
Combining Phase Identification and Statistic Modeling for
Automated Parallel Benchmark Generation

ABSTRACT
Parallel application benchmarks are indispensable for evalu-
ating/optimizing HPC software and hardware. However, it
is very challenging and costly to obtain high-fidelity bench-
marks reflecting the scale and complexity of state-of-the-art
parallel applications. Hand-extracted synthetic benchmarks
are time- and labor-intensive to create. Real applications
themselves, while offering most accurate performance evalu-
ation, are expensive to compile, port, reconfigure, and often
plainly inaccessible due to security or ownership concerns.

This work contributes APPrime, a novel tool for trace-
based automatic parallel benchmark generation. Taking
as input standard communication-I/O traces of an applica-
tion’s execution, it couples accurate automatic phase iden-
tification with statistical regeneration of event parameters
to create compact, portable, and to some degree reconfig-
urable parallel application benchmarks. Experiments with
four NAS Parallel Benchmarks (NPB) and three real sci-
entific simulation codes confirm the fidelity of APPrime
benchmarks. They retain the original applications’ perfor-
mance characteristics, in particular the relative performance
across platforms. Also, the result benchmarks, already re-
leased online, are much more compact and easy-to-port com-
pared to the original applications.

1. INTRODUCTION
Benchmarks play a critical role in evaluating hardware and
software systems. Compared to CPU, database, and mobile
test workloads, supercomputing benchmarks are especially
challenging and costly to construct or acquire. With both
the scale (in terms of problem size and parallelism) and the
complexity of applications growing alongside machine sizes,
kernel-based benchmarks such as the NPB suite [20] fail
to portrait state-of-the-art applications (e.g., multi-physics
codes). Meanwhile, hand extracted benchmarks based on
real-world, large-scale applications (such as FLASHIO [18]
and GTCBench [13]) are highly labor-intensive to create and
cannot easily keep up with the evolution of their long-lived
base applications.

To this end, recent research developed tools for automatic
generation of communication benchmarks based on trace
compression and replay [36, 40]. The automatically gen-
erated codes can keep up with the original application’s
evolution rather easily. However, replay-based benchmarks
have several intrinsic drawbacks. They require the use of a
specialized, compression-enabled tracing library and cannot
leverage other formated existing traces or standard tracing
libraries. Also, they are driven by timestamp information
collected in the original traces, making them more suitable
for reproducing hard coded communication patterns rather
than recreating comprehensive, platform-dependent parallel

workloads encompassing the interplay among computation,
communication, and I/O.

Meanwhile, there are also recent projects investigating the
creation of reconfigurable benchmarks, to be discussed in
more details in Section 5. However, such tools possess sig-
nificant restrictions. The more general-purpose benchmark
tools [11, 15] require users to “assemble” a synthetic bench-
mark from a limited number of key workload characteristics
such as instruction mix and instruction-level parallelism.
Skel [19], a parallel I/O benchmark creation tool, also re-
quires users to clearly identify the begin and end points of
periodic I/O phases. In addition, they are not designed to
include computation or communication activities.

In this paper, we propose APPrime, an automatic bench-
mark generation tool based on off-line statistical trace pro-
file extraction. Given an iterative parallel simulation (the
most common type of large-scale HPC applications), AP-
Prime takes as input the set of traces generated by parallel
processes in one execution of the original application. and
automatically generates as output benchmark source code
with similar computation, communication, and I/O behav-
ior. This result benchmark comes with a concise configura-
tion file for users to set execution parameters, such as the
number of timesteps and checkpoint frequency. Rather than
only aiming at future parallel trace replay, APPrime strives
to “understand” (to some extent) an application and create
a stand-alone benchmark that imitates its behavior.

Unlike trace replay-based benchmark creation, APPrime
obtains information from traces but takes a“statistical view”
of applications, where a benchmark should reproduce the
distributions (in many aspects of parallel program behavior,
from instruction composition, to relative ranks of commu-
nication partners, to file read/write sizes), rather than line-
by-line repetition of traced events. On the other hand, it
recognizes that parallel programs are usually tightly coupled
codes, whose executions do not build on random events: ac-
tivities across processes and across timestep iterations are
highly correlated (if not identical). Therefore APPrime
takes a hybrid approach, with (1) automatic trace-based
phases (timesteps) identification through string analysis, (2)
Markov-Chain-based timestep behavior model to enable re-
configurable execution length (number of timesteps), and (3)
statistical regeneration of event parameters. This way, AP-
Prime retains the accurate event ordering for communica-
tion and I/O calls within each timestep, as well as the tran-
sitions between different types of timesteps (a phenomenon
observed in our real application study). Meanwhile, it regen-
erates event parameters, plus the time gaps as computation
intervals between each adjacent events, according to their
value distributions observed from the traces. By distilling

1

patterns (for both loop structure and communication oper-
ations), the end product APPrime benchmarks are more
flexible, portable, and human-comprehensible.

Name
Project
domain

Typical
prod. run
scale (#
of cores)

Open
source

Current
status

XGC∗ Gyrokinetic 225,280 No Done
GTS∗ Gyrokinetic 262,144 No Done

BEC2
Unitary
qubit

110,592 No Done

QMC-
Pack∗

Electronic
molecular

256 -
16,000

No
Ongoing

confirmed
applicable

S3D∗
Molecular

physics
96,000 -
180,000

No
Confirmed
applicable

AWP-
ODC∗

Wave
propagation

223,074 No
Confirmed
applicable

NAMD∗
Molecular
dynamics

1,000 -
20,000

No
Confirmed
applicable

HFODD∗ Nuclear 299,008 Yes
Confirmed
applicable

Lammps∗
Molecular
dynamics

12,500 -
130,000

Yes
Confirmed
applicable

SPEC-
FEM3D∗

Wave
propagation

150 - 600 Yes
Confirmed
applicable

NAS-BT
Tri-diagonal

solver
N/A Yes Done

NAS-LU
Gauss-seidel

solver
N/A Yes Done

NAS-CG
Conjugate
gradient

N/A Yes Done

NAS-SP
SP-diagonal

solver
N/A Yes Done

∗: Applications with * are the ones awarded with large allocations1

through DOE INCITE [2]. All APPrime generated benchmarks are
released online at [1].

Table 1: Applications evaluated, or examined as
candidates, for APPrime benchmark generation

Note that APPrime is intended to emulate the base appli-
cation’s behavior in all three major dimensions: computa-
tion, communication, and I/O. This paper presents our first
step, a proof-of-concept prototype focusing on re-producing
communication and I/O activities, with computation em-
ulated with a rather simplistic manner (by sleep intervals
whose durations are generated statistically). The emulation
of computation activities, planned as future work, is to be
plugged in as a building block.

We evaluated our APPrime prototype with iterative par-
allel simulations, including three large-scale, closed-source
applications and four communication-heavy NAS Parallel
Benchmarks. All three real applications are top tier re-
source consumers, like GTS and XGC running on Titan [3],
the world’s No.2 supercomputer. In addition, we verified
with the owners/users of all other DOE allocation awarded,
resource-intensive applications (marked with ∗ in Table 1)
that APPrime can adequately model their computation,
communication and I/O behavior. Table 1 summarizes the
diverse application domain, execution scale, source availabil-
ity, and APPrime benchmark generation status of all appli-
cations we examined.

Our evaluation results verify that automatically generated
APPrime benchmarks are compact, portable, and able to
accurately represent applications’ performance characteris-
tics. All of our generated benchmarks have been released
online [1], while we plan to extend the effort to other closed-
source applications in Table 1. The initial success also moti-

vates our ongoing work on refining APPrime with statistical
computation workload regeneration, plus other extensions
(see future work discussion in Section 6).

