteration direction optimization, applying different di-
rections on different degree-aware subgraphs. It allows us
to efficiently visit E and H by bottom-up in early iterations
while preventing us from iterating all of L. It also eliminates
unnecessary E or H visits from L vertices in late iterations
by applying bottom-up in this case.
CG-Aware Core Subgraph Segmenting. The E and H ver-
tices form a core subgraph, usually containing over 60% edges
in Graph 500 generated graphs, whose computation deserves
further optimization. Hot spot analysis shows one most sig-
nificant part is the largest iteration on the core subgraph in
the bottom-up direction, which random reads all E and H
vertices on the communication column. Inspired by previous
graph segmenting techniques [20, 23, 26] optimizing against
cache or NUMA, we propose segmenting the subgraph by
source, stored by the destination index, and scheduling the
segments processed on the six core groups (CGs) simulta-
neously in SW26010-Pro. In bottom-up, the activation bit
vector of a single segment can thus be distributed to 64 ac-
celeration cores and fit into the fast on-chip memory of a
CG. Utilizing RMA to read the bit vector from other cores
in the same CG, we achieve 9× higher performance on that
kernel.

235



Scaling Graph Traversal to 281 Trillion Edges with 40 Million Cores PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Table 1. Results of recent works on large-scale distributed BFS.

Authors Year Num. Edges GTEPS Num. Proc. Num. Cores Arch. Part. Method
Checconi [7] 2014 17.6T 15,363 65,536 1.05M Blue Gene/Q 1D with heavy delegates
Ueno [21] 2015 17.6T 38,621.4 82,944 663.5K SPARC64 VIIIfx 2D
Lin [12] 2016 17.6T 23,755.7 40,768 10.6M SW26010 1D with heavy delegates

Nakao [15] 2021 35.2T 102,956 158,976 7.6M A64FX 2D
Our Work 2021 281T 180,792 103,912 40.5M SW26010-Pro degree-aware 1.5D

On-Chip Sorting with RMA. Bucket sort is required as a
multi-purpose meta-kernel in messaging by edges, as was
pointed out in ShenTu[13]. Based on the RMA mechanism,
we design On-Chip Sorting with RMA (OCS-RMA), serving
the needs of sorting random messages into buckets. OCS-
RMA divides cores into producers and consumers and uses
RMA to send batched messages from producers and con-
sumers. Replacing the similar meta-kernel on SW26010 in
ShenTu, OCS-RMA achieves higher bandwidth utilization at
47.0% thanks to the new flexible on-chip communication.

Combining all the effortsmentioned, we ultimately achieved
180,792 giga-traversed edges per second (GTEPS), preceding
the best result with 1.75× performance, which is of 102,956
GTEPS on the June 2021 Graph 500 BFS list. It also shows
unprecedented graph size with 281 trillion undirected edges,
8× to the current largest on the Graph 500 list. This result
fully conforms to the Graph 500 specification.

2 Background and Motivation

2.1 BFS Algorithm and Optimizations

We will discuss the parallelization and optimization of BFS
in this subsection. Algorithm 1 presents a basic BFS.

2.1.1 Graphpartitioning andparallel BFS. Researchers
have proposed various methods to parallelize the nested
loops in line 10. We visualize the two typical partitioning
and parallelization strategies in Figure 1.

Algorithm 1: BFS Algorithm
1 fn BFS(𝐺 (𝑉 , 𝐸), 𝑟𝑜𝑜𝑡):
2 𝐶𝑢𝑟𝑟 ← ∅ ; // Current active frontiers

3 𝑁𝑒𝑥𝑡 ← 𝑟𝑜𝑜𝑡 ; // Vertices to be visited next

4 𝑃𝑟𝑡 [:] ← −1, 𝑃𝑟𝑡 [𝑟𝑜𝑜𝑡] ← 𝑟𝑜𝑜𝑡 ; // Parent array

5 while 𝑁𝑒𝑥𝑡 ≠ ∅ do
6 𝐶𝑢𝑟𝑟 ← 𝑁𝑒𝑥𝑡 ; 𝑁𝑒𝑥𝑡 ← ∅;
7 BFS-Iteration-Top-Down(𝐸, 𝐶𝑢𝑟𝑟 , 𝑁𝑒𝑥𝑡 , 𝑃𝑟𝑡);
8 return 𝑃𝑟𝑡 ;

9 fn BFS-Iteration-Top-Down(𝐸, 𝐶𝑢𝑟𝑟 , 𝑁𝑒𝑥𝑡 , 𝑃𝑟𝑡):
10 forall 𝑢 ∈ 𝐶𝑢𝑟𝑟 do
11 forall 𝑣 ∈ {𝑣 | (𝑢, 𝑣) ∈ 𝐸} do
12 if 𝑃𝑟𝑡 [𝑣] = −1 then
13 𝑃𝑟𝑡 [𝑣] ← 𝑢;
14 𝑁𝑒𝑥𝑡 ← 𝑁𝑒𝑥𝑡 ∪ 𝑣 ;

In 1D partitioning, only the outer loop is parallelized, yield-
ing a graph partitioning by only the source vertices. Each
process owns vertices in a contiguous interval. The processes
send a message to the owner process of 𝑣 to update neighbor
𝑣 from each local vertex. While simple to implement and
works well with direction optimization (see Section 2.1.2), it
has significant load balancing issues due to the extreme skew-
ness in vertices degree distribution. Degree-aware methods
[7, 17] are thus applied to solve this. Delegates are created
on each node for the vertices with higher degrees, namely
heavy vertices. As is shown in Figure 1 (a), edges between
heavy vertices and normal ones are instead connected to the
local delegate, distributing adjacency lists of heavy vertices
globally. It effectively solves the load imbalance at scale.

2D partitioning was first introduced to graph traversal by
Yoo et al.[22]. In 2D partitioning, the processes construct a
virtual mesh of size 𝑅 ×𝐶 . Vertices are assigned to an owner
the same as in 1D partitioning and logically delegated on
rows and columns. It thus connects edges to a source dele-
gate on the row and a destination delegate on the column.
We visualize the delegation strategy in Figure 1 (b). In im-
plementations, the adjacency matrix is partitioned by both
rows and columns in a block-cyclic flavor. When applied to
the algorithm, this partitioning parallelizes both levels of
loops. The outer loop on the current frontier is parallelized
on each column of the processor mesh. The inner loop on
neighbors, following the graph partitioning, is parallelized
on each row. The communication is thus limited on columns
and rows during traversal and can be accelerated through
efficient collective operations in MPI.