2. SAMPLE APPRIME USE CASES
For further motivation, we give two sample use cases that
highlight the need for realistic, configurable, and com-
pact parallel benchmark codes. While our approach is not
library-specific, for convenience we limit our discussion to
MPI for the rest of the paper, due to its dominance in par-
allel scientific applications and its capability of performing
both inter-node communication and parallel file I/O. Note
that though we gave two specific use cases, a single or a set
of APPrime benchmark(s) can be published and used as
general HPC benchmarks.

1.0$$

3.0$$

5.0$$

7.0$$

9.0$$

0.5$ 0.7$ 0.9$ 1.1$

Co
m
m
un

ic
a1

on
$sp

ee
d$
up
�

Computa1on$speed$up�

BTIO%64(

BTIO%121(

BTIO%256(

CG%64(

CG%121(

CG%256(

SP%64(

SP%121(

SP%256(
0.0

0.5 0.7 0.9 1.1

3.0

5.0

1.0

7.0

9.0

0.0

Figure 1: Sample cross-platform performance

Use Case 1: Cross-Platform Performance Estima-
tion Application users constantly need to adopt new plat-
forms (supercomputers, clusters, and clouds), as their appli-
cations outlive machines. Estimating cross-platform perfor-
mance for real parallel application, however, is highly chal-
lenging. Figure 1 illustrates this by plotting the relative per-
formance of three widely used parallel benchmarks across
our two tested platforms (to be described in detail later).
Not only is the relative performance highly application-
dependent, for the same application, the computation and
communication dimensions (axes x and y) show very differ-
ent time ratios, each of which further depends on the execu-
tion scale. Therefore, it is very difficult to“guess”a given ap-
plication’s performance on a new candidate platform, from
either hardware/software parameters or published results
from other programs, without actual porting and testing.

Unfortunately, for a scientist assessing candidate platforms
for simulation A, it costs a significant amount of time and
labor just to port the code to each candidate machine. For
example, scientific applications typically depend on quite a
few third-party libraries (such as Petsc and netCDF), which
require non-trivial effort to acquire/install on each platform,
not to mention adjusting codes or makefiles to compile the
entire application. With APPrime, the scientist can collect
traces of one or more typical executions of A on its cur-
rent platform. APPrime takes such traces as input, and
generate “fake” codes A′ as benchmark, with complete MPI
source code. A′ performs fake computation, communicates
and reads/writes junk data, without relying on libraries be-
yond MPI. However, the computation, communication, and
I/O patterns are all generated based on the original appli-

2

cations’ traced behavior. Better, A′ can be configured in a
similar way as A, with users configurable parameters, such
as the number of iterations, frequency and API of periodic
I/O operations, in the input file or job submission script. A′

therefore supports almost effortless porting while maintain-
ing A’s essential behavior, allowing cost-effective candidate
machine evaluation.

Use Case 2: I/O Method and Sensitivity Assessment
APPrime can also help library and middle-ware developers
to assess their design or optimizations without involving real
applications and their developers. For example, I/O library
designers prefer to evaluate their product using real appli-
cation codes, with given real I/O behaviors (I/O frequency,
burstness, size, and access patterns), as well as real interplay
between I/O and computation/communication. The latter
is particularly important when asynchronous I/O operations
are used. However, to obtain and successfully build several
state-of-the-art parallel simulations itself is a daunting task,
let alone modification of unfamiliar, long source code to en-
able the use of new I/O libraries or interfaces. APPrime al-
lows I/O library designers to simply request execution traces
from such applications, say B, C, and D, and again gener-
ates their fake counterparts B′, C′, and D′, with highlighted
(parallel) I/O calls. The designers can then apply their li-
braries or library updates to these benchmarks, validating
their approaches using experiments and checking the impact
of user-set configurations or internal parameters.

3. APPRIME DESIGN
We design our APPrime prototype to validate the idea of
generating accurate yet reconfigurable benchmark based on
statistical summarized profile of traces, without retaining or
replaying the original/decompressed trace. Figure 2 illus-
trates the software architecture of APPrime and its two-
phase workflow: trace profile extraction (extractor for short
in the rest of the paper) and automatic configurable bench-
mark generation (generator).

To construct a parametric benchmark with APPrime, users
need to provide the following input: (1) a set of traces from
one or more prior executions of the target application, (2)
the number of timesteps executed in the traced run, and (3)
the frequency of each type of periodic I/Os (such as check-
point and result-snapshot output). Below we give more de-
tails on the design of the extractor and generator compo-
nents, respectively.

3.1 Trace Profile Extraction
The APPrime extractor automatically parses input per-
process traces into multiple phases and identifies the main
loop as well as other periodic I/O patterns. Its design is
based on the observation that most iterative parallel ap-
plications have similar execution patterns in the form of
I(CxW)∗F [41]. Here I and F are the one-time initial-
ization and finalization phases, respectively. The iterative
computation component contains C, the timestep computa-
tion phase (including communication activities involved in
computation), and W , the periodic I/O phase.

While most parallel iterative simulations share the afore-
mentioned common pattern, there are several issues com-
plicating automatic phase recognition. First, there are often

some degree of deviation from this pattern in recorded traces
across different timesteps. For example, two of the seven
applications we experimented with contain around 0.3% of
communication events not fitting into the repetitive pattern.
Such variance exists not only with operation event parame-
ters, but also the count and ordering of events themselves.
Second, there are often more than one periodic I/O phases,
with each occurring in a different frequency: an applica-
tion may capture one snapshot of intermediate results every
200 timesteps, plus one checkpoint every 1000 timesteps.
In addition, real application traces may contain the execu-
tion records from a large number of processes (e.g., 100,000x
records from Titan at ORNL), with each further contain-
ing many timesteps. Identifying the repetitive pattern both
within and across processes at such scale requires efficient
and scalable trace processing.

As to be discussed in the rest of this section, the first
two challenges are addressed by further extending the it-
erative computation template. Here C is replaced by
C[0, a]D

0|1C[b, |C|], allowing rare but possible irregular D
phases. Also, a user-supplied number of different I/O
phases, Wi, are allowed, each occurring at its own regular
interval. Given the total number of timesteps (number of
times C was executed in the trace) and the I/O frequence
for each Wi, APPrime will generate benchmark that re-
produces the interleaving pattern of C and all Wi phases,
while discarding occurrences of the minor D detected. We
address the third challenge with a new, fast string-based
phase recognition algorithm, leveraging the extra knowledge
of user-specified timestep counts and I/O frequencies, given
as input to APPrime.

3.1.1 Trace Parsing
APPrime accepts traces produced by popular tracing li-
braries such as DUMPI [5] and ScalaTrace [22]. It is also
fairly straightforward to extend our support to more tracing
libraries. These traces typically contain sequences of library
(MPI) calls, each with a list of parameter values, plus be-
gin/end timestamps of the invocation.

APPrime pre-processes such traces by parsing each record
and then building per-process event tables. Figure 3 shows
a sample event table segment along with the correspond-
ing DUMPI trace. Each table row describes a traced MPI
event, with attributes such as start/end time stamps, data
type, etc. Note that with event timestamps, the untraced
computation intervals are implicitly stored for each event.
The Phase ID and Phase type fields, currently marked as
N/A, are to be filled by the Phase Identifier (Section 3.1.2).

There are a number of design considerations key to the ef-
ficiency of trace parsing: (1) tasks of parsing traces from
different processes are mutually independent and therefore
can be easily parallelized; (2) trace parsing is done via lin-
ear scan, accommodating APPrime traces or event tables
that are larger than memory size, by staging data to/from
secondary storage; (3) an event table may appear sparse,
with over 20 columns covering all MPI call parameter names,
but is implemented using a compact delimited text format.
Our experiments with seven workloads generate per-process
event tables with sizes always smaller than the original de-
compressed DUMPI trace, as summarized in Table 4.