  Nଵ

  Nଵ

  Nଶ  Nଶ

(b) 2D Partitioning

H

H H

  Nଶ   Nଷ

  Nଵ

(a) 1D Partitioning

Heavy vertex

Heavy delegate

Normal Vertex

Local edge

Remote edge

Partition

Normal Delegate

H   Nଵ

  Nଶ

0 1

32

00 01

1110

X

Figure 1. Existing graph partitioning methods for BFS. Num-
bers in the top-left corner illustrate process numbering, se-
quential in 1D, and columns with rows in 2D.

236



PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Huanqi Cao, Yuanwei Wang, et al.

Algorithm 2: Bottom-Up BFS Iteration
1 fn BFS-Iteration-Bottom-Up(𝐸, 𝐶𝑢𝑟𝑟 , 𝑁𝑒𝑥𝑡 , 𝑃𝑟𝑡):
2 forall 𝑣 ∈ {𝑣 ∈ 𝐸 |𝑃𝑟𝑡 [𝑣] = −1} do
3 forall 𝑢 ∈ {𝑢 | (𝑢, 𝑣) ∈ 𝐸} do
4 if 𝑢 ∈ 𝐶𝑢𝑟𝑟 then
5 𝑃𝑟𝑡 [𝑣] ← 𝑢;
6 𝑁𝑒𝑥𝑡 ← 𝑁𝑒𝑥𝑡 ∪ 𝑣 ;
7 break;

2.1.2 Direction optimization. Direction optimization is
proposed by Beamer et al.[2] and is widely used in imple-
menting BFS efficiently. It is based on the observation that
when the frontier is large, traversing the graph reversely
from 𝑣 to 𝑢 (namely bottom-up) instead of conventional di-
rection (top-down, shown in Line 10 of Algorithm 1) requires
fewer edges to be touched. Also, when an unvisited 𝑣 has
found a reversed neighbor in frontier, other incoming edges
can be skipped, which we call early exit. The iteration in
bottom-up is shown in Algorithm 2. State-of-the-art works
on parallel BFS all leverage this technique, despite whether
1D or 2D partitioning is employed. Nevertheless, to our best
knowledge, 1D partitioning methods have to drop or limit
the early exit optimization: inter-node messaging requires
batching messages, preventing it from performing the finest
grain early exit. More heavy vertices help reduce the disad-
vantage.

2.2 Graph 500 Benchmark

Complementary to Top 500[10], Graph 500[14] establishes a
benchmark for large-scale data-intensive workloads. It was
first announced in November 2010 and has gained wide ac-
ceptance. It includes two typical graph applications, breadth-
first search (BFS) and single-source shortest path (SSSP), as
problems for the benchmark. Among the two, BFS has a
more extended history as a benchmark kernel and is also
our focus in this paper. The two kernels run on an undi-
rected randomly generated graph. Graph 500 specifies an
algorithm for the graph generation. It is called R-MAT[6],
which recursively manipulates non-zeros on the adjacency
matrix. The specified configuration is 𝐴 = 0.57, 𝐵 = 𝐶 =

0.19, 𝐷 = 1 − (𝐴 + 𝐵 +𝐶) = 0.05, with an edge factor of 16.
The yielded graph simulates real-world graphs, exposing ex-
tremely skewed degree distribution. Despite the skewness, it
is also highly discrete: multiple hypergeometric distributions
centered at numerous peaks construct the whole degree dis-
tribution, as is shown in Figure 2. Adopting the above graph
generator, we are limited by this phenomenon in the tuning
of thresholds, which we will discuss in Section 6.2.1.

2.3 Parallel BFS on Larger Graphs

Works based on 1D and 2D partitioning have scaled to over
trillion vertices and tens of trillions edges. They are not
yet sufficient if we head to larger graphs. 1D partitioning

1 1e1 1e2 1e3 1e4 1e5 1e6 1e7
Degree

1

1e3

1e6

1e9

N
um

be
r o

f v
er

tic
es

Figure 2. Degree distribution of a Graph 500 specified syn-
thetic graph at SCALE 40.

requires about 0.1% vertices to be treated as heavy ([12] uses
32768 per 27million), or the performance would degrade due
to load imbalance and less early exit. In our case, to achieve
SCALE 44 in Graph 500 benchmark, it would require each
node to handle 244 × 0.1% ≈ 1.76 × 1010 vertices, which is
unacceptable given the main memory size of 96 GiB. Even if
we manage to store the vertices with proper compression, it
is still a huge impact on performance to collect them through
interconnect. For 2D partitioning, a similar problem occurs
on column and row vertex sharing. The number of shared
vertices on column and row is around |𝑉𝑙𝑜𝑐𝑎𝑙 | ×

√
𝑃 , in which

𝑉𝑙𝑜𝑐𝑎𝑙 is the vertices number per process and 𝑃 is the process
count. In our case, it goes even further to 5.56 × 1010.
Given the above observation, new parallel partitioning

and algorithm need to be proposed to tackle BFS on larger
graphs with hundred-trillions of edges.

3 Challenges on New Sunway Architecture

The Newest Generation Sunway Supercomputer (ab-
brev. New Sunway) is a supercomputer with heterogeneous
architecture. We will discuss its processor, large-scale inter-
connect, and the challenges they raise in this section.

One Processor
NOC

Supernode

One Core Group

CPE
LDM

CPE
LDM

CPE
LDM

CPE
LDM

CPE
LDM

CPE
LDM

CPE
LDM

CPE
LDM

CPE
LDM

MPE

MC

8×8

Oversubscribed fat tree

NIC

Figure 3. Architecture overview of New Sunway

237



Scaling Graph Traversal to 281 Trillion Edges with 40 Million Cores PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

3.1 The SW26010-Pro Processor

The system is equipped with over 100,000 SW26010-Pro
many-core chips. SW26010-Pro is the successor of SW26010,
which is used in Sunway TaihuLight. We discuss the un-
changed and changed designs, respectively.

3.1.1 Core designs inherited. We list below the impor-
tant designs SW26010-Pro inherits.
On-chipheterogeneous architecture.The SWmany-core
series processors are equipped with Management Process-
ing Elements (MPEs) and Computing Processing Elements
(CPEs). The MPEs are full-functioned RISC cores with lower
computing power, responsible for resource management, I/O,
networking, etc. Each Core Group (CG) consists of 64 CPE
cores responsible for high-performance computation. Spe-
cific to SW26010-Pro, it consists of 6 MPEs and 6 CPE CGs,
50% more than SW26010.
Local Data Memory (LDM) and Direct Memory Access

(DMA) for CPEs. While CPEs can access data in memory
directly with load and store instructions, they are designed
to do this through DMA in and out from LDM. The LDM is a
piece of scratchpad memory dedicated to each CPE core. The
CPEs can initiate asynchronous DMA requests, copy chunks
of data between main memory and LDM. The measured peak
bandwidth of the whole chip is 249.0 GB/s. Good bandwidth
utilization can be exploited through large enough DMA grain
sizes. On the contrary, direct access to main memory, equiv-
alent to uncached memory access on usual architectures, is
marginally slower. We name such direct access GLD (Global
Load) and GST (Global Store).