3

Dumpi
Traces

Scala-
Traces

Parser
Factory Head

Runtime Phases
Identifier

Trace
Parser

Code
Generator

Head

I/Os
I/O

Translator

Major
Loops

MCM
Builder

MC
States

I/O
Configuration

File

Configuration
Parameter File

Source Code

APPrime
Benchmark

Extractor Generator
 Static phases

Phases in
each table

…

Tail Tail

APPrime Automatic Benchmark Generation

Input Output

Event
Tables

Merging
cross tables

Figure 2: APPrime overall workflow. The left part is input, right part output. It has two phases, which are
trace profile extractor and benchmark generator respectively.

…
MPI_Bcast entering at walltime 102625.244058046, int count=1, MPI_Datatype

 datatype=4 (MPI_INT), int root=0, MPI_Comm comm=4 (user-defined-comm),
 MPI_Bcast returning at walltime 102625.2449640.

MPI_Barrier entering at walltime 102625.245683046, MPI_Comm comm=5

 (user-defined-comm), MPI_Barrier returning at walltime 102625.2534360.

MPI_File_open entering at walltime 102627.269166046, MPI_Comm comm=5

 (user-defined-comm), int amode=0 (CREATE), filename=“simple.out”,
 MPI_Info info=0 (MPI_INFO_NULL), MPI_File file=1 (user-file), MPI_File_open
 returning at walltime 102627.4391070.

…

MPI function
name Start End Data

count Root Comm.
rank

File
access
mode

Phase
ID

Phase
type …

… … … … … … … … … …
MPI_Bcast …5.244 …5.245 1 0 4 N/A N/A N/A …
MPI_Barrier …5.246 …7.253 N/A N/A 5 N/A N/A N/A …

MPI_File_open …7.269 …7.439 N/A N/A 5 CREATE N/A N/A …
… … … … … … … … … …

Original ASCII DUMPI Trace

Sample Joint Per-process Event Table of
Communication and I/O Events Computational intervals

Figure 3: Example of trace and event table segment

3.1.2 Phase Identification
The extractor aims at identifying the aforementioned com-
mon structure from the input traces. It takes the per-process
event tables as input, and fills the missing Phase ID and
Phase type’ fields in these tables. At the end of this pro-
cedure, each event will be assigned a pair of phase ID and
phase type that it is considered belonging to (e.g., “Phase ID
of 3 and type of C” indicates “the 3rd iteration C phase”).
Note that we do not further identify nested loops within the
main computation loop, as APPrime performs summary of
communication and I/O operation distributions and regen-
erates benchmark with a statistical approach. Therefore the
trace length, in terms of the number of events within a main
iteration, is not a concern, as to be shown in Table 4.

The premise of APPrime’s automatic trace phase identifica-
tion is that the application behaviors are deemed to be iden-
tical or highly similar across iterations. Admittedly, as men-
tioned earlier, we did observe data-dependent activities trig-
gered by dynamic conditions (e.g. error checking/handling).
But such deviation from the “regular” iteration behavior is
quite small. We observe that the majority of large-scale ap-

ab…ccd…ccd…ef…ccd…ccd…ef…gh

… ccd… gh… …

 Evenly partition trace string.

 Extract Unique Char Sets (UCS).

 Find Most Frequent UCS (MFUCS).

chunk 1 chunk 2 chunk n
cdc…

chunk 6
ab… ef…

chunk 7

{a,b,…} … … {c,d,…} {c,d,…} {e,f,…} {g,h,…}

 Filter in chunks applying the MFUCS.

ccd…

chunk 2
...cdd…

chunk 3
dcd…

chunk 4
cdc…

chunk 5
… cdc…

chunk 6

UCS {a,b,…} {c,d,…} {e,f,…} … {g,h,…}

Frequency 1 93 5 … 1

Trace String

Figure 4: Using MFUCS to locate desired chunks

plications (such as all of the top 15 resource consumers in
Table 1) satisfy the following assumptions, making them el-
igible for APPrime’s fast, specialized phase identification
algorithm:

1. The iterative application’s trace event sequence follows
the extended two-level template proposed above.

2. The number of timesteps (i.e., the total count of C
phase iterations) and frequencies of all periodic I/O
(Wi) phases are known in advance.

3. The repeating C phases are identical, as well as all
Wi of same frequency, in terms of communication and
I/O event sequences (not necessarily parameter val-
ues), among different timesteps within each process.

4. D phases, if any, have the lowest occurrences compared
to C or Wi phases, and each of them should be shorter
than a single C phase and, in its entirety, not a sub-
sequence of the C phase.

These assumptions hold for all real-world applications or
benchmarks tested in this work. In particular, later in the
paper Table 4 shows that the total length of D phases (in

4

terms of event counts) is about 0.3% of the total execution.
In the case that the relatively strong 4th assumption is in-
deed found to be invalid for a certain application, APPrime
employs a backup algorithm. It performs more general, yet
much slower string pattern recognition, with a time com-
plexity of O(m3), where m is the total trace length in event
count. With either algorithm, there is no constraint on in-
put trace length, allowing APPrime to handle traces from
production runs, whose typical iteration number and I/O
frequency settings are given in Table 2 (application descrip-
tions are given in Section 4.1).

App. # Timesteps Snapshot freq. Checkpoint freq.
BEC2 100,000 1/500TS 1/20,000TS
XGC 100,000 1/500TS 1/10,000TS
GTS 30,000 1/200TS 1/4,000TS

Table 2: Sample production run settings of real ap-
plications

APPrime first converts records stored in each event table
into a compact trace string, retaining only the event names
(communication and I/O function names). Each unique
event name is mapped to a single character, based on the
observation that typical applications use a small subset of
MPI library routines [33]. This has been confirmed by our
own observation: Table 4 shows that the seven applications
tested use from 11 to 38 unique MPI functions. This step
transforms the original phase detection to a string pattern
matching problem, where each character in the trace string
represents a traced event. Our goal is to find the substrings
composing C and other recurring phases.

Our solution is inspired by a Coarse-to-Fine approach [24]
proposed for efficient object detection in image processing.
The main intuition is that (1) repetitions of C compose a
major part of the string and (2) we know n, the exact num-
ber of C’s repetition. Consequently, if we simply partition
the trace string uniformly into n chunks, considering the
non-C characters included, each chunk would be (slightly)
longer than the actual C phase string. Further, we know
that I and F occur only once, while W and D occur at a
(much) lower frequency. By converting each chunk into a
directed graph and searching for the most frequent one, we
can identify clean chunks that contain only segments from
the C phase.

Candidates for such clean chunks are quickly selected by
computing the Unique Character Set (UCS) of each chunk,
which is the vertex set of the graph, as illustrated in Figure 4.
Here the UCS of {c, d, ...} is found to be the most frequent
(93 times), therefore all the chunks with this UCS are se-
lected to perform more fine-grained analysis, such as direct
edge set comparison, to identify the C substring that reap-
pears (with “rotation” effect considered) most frequently.

Once the C phase string is found, APPrime re-scans the
entire trace string, identifying the remaining phases. Intu-
itively, the “head” preceding the first occurrence of C (first
timestep) is marked as I, while the “tail” following the last
timestep as F . Based on the given I/O frequency for each
Wi, APPrime examines the “gap strings” between the ap-
propriate pair of adjacent C phase strings (e.g., if the fre-

quency of a Wi is once per 50 timesteps, we will check be-
tween the 50th and the 51st timesteps). We apply a simple
string matching algorithm here to identify the maximum
common substring for each Wi. This is an iterative process
starting with the most frequent I/O phase, as often such a
phase is contained in the same gap string as a less frequent
one, and needs to be removed for identifying the latter. All
the characters not belonging to any C, I, F , or W phases
are considered D phase events and ignored in the rest of
APPrime processing.

Considering the “rotation” effect of C substrings in “clean
chunks”, the worst-case time complexity of the phase identi-
fication step is O(m2/n), where the trace contains m events
in n timesteps. In practice, phase identification makes a very
small part of APPrime’s processing overhead, which is dom-
inated by the I/O-heavy trace processing. Table 4 gives the
total sequential processing time on a Core-2 Duo with 4GB
memory laptop for generating each APPrime benchmark in
column “Time cost”.