3.1.2 New features. As the successor of SW26010 after
multiple years, SW26010-Pro also introduces various signif-
icant changes. We discuss the two most relevant aspects.
Remote Memory Access (RMA). SW26010-Pro provides
a new inter-core communication mechanism called RMA. It
enables intra-CG communication through direct LDM access.
It employs a typical one-sided communication interface, in-
cluding “get” from and “put” to another CPE’s LDM. RMA
has significantly lower latency and higher throughput than
the main memory as an on-chip communication mechanism.
Local Data Cache. Instead of only DMA, SW26010-Pro can
now efficiently fetch data from the main memory through
Local Data Cache (LDCache). LDCache is an optional fea-
ture that user programs can easily reconfigure at runtime. It
shares physical space with LDM and serves as a data cache
for loads and stores to the main memory address.
Given the powerful inter-core communication, applica-

tions usually do not require atomic operations for synchro-
nization. SW26010-Pro provides only functionally essential
atomic instructions, with similar inefficiency to SW26010. In
the absence of a shared cache, SW26010-Pro can only accom-
plish atomic operations through inefficient direct accesses
to main memory.

3.2 Interconnect

New Sunway is equipped with 200 Gbps interconnection
in each processor. The processors are then connected via
an oversubscribed fat-tree network. Every 256 nodes form a
supernode, and inside the supernode, the communication is
unblocked. Inter-supernode communication, on the contrary,
has lower available bandwidth.

3.3 Challenges on Graph Traversal

The upgraded unique architecture and large scale intercon-
nect introduce multiple challenges to the BFS design:
Inefficient atomic instructions.During remote edges pro-
cessing, manipulated messages are appended into a corre-
sponded buffer for later sending, requiring atomic append;
when updating vertices in top-down traversal in BFS, ran-
dom writes to bit vectors also require an atomic set bit. We
should avoid the inefficient atomic instructions. Therefore
we need to utilize inter-core communication mechanisms to
ensure performance.
Inefficient randomaccess. Random accesses to mainmem-
ory on CPEs are inefficient due to the lack of a large shared
cache. With LDCache disabled, accessing main memory in-
volves one GLD/GST, resulting in bad performance. With
LDCache enabled, the cache size is also not large enough
to hold the hot data given millions of vertices each node is
responsible for.
Inefficient inter-supernode communication. The net-
work topology exposes lower inter-supernode bandwidth.
To minimize communication across supernodes, a topology-
aware partitioning method is needed.
Previous works on Sunway TaihuLight[12, 13] have pro-

posed various techniques targeting the challenges. Yet, new
techniques are required due to additional challenges of the
larger graph and upgraded machine.

4 Methodology

4.1 3-Level Degree-Aware 1.5D Graph Partitioning

As is mentioned, different partitioning strategies can be seen
as different delegating strategies, unifying the view of degree-
aware 1D partitioning and 2D partitioning. We will express
our partitioning with delegates for a clear view.

The processes are organized into a 𝑅 ×𝐶 virtual mesh, as
is in 2D partitioning. The rows are mapped to supernodes in
our case. We first classify vertices into three levels of degrees:
Extremely heavy (E), Heavy (H ), and Light (L), with degrees
from high to low.
Delegate E vertices globally. Vertices with extremely high
degrees are expected to touch neighbors on nearly every
node during the traversal. For those vertices, creating dele-
gates on all nodes helps reduce communication.
Delegate H vertices on column and message outgoing

edges along the rows. Vertices with a medium level of de-
grees tend to touch neighbors on every supernode during

238



PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Huanqi Cao, Yuanwei Wang, et al.

HH
L2

1.5D Partitioning

E

E E

E vertex

E delegate

H Vertex

EH2EH edge

H2L/L2H edge

H Delegate

E

HL1

00 01

1110

Partition
X

L Vertex

E2L/L2E edge

L2L edge

Figure 4. Partition strategies via delegation.

the traversal. Those vertices are significantly more than E,
leading to a large amount of unnecessary communication
if delegated globally like E vertices. Considering the tiered
network topology, not creating delegates leads to repeated
data flowing across supernodes, creating a network bottle-
neck. Inspired by the delegation strategy of 2D partitioning,
we delegate those vertices on rows and columns. It helps
to eliminate replicated send to the same supernode while
avoiding the costly global delegation.
No delegate for L vertices.An L vertex has a small number
of edges connected to it, in which rarelymultiple destinations
reside on the same process. Delegating them offers little
profit but only takes time and space managing the delegates.
We thus leave them connected to other vertices with remote
edges. These remote edges require per-edge messaging when
accessed during traversal.
The classification between E, H, L involves two thresh-

olds on degrees. It is worth noticing that the number of
neighbors touched by a vertex during traversal is only softly
constrained by its degree. With the aforementioned direction
optimization presenting, changing direction by heuristics
makes the number of adjacent edges to be accessed vary.
Thus, instead of using the number of supernodes directly,
the degree thresholds are subjected to further tuning, which
we will discuss in Section 6.2.1.

In our implementation, the E and H vertices are selected
out of all vertices, sorted per node by the degree, and given
a new ID among the higher degree vertices. The rest vertices
are L, remaining original vertex IDs. We split the original
edge set into six components according to the vertices clas-
sification. Since E and H have delegates on column and row,
the subgraph with both ends being E or H (EH2EH ) is 2D-
partitioned. The two subgraphs from E to L (E2L) and L to
E (L2E) are attached with L’s owner, just as heavy vertices
in degree-aware 1D partitioning. Similarly named, we have
H2L distributed on the column of the owner of H, restrict-
ing the messaging of edges intra-row. L2H stores solely on
the owner of L, as a reverse of H2L. Finally, L2L is the most
naive component, just as original 1D partitioning. The re-
sulting partitioning can be visualized as is in Figure 4. Each
subgraph is well balanced between nodes, even at full scale.

We will present the balancing of this partitioning method in
Section 6.2.2.
With |𝐻 | = 0, our approach degenerates to a partition-

ing similar to 1D with heavy delegates, except that edges
between heavy vertices are 2D-partitioned. Compared to
1D partitioning with heavy delegates, our approach isolates
the heavy vertices further into two levels, resulting in a
topology-aware data partitioning. It retains sufficient heavy
vertices for a better early exit in direction optimization. It
also avoids the communication for globally sharing all those
heavy vertices by delegating H only on rows and columns.

With |𝐿 | = 0, it degenerates to 2D partitioning with vertex
reorder. Compared to 2D partitioning, our approach avoids
the inefficient delegation on lower degree (L) vertices, elimi-
nating the𝑂 ( |𝑉𝑙𝑜𝑐𝑎𝑙 |×

√
𝑃) space limitation of 2D partitioning.

It also constructs global delegates for the super-heavy (E)
vertices, reducing communication.

4.2 Sub-Iteration Direction Optimization

Direction optimizing BFS is to switch to the bottom-up di-
rection when the frontier is large. Usually, only two to three
densest iterations are subjected to bottom-up. With vertices
split by degree, we notice that the densest activation time for
different degree levels is different. The vertices with higher
degrees (E andH ) tend to be activated earlier, while L vertices
are usually densely activated in later iterations. A Kronecker
graph specified by the Graph 500 benchmark shows a typical
activation breakdown in BFS in Figure 5.
Conforming to this observation, we propose to isolate

the direction selection of different subgraphs. In each iter-
ation, the traversing direction is selected individually with
different heuristics, allowing different directions to be ap-
plied to different levels of degrees. For subgraphs involving
edges crossing nodes (H2L, L2H, L2L), we estimate optimal
direction by comparing the ratio of active source vertices
and unvisited destination vertices among all vertices in their
class. The ratios directly reflect the number of messages re-
quired to communicate. Unlike those, only the source active
ratio is used to select the direction for subgraphs with node-
local edges (EH2EH, E2L, L2E). The consideration is that the

92%
94%
96%
98%

100%
E
H
L

1 2 3 4 5 6 7 8 9 10
0%
2%
4%
6%

0.0 0.2 0.4 0.6 0.8 1.0
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 to

 
al

l n
od

es
 w

ith
 sa

m
e 

ty
pe

Figure 5. Active Vertices Percentage for Sub-Iterations.
Some iterations have bars invisible due to being magnitudes
smaller.

239



Scaling Graph Traversal to 281 Trillion Edges with 40 Million Cores PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

pull workload can hardly be estimated by destination un-
visited ratio due to early exit, which is available only for
node-local edges. With sub-iteration direction optimization,
we can start bottom-up on the EH2EH core subgraph much
earlier without dragging the mostly unvisited L vertices into
the bottom-up procedure.

Sub-iterations on components with higher-degree source
and destination will be executed earlier in a single iteration.
The bottom-up procedure on any subgraph takes the latest
visited status, possibly updated by former subgraphs in the
same iteration. By doing so, we avoid activated vertices being
pulled. Thus, the direction selection procedure uses the latest
unvisited count to conclude a strategy for each sub-iteration
after the previous is done. It helps the direction optimization
make a more accurate choice. For example, L2E and L2H will
choose bottom-up for fewer edges to be touched once after a
dense EH2EH sub-iteration has activated nearly all E and H.
Thanks to degree-aware partitioning, the subgraphs ex-

plicitly split by degree provide the basis for sub-iteration
direction optimization. Through this optimization, we can
further reduce the edges to be touched in BFS beyond vanilla
direction optimized BFS. We will discuss the performance
impact in Section 6.4.

4.3 CG-Aware Core Subgraph Segmenting

As the densest subgraph, the EH2EH subgraph is considered
the core subgraph, whose computation is first-class for opti-
mizing. And in the heaviest iterations, the iteration direction
is expected to be bottom-up, focusing on pulling optimiza-
tion on this core subgraph. The bottom-up procedure on the
core subgraph involves local random read from destination
vertices and sequential write to source vertices. Due to lack
of locality, the random read is of poor performance. We no-
tice that the read range is limited: the working footprint is
only column E and H activeness bit vector. Limited by local
storage, we expect the total E and H vertex count assigned
to nodes in each column to be no larger than 100M, resulting
in a bit vector of size smaller than 12.5 MB.

The limited size provides an insight to fit it into the LDM.
To achieve this without hurting LDM space usable for other

Column E & H
Cannot Fit Into LDM

R
ow

 E
 &

 H

Column E & H Segments
Can Fit Into LDM

R
ow

 E
 &

 H

Figure 6. CG-Aware Subgraph Segmenting. Here only three
segments are rendered just for visualization; the actual num-
ber corresponds to the number of CGs (i.e., 6).

…
Line No. CPE No. Offset in Line

Figure 7. Offset mapping for destination vertex offset in a
segment. Each cell represents a bit in the offset.

data fetching, we segment the core subgraph by destination
into six pieces, each for a CG, as is shown in Figure 6. The
destination range of each segment then corresponded to
about 2 MB bit vector. While it still does not fit into single-
core LDM of 256 KB, we can distribute it over the 64 CPEs
in one CG and utilize the RMA feature to access it. To map
the contiguous range of the activeness bit vector to LDM,
we split the bit vector into lines of 1024 bytes. Lines are
round-robin scheduled between 64 CPEs. The resulting offset
mapping is shown in Figure 7. With such mapping, we can
efficiently manipulate the CPE number and the local address
in LDM through bit operations for a vertex to access. Thus
we interchange GLD from main memory with RMA “get”
from other CPEs with much lower latency.

The six CGs process the six core subgraph segments in par-
allel. It raises a question on the concurrent safety of writing
to source vertices. To resolve it, we further divide the source
vertices into six virtual intervals and schedule them to the
CGs in a round-robin flavor. Each CG dedicates to one seg-
ment but only processes one of the intervals once. Through
synchronizing across CGs, we guarantee that multiple CGs
never process the same interval.

4.4 On-Chip Sorting with RMA

The H2L, L2H, and L2L subgraphs require messaging by re-
mote edges. Each accessed remote edge requires a peer-to-
peer message, either on the row in H2L and L2H or globally
in L2L. We can efficiently utilize the network bandwidth
by batching the messages by destination and using alltoallv
from MPI for communication. To efficiently utilize the main
memory bandwidth, we further fuse message generation and
bucket sorting into one kernel, avoiding redundant memory
access for writing back the messages and sorting. It raises a
requirement for a generic message sorting kernel.

Conventionally parallel bucket sort either requires atomic
operations per message or redundant main memory accesses.
Buffering the messages to write is also inefficient, given the
grain size requirement (> 1𝐾𝐵) of DMA multiplied with
the hundreds of buckets would require a total buffer size ex-
ceeding LDM capacity. To avoid those inefficient operations,
we utilize the on-chip communication mechanism, RMA, to
build an on-chip sorting algorithm, presenting OCS-RMA.
The 64 cores are divided into 32 producers and 32 consumers.
Each consumer is responsible for a group of buckets. Bucket
𝑥 is assigned to consumer 𝑥 mod 32. Each core reserves
32 buffers of 512 bytes for sending or receiving messages.
Messages generated on producer 𝑖 sending to consumer 𝑗

240



PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Huanqi Cao, Yuanwei Wang, et al.

will first be buffered in the 𝑗th local send buffer and be sent
through an RMA-put operation to the 𝑖th receive buffer of
consumer 𝑗 . The messages are thus sorted into different con-
sumers, available for exclusive operations while avoiding
inefficient atomic memory access. This kernel is shown in
Figure 8.
Previous works on graph processing on Sunway[12, 13]

also cover similar bandwidth-efficient sorting kernels. Com-
pared with SW26010, which allows only column and row
communication, RMA in SW26010-Pro allows arbitrary pairs
of cores to communicate. Hence, we can use all cores as pro-
ducers or consumers without introducing other roles to do
routing. The new on-chip sorting mechanism yields signifi-
cantly better performance than the previous on SW26010.