3.1.3 Event and Timestep State Summarization
By now, APPrime has partitioned the trace into timesteps,
with events assigned the appropriate phase type and phase
ID information. The next step is to transform the linear
sequence of events, with recurrent phases identified, into a
compact structure that easily maps to loops, for subsequent
benchmark code construction.

Recall that in our phase detection, we only looked at the
event names, ignoring the event parameters. Since we made
a strong assumption that each iteration of the C phase forms
the identical series of events, we wondered whether these
events also used identical parameter values (such as mes-
sage sizes, peer ranks in point-to-point communication, and
communicators). The answer is negative: from timestep to
timestep, the parameter values do vary. This is logical con-
sidering that the sequence of events conform to the compile-
time code sequence, while the parameter values are mostly
assigned dynamically at runtime. An interesting finding is
that these values form clusters, indicating the existence of a
relatively small set of internal “timestep states”, which are
groups of timesteps having same or highly similar behaviors.

Such program behavior, confirmed across our tested set
of applications and benchmarks, lends us more opportu-
nities to summarize and reproduce variances in computa-
tion/communication patterns statistically. To create a con-
cise, configurable benchmark that approximates the target
application’s behavior instead of replaying the specific ex-
ecution traced, APPrime performs such summarization in
three dimensions: (1) detecting distinct timestep states, plus
the transition probability between a pair of states, (2) re-
placing the actual event sequence with the probability dis-
tribution of events and event parameters within a timestep
state, and (3) comparing and grouping the behavior of all
processes.

Throughout the three dimensions, APPrime’ design
needs to balance between accuracy and code’s compact-
ness/reconfigurability. A large number of program states
or process groups, while more faithful to the original ap-
plication, lead to verbose, “replay-style” codes. Below we

5

present APPrime’ design choices in its multi-dimensional
summarization.

Event Parameter Histogram Construction For event
parameters, including the computational intervals, we take
the standard solution of building histograms [38], one his-
togram per parameter per event, across all phase iterations.
We found the majority of parameter fields in our test ap-
plications to be either constant or with normal distribution
in value, so we apply Sturges’s formula [30] to decide the
bin number and bin width. With a few exceptions, such
as GTS’ point-to-point communication buffer sizes with bi-
modal distribution, we found Doane’s formula [10] working
well. APPrime can be easily extended with more sophisti-
cated histogram building techniques if necessary. After con-
structing such global histograms, we now replace the original
values in the table with the associated bin’s mean value.

Cross-process Event Table Merging Next, APPrime
merges similar event segments with the same phase rank
across all per-process event tables. This procedure goes
through all event tables, starting from that of process 1,
merging them into the process 0 event table (“root table”),
one after another. Recall that applications going through
such summarization already passed the phase identification
step, meeting expectations on matching C phase (as well as
the number of C iterations) and matching Wi frequencies.

When merging the corresponding phases (segments in a pair
of event tables with matching phase type and phase ID) from
different processes, both segments’ events may or may not
match. In the former case, APPrime merges correspond-
ing events, for each of which creating a list of all distinct
parameter values. In the latter case (e.g., when there are
“aggregator” processes which act differently than its “ordi-
nary” peers), APPrime first merges the “matching events”,
starting from collective event pairs with matching parame-
ters. Then APPrime inserts remaining events into the “root
table” between each two “matching events” following their
original sequence. During this procedure, APPrime stores
each event’s preceding computational intervals from all ap-
plicable processes in a 1D array.

Markov Chain Model Construction: Our final dimen-
sion in program behavior summarization is the timestep-
to-timestep C phase event parameter variance, which we
adopt Markov Chain (MC) [23] to model statistically. MC
is a technique to model state transitions, where the next
state depends only on the current state but not on the se-
quence of events preceding it. Most parallel simulations are
iterative scientific simulations whose C phases possess this
property. After further inspection of the attribute values in
event tables among different C phases, we choose the follow-
ing three key parameters as the metrics to group C phases
into one MC state: (1) message (buffer) size, (2) rank of
target communicating process, and (3) the communicator
ID. The rest of most events’ parameters values are found
to be static across timesteps. Then MC Builder assigns the
result MC state with an unique state rank, as depicted in
Figure 6. Finally, MC Builder statistically computes the
transition probability between each pair of states and stores
the result in a probabilistic transition matrix.

With timestep states identified, the APPrime MC Builder
statistically calculates a per-process, per-timestep-state 1D
histogram for each computational intervals (“bubbles” be-
tween adjacent traced events), to retain the state-specific
computation duration distribution, see Figure 5. As to I/O,
since periodic I/O calls are found to have static parame-
ter values, APPrime is able to summarize each type of Wi

phases with only one state, which always transits to itself.

Process 1
Timestep 1 Timestep 2 Timestep n
MPI_Bcast(…)

MPI_Isend(…)

MPI_Wait(…) …

 Bubble 1.1

 Bubble 1.2

MPI_Bcast(…)

MPI_Isend(…)

MPI_Wait(…) …

 Bubble 2.1

 Bubble 2.2

MPI_Bcast(…)

MPI_Isend(…)

MPI_Wait(…) …

 Bubble n.1

 Bubble n.2

…
…

Histograms

…

Figure 5: Profiling computation intervals (bubbles)
across timesteps

Properly concatenated together, these models will guide
the code generator to emit output benchmark codes. Note
that while alternative tools, such as Hidden Markov Model
(HMM) [25], may offer more powerful modeling, we consider
MC sufficient based on scientific parallel applications’ rather
static behavior. In fact, the result MC models we obtained
from applications are close to finite state machines.

No. Name Count Type Dest. Src.
1 MPI_Irecv 20 MPI_INT {4, 8, … } N/A

2 MPI_Send 20 MPI_INT N/A 4
… … … … … …

MC State
Rank 1

MC State
Rank 2

Merged Timestep m

Merged Timestep m+n

State
1

State
2

State
1 0.3 0.7

State
2 0.7 0.3

Transition
Probabilities Matrix

No. Name Count Type Dest. Src.
1 MPI_Irecv 80 MPI_INT {1, 7, … } N/A

2 MPI_Send 80 MPI_INT N/A 1
… … … … … …

…

0.3

0.7 0.7

0.3

Figure 6: Converting timesteps (C phases) to MC
states

3.2 Configurable Benchmark Generation
Given the event tables and transition matrices produced
by the APPrime extractor, finally the APPrime generator
automatically constructs a source program that resembles
the original application. Following the aforementioned tem-
plate (I(CxW)∗F), the generator creates the one-time static
phases I and F , and most importantly, the iterative phase
between the two, with reconfigurable parameters such as the
number of timesteps and periodic I/O frequencies. Within
this major loop, each iteration has one C phase recreating
the behavior summarized by its corresponding MC state.
Periodic I/O phases are inserted at appropriate frequencies.

Rather than replaying the exact sequence of timestep states
recorded, the MC model constructed by the extractor allows

6

1 int main(int argc, char* argv[]){
2 apprime_init(argc, argv);
3 init_phase();
4 // major loop
5 for(timestep = 0; timestep < total_timestep; timestep++) {
6 run_state_for_C_phase(state_rank, event_tables);
7 // update next state rank
8 state_rank = trans_state(state_rank, timestep);
9 // periodic I/O phases
10 if(timesteps+1 % restart_period_1 == 0)
11 W_phase_1();
12 …
13 }
14 final_phase();
15 apprime_finalize();
16 return 0;
17 }

Wn phase,
here the

sub n is 1.

Direct replay I phase.

Direct replay F phase.

Select the next MC
state for C phase,

see Figure 6.

Figure 7: Code structure in main()

the generator to dynamically select the next MC state to
transit to at the end of each timestep, as shown in Figure 7.