The OCS-RMA serves as a generic kernel template in our
implementation and is used for multiple purposes:
Message generation. As is mentioned above, message gen-
eration by remote edge requires sorting the generated mes-
sage by destination, which is the most straightforward use
case.
Forwarding in globalmessaging. In L2Lmessaging, global
peer-to-peer communication requires a hierarchical imple-
mentation to achieve better network bandwidth utilization
and less active RDMA connections. Instead of a traditional
hierarchical alltoallv, we do manual forwarding on the inter-
section node of the source column and destination row. The
source node only sorts messages by which forwarding node
to go. The forwarding nodes are responsible for sorting them
by destination. OCS-RMA also covers this message sorting.
Two-stage sorting in destination updating. After mes-
sages arrive at the destination node, it requires random
writes to the vertices array to update the destination. As
GST and atomic operations are inefficient on SW26010-Pro,
we coarse sort the messages into fixed-length ranges, then
iterate over the ranges and update in LDM. The first stage is
a straightforward bucket sort. In the second stage, updating
over a range of vertices, we again on-chip sort it into 32 sub-
ranges and make each consumer responsible for updating
over one of them.
The above usages of on-chip sorting are similar to the

works on Sunway TaihuLight[12, 13]. But unlike thoseworks,

……

Cons. 
Func.

From Producers

……

Prod. 
Func.

To Consumers

Figure 8. On-Chip Sorting with RMA (OCS-RMA). Blue for
producers and yellow for consumers.

we do not introduce a messaging pipeline connecting dif-
ferent sorting steps. Instead, we implement the messaging
procedure synchronously to utilize all 6 CGs better and more
balanced. Thus, it requires synchronizing across CGs (but
not in the same CG), involving atomic operations that rarely
conflicts. The bandwidth utilization of OCS-RMA on 6 CGs
is thus expected to be slightly lower than a single CG. We
will cover the performance details in Section 6.3.

5 Implementation

Alongside the above-mentioned techniques, we also intro-
duce auxiliary designs to achieve efficient extreme-scale
graph traversal.
In-place global sort. The 3-level degree-aware 1.5D graph
partitioning requires complicated preprocessing to construct
the final data structure from the edges list. It requires in-
place preprocessing to preprocess a graph nearly occupying
all the main memory. To unify the in-place splitting and
construction of all 6 subgraphs, we abstract the core process
into generic in-place global sort. We implement it based on
Parallel Sorting by Regular Sampling[18], with local sort
implemented with PARADIS[9].
Delayed reduction of delegated parent array. Tradition-
ally parents collected by delegates are reduced after each
iteration. Due to our partitioning dramatically limiting the
number of local delegates, it is possible to persist the parent
array locally. Thus we can delay the reduction of delegated
parent array until the BFS run finishes. It does not change
the result of graph traversal: only frontier information is
required for later iterations of the traversal. It significantly
reduces collective communication volume during the BFS
run.
Edge-aware vertex-cut load balancing in EH2EH push.

Usually, we observe a tremendous amount of E andH vertices
visited by only a small fraction of E and H vertices in the sec-
ond or third iteration. In local top-down computation, simply
cutting by active vertices results in severe load imbalance
between CPEs, while there are enough edges to fulfill the
parallelism. To achieve load balancing in this case, we adopt
the edge-aware vertex-cut method proposed by GraphIt[25].
We first calculate the prefix sum of locally available frontier
vertices’ degree at each EH2EH top-down traversal. Given
the frontier size is small in a top-down iteration, this will
not cost much. Then we divide the frontier by accumulated
degrees, generating a balanced workload for each CPE. It
provides reasonable performance in the CPE implementation
of EH2EH top-down.

6 Evaluation

In this section, we first discuss the overall performance with
the scaling, then validate core techniques, including graph
partitioning and on-chip sorting with RMA. The core design
relies on the 3-level degree-aware 1.5D graph partitioning,

241



Scaling Graph Traversal to 281 Trillion Edges with 40 Million Cores PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

256 10750 21758 60240 103912
#Nodes

8.48e2
2.73e4
5.00e4

1.20e5

1.81e5

3.44e5
GT

EP
S

Ideal scaling
Real performance

Figure 9.Weak scalability.

and our implementation extensively uses the on-chip sorting
meta-kernel to implement messaging. Thus, being imprac-
tical to test without the two core techniques, we exclude
the two techniques from the later discussion on techniques
impacts. Impacts on other techniques focus on sub-iteration
direction optimization and core subgraph segmenting.

6.1 Overall Performance and Details

Our implementation of BFS traverses a Graph 500 Specifi-
cation conforming randomly generated graph at SCALE 44
with 244 × 16 ≈ 281 trillion edges in 1.55 seconds on average
of 64 random roots. It yields 180,792 GTEPS (giga- traver-
sal edges per second) on 103,912 nodes, with 40.5 million
cores. The result is validated according to Graph 500 Speci-
fication 2.0. We here discuss the weak scalability and time
consumption of each part in our algorithm.

6.1.1 Weak scalability. We present the weak scalability
in Figure 9. The maximum possible SCALE is selected for
each test, being 35 and 41-44, respectively. We made our
best effort to tune E and H degree thresholds. It shows 52%
relative parallel efficiency at the largest scale over a single su-
pernode, proving the effectiveness of our approach on graph
partitioning. Traditionally communication is considered the
bottleneck of graph algorithms. With the peer-to-peer com-
munication pattern, performance is expected to hurt a lot
due to the 8× fat-tree oversubscription in the interconnect
of New Sunway. But with our 3-level degree-aware 1.5D
partitioning, we greatly reduce the network traffic crossing
supernodes, avoiding the bottleneck in the top-level tree
network. It provides a strong basis for the scalability of our
BFS implementation.

6.1.2 Execution time breakdown. We then present the
time breakdown for the scaling. In Figure 10, time compo-
nents include different subgraphs, delayed reduction of par-
ent array, and other unrecognized time like barrier cost, etc.
We see that L2L costs notable time while being the smallest
subgraph. The extremely sparse access pattern makes it the
most inefficient to process. L2L involves nearly all the iter-
ations and usually shows extremely low parallelism due to
the super small frontier at sparse iterations. As the hardware
and software system is not optimized for latency, a lower

256 10750 21758 60240 103912
#Nodes

0%

20%

40%

60%

80%

100%

Ti
m

e 
pe

rc
en

ta
ge

other
reduce
L2L
L2H
H2L
L2E
E2L
EH2EH

Figure 10. Time breakdown for the scaling runs, categorized
by subgraphs and parent reduction.

256 10750 21758 60240 103912
#Nodes

0%

20%

40%

60%

80%

100%

Ti
m

e 
pe

rc
en

ta
ge

other
compute
imbalance/latency
alltoallv
allgather
reduce_scatter

Figure 11. Time breakdown for the scaling runs, categorized
by different communication types and computation.

efficiency is expected. The EH2EH subgraph, which is the
largest one, takes a notably shorter time at larger scales,
showing the effectiveness of the optimizations, including re-
duced communication thanks to the partitioning and better
work efficiency thanks to sub-iteration direction optimiza-
tion. We will discuss these in detail in Section 6.4. Also, when
the scale bounces from 21758 nodes to 60240 nodes during
the scaling, the percentage of L2L drops. The discrete degree
distribution of Graph 500 generated graph and tuning of the
H degree threshold contributes to this phenomenon.

In Figure 11, we categorize the time consumption by com-
putation and communication types, including alltoallv, all-
gather, and reduce-scatter. The total time for communica-
tion routines increases during scaling. As the scale goes up,
time consumption for communication increases as expected.
The main source of communication cost is from alltoallv
and reduce-scatter. As discussed in the breakdown by sub-
graphs, the tuning of the H degree threshold introduces the
expansion of delegation cost (hence reduce-scatter) and the
shrinking of remote edge messaging cost (hence alltoallv)
between 21758 and 60240 nodes. Thanks to our proposed
partitioning method, the load imbalance mixed with barrier
latency keep constant at larger scales, showing good load
balance over scaling.

6.2 The Graph Partitioning

6.2.1 Selection of degree thresholds. In Figure 12, we
present the impact of degree thresholds on BFS performance.
The results are tested on 256 nodes with Graph 500 generated
graph at SCALE 35, with a 16 × 16 mesh. As is mentioned
in Section 2.2, the degree of vertices in an R-MAT graph

242



PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Huanqi Cao, Yuanwei Wang, et al.

4096 2048 512 128
H threshold

16384

4096

2048

512

E 
th

re
sh

ol
d

515.0 694.4 745.0 784.4

567.7 723.0 839.9 848.1

0.0 744.0 775.8 775.8

0.0 0.0 692.3 682.3
600

800

Perform
ance(GTEPS)

Figure 12. BFS performance at SCALE 35, 256 nodes with
different degree thresholds.

distributes around several peaks. It limits the selection of
the H and E degree thresholds. Only thresholds between the
peaks are meaningful, and anywhere between two peaks
performs identically. Thus we evaluate 128, 512, 2048, 4096
for H threshold and 512, 2048, 4096, 16384 for E threshold,
conforming to the degree distribution at SCALE 35.
The first key observation is that even with the number

of nodes only 256 such that the network oversubscription
is absent, the existence of H vertices brings performance
improvement. Sub-iteration direction optimization allows
using different directions for H and L, yielding fewer edges
to be accessed withH presented. The second is that threshold
for E impacts performance a lot: it simultaneously influences
communication and accessed edges.
We use 262144 and 2048 for E and H thresholds in the

180792 GTEPS test at the largest scale. Due to budget con-
cerns, we do not grid-search over different thresholds.

6.2.2 Load balance on 281 Trillion Edges. In this sub-
section, we discuss the load balance of our approach on graph
partitioning at the largest scale. We partition an R-MAT syn-
thetic graph with 281 trillion edges and 17.6 trillion vertices
to 103912 nodes. Vertices are first evenly distributed across
nodes. Edges are distributed according to the proposed 1.5D
partitioning method in Section 4.1. The resulting degree dis-
tributions of the 6 subgraphs are demonstrated in Figure 13.
Comparing the nodes with minimum and maximum size, we

2.20e9 2.25e9
0%

100%
EH2EH

2.88e8 2.88e8
0%

100%
E2L

2.88e8 2.88e8
0%

100%
L2E

9.91e8 9.92e8 9.93e8
0%

100%
H2L

9.92e8 9.94e8
0%

100%
L2H

6.68e8 6.70e8
0%

100%
L2L

Figure 13. Distribution of partitioned subgraphs sizes. Plots
shown are cumulative distribution functions of per-partition
edges amount in each subgraph, with horizontal axes being
edge counts and vertical axes being percentage of partitions
that has less edges than the specified count in the specified
subgraph.

1e-1 1 1e1 1e2
Throughput (GB/s)

6 CGs

1 CG

MPE

58.6

12.5

0.0406

Figure 14. Throughput of different bucketing implementa-
tions.

see a 4.2% difference in EH2EH and up to 0.35% difference in
the rests. Comparing maximum against average, we get 2.8%
in EH2EH and up to 0.17% respectively. We observe that the
resulting subgraph size distribution is already well balanced
even without adjusting the vertex distribution over nodes.
The result shows superior balancing in edge distribution,
which gives a guarantee on the load balancing.

6.3 Performance of On-Chip Sorting with RMA

In implementing BFS, OCS-RMA is used for various types
of messages with different byte lengths. Our OCS-RMA im-
plementation leverages C++ templates to reuse the code. In
this subsection, we evaluate the performance of OCS-RMA.

To test the performance of on-chip sorting with RMA, we
set up a microbenchmark bucketing 4 GB uniformly ran-
dom 64-bit integers by lower 8 bits. The throughput with
1 MPE, 1 CG (64 CPEs), and 6 CGs (384 CPEs) are listed in
Figure 14. The MPE test uses sequential implementation on
a single MPE. The single CG implementation is based on
on-chip sorting with RMA, which fully eliminates atomic
instructions with the exclusiveness guarantee provided by
OCS. The 6 CGs implementation, also based on OCS-RMA,
uses atomic instructions to synchronize across CGs, resulting
slightly lower efficiency. With 6 CGs, we can achieve a 58.6
GB/s throughput, indicating 117.2 GB/s memory bandwidth
utilization (one read and one write per message) out of the
249.0 GB/s peak. It provides 1443× speedup against MPE im-
plementation. Compared to the on-chip sorting on SW26010
in ShenTu[13], OCS-RMA improves memory bandwidth uti-
lization from 33.7% (9.76 GB/s of 28.9 GB/s) to 47.0%.

6.4 Impacts of Other Techniques

We analyze the impacts of the other two techniques, sub-
iteration direction optimization and core subgraph segment-
ing, by measuring the time breakdown before and after ap-
plying the techniques. Time consumption is broken into
five parts, including Push (a.k.a. Top-Down) and Pull (a.k.a.
Bottom-Up) for EH2EH and other subgraphs, along with
other procedures. It can help us determine the time con-
sumption changing with different direction optimization
strategies (whole-iteration or sub-iteration). Also, we can
see the performance influence on EH2EH Pull of core sub-
graph segmenting.