Within each MC state, though, the generator deploys the
more faithful direct replay strategy, transforming event ta-
ble entries to respective communication or I/O calls, with
corresponding recorded parameter values for each process.
Note that identical values across processes have already been
compressed in the merged event tables. Usually, values are
represented as one dimensional array and each of its ele-
ments is for one process.

Between each pair of adjacent communication or I/O calls,
APPrime inserts a computation interval, whose length is
generated statistically according to the 1D histogram array
(as discussed in Section 3.1.3). This is done by inserting
usleep(duration) calls, where duration is determined by
randomly sampling the appropriate histogram. As the his-
tograms capture inter-process latency variances, load im-
balance is retained by recreating the “computation bubble”
distribution across different processes. This is because: for
most iterative parallel applications, every computation gap
varies considerably across processes in the same timestep.
For example, None Uniform Memory Access (NUMA) plat-
forms such as Titan and Sith at ORNL, bring obvious under-
lying imbalance across processes. Meanwhile, total execu-
tion time of different timesteps for the same state possesses
a negligible variation, as showed in Table 4.

The current APPrime prototype ignores the captured D
phases, though it is straightforward to reproduce statisti-
cally similar “noises” according to the traced events.

4. EVALUATION
In this section, we evaluate our APPrime prototype, imple-
mented in over 16,000 lines of Java code. Our tests used
two platforms of Oak Ridge Leadership Computing Facility
(OLCF) supercomputer/clusters. Table 3 lists major con-
figurations.

We validate its major design choices and demonstrate the
output benchmarks’ effectiveness using the aforementioned
use cases. For use case 1 (cross-platform performance as-

Name
of
nodes

Cores
per node

Mem.
per node

OS
File

system
Titan 18,688 16 32GB Cray xk7 Lustre
Sith 40 32 64GB Linux Lustre

Table 3: Tested platforms

sessment), we used the four most communication-intensive
members (BTIO, SP, CG, and LU) of the NAS benchmark
suite [7]. For use case 2 (I/O configuration evaluation), we
started with three large real-world applications (all propri-
etary), whose developers/users are interested in exploring
asynchronous I/O through data staging: the quantum tur-
bulence code BEC2 [31] and two gyro-kinetic particle simu-
lations: XGC [26] and GTS [35].

A major focus of our evaluation is accuracy, measuring the
similarity in behavior between the each original application
A and the APPrime benchmark A′, potentially across mul-
tiple platforms. We examined not only the overall perfor-
mance, but also the breakdown of time spent on compu-
tation, communication, and I/O. In addition, we checked
whether the inter-processes load imbalance and overall per-
formance variance existing in A is retained by A′. Each test
is run three times and we report the average, with error bars
indicating standard deviation. All traces are collected with
the SST DUMPI library [16].

4.1 Summary of Application Trace Charac-
teristics

Before presenting results, we first give information on our
seven test workloads. Table 4 summarizes key statistics col-
lected in APPrime’s step-by-step trace processing. For each
application, we list statistics from two sample executions,
with 64 and 256 processes respectively. All NAS benchmarks
use the D-class problem size.

We make the following observations. (1) With only 256
processes, parallel application runs produce sizable traces
(1.1GB to 12GB). The size of event tables are smaller,
but stays quite stable relative to the original trace size
(around 70%). (2) APPrime’s compact string representa-
tion of event name sequence produces per-process strings
under 100KB in most cases, enabling efficient phase recog-
nition. (3) As reported by a previous study [33], each ap-
plication uses a rather small subset of MPI functions (11
to 38 unique MPI routines). (4) Each NPB benchmark has
only one C phase state, creating homogeneous timesteps. In
contrast, both of the two gyrokinetic simulations (XGC and
GTS) have two states. (5) The same applications also con-
tain small portions of noise (D phases), which is not found
in other applications or benchmarks we tested. They ac-
count for 0.1% and 0.3% of traced events respectively and
appear safe to ignore in our benchmark creation. (6) At the
end of its trace processing, APPrime significantly reduces
the traces into compact profiles for code generation (aver-
age 4.2MB, median 3.5MB). Note that the profile size only
grows with the execution scale but not with the number of
timesteps.

4.2 Justification of Methodology
Next, we validate APPrime’s design, by answering the fol-
lowing questions:

7

App
of
procs

of
TSs

Trace

size§
Table

size§
events in
one state

String
size

unique
funcs

of
states

D%? TSV% ¶ Profile
size

BTIO 64 250 832 MB 584 MB 183 44.4 KB 16 1 0% 2.1% 2.2 MB
BTIO 256 250 7.02 GB 4.75 GB 266 91.5 KB 16 1 0% 4.3% 8.1 MB
CG 64 100 1.42 GB 1.00 GB 789 77.8 KB 11 1 0% 1.5% 3.4 MB
CG 256 100 7.51 GB 5.50 GB 1478 101.2 KB 11 1 0% 1.8% 11 MB
SP 64 500 1.44 GB 960 MB 139 68.1 KB 15 1 0% 1.4% 1.4 MB
SP 256 500 11.7 GB 7.43 GB 278 138 KB 15 1 0% 3.5% 6.1 MB
LU 64 300 18 GB 12.3 GB 1604 471 KB 11 1 0% 2.3% 11.3 MB
LU 256 300 75 GB 51.3 GB 1604 471 KB 11 1 0% 3.8% 44.2 MB
BEC2 64 100 142 MB 101 MB 74 7.5 KB 14 1 0% 1.8% 1.1 MB
BEC2 256 200 1.08 GB 800 MB 74 14.7 KB 14 1 0% 2.7% 3.6 MB
XGC 64 100 262 MB 243 MB 73 11.5 KB 28 2 0.1% 4.3% 0.98 KB
XGC 256 200 2.1 GB 1.64 GB 103 15.3 KB 28 2 0.1% 5.8% 1.40 MB
GTS 64 50 213 MB 137 MB 391 11.6 KB 38 2 0.3% 5.6% 1.9 MB
GTS 256 100 1.83 GB 1.15 GB 391 24.9 KB 38 2 0.3% 5.9% 7.2 MB

†: timestep §: total ?: percentage of traced events identified as D phases ¶: average relative time variation among timesteps
within one execution on Sith

Table 4: All seven applications’ executions and trace features, their A’ benchmarks are released online [1].

0"
300"
600"
900"
1200"
1500"
1800"

A" A'Fine" A'"0"C" A" A'Fine" A'"0"C"

Sith" Titan"

Ti
m
e"
(s
ec
.)�

Communica?on" Computa?on"

A’ - C:
A’ Coarse

Figure 8: Performance accuracy: coarse-grained vs.
fine-grained benchmark generation of BEC2

1. Do we really need to identify individual (and poten-
tially heterogeneous) timesteps in parallel simulations?
Since we take a statistical approach and the number
of timesteps is known, what difference will it make if
we simply partition the overall traces by the timestep
number?

2. Does the distribution-based code generation introduce
variance not belonging to the original application?

3. Can APPrime produce significantly more compact
benchmarks compared to the original applications?

4. For applications with heterogeneous timesteps (in com-
munication behavior), how soon can we recognize these
states?

To answer the first question, we constructed a coarser-
granularity alternative to the standard APPrime approach.
It statistically summarizes traces using lightweight profil-
ing (our implementation uses mpiP [34]), collecting per pro-
cess high-level statistical information for each MPI function
called in the application. Similarly, the computational in-
tervals are profiled at a coarser granule, for each type of
(MPI) event, instead of identifying the accurate C phase
event sequences and profiling at the per-event level as in
the standard approach. The coarse-grained benchmark for
application A, which we label A′ Coarse (as opposed to
A′ Fine for the standard output), is created by partitioning
the event profiled uniformly into the known timestep counts
and generating event sequence and parameter values accord-
ing to the profiled distribution. Special care is taken to han-

0	

200	

400	

600	

800	

1	 8	 15	 22	 29	 36	 43	 50	 57	 64	 Co
m
m
un

ic
a4

on
	 4
m
e	
pe

r	 p
ro
c.
	

(s
ec
.)

Ranks	 according	 to	 sorted	 communica4on	 4me

Applica'on	 A'Fine	 A'Coarse	

Figure 9: Captured inter-process latency variances
by SP on Sith

dle calls such as MPI Isend, MPI Irecv, and MPI Waitall as
atomic event groups, to avoid deadlocks.

Figure 8 reports the computation-communication time
breakdown on both test platforms. A in this case is the
NAS SP application, which we find to contain a fair level
of load variance across processes. As can be seen in Fig-
ure 8, the A′ Coarse benchmark has significantly lower fi-
delity than A′ Fine, which stays close to A in overall com-
putation/communication time on both platforms. In addi-
tion, A′ Coarse produces significantly larger execution time
variance on Sith. As to be seen in Figure 10, standard AP-
Prime’s randomized bin selection gives very small room for
generating extra variances, while the coarse-grained version
allows much more dynamic behavior at runtime.

Figure 9 further zooms into the communication load bal-
ance behavior. We sort the total measured communication
time among the 64 processes, creating three monotonically
growing curves for A, A′ Fine, and A′ Coarse, respectively.
The A′ Coarse curve closely traces the A curve, demon-
strating its capability of recreating not only the overall exe-
cution time, but also the communication overhead distribu-
tion. The A′ Coarse curve, on the other hand, misses some
of the skewed communication workload assignment and pro-
duces a more “balanced” curve. This and the previous set of
results illustrate that simply relying on the high-level event

8

0"

400"

800"

1200"

1600"

A" A'1"A'2"A'3" A" A'1"A'2"A'3"

64" 256"

To
ta
l"e
xe
cu
5o

n"
5m

e"(
s)�

A’2�A’3�A’1�A� A’2�A’3�A’1�A�

Figure 10: BEC2’s APPrime benchmark perfor-
mance consistency

occurrence and parameter distribution is not able to gener-
ate high-fidelity benchmarks.

Next, to answer the 2nd question, we examined the im-
pact of APPrime’s randomized bin selection when perform-
ing distribution-guided benchmark code generation. Fig-
ure 10 illustrates the result using the BEC2 application,
where we show the performance (plus performance variance)
of the original application A, and three versions of AP-
Prime benchmarks (A′1, A′2, and A′3) using three different
random number generation seeds. The results confirm that
the benchmarks do not incur additional variances. Actually,
the A′ benchmarks show smaller performance variance com-
pared to A, due to that they are all derived from the same
instance of traced executions. Hopefully this limitation can
be eliminated when we add real computation workload gen-
eration into APPrime.

App
Lines of code Max # of Min # of

A A’ TS tested TS required
BEC2 1.5K 856 1000 1
XGC 93.7K 7.7K 1000 36
GTS 178.4K 13.7K 200 2

Table 5: Statistics regarding timestep state identifi-
cation, including the minimum number of timesteps
required to capture all states

Table 5 answers the last two questions, by giving the size
(in lines of code) of the three real applications and their
APPrime counterparts, plus information on timestep state
recognition. While the code size reduction is modest (less
than half) for the already compact BEC2, there is a more
than 10-fold reduction for both XGC and GTS. The gen-
erated code is in standard C and does not rely on libraries
other than MPI or ADIOS I/O. As a result, the APPrime
benchmarks are very easy to port. In comparison, the origi-
nal applications take a graduate student author experienced
with parallel programs 8− 24 working hours to port even to
a library-rich platform.

For XGC and GTS, each with two timestep states identified,
the state set “convergence” happens rather early. According
to Table 5, their second timestep states are discovered at
the 36th and 2nd timestep respectively. We also executed
all three real applications using their production run length
given in Table 2: 1000 timesteps for BEC and XGC, and 200
timesteps for GTS, with no new timestep states discovered.
This confirms our finding from interacting with scientists
that the set of timestep behaviors is rather small and can be
identified by running a short “prefix” of the application. To

further verify the “predictability” of small APPrime tracing
runs, Figure 11 shows the effectiveness of using a relatively
short tracing run (100 timesteps for BEC2 and XGC, 50 for
GTS) to generate APPrime benchmarks. The APPrime
benchmarks are shown to stay consistent with the original
applications, even with runs much longer than traced ones.

4.3 Use Case Evaluation
4.3.1 Results: Cross-Platform Relative Performance

We assessed APPrime benchmarks’ capability of retaining
the original applications’ relative performance across our two
test platforms, Sith and Titan. Figure 12 gives all three
phases (computation, communication and I/O) time cost
and the total execution time’s variation of the four NAS
benchmarks tested, along with that of the corresponding
APPrime benchmarks.

Considering their different compute capability, we collected
input traces for the original applications on each platform
and generated the platform-specific computational interval
distributions. Note that this handling does not live up to
our use case objective (to avoid porting applications) and is
meant to be fixed by adding real compute activity regener-
ation, as discussed in Section 6. Therefore, the assessment
focus is on the cross-platform fidelity of the synthetic com-
munication and I/O workloads. APPrime benchmarks are
shown in Figure 12 to closely match the original applica-
tions’ relative behavior across applications, job scales, and
platforms.

In addition, we verified that all the APPrime benchmarks
after the four NAS benchmarks produce identical event
name sequences as the original applications do. By auto-
matically creating benchmarks highly faithful to the origi-
nal application, yet without disclosing original programs (ei-
ther source or executable), APPrime can help users quickly
assess the capability of different platform choices for their
target workloads.

4.3.2 Results: Asynchronous I/O Configuration As-
sessment

0"

1000"

2000"

3000"

4000"

100" 200" 1000" 100" 200" 1000" 50" 100" 200"

BEC2" XGC" GTS"

To
ta
l"e
xe
cu
7o

n"
7m

e"
(s
)�

Number"of"7mesteps�

Applica'on* APPrime*benchmark*

Figure 11: Performance accuracy of APPrime
benchmarks in long executions, with short traced
runs for training

9

0	

300	

600	

900	

1200	

1500	

1800	

A	 A'	 A	 A'	 A	 A'	 A	 A'	 A	 A'	 A	 A'	
Sith	 Titan	 Sith	 Titan	 Sith	 Titan	

64	 121	 256	

Ex
ec
u9

on
	 9
m
e	
br
ea
kd
ow

n	
(s
ec
.)

Computa(on	 Communica(on	 I/O	

(a) BTIO

0	
150	
300	
450	
600	
750	
900	

A	 A'	 A	 A'	 A	 A'	 A	 A'	 A	 A'	 A	 A'	
Sith	 Titan	 Sith	 Titan	 Sith	 Titan	

64	 128	 256	

Computa:on	 Communica:on	

(b) CG

0	
300	
600	
900	

1200	
1500	
1800	

A	 A'	 A	 A'	 A	 A'	 A	 A'	 A	 A'	 A	 A'	

Sith	 Titan	 Sith	 Titan	 Sith	 Titan	
64	 121	 256	

Computa9on	 Communica9on	

(c) SP

0	
400	
800	
1200	
1600	
2000	
2400	

A	 A'	 A	 A'	 A	 A'	 A	 A'	 A	 A'	 A	 A'	

Sith	 Titan	 Sith	 Titan	 Sith	 Titan	

64	 128	 256	

Computa7on	 Communica7on	

(d) LU

Figure 12: Computation, communication and I/O phases time of selected NAS benchmarks on two platforms

0	
100	
200	
300	
400	
500	
600	
700	
800	

0	 1	 4	 8	 0	 1	 4	 8	 0	 1	 4	 8	

64	 256	 512	

To
ta
l	 e
xe
cu
4o

n	
4m

e	
(s
ec
.)