243



Scaling Graph Traversal to 281 Trillion Edges with 40 Million Cores PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Baseline + Sub-Iter. + Segment.
0

1

2

3 EH2EH Pull
Others Pull
EH2EH Push
Others Push
Others

Figure 15. Time breakdown for different levels of optimiza-
tion. (a) Baseline: vanilla direction optimization, no core
subgraph segmenting; (b) + Sub-Iter.: with sub-iteration
direction optimization, no core subgraph segmenting; (c) +
Segment.: with both sub-iteration direction optimization
and core subgraph segmenting.

The result in Figure 15 is measured with a graph of SCALE
35 on 256 nodes, averaging over multiple runs. Applying sub-
iteration direction optimization, we significantly reduce the
time consumption of pushing E and H related subgraphs,
replacing them with the lower cost in pulling. Further ap-
plying core subgraph segmenting, we observe 9× speedup
in pulling EH2EH alone, further optimizing the end-to-end
cost. At this scale, EH2EH pulling costs little. But with tens
of thousands of processors, it grows larger, as we have seen
in the time breakdown during weak scaling.

7 Related Work

With the increasing attention on unstructured data in HPC
and Big Data research and industry, works have been done
over years optimizing graph traversal. Direction-Optimized
BFS by Beamer et al. [1, 2] exploited the low-diameter prop-
erty of real-world graphs and showed significant perfor-
mance advantages, becoming the algorithm basis of future
BFS implementations.
Parallel partitioning is a critical design point in graph

processing. As early research, Yoo et al. [22] proposed an
efficient block-cyclic variant of 2D partitioning, eliminating
the communication required by vector transpose. Buluc et al.
[4] thoroughly discussed and evaluated the performance of
vanilla 1D partitioning and 2D partitioning. Checconi et al.
[8] further proposed efficient communication methods for
2D partitioning on BlueGene. They later [7] turned to 1D par-
titioning to adopt direction optimization and proposed a load
balancing method equivalent to the heavy delegation. The
resulting implementation achieved 16599 GTEPS on 65536
BlueGene/Q nodes. Pearce et al. [17] formally proposed dis-
tributed delegate partitioning, what we call 1D partitioning
with heavy delegation. The “delegate” concept inspires us to
go more general. A similar partitioning method was adopted
by Lin et al. on Sunway TaihuLight [12], achieving 23755.7
GTEPS. In a different direction, Ueno et al. [21] extended
the 2D partitioning method to support direction optimiza-
tion. They achieved 38621.4 GTEPS, ensuring the 5-year
long world championship of the K-Computer on Graph 500
BFS List. The same implementation further achieved 102956

GTEPS on Fugaku, which is the best record on Graph 500
BFS List to this date, reported by Nakao et. al [15].

Aside from the specific BFS implementation, Lin et al. also
announced a general-purpose graph processing system on
Sunway TaihuLight, namely ShenTu[13]. It splits the graph
explicitly by vertex degree, inspiring us to push it further to
3 levels and 6 subgraphs. It also shapes the generic on-chip
sorting for edge messaging, the spirit of which is inherited
by our OCS-RMA.

Graph segmenting has been widely used in NUMA-aware
graph processing, including [20, 23, 26]. It is also used in
cache blocking/partitioning, improving cache hit in sparse
linear algebra[16] or graph processing[24]. GraphIt[25] uni-
fies the two optimizations with Segmented Subgraphs (SSGs).
While the Core Groups architecture differs highly fromNUMA
and the shared cache is absent, the LDMwith RMA can serve
similar to the Last Level Cache. It inspires our CG-aware
core subgraph segmenting.

8 Discussion

In this work we share our techniques in implementing ef-
ficient BFS on New Sunway. While our current implemen-
tation of BFS is ad-hoc to the algorithm, a general-purpose
graph processing framework is possible to be built with
the proposed techniques: 3-level degree-aware 1.5D par-

titioning is a graph partitioningmethod neutral to the graph
algorithm to run on. Also, it is designed for any graph with
extremely skewed degree distribution, which is commonly
found in social networks, web graphs, etc., and we expect
it to work with those real-world graphs. Sub-iteration di-

rection optimization is a BFS-specific optimization, but
the push-pull selection behind it works on many graph al-
gorithms, including SSSP[5], PageRank and more[3]. The
idea to select difference iterating direction has the poten-
tial to gain performance improvement on other algorithms.
CG-aware core subgraph segmenting requires tuning on
number of segments to adapt more algorithms. More seg-
ments ensures sufficiently small destination footprint, allow-
ing the RMA optimization. On-chip sorting with RMA

implements an efficient bucket sort on SW26010-Pro. It is
directly available for general-purpose graph processing. One
of our future work will be designing and implementing the
next-generation ShenTu[13] on New Sunway upon the pro-
posed techniques.
Although only implemented on New Sunway, the first

two techniques, 3-level degree-aware 1.5D partitioning and
sub-iteration direction optimization, are applicable to other
architectures as well. The two techniques are algorithm-
level designs, instead of tailored against the architecture.
The concepts of aggressive degree-aware partitioning and
selecting direction by different degrees may help the design
of future graph processing systems on other architecture.

244



PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Huanqi Cao, Yuanwei Wang, et al.

9 Conclusion

We share our experience and methodology designing the
highly scalable parallel BFS algorithm on New Sunway, the
latest supercomputer in the Sunway series. We present a
novel technique on graph partitioning, 3-level degree-aware
1.5D partitioning, to address the graph traversal at unprece-
dented machine scale and graph size. Together with sub-
iteration direction optimization and other machine-specific
techniques, we ultimately run BFS on a graph with 281 tril-
lion edges, on 103,912 nodes with 40.5 million cores, achiev-
ing 180,792 GTEPS. This result outperforms the first place
on Graph 500 June 2021 BFS List with 1.75× performance
and 8× capacity.

Acknowledgments

This work was partially supported by National Key Research
& Development Plan of China under grant 2017YFA0604500
andNSFCU20B2044. The corresponding author isWenguang
Chen.

References

[1] Scott Beamer, Krste Asanovic, and David Patterson. 2012. Direction-
optimizing breadth-first search. In SC’12: Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Storage
and Analysis. IEEE, 1–10.

[2] Scott Beamer, Aydin Buluc, Krste Asanovic, and David Patterson. 2013.
Distributedmemory breadth-first search revisited: Enabling bottom-up
search. In 2013 IEEE International Symposium on Parallel & Distributed
Processing, Workshops and Phd Forum. IEEE, 1618–1627.

[3] Maciej Besta, Michał Podstawski, Linus Groner, Edgar Solomonik, and
Torsten Hoefler. 2017. To push or to pull: On reducing communication
and synchronization in graph computations. In Proceedings of the 26th
International Symposium on High-Performance Parallel and Distributed
Computing. 93–104.

[4] Aydin Buluç and Kamesh Madduri. 2011. Parallel breadth-first search
on distributed memory systems. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis. 1–12.

[5] Venkatesan TChakaravarthy, Fabio Checconi, PrakashMurali, Fabrizio
Petrini, and Yogish Sabharwal. 2016. Scalable single source shortest
path algorithms for massively parallel systems. IEEE Transactions on
Parallel and Distributed Systems 28, 7 (2016), 2031–2045.

[6] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004.
R-MAT: A recursive model for graph mining. In Proceedings of the 2004
SIAM International Conference on Data Mining. SIAM, 442–446.

[7] Fabio Checconi and Fabrizio Petrini. 2014. Traversing trillions of edges
in real time: Graph exploration on large-scale parallel machines. In 2014
IEEE 28th International Parallel and Distributed Processing Symposium.
IEEE, 425–434.

[8] Fabio Checconi, Fabrizio Petrini, Jeremiah Willcock, Andrew Lums-
daine, Anamitra Roy Choudhury, and Yogish Sabharwal. 2012. Break-
ing the speed and scalability barriers for graph exploration on
distributed-memory machines. In SC’12: Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Storage
and Analysis. IEEE, 1–12.

[9] Minsik Cho, Daniel Brand, Rajesh Bordawekar, Ulrich Finkler, Vincent
Kulandaisamy, and Ruchir Puri. 2015. PARADIS: an efficient parallel
algorithm for in-place radix sort. Proceedings of the VLDB Endowment
8, 12 (2015), 1518–1529.

[10] Jack J Dongarra, Hans WMeuer, Erich Strohmaier, et al. 1997. TOP500
supercomputer sites. Supercomputer 13 (1997), 89–111.

[11] Haohuan Fu, Junfeng Liao, Jinzhe Yang, Lanning Wang, Zhenya Song,
XiaomengHuang, Chao Yang,Wei Xue, Fangfang Liu, Fangli Qiao, et al.
2016. The Sunway TaihuLight supercomputer: system and applications.
Science China Information Sciences 59, 7 (2016), 1–16.

[12] Heng Lin, Xiongchao Tang, Bowen Yu, Youwei Zhuo, Wenguang Chen,
Jidong Zhai, Wanwang Yin, and Weimin Zheng. 2017. Scalable graph
traversal on sunway taihulight with ten million cores. In 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 635–645.

[13] Heng Lin, Xiaowei Zhu, Bowen Yu, Xiongchao Tang, Wei Xue, Wen-
guang Chen, Lufei Zhang, Torsten Hoefler, Xiaosong Ma, Xin Liu, et al.
2018. Shentu: processing multi-trillion edge graphs on millions of
cores in seconds. In SC18: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. IEEE, 706–716.

[14] Richard C Murphy, Kyle BWheeler, Brian W Barrett, and James A Ang.
2010. Introducing the graph 500. Cray Users Group (CUG) 19 (2010),
45–74.

[15] Masahiro Nakao, Koji Ueno, Katsuki Fujisawa, Yuetsu Kodama, and
Mitsuhisa Sato. 2021. Performance of the Supercomputer Fugaku
for Breadth-First Search in Graph500 Benchmark. In International
Conference on High Performance Computing. Springer, 372–390.

[16] Rajesh Nishtala, RichardW Vuduc, JamesW Demmel, and Katherine A
Yelick. 2007. When cache blocking of sparse matrix vector multiply
works and why. Applicable Algebra in Engineering, Communication
and Computing 18, 3 (2007), 297–311.

[17] Roger Pearce, Maya Gokhale, andNancyMAmato. 2014. Faster parallel
traversal of scale free graphs at extreme scale with vertex delegates. In
SC’14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 549–559.

[18] Hanmao Shi and Jonathan Schaeffer. 1992. Parallel sorting by regular
sampling. Journal of parallel and distributed computing 14, 4 (1992),
361–372.

[19] Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph pro-
cessing framework for shared memory. In Proceedings of the 18th ACM
SIGPLAN symposium on Principles and practice of parallel programming.
135–146.

[20] Jiawen Sun, Hans Vandierendonck, and Dimitrios S Nikolopoulos.
2017. Graphgrind: Addressing load imbalance of graph partitioning. In
Proceedings of the International Conference on Supercomputing. 1–10.

[21] Koji Ueno, Toyotaro Suzumura, Naoya Maruyama, Katsuki Fujisawa,
and Satoshi Matsuoka. 2017. Efficient breadth-first search on mas-
sively parallel and distributed-memory machines. Data Science and
Engineering 2, 1 (2017), 22–35.

[22] Andy Yoo, Edmond Chow, Keith Henderson,WilliamMcLendon, Bruce
Hendrickson, and Umit Catalyurek. 2005. A scalable distributed paral-
lel breadth-first search algorithm on BlueGene/L. In SC’05: Proceedings
of the 2005 ACM/IEEE Conference on Supercomputing. IEEE, 25–25.

[23] Kaiyuan Zhang, Rong Chen, and Haibo Chen. 2015. NUMA-aware
graph-structured analytics. In Proceedings of the 20th ACM SIGPLAN
symposium on principles and practice of parallel programming. 183–193.

[24] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman Ama-
rasinghe, and Matei Zaharia. 2017. Making caches work for graph
analytics. In 2017 IEEE International Conference on Big Data (Big Data).
IEEE, 293–302.

[25] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil,
Julian Shun, and Saman Amarasinghe. 2018. Graphit: A high-
performance graph dsl. Proceedings of the ACM on Programming
Languages 2, OOPSLA (2018), 1–30.

[26] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.
2016. Gemini: A computation-centric distributed graph processing
system. In 12th {USENIX} symposium on operating systems design and
implementation ({OSDI} 16). 301–316.

245


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 BFS Algorithm and Optimizations
	2.2 Graph 500 Benchmark
	2.3 Parallel BFS on Larger Graphs

	3 Challenges on New Sunway Architecture
	3.1 The SW26010-Pro Processor
	3.2 Interconnect
	3.3 Challenges on Graph Traversal

	4 Methodology
	4.1 3-Level Degree-Aware 1.5D Graph Partitioning
	4.2 Sub-Iteration Direction Optimization
	4.3 CG-Aware Core Subgraph Segmenting
	4.4 On-Chip Sorting with RMA

	5 Implementation
	6 Evaluation
	6.1 Overall Performance and Details
	6.2 The Graph Partitioning
	6.3 Performance of On-Chip Sorting with RMA
	6.4 Impacts of Other Techniques

	7 Related Work
	8 Discussion
	9 Conclusion
	Acknowledgments
	References