Applica'on	 APPrime	 benchmark	

(a) BEC2

0"

400"

800"

1200"

1600"

0" 1" 4" 8" 0" 1" 4" 8" 0" 1" 4" 8"

64" 256" 512"

Applica'on* APPrime*benchmark*

Crashes
& aborts

Crashes
& aborts

(b) GTS

0	
300	
600	
900	
1200	
1500	
1800	

0	 1	 4	 8	 0	 1	 4	 8	 0	 1	 4	 8	

64	 256	 512	

Applica'on	 APPrime	 benchmark	

(c) XGC

Figure 13: Total execution time with different numbers of asynchronous I/O staging processes

In this section, we demonstrate that APPrime benchmarks
are able to help in examine the impact of different I/O
methods, or even specific I/O settings. Our experiments
compared the behavior of our three real-world applications
along with their APPrime counterparts, by enabling asyn-
chronous I/O (data staging) via the ADIOS parallel I/O
library [4]. In such async-I/O is adopted, the periodic out-
put content will be collected by a small group of staging
nodes, who write the data to the parallel file system while
the compute processes resume their computation.

Figure 13 gives the execution time of BEC2, GTS, and XGC
applications, with three different execution scales and four
staging process settings. “0 staging process” indicates that
synchronous I/O is used. As APPrime retains the original
configuration file of the application and reproduce the au-
tomatically identified I/O phases, the I/O settings can be
configured in the same way as for the original applications.
The results show that (1) the total execution time of AP-
Prime benchmarks remain faithful to the original applica-
tions, and (2) the relative impact of using different number
of staging processes is corrected reflected by the APPrime
benchmarks. For example, the APPrime benchmark runs
correctly reveal that for BEC2, asynchronous I/O brings sig-
nificant saving to the overall execution time, especially with
larger-scale runs, while deploying more than one staging pro-
cess does not bring much incremental benefit. As another
example, for XGC APPrime runs properly indicate that
adopting 4 staging processes appear to be the configuration
sweet point.

Note that GTS crashes when performing I/O with ADIOS
in 256- and 512-process runs. After consulting the ADIOS
team, we suspect the reason to be a problem with the ap-
plication’s I/O call arguments. To verify that APPrime is
able to reproduce such crashes, we generated the APPrime

benchmark with traces from an execution with I/O turned
off, and inserted the I/O phase using the Skel tool [19] us-
ing the same GTS I/O configuration file. The benchmark,
at both 256 and 512 scales, also aborted with errors during
checkpoint output.

Finally, we also verified that the APPrime benchmarks’
reconfigurability in adjusting the periodic I/O frequency.
Again they accurately reflect the original application’s per-
formance behavior (result chart omitted due to space limit).

5. RELATED WORK
Tracing and Profiling Communication trace collection
and analysis tools (e.g., [5, 29, 17, 21, 22]), plus post-
mortem trace analysis and replay tools (e.g., [8, 14]), have
been widely used to understand/optimize large-scale HPC
applications. To address the large size of parallel execution
traces, several compression tools [40, 39, 22, 43] present in-
situ lossless or lossy trace compression. Profiling tools [12,
34, 6] take a relatively light-weight approach, by summariz-
ing aggregate or statistical information of parallel job exe-
cutions. APPrimebuilds on trace collection and analysis,
with the goal of understanding and simulating the applica-
tion itself (rather than its certain executions) as stand-alone,
portable, and to some extent configurable benchmark code.

Trace-based Application Analysis ScalaExtrap [37]
successfully identifies and extrapolates communication
topologies, given traces from executions of different scales,
though with several constraints (requiring certain patterns
such as stencil/mesh manner point-to-point communica-
tion). Currently APPrime does not support automatic
problem size or job size scaling, but can potentially leverage
similar approaches to extrapolate application behavior ob-
served at different scales. By taking a statistical approach,

10

such extrapolation can be applied to communication, com-
putation, and I/O in a consistent way. However, the current
strict and accurate event recreating per timestep might need
to be relaxed.

There also exist trace analysis work on phase identification,
e.g., by applying signal processing techniques [9]. The au-
thors demonstrated that the proposed tool reduces trace size
effectively, but was not able to correctly identify HPC ap-
plications’ iterative structures. Other automatic techniques
(such as Stranger for PHP [42]) usually have strict con-
straints on the input string regarding grammar and lan-
guage. The lack of fixed alphabetic or consistent iterative
structure across different applications, as well as the noise
phases found, motivates us to design our own algorithm for
trace-based parallel iterative program phase recognition.

Benchmark Generation It is widely recognized (and con-
firmed in this study) that these benchmarks cannot fully
keep up with state-of-the-art parallel applications in terms
of problem size, execution scale, or behavior complexity.
Existing automatic generation techniques, such as Bench-
maker [11, 15] and HBench [27], also use statistical models
to characterize the original applications using metrics like
instruction set, memory access stride, and cache miss rate.
With APPrime, we couple statistical modeling (for gen-
erating parameter values such as buffer sizes, computation
intervals, and communication partners) with accurate event
sequence matching and re-creation, to build highly realis-
tic and somewhat reconfigurable parallel benchmarks. At
the same time, there is prior work on benchmark extrac-
tion based on compressed communication trace, in particu-
lar ScalaBenGen [36]. However, it focuses on communica-
tion behavior recreation, requires in-house trace format, and
generates benchmarks with hardcoded number of timestep
and I/O frequencies and methods. Therefore we did not
evaluate it in our experiments for comparison. The per-
formance fidelity of APPrime is similar to that reported
for ScalaBenGen. Meanwhile, APPrime captures the more
high-level timestep phases (rather than loops heuristically
identified at runtime), tolerates heterogeneous timestep be-
haviors, and works with standard trace collection tools as
well as existing traces.

Finally, compiler-assisted source code reduction (such as
slicing) [28, 44, 32] offers an alternative approach to bench-
mark creation. As discussed by other researchers [36], such
static techniques have significant disadvantages even for cre-
ating communication-only benchmarks. For example, they
rely on the availability of all source codes, including ap-
plication and its dependent libraries. Skel [19] automati-
cally generates skeletal I/O applications with ADIOS API
from an abstraction of simulation I/O parameters. Com-
pared to reduction-based and specialized code skeletons,
APPrime aims at generating comprehensive, generic appli-
cation benchmarks by analyzing and recreating the original
applications’ dynamic behavior.

6. CONCLUSION AND FUTURE WORK
This paper presents APPrime, which intelligently dis-
tills the behavior profile of parallel, iterative applications
from execution traces and automatically generates compact,

portable benchmark codes. APPrime takes a hybrid ap-
proach that couples fine-grained communication and I/O
event sequence matching (for automatic timestep recogni-
tion) and statistical event modeling (for event parameter
and computation interval regeneration). Through our ex-
periments with macro-benchmarks and real-world large ap-
plications, we have verified that APPrime generates com-
pact, portable benchmarks that retain the original applica-
tions’ performance characteristics across multiple execution
scales and platforms. Our study also indicates that today’s
applications possess complex behaviors (such as heteroge-
neous timesteps) not portrayed in popular parallel bench-
marks such as the NPB suite.

Based on the validation results reported in this paper, our
on-going work is investigating ways to regenerate synthetic
computation activities simulating real-application work-
loads. This can be viewed as a recursive step within AP-
Prime, where we “zooms into” the computation intervals
and statistically regenerate integer/floating-point computa-
tion instructions (along with memory access patterns) as ob-
served from the original application. Also, the current AP-
Prime prototype focuses on temporal behavior study and
has not yet studied creating benchmarks with similar scala-
bility behavior when the number of processes is changed. We
suspect that this can be done by learning an application’s
scaling behavior and applying techniques such as communi-
cation pattern extrapolation [37]. Finally, APPrime might
be made more efficient and flexible by enabling online trace
processing (to distill patterns and statistics for benchmark
creation).

7. REFERENCES
[1] APPrime Website. http://www.apprimecodes.com/.

[2] DOE INCITE.
http://www.doeleadershipcomputing.org/awards/

2015INCITEFactSheets.pdf.

[3] OLCF Titan. https://www.olcf.ornl.gov/titan/.

[4] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky,
K. Schwan, and F. Zheng. DataStager: Scalable Data
Staging Services for Petascale Applications. In Cluster
Computing, 2010.

[5] H. Adalsteinsson, S. Cranford, D. A. Evensky, J. P.
Kenny, J. Mayo, A. Pinar, and C. L. Janssen. A
Simulator for Large-Scale Parallel Computer
Architectures. In IJDST, 2010.

[6] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel,
G. Marin, J. Mellor-Crummey, and N. R. Tallent.
Hpctoolkit: Tools for performance analysis of
optimized parallel programs. CCPE, 2010.

[7] D. H. Bailey, E. Barszcz, J. T. Barton, D. S.
Browning, R. L. Carter, R. A. Fatoohi, P. O.
Frederickson, T. A. Lasinski, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The nas
parallel benchmarks. In IJSA, 1991.

[8] H. Brunst, H.-C. Hoppe, W. E. Nagel, and
M. Winkler. Performance Optimization for Large
Scale Computing: The Scalable VAMPIR Approach.
In ICCS. Springer-Verlag, 2001.

[9] M. Casas, R. M. Badia, and J. Labarta. Automatic
Phase Detection and Structure Extraction of MPI
Applications. IJHPCA, 2010.

11

[10] D. P. Doane. Aesthetic Frequency Classifications. The
American Statistician, 1976.

[11] J. Dujmović. Automatic Generation of Benchmark
and Test Workloads. In WOSP/SIPEW, 2010.

[12] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám,
D. Becker, and B. Mohr. The Scalasca Performance
Toolset Architecture. In CCPE, 2010.

[13] gtc2link. GTC-benchmark in NERSC-8 suite, 2013.

[14] C. L. Janssen, H. Adalsteinsson, and J. P. Kenny.
Using Simulation to Design Extremescale Applications
and Architectures: Programming Model Exploration.
ACM IGMETRICS PER, 2011.

[15] A. M. Joshi, L. Eeckhout, and L. K. John. The Return
of Synthetic Benchmarks. In SPEC Benchmark
Workshop, 2008.

[16] J. P. Kenny, G. Hendry, B. Allan, and D. Zhang.
Dumpi: The mpi profiler from the sst simulator suite,
2011.

[17] A. Knupfer, R. Brendel, H. Brunst, H. Mix, and
W. Nagel. Introducing the Open Trace Format (OTF).
Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2006.

[18] R. Latham, C. Daley, W. keng Liao, K. Gao, R. Ross,
A. Dubey, and A. Choudhary. A case study for
scientific i/o: improving the flash astrophysics code.
CSD, 5(1):015001, 2012.

[19] J. Logan, S. Klasky, H. Abbasi, Q. Liu, G. Ostrouchov,
M. Parashar, N. Podhorszki, Y. Tian, and M. Wolf.
Understanding I/O Performance Using I/O Skeletal
Applications. In Euro-Par. Springer-Verlag, 2012.

[20] NASA. Nas parallel benchmarks.
http://www.nas.nasa.gov/publications/npb.html,
2003.

[21] M. Noeth, F. Mueller, M. Schulz, and B. de Supinski.
Scalable compression and replay of communication
traces in massively parallel environments. In IPDPS,
2007.

[22] M. Noeth, P. Ratn, F. Mueller, M. Schulz, and B. R.
de Supinski. ScalaTrace: Scalable Compression and
Replay of Communication Traces for
High-Performance Computing. J. Parallel Distrib.
Comput., 2009.

[23] F. Pachet, P. Roy, and G. Barbieri. Finite-length
Markov Processes with Constraints. In IJCAI, 2011.

[24] M. Pedersoli, A. Vedaldi, and J. Gonzalez. A
coarse-to-fine approach for fast deformable object
detection. In IEEE CVPR, pages 1353–1360, 2011.

[25] L. R. Rabiner and B. H. Juang. An introduction to
hidden Markov models. IEEE ASSP Magazine, pages
4–15, January 1986.

[26] S. Ku, C. S. Chang, and P. H. Diamond. Full-f
Gyrokinetic Particle Simulation of Centrally Heated
Global ITG Turbulence from Magnetic Axis to Edge
Pedestal Top in A Realistic Tokamak Geometry.
Nuclear Fusion, 2009.

[27] M. Seltzer, D. Krinsky, K. Smith, and X. Zhang. The
Case for Application-Specific Benchmarking. In IEEE
HOTOS, 1999.

[28] S. Shao, A. K. Jones, and R. Melhem. A
Compiler-based Communication Analysis Approach
for Multiprocessor Systems. In IEEE IPDPS, 2006.

[29] S. Shende and A. D. Malony. TAU: The tau parallel
performance system. International Journal of High
Performance Computing Applications, 20(2), 2006.

[30] H. A. Sturges. The Choice of a Class Interval. Journal
of the American Statistical Association, 1926.

[31] G. Vahala, M. Soe, B. Zhang, J. Yepez, L. Vahala,
J. Carter, and S. Ziegeler. Unitary Qubit Lattice
Simulations of Multiscale Phenomena in Quantum
Turbulence. In SC11, 2011.

[32] L. Van Ertvelde and L. Eeckhout. Dispersing
Proprietary Applications as Benchmarks Through
Code Mutation. ACM SIGOPS OSR, 2008.

[33] J. Vetter and F. Mueller. Communication
characteristics of large-scale scientific applications for
contemporary cluster architectures. In IPDPS, 2002.

[34] J. S. Vetter and M. O. McCracken. Statistical
Scalability Analysis of Communication Operations in
Distributed Applications. ACM SIGPLAN, 2001.

[35] W. X. Wang and Z. Lin and W. M. Tang and W. W.
Lee and S. Ethier and J. L. V. Lewandowski and G.
Rewoldt and T. S. Hahm and J. Manickam.
Gyro-kinetic Simulation of Global Turbulent
Transport Properties in Tokamak Experiments.
Physics of Plasmas, 2006.

[36] X. Wu, V. Deshpande, and F. Mueller.
ScalaBenchGen: Auto-Generation of Communication
Benchmarks Traces. In IEEE IPDPS, 2012.

[37] X. Wu and F. Mueller. ScalaExtrap: Trace-based
Communication Extrapolation for SPMD Programs.
In ACM PPoPP, 2011.

[38] X. Wu, K. Vijayakumar, F. Mueller, X. Ma, and
P. Roth. Probabilistic communication and i/o tracing
with deterministic replay at scale. In ICPP, 2011.

[39] Q. Xu and J. Subhlok. Construction and Evaluation of
Coordinated Performance Skeletons. In HiPC.
Springer-Verlag, 2008.

[40] Q. Xu, J. Subhlok, R. Zheng, and S. Voss.
Logicalization of Communication Traces from Parallel
Execution. In IEEE IISWC, 2009.

[41] L. T. Yang, X. Ma, and F. Mueller. Cross-Platform
Performance Prediction of Parallel Applications Using
Partial Execution. In SC05, 2005.

[42] F. Yu, M. Alkhalaf, and T. Bultan. Stranger: An
Automata-Based String Analysis Tool for PHP. In
J. Esparza and R. Majumdar, editors, Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2010.

[43] J. Zhai, J. Hu, X. Tang, X. Ma, and W. Chen.
Cypress: Combining static and dynamic analysis for
top-down communication trace compression. In SC14,
2014.

[44] J. Zhai, T. Sheng, J. He, W. Chen, and W. Zheng.
FACT: Fast Communication Trace Collection for
Parallel Applications Through Program Slicing. In
SC09, 2009.

12

